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Electromagnetic Resonances of a Straight Wire on
an Earth-Air Interface

John M. Myers, Sheldon S. Sandler, and Tai Tsun Wu

Abstract

Using a variational method, we recently determined an electromagnetic “signature” for
characterizing a straight wire in free space. The signature consists of the first five resonant
frequencies and their widths, more compactly expressed as the first five complex-valued resonant
frequencies. Here we apply the variational method to the much more complicated case of
determining the same signature for a straight wire or wire pair on a flat interface between
a homogeneous earth and air. To calculate the resonances we obtain an integral equation for
the current on a wire on the interface between two dielectric media. Complex-valued resonant
frequencies are defined as those for which the homogeneous integral equation for the current in
an equivalent thin strip on the interface has non-zero solutions. The variational method extracts
good approximations to these complex-valued resonant frequencies, without having to solve the
integral equation. A table of resonances is given for the case of a relative dielectric constant of
the earth equal to 4 and for three values of the ratio of wire radius to wire half-length.

Index Terms

Antenna theory, resonance, earth, interface phenomena, integral equation, variational methods.

I. INTRODUCTION

IT has long been of interest to establish electromagnetic signatures by which to recognize objects. Herewe study complex-valued resonant frequencies [1], [2] in a straight wire located on the surface of a
flat earth, to serve as a “signature” for locating such a wire. An important property of the resonances is
that the ratios of successive resonant frequencies are characteristic of such a wire and are approximately
invariant with wire diameter and wire length, so long as the diameter is very much less than both the
wire length and the wavelength.
In the case of a thin wire in a homogeneous medium, the shape of its cross section has negligible effect

on the electrical behavior of the wire, but some shapes are much more convenient than others for analysis.
Although mostly interested in a wire of circular cross section, we draw on conformal mapping to find that
for perfect conductors a circular wire of radius a is essentially equivalent to a flat strip of width 4a and
negligible thickness [3]. This equivalence to a strip holds also for a thin wire on the boundary between
two different dielectric media; indeed a wire pair can be treated the same way, namely as equivalent to
a suitably scaled strip. We analyze a flat and perfectly conducting strip of zero thickness. We assume
the strip is located in a plane interface, thought of as horizontal, between a medium below (earth) and a
medium above (air). The problem is to find the first five resonant frequencies for electromagnetic radiation
scattered by this thin strip as functions of the strip length, strip width, and the dielectric constant of earth
and of air; the width of each resonance is also to be determined.
Our approach, based on the theory of linear antennas, is to formulate an integral equation for the current

in the wire induced by an incident electromagnetic field. For the much simpler case of a wire in a single
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myers@seas.harvard.edu; sandler@seas.harvard.edu; ttwu@seas.harvard.edu).
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homogeneous medium, two forms of integral equation for the current generated by an incident electromag-
netic field were well developed over fifty years ago [4]. The formulation of the Hallén integral equation
for the current in the wire induced by an incident vector potential evades non-integrable singularities that
would infest the integral if the integral equation were formulated directly for an incident electric field.
From this Hallén integral equation, in which the vector potential plays a central role, it follows that the
current on a thin antenna is approximately sinusoidal, and the propagation constant for this approximately
sinusoidal current is that of the surrounding medium.
In the early 1970’s resonant frequencies were defined as the complex values of frequency at which a

homogeneous integral equation (in which the incident field is set to zero) has a non-zero solution for the
current [1], [2]. For a straight wire thicker than that of interest to us, the Singularity Expansion Method
(SEM) yielded solutions for the case of a homogeneous medium [5]. Recently we recast the SEM method
to express the resonant frequencies as solutions to an equation that sets to zero a functional of the current,
with the nice property that this functional has zero first-order variation under variation of the current [6].
This insensitivity allows a relatively crude approximation to the current at resonance to be used in solving
for an accurate approximation to the complex-valued resonant frequency.
In contrast to the case of a wire in a single medium, for the present case of a wire on an interface,

there is no useful definition of a vector potential, which complicates formulating the problem. When the
wire involves two media with distinct propagation constants, the questions arise:
1) Is the current along the wire approximately sinusoidal?
2) If so, what is its propagation constant?

Based on the known expression for the electric field emanating from a point current element located on
and parallel with the interface [7], it turns out that integral equations of both the Pocklington type and the
Hallén type can be formulated, but with a more complex kernel that introduces qualitatively new features,
associated physically with the complexity of paths by which energy can propagate near an interface.
Solving the integral equation in any form is difficult; however, we will find a good approximation to
the resonant values of kh without having to solve the integral equation. As described below, the current
near resonance is approximately sinusoidal, but with a complex-valued propagation constant, even when
both media are lossless. Using the approximate current, the variational method developed for free space
is applied to determine approximately the first five complex-valued resonant frequencies of a wire on an
earth-air interface.
The rest of the paper is organized as follows.
1) In Sec. II, we state the known expression of the electric field generated by a current element on the

strip. This electric-field kernel, however, is non-integrable and so cannot serve directly as the kernel of
an integral equation.
2) To obtain an integrable kernel, the trick is similar to that used in the case of a single medium: in

Sec. III we determine a pair of complex-valued zeros in the Fourier transform of the electric-field kernel
with respect to distance along the strip, based on an approximation valid for a thin strip.
3) Using the zeros determined in Sec. III, in Sec. IV, we derive the integral equation of the Pocklington

type satisfied by the current induced in the strip, and show how the values of the zeros in the Fourier
transform of the electric field supply the main ingredient in the answer to the two questions posed above.
4) In Sec. V, the complex-valued resonant frequencies are defined as the frequencies at which the

homogeneous integral equation for the current in the strip has non-zero solutions. The integral equation
is manipulated into a form in which the solutions for the resonances are insensitive to small errors in the
current, allowing us to use the kernel of the integral equation, obtained after much labor, together with
a simple approximation for the current to obtain approximate equations for the resonant frequencies of
better accuracy than the approximation for the current.
5) In Sec. VI, the equations defining the kernel of the integral equation for the current are rearranged

to facilitate numerical computation, and examples of calculated resonances are reported.
6) In Sec. VII we make some concluding remarks.
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Fig. 1. Schematic diagram of the antenna geometry.

II. FORMULATION
We analyze a flat, perfectly conducting strip of length 2h, width 4a, and zero thickness, located in a

plane interface, thought of as horizontal, between a medium below (earth) with a propagation constant k1

and a medium above (air) with a propagation constant k2, as shown schematically in Fig. 1. Following the
notation of Ref. [7], let the planar boundary between air and earth be the xy-plane given by z = 0, and let
the z-axis point down into the direction of the earth. The problem is to find the first five complex resonant
frequencies for electromagnetic radiation scattered by this thin strip as functions of the parameters a, h,
k1, and k2.
As holds for earth and air, it will be assumed throughout this paper that

k1 > k2. (1)
Since the antenna is assumed to be thin, a is taken to be small, so that

aø h and k1aø 1, (2)
which, of course, implies k2aø 1. For present purposes both earth and air are assumed lossless, so that
both k1 and k2 are taken to be real-valued and positive. (As in the usual case of the linear antenna in
a homogeneous medium, once the lossless case is understood, the introduction of loss in the medium is
fairly straightforward.)
The formulation of the problem hinges on the electric field generated by a “horizontal” point dipole in

the interface. Consider a delta-function current at the origin,
J = δ(x) δ(y) δ(z) x̂; (3)

then, the x-component of the electric field at a point (x, y, 0) on the interface is given by (see (5.4.13) of
Ref. [7])

Ex(x, y) = −ωµ0

4π2

Z ∞

−∞
dξ

Z ∞

−∞
dη ei(ξx+ηy) γ1(k2

2 − ξ2) + γ2(k2
1 − ξ2)

MN
, (4)
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where
γ1 = (k2

1 − ξ2 − η2)1/2, γ2 = (k2
2 − ξ2 − η2)1/2,

M = γ1 + γ2, N = k2
1γ2 + k2

2γ1.
(5)

In deriving (4), it has been assumed that the magnetic permeability for both region 1 and region 2 is given
by µ0; that is, we do not deal here with magnetizable earth. The advantage of studying a strip antenna of
negligible thickness is the invariance of (4) under interchange of regions 1 and 2, unlike the much more
complex formula that would express a thick wire.
At points off the strip, the electric field produced by the current density on the strip is expressed as an

integral over Ex(x− x0, y − y0) times the current density as a function of x0 and y0, so that Ex(x, y) can
be thought of as an “electric-field kernel”; however at points on the strip the integral fails to converge. As
in the case of a single-medium, for the wire on an interface the key property of the electric-field kernel
that makes possible the elimination of a non-integrable singularity is a pair of zeros of the spatial Fourier
transform of the electric-field kernel.
In the single-medium case, the zeros are at ±k where k is the propagation constant of the single

medium, so the Fourier transform of the kernel has a factor (ξ2 − k2) which leads in the Pocklington
integro-differential equation to the differential operator (d2/dx2 + k2). That method works also for a thin
strip at an interface, except that finding the zeros in the Fourier transform of Ex is a considerable task,
to which we now turn.

III. ZEROS IN THE FOURIER TRANSFORM OF Ex

From (4) it follows that the Fourier transform from x to ξ of Ex(x, y) is −ωµ0/2π times

Ẽx(ξ, y) def=
Z ∞

−∞
dη eiηy γ1(k2

2 − ξ2) + γ2(k2
1 − ξ2)

MN
. (6)

This Ẽx(ξ, y) depends also on k1 and k2, which in turn depend on frequency through
k1 =

√
≤1 ω/c and k2 =

√
≤2 ω/c, (7)

where ≤1 and ≤2 are the relative dielectric constants of the two media. We assume lossless media, so that
both ≤1 and ≤2 are real-valued and positive; taking region 2 to be air, ≤2 ≈ 1. In marked contrast to the
case of a single medium, however, the values of ξ at which Ẽx(ξ, y) is zero turn out to be complex, not
real.
To find the zeros of Ẽx(ξ, y), the integral on the right-hand side of (6) must be evaluated, which presents

two difficulties: (a) this integral cannot be expressed exactly in terms of standard special functions, and (b)
the integrand oscillates and decays only slowly, making it unsuitable for direct numerical evaluation. To
overcome these difficulties, we develop approximations of the integral, accurate for a thin strip. Because
|y| < 2a, and taking y to be positive without loss of generality, the condition for the strip to be thin is

k1y ø 1 and |ξ|y ø 1. (8)
The approximation to be developed has the form of the first two terms of a series expansion. Although it
neglects terms of the order of (ξ̄y)2| ln(ξ̄y)|, where ξ̄ is the larger one of k1 and |ξ|, the approximation
is highly accurate for small values of y.
To proceed, we rewrite (6) as

Ẽx(ξ, y) = F1(ξ, y)− ξ2F2(ξ, y), (9)
where

F1(ξ, y) =
Z ∞

−∞
dη eiηy 1

γ1 + γ2
(10)

and
F2(ξ, y) =

Z ∞

−∞
dη eiηy 1

k2
1γ2 + k2

2γ1
. (11)
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As discussed in detail in [8], F1(ξ, y) can be evaluated exactly in terms of Bessel functions. Then the
small-argument approximation [9] for the Bessel functions together with an approximate evaluation of
F2(ξ, y) described in [8] imply

Ẽx(ξ, y)

≈ π

2
+ i





1

k2
1 − k2

2

∑
(k2

1 − ξ2) ln(y
q

k2
1 − ξ2 )− (k2

2 − ξ2) ln(y
q

k2
2 − ξ2 )

∏
+ γ − ln 2− 1

2






− ξ2

k2
1 + k2

2




π + 2i



 1

k2
1 − k2

2

µ
k2

1 ln(y
q

k2
2 − ξ2 )− k2

2 ln(y
q

k2
1 − ξ2

∂
+ γ − ln 2





− ik2
1k

2
2

k2
1 − k2

2

1
q

(k2
1 + k2

2)ξ2 − k2
1k

2
2

×


ln
k2

1 +
q

(k2
1 + k2

2)ξ2 − k2
1k

2
2

k2
1 −

q
(k2

1 + k2
2)ξ2 − k2

1k
2
2

− ln
k2

2 +
q

(k2
1 + k2

2)ξ2 − k2
1k

2
2

k2
2 −

q
(k2

1 + k2
2)ξ2 − k2

1k
2
2








. (12)

This is the desired approximate expression from which to determine the zero of this Ẽx as a function of
ξ when k1, k2 and y are given subject to the conditions (8). For several values of k2a and k1/k2, values
of k2

0/k
2
2 at which Ẽx(ξ, y) as specified in (12) has a zero at ξ = k0 are listed in Table I. Equation (12)

determines a unique value for k2
0, and hence a pair of values for ±k0; by k0 we denote the complex value

having a positive real part.

TABLE I
SAMPLE VALUES OF k2

0/k2
2 AS A FUNCTION OF k2a AND k1/k2

k2a k1/k2 k2
0/k2

2

10−4 1.8 2.18318 + i0.12600
10−5 1.8 2.16737 + i0.10080
10−6 1.8 2.15777 + i0.08392

k2a k1/k2 k2
0/k2

2

10−4 2.0 2.59013 + i0.16384
10−5 2.0 2.56777 + i0.13092
10−6 2.0 2.55413 + i0.10890

k2a k1/k2 k2
0/k2

2

10−4 2.2 3.04044 + i0.20489
10−5 2.2 3.01066 + i0.16348
10−6 2.2 2.99250 + i0.13586

In this calculation the neglect of terms on the order of |k1a|2 ln |k1a| generates a relative error in k0

of order |k1a|2. For the n-th resonant frequency, we bound |k1a| by |k1a| ≤ 2−1/2nπa/h. For n ≤ 5 and
a/h ≤ 10−4, the neglected terms are O(10−6), and under these conditions, which hold for Table I, we
expect a relative error in (k0/k2)2 less than 10−5.
To gain more physical insight than is visible in these calculated numbers, we keep only the leading

term of order ln(ξ̄y) and neglect all terms of order 1 on the right-hand side of (12) to obtain the rough
approximation:

Ẽx(ξ, y) ≈ i

√

1− 2ξ2

k2
1 + k2

2

!

ln(ξ̄y). (13)

Thus, in this rough approximation, the zero of Ẽx, called k0, is given simply by the known formula [10],
[11]

k2
0 ≈

k2
1 + k2

2

2
. (14)

A more accurate approximation yields an additional interesting result. Because the right-hand side of
(12) is complex in the sense of having both a real part and an imaginary part, setting Ẽx to zero can be
expected to lead to a solution ξ that is complex, and such a zero off the real axis leads to many new
phenomena. Ref. [8] displays the approximate value of the imaginary part of the zero, to show that both
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ξ-plane

Re ξ

Im ξ

–k1 –k2

–k0

k0

k2 k10

Fig. 2. A usual choice of the first (“proper”) sheet in the ξ-plane. With this and a number of similar choices, the zeros of
Ẽx(ξ, y) at ξ = k0 and ξ = −k0 are on the first sheet.

the real and the imaginary parts of the zero point k0 of Ẽx(ξ, y) in the ξ-plane are positive when k1 > k2,
at least for small values of y. That k0 is not real even in the absence of dissipation leads to features that
are not seen in the usual case of the linear antenna in a uniform medium. Note that k0 is in the first
(“proper”) sheet of the complex ξ-plane as usually chosen—see Fig. 2—unlike the Sommerfeld pole for
the linear antenna.

IV. INTEGRAL EQUATION FOR THE CURRENT
If the electric field kernel Ex(x, y) had only an integrable singularity, it would work immediately as the

kernel for an integral equation for the current in the wire; however because Ex(x, y) can be shown to behave
as 1/x2 as x tends toward zero, something has to be done to evade this non-integrable singularity. As in
the case of a homogeneous medium, the trick is to express the non-integrable Ex(x, y) as a differential
operator acting on a function that has only a logarithmic singularity, and then to bring the differential
operator outside the integration.
The needed differential operator is obtained by exploiting the zero-points ±k0 in the Fourier transform

Ẽx(ξ, y), found above, to put Ex(x, y) into the form

Ex(x, y) =
ωµ0

4π2

√
∂2

∂x2
+ k2

0

!

G(k1, k2, x, y), (15)

where the function G(k1, k2, x, y), which has only a logarithmic singularity, follows from defining its
Fourier transform to be

G̃(k1, k2, ξ, y) =
Ẽx(ξ, y)

ξ2 − k2
0

. (16)

From (16) together with (6) one obtains (15). Inverting the Fourier transform G̃(k1, k2, ξ, y) gives

G(k1, k2, x, y) =
Z ∞

−∞
dξ eiξxG̃(k1, k2, ξ, y)

=
Z ∞

−∞

dξ

ξ2 − k2
0

Z ∞

−∞
dη ei(ξx+ηy) γ1(k2

2 − ξ2) + γ2(k2
1 − ξ2)

MN
. (17)

For comparison, in the case of a homogeneous medium characterized by k1 = k2, one finds [8]

G(k1, k1, x, y) =
−πi

k2
1

exp(ik1

√
x2 + y2)√

x2 + y2
. (18)
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The argument that a thin strip antenna of width 4a is electromagnetically equivalent to a circular one
of radius a (see Ref. [4], pp. 16–18) works without change for the more general situation of two media,
leading to the integro-differential equation

√
∂2

∂x2
+ k2

0

! Z h

−h
dx0 K(x− x0)I(x0) =

4π

ωµ0
Einc(x), (19)

where, from (15) and (17), the kernel K of the equation is

K(x) =
1

2π

Z π

−π
dθ G(k1, k2, x, 2a sin 1

2θ), (20)

I is the current on the antenna, and Einc(x) def= Einc
x (x, 0) is the x-component of the external electric field

applied to the thin strip, evaluated at y = 0.
Equation (19) together with the approximation (14) to the zeros in the Fourier transform of Ex(x, y)

allows one to answer the two questions posed in the introduction. For a wire in free space there appears
a factor (d2/dx2 + k2) in the Pocklington equation, where k is the free-space propagation constant, and
this factor contributes large terms of the form cos kx when kh is near nπ/2 for n odd. Thus at resonance
with n odd, the current is roughly approximated by a constant times cos kx ≈ cos(nπx/2h). Similarly for
n even the current is roughly approximated by a constant times sin(nπx/2h). For the present case of a
wire on an interface, the Pocklington-type equation (19) has the factor (d2/dx2 + k2

0), with the result that
near resonance the current is roughly approximated as in the free-space case except that k of free space
is replaced by the complex-value k0 ≈

q
(k2

1 + k2
2)/2.

V. COMPLEX-VALUED RESONANT FREQUENCIES

As in [1], [2], we relate complex-valued resonant frequencies to solutions of the homogeneous integral
equation, that is the integral equation (19) with Einc(x) on −h ≤ x ≤ h set to 0:

√
∂2

∂x2
+ k2

0

! Z h

−h
dx0K(x− x0)I(x0) = 0. (21)

At first glance, one might expect the only solution to be I(x) = 0. However, the key to defining resonance
is to note that the kernel K depends not only on position along the wire, but also on the angular frequency
ω, on which k1 and k2 depend through (7). Therefore the solution to the integral equation (21) depends on
ω, and for certain discrete special values of ω, denoted ω1, ω2, . . . , the equation has non-zero solutions.
These values are expected to be complex, so that, listed in increasing order of their real parts, we have

Reωn = the n-th resonance frequency,
−Imωn = the half-width at half maximum of the n-th resonance. (22)

Under the assumption made here that k2 is real-valued, we choose instead of ωn the parameter k2,nh
(where k2,n = (ωn/c)

√
≤2, with c the speed of light in vacuum) to express the n-th complex resonant

frequency. The issue is how to find the k2,nh at which (21) has non-zero solutions.

A. Approximate solution for resonant frequencies
To determine the complex values k2,nh, we use a variational technique which can be expressed sym-

bolically as follows. Noting that for the n-th resonance, k1 and k0 both depend on k2,n, we let A(k2,n)
denote the linear integro-differential operator in (21), and let the current for the n-th resonance be denoted
by In(k2,n, x) so that (21) is abbreviated as

A(k2,n) ∗ In(k2,n) = 0,



8

where the ∗ denotes an integral over the spatial variable, and we have omitted writing the spatial variables
x and x0 to emphasize the dependence of A and In on the propagation constant k2,n. The problem of
resonance is to determine for n = 1, . . . , 5 the k2,n such that A(k2,n) ∗ In(k2,n) = 0 has a solution for
non-zero In(k2,n). What we require is only k2,n; we do not seek an accurate solution to the current
In(k2,n) ≡ In(k2,n, x).
As in the case of a wire in a homogeneous medium [6], the method for determining k2,n is based on

considering the functional

S[I] def= I(k2,n) ∗A(k2,n) ∗ I(k2,n)

=
Z h

−h
dx I(k2,n, x)

√
d2

dx2
+ [k0(k2,n)]2

! Z h

−h
dx0K(x− x0)I(k2,n, x

0). (23)

Suppose that for some value k2,n there is a non-zero solution In(k2,n, x) to (21). As shown in [6], the
variation with respect to I (as a function of x) around this In(k2,n) of S[I] is zero, that is:

0 = δ[In(k2,n) ∗A(k2,n) ∗ In(k2,n)].

Equation (21) is just the statement that A(k) ∗ In(k) = 0, whence it follows that In(k2,n) ∗ A(k2,n) ∗
In(k2,n) = 0. But since the first variation of the left-hand side is zero, replacing In(k2,n) by an approxi-
mation Iap

n makes no first-order error in the expression Iap
n ∗ A(k2,n) ∗ Iap

n . Thus we will determine k2,n

as the solution, for a suitable approximating current Iap
n , to

0 = Iap
n ∗A(k2,n) ∗ Iap

n . (24)

Now we take advantage of the relative insensitivity of (24) to choose a simple approximating current.
The resonances partition into those for which n is odd and the current is symmetric in x and those for
which n is even and the current is anti-symmetric in x. For a single medium, we discussed in [6] the
“shifted-cosine” approximation to the current, and rejected it because it introduced spurious values for
the resonant frequencies. As in that case, here for the case of two media we approximate the resonant
current for n odd as Iap

n ∼ cos(nπx/2h), and for n even as Iap
n ∼ sin(nπx/2h).

For computational convenience we carry an x-derivative under the integral and integrate by parts to
obtain for the equation for k2,n

0 =
Z h

−h
dx

Z h

−h
dx0

dIap
n (x)

dx
K(x− x0)

dIap
n (x0)

dx0
− k2

0

Z h

−h
dx

Z h

−h
dx0Iap

n (x)K(x− x0)Iap
n (x0); (25)

the dependence on k2,n, the sought value of k2, is now limited to the dependence of the kernel K(x−x0)
and the parameter k0 on k2,n.

B. Resonances
Define κn

def= nπ/2h. With the chosen approximating currents, (25) for determining k2,n for the case of
symmetric currents in which n is odd becomes

Z h

−h
dx

"

− ∂

∂x
cosκnx

# Z h

−h
dx0 K(x− x0)

∂

∂x0
cosκnx

0

+ k2
0

Z h

−h
dx cosκnx

Z h

−h
dx0 K(x− x0) cosκnx

0 = 0. (26)

We define

Isn
def=

Z h

−h
dx sinκnx

Z h

−h
dx0K(x− x0) sinκnx, (27)

Icn
def=

Z h

−h
dx cosκnx

Z h

−h
dx0K(x− x0) cosκnx, (28)
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and carry out the differentiations in (26) to obtain for n odd:

−κ2
nIsn + k2

0Icn = 0, (29)

which in a form more convenient for calculation becomes

(κ2
n − k2

0)(Isn + Icn) + (κ2
n + k2

0)(Isn − Icn) = 0. (30)

Similarly for the resonances with antisymmetric currents so that n is even, one finds
Z h

−h
dx

"

− ∂

∂x
sinκnx

# Z h

−h
dx0 K(x− x0)

∂

∂x0
sinκnx

0

+ k2
0

Z h

−h
dx sinκnx

Z h

−h
dx0 K(x− x0) sinκnx

0 = 0, (31)

which implies
(κ2

n − k2
0)(Isn + Icn)− (κ2

n + k2
0)(Isn − Icn) = 0. (32)

To find the complex-valued resonant frequencies, one holds fixed the geometrical and material parameters
h, a, ≤1, ≤2 and µ0 while varying the angular frequency ω in order to find complex values of ω for which
(30) for the symmetric resonances and (32) for the antisymmetric resonances have non-zero solutions.
Varying ω in the complex plane implies also varying the propagation constants k1, k2 via kj = ω

√
≤j/c

for j = 1, 2; and the dependence of k1 and k2 on (complex-valued) ω varies k0 as determined by (12).
The next step, derived in Appendix A, is to reduce the double integrals to single integrals to obtain,

for all resonances, regardless of whether n is even or odd,

(κ2
n − k2

0)IΣn = (κ2
n + k2

0)I∆n, (33)

where we define

IΣn
def= Isn + Icn = 2

Z 2h

0
dxK(x)(2h− x) cosκnx,

I∆n
def= (−1)n(Isn − Icn) =

2

κn

Z 2h

0
dxK(x) sinκnx. (34)

C. Scaling to h = 1

For calculational purposes, we save effort by recognizing that the resonant frequencies scale with the
wire half-length h. Thus one can set h to 1 and obtain resonant frequencies for other values of h by
dividing by h. With h = 1 we have κn = nπ/2 and the task is to solve the equation for resonances,
namely, regardless of whether n is even or odd,

[(nπ/2)2 − k2
0]IΣn = [(nπ/2)2 + k2

0]I∆n, (35)

where with h = 1 and κn = nπ/2 we have

IΣn
def= Isn + Icn = 2

Z 2

0
dxK(x)(2− x) cos

nπx

2
,

I∆n
def= (−1)n(Isn − Icn) =

4

nπ

Z 2

0
dxK(x) sin

nπx

2
. (36)

Similar to the case of the wire in a homogeneous medium, when the strip width 4a is much smaller than
all the other dimensions in this scattering problem, we can approximate the kernel K(x) [defined in (20)]
by G(k1, k2, x, a) defined in (17), so that we have

K(x) ≈ G(k1, k2, x, a)

=
Z ∞

−∞

dξ

ξ2 − k2
0

Z ∞

−∞
dη ei(ξx+ηa) γ1(k2

2 − ξ2) + γ2(k2
1 − ξ2)

MN
. (37)

We will use this approximation to determine resonances.
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D. Accuracy
Apart from the minor contribution of numerical integrations to error, the error in the complex-valued

resonant frequencies comes from the neglected terms in the solution for the pole in the Fourier transform
of the electric-field kernel (Sec. III), the approximation of the kernel by (37), and the inexactitude of the
approximation to the resonant current. For thin wires with |k1a| < 10−3, by far the largest contribution
to error in the complex-valued resonant frequency is the inexactitude of approximation to the current.
In order to get an idea of the size of this error, we proceed in a two-phase cycle: first we provisionally
accept the value of complex-valued resonant frequency k2,n, which we now rewrite as k(1)

2,n, determined
as above and use it to obtain an improved approximation Iap(2)(x) to the current; second we use the
improved approximation to the current to refine the approximation of the resonant frequency, denoted
k(2)

2,n. Although here we limit ourselves to a single round of the cycle, the iteration can be continued.
1) Phase I: We view the dielectric constant as fixed, so that k1 is rigidly geared to k2. Making

explicit the dependence of the kernel and the current on the parameter k2, we have that for n odd and k2

evaluated at the complex resonant frequency k2,n, the exact current I(k2; x) solves the equation obtained
by transforming (21) and imposing a normalization condition:

Z h

−h
dx0K(k2, x− x0)I(k2; x

0)− cos(k0x) = 0 (38)

(for n even the cosine is replaced by a sine). When the approximate current Iap(x) is substituted for the
exact current I(k2; x), the equation no longer holds, and the discrepancy can be expressed by

χ[k2; I
ap] def=




Z h

−h
dx

ØØØØØ

Z h

−h
dx0 K(k2; x− x0)Iap(x)− cos(k0x)

ØØØØØ

2



1/2

. (39)

To get a better approximation of the current, Iap(2)(x), we allow additional terms in the approximating
current, with coefficients obtained by minimizing the resulting χ[k2; Iap(2)] evaluated at k2 = k(1)

2,n.
2) Phase II: Insert the Iap(2)(x) determined in Phase I into (25) to compute k(2)

2,n. Reduction in error
is measured by the ratio

χ[k2; Iap(2)]|
k2=k(2)

2,n

χ[k2; Iap]|
k2=k(1)

2,n

. (40)

Result for lowest resonance in free space: For the lowest resonance (n = 1) in free space (≤ = 1)
we carried out the above steps. To get a better approximation to the current we enlarge the space of
possible currents to include not only the term cos(πx/2h) in the approximating current but also a term
cos(3πx/2h), so the approximating current becomes

Iap(2)(x) = A[cos(πx/2h) + B cos(3πx/2h)], (41)

where A and B are determined numerically by minimizing χ[k(1)
2,n; Iap(2)].

For this case, with a/h = 10−4, we find A = 0.054767 − i0.00550 and B = −0.01487 − i0.000271.
The coefficient A is just a normalization factor, while the coefficient B gives the relative size of the
correction to the approximating current; thus that correction is about 1.5%. The error measure χ[Iap(2)]
is reduced by a factor of 47 relative to χ[Iap]. The resulting value for the free-space resonant frequency
is 1.520849 − i0.066800. The relative magnitude of the difference between this and the complex value
1.522174− i0.0066372 computed in [6] is a little less than 0.1%. Because this first cycle of the iterative
procedure reduces the error measure so strongly, we take 0.1% to be a reasonable estimate of the error
in the complex-valued resonant frequency computed using Iap(x). We expect more or less the same size
of error for the wire on the interface, and we expect less error for smaller values of a/h; determining the
error for higher resonances (n > 1) is left to future work.
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VI. NUMERICAL ANALYSIS OF RESONANCES
We numerically solved (35) through (37) with K(x) approximated by (37) for a wire scaled to a

half-length of h = 1. To do this we had to evade two obstacles.
The first obstacle is that, for complex-valued resonant frequencies of interest, the integration path must

be deformed to avoid crossing branch cuts. For keeping track of branch cuts, we note that for imaginary
values of the parameters k0, k1, and k2, the kernel K(x) is real-valued. For this reason, keeping track of
branch cuts is made easier by changing variables to β’s and the corresponding γ̃’s defined by

(For j = 0, 1, 2) kj = iβj, (42)

(For j = 1, 2) γj = iγ̃j, (43)

where
γ̃j

def=
q

ξ2 + η2 + β2
j . (44)

For M and N defined in (5) we have

M = i(γ̃1 + γ̃2); N = −i(β2
2 γ̃1 + β2

1 γ̃2). (45)

For real values of β’s, the branch points and branch lines present no trouble. We determine the proper
branches involved in various integrals by following a path from positive real β’s to whatever complex
values we want with the rule of “no cross branch lines” which tells us how to deform branch lines so as
to avoid such crossings. To express the kernel K(x) given in (37), we define

M̃ = γ̃1 + γ̃2; Ñ = β2
2 γ̃1 + β2

1 γ̃2. (46)

After dropping constants that cancel out in the equations for resonant frequencies, for real-valued fre-
quencies the kernel of the integral equation can be taken to be

K(x) =
Z ∞

−∞

dξ

ξ2 + β2
0

Z ∞

−∞
dη ei(ξx+ηa) γ̃1(ξ2 + β2

2) + γ̃2(ξ2 + β2
1)

(γ̃1 + γ̃2)(β2
2 γ̃1 + β2

1 γ̃2)

=
Z ∞

−∞

dξ

ξ2 + β2
0

Z ∞

−∞
dη ei(ξx+ηa)

√
1

M̃
+

ξ2

Ñ

!

. (47)

The kernel K(x) depends on the resonant frequency through its dependence on β1, β2, and β0, where β0

itself is defined by the relation of k0 to k1 and k2 given in Sec. III.
The integrand has poles at ξ = ±iβ0. In [8] we show that for a real-valued dielectric constant ≤ = 4,

over the range 0 ≤ α ≤ 1.8, eiαβ0 has a relatively large positive real part and a small positive imaginary
part for the pole that contributes to contour integrals evaluated in [8].
To avoid direct integration over an oscillating integrand that drops off only slowly, we split the integrand

into a part that drops off slowly but can be integrated exactly analytically and other parts that have to be
integrated numerically but that converge faster. By use of

1

M̃
+

ξ2

Ñ
=

ξ2 + β2
0

β2
1 + β2

2

2

M̃
+

√

1− 2β2
0

β2
1 + β2

2

!
1

M̃
+

ξ2

β2
1 + β2

2

√
β2

1 + β2
2

Ñ
− 2

M̃

!

, (48)

one obtains
K(x) = K1(x) + K2(x) + K3(x), (49)

where

K1(x) =
2

β2
1 + β2

2

Z ∞

−∞
dξ

Z ∞

−∞
dη ei(ξx+ηa) 1

M̃
, (50)

K2(x) =

√

1− 2β2
0

β2
1 + β2

2

! Z ∞

−∞

dξ

ξ2 + β2
0

Z ∞

−∞
dη ei(ξx+ηa) 1

M̃
, (51)
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Fig. 3. Two cases of the kernel K(x) when k1/k2 = 2 and k2h = 5; a/h = 10−4 and a/h = 10−6.

and

K3(x) =
1

β2
1 + β2

2

Z ∞

−∞
dξ

ξ2

ξ2 + β2
0

Z ∞

−∞
dη ei(ξx+ηa)

√
β2

1 + β2
2

Ñ
− 2

M̃

!

≈ 1

β2
1 + β2

2

Z ∞

−∞
dξ eiξx ξ2

ξ2 + β2
0

Z ∞

−∞
dη

√
β2

1 + β2
2

Ñ
− 2

M̃

!

. (52)

The last relation follows because the integrand falls off fast enough as η becomes large to make K3(x)
smooth as x→ 0, so that in the integrand we replace a by 0 without significant loss of accuracy.
The term K1(x) can be evaluated exactly [8]:

K1(x) =
4π

(β4
1 − β4

2)ρ3
[(1 + β2ρ)e−β2ρ − (1 + β1ρ)e−β1ρ], (53)

where ρ def=
√

x2 + a2. In [8] the integrals in K2(x) and K3(x) are transformed to single integrals and put
into forms convenient for numerical evaluation.
Figure 3 shows the kernel K(x) for the case k1/k2 = 2 and k2h = 5, and for two values of a/h = 10−4

and 10−6. Unlike the wire in a homogeneous medium, the kernels for the two cases of a/h differ noticeably
even for values of x¿ a.
For the case of earth having a dielectric constant 4 times that of free space, leading to k1/k2 = 2, the

first five normalized complex-valued resonant frequencies k2h are listed in Table II and plotted in Fig. 4
for three cases of a/h, the ratio of wire radius to wire half-length. (Recall that the propagation constant in
air is k2 = 2πf/c where f is the frequency in Hertz and c is the speed of light ≈ 3× 108 m/s. Note that
an even resonance number n corresponds to anti-resonance for the impedance of a center-driven antenna.)
The computations were carried out using MATLAB on a personal computer. Because several multiple
integrals had to be evaluated many times, a running time of several hours was involved.
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TABLE II
COMPLEX VALUES OF k2h AT RESONANCE n

FOR THREE VALUES OF a/h

n a/h k2h

1 10−4 0.956824− i0.047401
2 10−4 1.934017− i0.079959
3 10−4 2.905922− i0.115751
4 10−4 3.872673− i0.153152
5 10−4 4.837435− i0.190228

n a/h k2h

1 10−5 0.965436− i0.038153
2 10−5 1.947398− i0.063718
3 10−5 2.925628− i0.091953
4 10−5 3.900158− i0.121734
5 10−5 4.873157− i0.151508

n a/h k2h

1 10−6 0.970820− i0.031885
2 10−6 1.955503− i0.052866
3 10−6 2.937355− i0.076062
4 10−6 3.916394− i0.100618
5 10−6 4.894259− i0.125246
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a/h → 0    
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n = 2

n = 3

n = 4

n = 5

Fig. 4. Plot of first five resonant values of k2h for k1/k2 = 2.

VII. CONCLUSION

The problem of determining the first few complex-valued resonant frequencies of a straight wire on
a flat earth-air interface has been formulated and solved. The approach started from the electric-field
kernel, which, however, contains a non-integrable singularity, evaded by finding the zero point in the
Fourier transform of the electric field kernel. Using this zero point k0 we arrived at the integro-differential
equation (21), in which the kernel, defined by (37), is a double integral over a slowly decreasing,
oscillating integrand. This kernel was transformed into a form suitable for numerical analysis. Although an
exact determination of the resonant frequencies would require solving the extremely challenging integro-
differential equation (21), a variational technique allowed a crude approximation to the resonant current to
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Fig. 5. Plot of 1/(k2h− k2,n) for case of k1/k2 = 2 and a/h = 10−4.
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Fig. 6. Plot of 1/(k2h− k2,n) for case of k1/k2 = 2 and a/h = 10−5.

be combined with our hard-won kernel to determine approximations to the resonant frequencies accurate
to better than 0.1%.
Because of the crude approximating current, we expect the method presented here to offer an accuracy

in resonant frequencies on the order of 0.1% only for the first five resonances and for a ratio of wire
diameter to wire length that is less than or equal to 10−4.
The resonant frequencies as determined here can enter a future analysis of backscattering by a wire on

an earth-air interface. At frequencies near resonance, the backscattered field is approximately a product
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Fig. 7. Plot of 1/(k2h− k2,n) for case of k1/k2 = 2 and a/h = 10−6.

of a geometric factor (involving the incident field and the resonant current) and a frequency factor; the
frequency factor near the n-th resonance is proportional to 1/(k2h − k2,n) ∼ 1/(ω − ωn), the real and
imaginary parts of which are plotted in Figs. 5, 6, and 7 for the same three cases of a/h as reported in
Table II. Also left to future analysis are the effects of: (1) departure of the wire from straightness; (2)
departure of the earth-air interface from flatness; and (3) resistive loss in the wire.
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APPENDIX A
INTEGRATIONS FOR Isn AND Icn

Because K(x−x0) depends only on the difference between x and x0, it must be possible to rewrite the
integrals in (27) and (28) as single integrals. We do this without using the fact that K is an even function
of its argument. Define

Ie(α,α0) =
Z h

−h
dx eiαx

Z h

−h
dx0 K(x− x0)eiα0x0

. (A1)

Changing integration variables x→ −x0 and x0 → −x produces the relation

Ie(−α0,−α) = Ie(α,α0). (A2)

With this relation one expresses Isn and Icn as

Isn = −1

4
[2Ie(κn,κn)− Ie(κn,−κn)− Ie(−κn,κn)], (A3)

Icn =
1

4
[2Ie(κn,κn) + Ie(κn,−κn) + Ie(−κn,κn)], (A4)
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so that we have

Isn + Icn =
1

2
[Ie(κn,−κn) + Ie(−κn,κn)], (A5)

Isn − Icn = −Ie(κn,κn). (A6)

For the reduction to single integrals we compute, using the integration region shown in Fig. 8,

Ie(α,α0) =
Z h

−h
dx0

Z h−x0

−h−x0
dy eiα(y+x0)eiα0x0

K(y)

=
Z 0

−2h
dy K(y)eiαy

Z h

−h−y
dx0 ei(α+α0)x0

+
Z 2h

0
dy K(y)eiαy

Z h−y

−h
dx0 ei(α+α0)x0

=
1

i(α + α0)

" Z 0

−2h
dy K(y)

≥
ei(α+α0)heiαy − e−i(α+α0)he−iα0y

¥

+
Z 2h

0
dy K(y)

≥
ei(α+α0)he−iα0y − e−i(α+α0)heiαy

¥#

. (A7)

The case α0 = −α is worked out directly to show

Ie(α,−α) =
Z 0

−2h
dy K(y)(2h + y)eiαy +

Z 2h

0
dy K(y)(2h− y)eiαy. (A8)

In the special case which we have here, in which K(y) = K(−y) and κn = nπ/2h, Isn ± Icn simplify to

Isn + Icn = 2
Z 2h

0
dy K(y)(2h− y) cos

nπy

2h
,

Isn − Icn = (−1)n 4h

nπ

Z 2h

0
dy K(y) sin

nπy

2h
, (A9)

which are the single integrals that we wanted to obtain.
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