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Electromagnetic Resonances of a Straight Wire
John M. Myers, Sheldon S. Sandler, and Tai Tsun Wu

Abstract

With an interest in finding wires and distinguishing them from other electrically conducting
objects, we have looked for an electromagnetic “fingerprint” in terms of resonances of a straight
wire of length 2h and radius a. The resonances of the wire are formulated using the theory
of the linear antenna, leading to an integral equation for the current on the wire. Complex-
valued resonant frequencies are defined as those for which the homogeneous integral equation
for the current on the wire has non-zero solutions. By applying a variational technique we
obtain approximate numerical solutions for the resonant frequencies and their widths. A table
of the first five resonances is given for several ratios of wire half-length h to wire radius a.
In a subsequent paper we propose to extend the method described here to deal with wires on
an earth-air interface, for example as used to command the detonation of improvised explosive
devices.

Index Terms

Antenna theory, integral equation, resonance, variational methods.

I. INTRODUCTION

WE are interested in the backscattering properties of a straight wire, and in particular in the first five
resonant frequencies that characterize a wire as distinct from other conducting objects. Although

studied for over a century, properties of the electromagnetic field associated with a straight wire in free
space remain a challenge to determine. The dipole antenna consisting of a straight, perfectly conducting
wire driven at its center by an applied voltage has been studied, and the first two resonant frequencies
have been determined, based on approximate solutions to an integral equation [1]; however, the problem
of resonant frequencies for a very thin wire driven off center has eluded an accurate solution. A related
problem of the scattering of electromagnetic energy by a fat wire was analyzed [2] using the Singularity
Expansion Method [3]; however, again the scattering by a very thin sourceless wire has also eluded
accurate solution, in part for the same reason, namely that neither analytic nor numerical methods suffice
to obtain accurate solutions to the integral equation for the current in the thin wire. For numerical work,
the difficulty is that the grid spacing for approximating the current must be very fine, resulting in the need
to invert N -by-N matrices with N on the order of the ratio of wire length to wire diameter. For command
wires, this means N ≥ 104. While the center-driven antenna exhibits a current density symmetric about
the driving point, both the unsymmetrically driven antenna and the sourceless wire as a scattering object
involve resonances for which the current is antisymmetric about the center of the wire.
In this paper we formulate the problem of determining resonant frequencies of a straight, perfectly

conducting wire as a Pocklington integral equation for the current in the wire. As in the Singularity
Expansion Method [3], we define both the resonant frequencies and the widths of these resonances in
terms of the complex-valued frequencies at which the homogeneous Pocklington equation has non-zero
solutions. We then determine these complex frequencies approximately, using a variational technique,
for both the cases in which the current along the thin wire is symmetric about the center point and
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The authors are with the Harvard School of Engineering and Applied Sciences, Cambridge, MA 02138 USA. (e-mail:
myers@seas.harvard.edu; sandler@seas.harvard.edu; ttwu@seas.harvard.edu.)
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for the antisymmetric cases, which, so far as we know, have not previously been found. The important
advantage of the variational technique is its relative insensitivity to errors in the current, allowing a rough
approximation to the resonant currents to be used to obtain a close approximation to resonant frequencies
and the widths of the resonances.

II. FORMULATION
We represent a straight wire subject to electromagnetic illumination by a thin, perfectly conducting

cylinder of radius a and length 2h, embedded in an infinite uniform lossless medium with dielectric
constant ≤ and magnetic permeability µ0. The axis of the wire coincides with the x-axis of a coordinate
system and we consider an incident field at a single angular frequency ω, which induces a spatially varying
current I(x) along the wire. This is defined by:

√
∂2

∂x2
+ k2

!Z h

−h
dx0K(x− x0)I(x0) = 4πik

q
µ0/≤0 Ex(x) (1)

along with the boundary condition that I(±h) = 0. In (1), E(x) is the x-component of the incident
electric field, k = ω/c (with c the speed of light) is the propagation constant, and the kernel K is defined
in Appendix A as a function of x and k by

K(x) =
1

2π

Z 2π

0
dθ

exp
≥
ik

q
2a2(1− cos θ) + x2

¥

q
2a2(1− cos θ) + x2

. (2)

If there is no incident field, that is, if Ex(x) = 0 on −h ≤ x ≤ h, it follows that (1) specializes to
√

∂2

∂x2
+ k2

! Z h

−h
dx0K(x− x0)I(x0) = 0. (3)

At first glance, one might expect the only solution to be I(x) = 0. However, the key to defining resonance
is to note that the kernel K depends not only on position along the wire, but also on the frequency ω = ck.
Therefore the solution to the integral equation (3) depends on ω and for certain discrete special values
of ω, ω1 = ck1, ω2 = ck2, . . . , the equation has non-zero solutions. These values are expected to be
complex, so that, listed in increasing order of their real parts, we have

Reωn = the n-th resonant frequency,
−Imωn = the half-width at half-maximum of the n-th resonance. (4)

We assume that the resonant currents are proportional to 1/(ω− ωn). The issue is how to find the ωn, or
equivalently the kn, at which (3) has non-zero solutions.

III. APPROXIMATE SOLUTION FOR RESONANT FREQUENCIES

Symbolically, we let A(k) denote the linear operator in (3), so that the equation is abbreviated as
A(k) ∗ In(k) = 0, where ∗ denotes an integral over the spatial variable, and we have omitted writing the
spatial variables x and x0 while we have made explicit the dependence of A and In on the propagation
constant k. For a thin wire, it is known that the resonant frequencies correspond to kn near nπ/2h. Our
problem of resonance is to determine for n = 1, . . . , 5 the kn near nπ/2h such that A(kn) ∗ In(kn) = 0
has a solution for non-zero In(kn). What we require is only kn; we do not seek an accurate solution to
the current In(k) ≡ In(k, x).
To find kn, we start by considering the functional

S[I] def= I(k) ∗A(k) ∗ I(k)

=
Z h

−h
dx I(k, x)

√
d2

dx2
+ k2

! Z h

−h
dx0 K(x− x0)I(k, x0). (5)
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Suppose that for some value kn there is a non-zero solution In(kn, x) to (3). As shown in Appendix
B, the variation with respect to I (as a function of x) around this In(kn) of S[I] is zero; that is: 0 =
δ[In(kn)∗A(kn)∗ In(kn)]. Equation (3) is just the statement that A(k)∗ In(k) = 0, whence it follows that
In(kn) ∗ A(kn) ∗ In(kn) = 0. But since the first variation of the left-hand side is zero, replacing In(kn)
by an approximation Iap

n makes no first-order error in the expression Iap
n ∗ A(kn) ∗ Iap

n . Thus we will
determine kn as the solution, for a suitable approximating current Iap

n , to
0 = Iap

n ∗A(kn) ∗ Iap
n . (6)

For computational convenience we carry an x-derivative under the integral, note that dK(x − x0)/dx =
−dK(x− x0)/dx0, and integrate by parts to obtain for the equation for kn

0 =
Z h

−h
dx

Z h

−h
dx0dIap

n (x)

dx
K(x− x0)

dIap
n (x0)

dx0 − k2
Z h

−h
dx

Z h

−h
dx0Iap

n (x)K(x− x0)Iap
n (x0). (7)

The dependence on kn, the sought value of k, is now limited to the dependence of the kernel K(x− x0)
on k as expressed in (2).
Now we choose an approximating current. As noted above, for sufficiently small a one expects resonant

frequencies at values of k near
κn

def=
nπ

2h
(8)

for n = 1, 2, . . . , with the currents corresponding to odd values of n symmetric in x while the currents
corresponding to even values of n are antisymmetric in x [2].
For the symmetric case, there are good reasons to believe that the resonance current is given roughly by

the shifted-cosine form cos kx−cos kh [1]. One might expect to get a good approximation to the complex
resonant frequency by choosing the current to be the shifted cosine; however, use of the shifted cosine
can result in possibly spurious values of the resonant frequency. Examination of how these values arise
shows that they are indeed spurious artifacts of the shifted-cosine form; hence we need to attend more
carefully to the choice of the approximating current. The shifted-cosine form leads to an approximating
current dependent on the frequency ω ∼ k. Question: should the approximating current depend on the
frequency ω or not? Having encountered spurious values from the shifted-cosine form, we choose instead
an approximating current that is independent of the frequency ω. This independence essentially determines
the approximation. To begin with, it can depend only on the geometric parameters h and a. Although we
could force the approximation to depend on a, we cannot see how to do this in a physically sensible way.
Thus we take the approximation to the resonant current to depend only on h. Then we can hardly avoid
choosing Iap

n ∼ cosκnx = cos(nπx/2h) for the symmetric case where n is odd. Correspondingly, for the
cases of resonance in which the current is antisymmetric about the center point of the wire, for which n
is even, our approximation to the resonant current is Iap

n ∼ sinκnx. We expect these approximate currents
to be adequate for use in (7) for the first five resonant frequencies, but not for much higher resonances.

A. Resonances
With the chosen approximating currents, (7) for determining kn becomes

(For n odd) 0 = κ2
n

Z h

−h
dx sin

nπx

2h

Z h

−h
dx0K(x− x0) sin

nπx0

2h

− k2
Z h

−h
dx cos

nπx

2h

Z h

−h
dx0K(x− x0) cos

nπx0

2h
; (9)

(For n even) 0 = κ2
n

Z h

−h
dx cos

nπx

2h

Z h

−h
dx0K(x− x0) cos

nπx0

2h

− k2
Z h

−h
dx sin

nπx

2h

Z h

−h
dx0K(x− x0) sin

nπx0

2h
. (10)

Each of this pair of expressions involves the same two integrals
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Is
def=

Z h

−h
dx sinκx

Z h

−h
dx0K(x− x0) sinκx, (11)

Ic
def=

Z h

−h
dx cosκx

Z h

−h
dx0K(x− x0) cosκx. (12)

In terms of these integrals, (9) and (10) can be put in a form convenient for calculating kn:

(κ2
n − k2)(Is + Ic) + (κ2

n + k2)(Is − Ic) = 0, n odd; (13)

(κ2
n − k2)(Is + Ic)− (κ2

n + k2)(Is − Ic) = 0, n even. (14)

We now make a zero-th order check. (Given any positive numbers ≤ and η and a wire of half-length
h, there is some a0, depending on ≤ and η, such that for a < a0 the kernel in the integral in (3) acts
essentially as a delta-function. More precisely the integral of the absolute value of the kernel over the
integration range 2h > |x − x0| > ≤ can be made less than η times the integral of the absolute value of
the kernel over the small integration range |x− x0| ≤ ≤.) Upon replacing K(x− x0) by a delta function
δ(x−x0), carrying out the integrals in (9), and using the definition of κn = nπ/2h, the result for n odd is

−κ2
n + k2 = 0.

Carrying out the same procedure on (10) yields this relation for n even—confirming our claim that for
sufficiently small radius, the resonant propagation constants should be near κn.
Returning to the use of K(x−x0) and not just the delta function, we want to hold fixed the geometrical

and material parameters h, a, ≤, and µ0 and vary only the propagation constant k = ω/c, which amounts
to varying the frequency ω in order to find solutions to (13) for the symmetric resonances and (14) for
the antisymmetric resonances. The first step, derived in Appendix C, is to reduce the double integrals to
single integrals to obtain:

Is + Ic = 2
Z 2h

0
dy K(y)(2h− y) cosκny, (15)

Is − Ic = − 2

κn

Z 2h

0
dy K(y) sin[κn(2h− y)]. (16)

When the wire radius a is much smaller than all the other dimensions in this scattering problem, we can
approximate the kernel K defined in (2). For x¿ a, the kernel is very close to

K(y) ≈ eik
√

y2+a2

√
y2 + a2

, (17)

and furthermore the integral over the logarithmic singularity in K is closely matched by the integral over
the approximation defined in (17). Note that k is complex. With this approximation one obtains from (16)
and the definition of κn in (8)

Is − Ic = − 2

κn

Z 2h

0
dy

eik
√

y2+a2

√
y2 + a2

sin[κn(2h− y)]

= (−1)n 2

κn

Z 2h

0
dy

eik
√

y2+a2

√
y2 + a2

sinκny ≈ (−1)n 2

κn

Z 2h

0
dy

eiky

y
sinκny, (18)

where the last approximation makes negligible error when a is much smaller than the other dimensions.
It will turn out that the resonant frequencies correspond to Im k < 0, so that the integrand in (18) is an
increasing function of y. As evaluated in Appendix D, we obtain

Is + Ic = 4h

"

ln
4h

a
−

Z 2h

0

dy

y

≥
1− eiky cosκny

¥#

+
i

k + κn

h
ei2(k+κn)h − 1

i
+

i

k − κn

h
ei2(k−κn)h − 1

i
. (19)
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TABLE I
COMPLEX VALUES OF kh AT RESONANCE n (WHERE κn = nπ/2h)

n h/a = 104

1 1.522174− i0.066372

2 3.086149− i0.089877

3 4.653231− i0.104815

4 6.221436− i0.115911

5 7.790220− i0.124802

n h/a = 105

1 1.533583− i0.053232

2 3.099893− i0.071216

3 4.668363− i0.082482

4 6.237582− i0.090775

5 7.807177− i0.097374

n h/a = 106

1 1.540710− i0.044393

2 3.108258− i0.058920

3 4.677431− i0.067934

4 6.247152− i0.074530

5 7.817142− i0.079757

Putting all this together, we need to solve numerically for complex k the equation

(κ2
n − k2)

(

4h

"

ln
4h

a
−

Z 2h

0

dy

y

≥
1− eiky cosκny

¥#

+
i

k + κn

h
ei2(k+κn)h − 1

i
+

i

k − κn

h
ei2(k−κn)h − 1

i )

− (κ2
n + k2)

2

κn

Z 2h

0
dy

eiky

y
sinκny = 0. (20)

Numerical analysis then yields the examples shown in Table I. Figure 1 displays these data graphically.

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
0

1

2

3

4

5

6

7

8
First five complex resonant values of kh

Im(kh)

Re
(kh

)

 

 

a/h = 10−4

a/h = 10−5

a/h = 10−6

a/h →  0

Fig. 1. Complex resonant values on the kh-plane.
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IV. DISCUSSION

Naively, one pictures a resonance as a large response to a small incident field. Thought of this way,
the calculation of resonance seems to demand choosing one or more incident fields, and the choice of
these fields defies any simple physical basis. For example, one might consider plane waves or one might
consider an incident field generated by one or another transmitting antenna located at some distance and
orientation from the scattering wire. Except for the case of an incident field transverse to the wire, for
which very little scattering occurs, one expects the resonant frequencies to be largely insensitive to the
incident field. Here we have taken advantage of the near-independence of resonances from the choice
of incident field to define resonances in terms of non-zero solutions to the homogeneous Pocklington
equation.
The other noteworthy feature is to make use of the variational technique to show that the complex

resonant frequencies are insensitive to small errors in the resonant current, which justifies replacing the
resonant current, which is exceedingly difficult to determine to high accuracy, by an approximate current,
as discussed above.

APPENDIX A
KERNEL

The kernel K in (1) is defined as a function of x and k by the Green’s function as follows. Consider
cylindrical coordinates (ρ, φ, x) oriented around the x-axis, so that the distance to a point from the x-axis
is given by ρ =

√
y2 + z2; correspondingly we have the cartesian components y = ρ cosφ, z = ρ sinφ.

The retarded Green’s function defines the vector potential on the wire surface at a point (a, φ, x) arising
from a current density J(a, φ0, x0) on the wire by

A(a, φ, x) =
µ0

4π

Z h

−h
dx0

Z 2π

0
a dφ0 exp

≥
ik

q
2a2[1− cos(φ− φ0)] + (x− x0)2

¥

q
2a2[1− cos(φ− φ0)] + (x− x0)2

J(x0). (A1)

We now average over φ to obtain

1

2π

Z 2π

0
dφA(a, φ, x)

=
µ0

4π

Z h

−h
dx0

Z 2π

0
a dφ0J(x0)

1

2π

Z 2π

0
dφ

exp
≥
ik

q
2a2[1− cos(φ− φ0)] + (x− x0)2

¥

q
2a2[1− cos(φ− φ0)] + (x− x0)2

=
µ0

4π

Z h

−h
dx0

Z 2π

0
a dφ0J(x0)

1

2π

Z 2π

0
dθ

exp
≥
ik

q
2a2(1− cos θ) + (x− x0)2

¥

q
2a2(1− cos θ) + (x− x0)2

=
µ0

4π

Z h

−h
dx0K(x− x0)I(x0), (A2)

where we define

I(x0) =
Z 2π

0
a dφ0 J(a, φ0, x0), (A3)

K(x) =
1

2π

Z 2π

0
dθ

exp
≥
ik

q
2a2(1− cos θ) + x2

¥

q
2a2(1− cos θ) + x2

. (A4)

The kernel K(x) enters both the Hallén integral equation [1] and the Pocklington equation. For a wire
with ka ø 1, we assume that only the x-components of the current density and of the vector potential
are relevant, and (1) follows.
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APPENDIX B
VARIATIONAL FORM OF INTEGRAL EQUATION

We study the variational of S[I] defined in (5) with respect to I(k, x), with k fixed. Computing the
variation one finds

δS[I] =
Z h

−h
dx [δI(k, x)]

√
d2

dx2
+ k2

! Z h

−h
dx0K(x− x0)I(k, x0)

+
Z h

−h
dx I(k, x)

d2

dx2

Z h

−h
dx0 K(x− x0)δI(k, x0)

+ k2
Z h

−h
dx I(k, x)

Z h

−h
dx0K(x− x0)δI(k, x0). (B1)

Denote the second term by T2 and invoke the boundary condition I(k, x) → 0 as x → ±h to obtain,
dropping the explicit mention of k,

T2
def=

Z h

−h
dx I(x)

d2

dx2

Z h

−h
dx0 K(x− x0)δI(x0)

= −
Z h

−h
dx I(x)

∂

∂x

Z h

−h
dx0 ∂K(x− x0)

∂x0 δI(x0)

=
Z h

−h
dx

dI(x)

dx

Z h

−h
dx0 ∂K(x− x0)

∂x0 δI(x0)

=
Z h

−h
dx0 dI(x0)

dx0

Z h

−h
dx

∂K(x− x0)

∂x
δI(x)

=
Z h

−h
dx

Z h

−h
dx0 [δI(x)]

∂K(x− x0)

∂x

dI(x0)

dx0

=
Z h

−h
dx[δI(x)]

Z h

−h
dx0 ∂K(x− x0)

∂x

dI(x0)

dx0

=
Z h

−h
dx[δI(x)]

d

dx

Z h

−h
dx0 K(x− x0)

dI(x0)

dx0

= −
Z h

−h
dx[δI(x)]

d

dx

Z h

−h
dx0 ∂K(x− x0)

∂x0 I(x0)

=
Z h

−h
dx[δI(x)]

d2

dx2

Z h

−h
dx0 K(x− x0)I(x0). (B2)

Thus this term has been put in the form of a part of the first line of (B1). Similarly but more simply, the
third term of (B1) is equal to the corresponding part of the first line, so that one has altogether

δS[I] = 2
Z h

−h
dx [δI(k, x)]

√
d2

dx2
+ k2

! Z h

−h
dx0K(x− x0)I(k, x0), (B3)

so that (3) implies that δS[I] = 0.

APPENDIX C
INTEGRATIONS FOR Ic AND Is

Because K(x−x0) depends only on the difference between x and x0, it must be possible to rewrite the
integrals (11) and (12) as single integrals. We do this without using the fact that K is an even function
of its argument. Define

Ie(α, α0) =
Z h

−h
dx eiαx

Z h

−h
dx0 K(x− x0)eiα0x0

. (C1)

Changing integration variables x→ −x0 and x0 → −x produces the relation

Ie(−α0,−α) = Ie(α, α0). (C2)
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With this relation one expresses Is and Ic as

Is = −1
4 [2Ie(κ, κ)− Ie(κ,−κ)− Ie(−κ, κ)], (C3)

Ic = 1
4 [2Ie(κ, κ) + Ie(κ,−κ) + Ie(−κ, κ)], (C4)

so that we have

Is + Ic = 1
2 [Ie(κ,−κ) + Ie(−κ, κ)], (C5)

Is − Ic = −Ie(κ, κ). (C6)

For the reduction to single integrals we compute

Ie(α, α0) =
Z h

−h
dx0

Z h

−h
dx eiαxeiα0x0

K(x− x0)

=
Z h

−h
dx0

Z h−x0

−h−x0
dy eiα(y+x0)eiα0x0

K(y)

=
Z 0

−2h
dy K(y)eiαy

Z h

−h−y
dx0ei(α+α0)x0

+
Z 2h

0
dy K(y)eiαy

Z h−y

−h
dx0ei(α+α0)x0

=
1

i(α + α0)

" Z 0

−2h
dy K(y)eiαy

≥
ei(α+α0)h − e−i(α+α0)(h+y)

¥

+
Z 2h

0
dy K(y)eiαy

≥
ei(α+α0)(h−y) − e−i(α+α0)h

¥ #

=
1

i(α + α0)

" Z 0

−2h
dy K(y)

≥
ei(α+α0)heiαy − e−i(α+α0)he−iα0y

¥

+
Z 2h

0
dy K(y)

≥
ei(α+α0)he−iα0y − e−i(α+α0)heiαy

¥ #

. (C7)

The case α0 = −α is worked out directly to show

Ie(α,−α) =
Z 0

−2h
dy K(y)(2h + y)eiαy +

Z 2h

0
dy K(y)(2h− y)eiαy. (C8)

Substitution of (C7) and (C8) into (C5) and (C6) yields

Is + Ic =
Z 0

−2h
dy K(y)(2h + y) cosκny +

Z 2h

0
dy K(y)(2h− y) cosκny, (C9)

Is − Ic = − 1

κn

"Z 0

−2h
dy K(y) sin[κn(2h + y)] +

Z 2h

0
dy K(y) sin[κn(2h− y)]

#

. (C10)

In the special case, which we have here, in which K(y) = K(−y) these simplify slightly to

Is + Ic = 2
Z 2h

0
dy K(y)(2h− y) cosκny,

Is − Ic = − 2

κn

Z 2h

0
dy K(y) sin[κn(2h− y)], (C11)

which are the single integrals that we wanted to obtain.
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APPENDIX D
EVALUATION OF Is + Ic

Now we evaluate the sum Is + Ic, starting by writing

Is + Ic = I1 + I2, (D1)

where

I1
def= 4h

Z 2h

0
dy

eik
√

y2+a2

√
y2 + a2

cosκny, (D2)

I2
def= −2

Z 2h

0
dy

eik
√

y2+a2

√
y2 + a2

y cosκny. (D3)

A. Evaluation of the integral I2

In I2, a can be set to zero to obtain

I2 ≈ −2
Z 2h

0
dy eiky

≥
eiκny + eiκny

¥

=
i

k + κn

h
ei2(k+κn)h − 1

i
+

i

k − κn

h
ei2(k−κn)h − 1

i
. (D4)

Of note is the appearance (in the denominator of the second term) of the difference k − κn, which is
small (and complex). We are interested in the case that |k − κn| ø κn but 2h|k − κn| may or may not
be small. Very roughly, we expect |k−κn|/κn to be of the order of 1/2 ln(2h/a), which is perhaps 0.05.
For the fifth resonance, κ5 = 5π/(2h), leading to 2h|k − κn| = (0.05)5π ∼ 0.8.

B. Evaluation of the integral I1

We want to evaluate

I1
def= 4h

Z 2h

0
dy

eik
√

y2+a2

√
y2 + a2

cosκny (D5)

under the conditions that a satisfies κna ø 1 and a/h ø 1, and we are interested in the case that
|k − κn|/κn ø 1 but 2h|k − κn|κn may or may not be small. In these circumstances we have

I1 ≈ 4h
Z 2h

0
dy

eiky

√
y2 + a2

cosκny = 4h[I(1)
1 − I(2)

1 ], (D6)

where we define

I(1)
1

def=
Z 2h

0
dy

1√
y2 + a2

= sinh−1(2h/a) ≈ ln(4h/a), (D7)

I(2)
1

def=
Z 2h

0
dy

1√
y2 + a2

h
1− eiky cosκny

i
≈

Z 2h

0
dy

1

y

h
1− eiky cosκny

i
, (D8)

which implies

I1 ≈ 4h

"

ln
4h

a
−

Z 2h

0

dy

y

≥
1− eiky cosκny

¥#

. (D9)

Adding (D9) and (D4) then yields (19).
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