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 The Structure of Plato’s Dialogues and Greek Music Theory:  

A Response to J. B. Kennedy  

John Z. McKay and Alexander Rehding 

 

In his recent article, “Plato’s Forms, Pythagorean Mathematics, and Stichometry,” J. B. 

Kennedy suggests a new stichometric reading of the Platonic dialogues that follows a 

secret musical code. Kennedy argues in his central claim:  

The twelve-part structure of the dialogues detected above together with the 

prominence of the number twelve in Greek music theory suggests that the 

stichometric structure of the dialogues is a musical scale. Plato used this musical 

scale as an outline, pegging key concepts and turns in the argument to steps in the 

scale. (pp. 16-17) 

This idea is of considerable interest to music historians. As music theorists, we welcome 

this innovative interpretation, not least because of the attention it gives to Ancient Greek 

music theory—an area of study that is as marginal within modern musicology as it is 

within classical studies.  

Kennedy is not the first to suspect a musical undercurrent in Plato’s work. The 

nineteenth-century German politician and scholar Albert von Thimus, for instance, 

developed an esoteric music theory on the basis of Platonic-Pythagorean principles in his 

Die harmonikale Symbolik des Althertums (2 vols, 1868 and 1876). More recently, the 

musicologist Ernest McClain argued in 1978 that “Plato’s Republic embodies a treatise 

on equal temperament,” an important modern musical tuning system.1 The essential 

difference between these earlier efforts and Kennedy’s work is that the former start out 
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from music-theoretical principles that they sought to apply to Plato’s texts, whereas 

Kennedy attaches principal significance to the number of lines and distribution of topics.  

While Kennedy’s stichometric analysis of the Platonic dialogues highlights a new 

dimension that may open up a wholly new interpretive realm of the texts, we shall use 

this opportunity to clarify a few of the music-theoretical concepts on which Kennedy 

draws in his work. These primary concerns include the significance of the number 12 

within Greek music theory, the difference between ratios and numbers, and the contrast 

between musical and spatial distance. As we will see, the concept of the scale on which 

Kennedy bases his interpretation is not without problems, nor is the mapping of Greek 

music theory onto his system as simple and straightforward as it may at first appear.  

 

1. Scales 

First a few clarifying words. When Kennedy invokes a “twelve-note scale” (p. 17), this 

may sound like a familiar term, probably because of the “twelve-tone music” of early- 

and mid-twentieth century Europe and America. Such music—as well as that of the 

previous generation of composers, such as Richard Wagner, Franz Liszt, and Alexander 

Scriabin—relies on the twelve semitones that we find, for instance, in the arrangement of 

the black and white keys of the piano keyboard within the span of an octave. These 

twelve tones make up the entire stockpile of pitch2 material that we use in modern 

Western music; the scale made up of these twelve pitches is usually called “chromatic” 

(or sometimes even “pan-chromatic”), as shown in Example 1. 
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Ex. 1: The modern chromatic scale contains twelve equally spaced elements 

Although Greek music theory also had a conception of chromaticism, the modern 

chromatic scale has little to do with the ancient conception: the tuning system underlying 

the modern chromatic scale—equal temperament—specifies that each chromatic 

semitone be based on a factor of the twelfth root of 2. This is an irrational number that 

would have been unimaginable in Ancient Greece (which was a big stumbling block for 

accepting McClain’s earlier thesis).  

In fact, the very term “scale” is not without problems in Greek music theory. The term, in 

its modern usage, describes an ordered ascending or descending collection of pitch 

material in fixed intervals.3 Scales form a repository from which melodies (as well as 

harmonies) can be constructed. A large number of melodies are therefore based on a 

relatively small number of common scales. Very often the use of a particular scale 

implies a commitment to this scale’s particular hierarchies or conventions (e.g. typical 

points of repose or centers of attraction, characteristic opening intervals or closing 

gestures).  

Beyond these general features of scales, a number of properties are notable in modern 

western music, where scales count as a well-founded concept: scales tend to be restricted 

to a small number of possible intervals between adjacent elements (e.g. semitones and 

tones, or tones and minor thirds), which often endows them with particular properties. 

Moreover, they are typically confined to the range of one octave, beyond which their 
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properties repeat. We draw attention to these more rigorous, systematizing aspects of 

scale theory because it is the systematizing aspects of the scale that play a prominent role 

in Kennedy’s argument. In other words, while any melodic material can be “ordered” into 

scales of pitch material on which these melodies are based, a concept of scale becomes 

meaningful if it has properties that can be generalized and mathematically described. This 

systematic potential is apparently a major impetus for Kennedy’s use of this term, as he 

draws particular attention to the “harmonic structure of the underlying musical scale” (p. 

17).4 

To recall the basics of Greek music theory, scales work a bit differently from our modern 

conception.5 The basic building block of these scales is the tetrachord, a grouping of four 

tones that always span the interval of the perfect fourth (or diatessaron). The outer tones 

of these tetrachords are fixed, whereas the inner ones are moveable. The placement (and 

tuning) of these inner tones depends on the genus—diatonic, chromatic, enharmonic—to 

which the scale system belongs. Different theorists specify different ways to determine 

these inner tones, but all theorists are in agreement that in all three genera the placement 

of these inner tones will subdivide the fourth so as to produce smaller intervals that are 

never all equal in size. Moreover, these building blocks never have more than four tones 

within the compass of the fourth; a chromatic arrangement in the modern sense—which 

would require five equally spaced semitones in the tetrachord and twelve in the octave—

does not exist in a practical musical scale for the Greeks.6 

These tetrachords are then connected in various ways—by synaphe or diazeuxis —either 

directly or with one interspersed whole tone. Such systems do not stop at the octave: the 

Greater Perfect System (systema teleion meizon) spans two full octaves (15 pitches) and 
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the Lesser Perfect System (systema teleion elatton) spans one-and-a-half octaves (11 

pitches).  

Greek music theory offers a number of other concepts—tonoi, harmoniai—that are scale-

like constructs, but we probably do not need to go through these here in any detail, since 

none of them possesses the required properties of having twelve equidistant elements. 

When Kennedy refers to a “musical scale with twelve regularly spaced notes” (p. 21) that 

corresponds to the twelve-part structure he observes in the Platonic dialogues, it remains 

unclear what exactly Kennedy is referring to. It seems that the modern chromatic scale 

with its evenly spaced semitones would be the closest scale equivalent but this option 

was, as mentioned, not available to Plato and his age. On closer inspection, it seems 

unlikely that what Kennedy has in mind is a scale-like formation in any conventional 

sense. 

 

2. Ratios and Numbers 

Kennedy may give us a hint what he has in mind when he explains: “According to Greek 

theory, the third (1:4), fourth (1:3), sixth (1:2), eighth (2:3), and ninth (3:4) notes on the 

twelve-note scale will harmonise with the twelfth” (p. 17).  What matters, as becomes 

clear from the argument, is the property of being divisible by twelve. There is no 

common musical term for such a set of intervals; while this is not a scale, it can be 

described as a series of ratios. 

Two preliminary points are important. First, ratios are not the same as cardinal or ordinal 

numbers. Mathematically speaking, they are abstract representations of a potential class 
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of relationships between sets of quantities.  For example, the 6:12 ratio that Kennedy 

correctly identifies as an octave (p. 16) is not a unique representation. 7 The ratios 1:2, 

2:4, 3:6, 4:8, and 5:10 (all potentially found in his twelve-note system by comparing pairs 

of notes) are also equally valid ways of writing the same ratio, since they all are multiples 

of each other. 

And second, ratios have different properties and require different algorithms for 

operations than ordinary numbers. To “add” two ratios is to use an algorithm that looks 

more like multiplying fractions to us.  To add the octave 3:6 and the octave 6:12, for 

example, one obtains (3:6) × (6:12) = 18:72, or 1:4 in reduced form, creating a double-

octave.8 

This is perhaps the fundamental point that could create confusion between an equally 

spaced twelve-note modern chromatic scale and a set of intervals represented by the 

ratios 1:12, 2:12, 3:12, . . .12:12.  To use a simple analogy, if the octave is represented by 

a pie, the modern chromatic scale could be considered a way of dividing the pie into 12 

equal slices.   At first glance, the series of ratios (which look like fractions) appears to 

follow a similar idea.  However, Kennedy’s octave ratio 6:12, for example, does not refer 

to the sixth slice of a pie.  It is instead the ratio of six slices of a pie to the entire pie.  

Thus, in Kennedy’s model the octave is not represented by the entire equally-divided pie 

itself, but rather by a ratio between certain fractions of the pie.  To treat the ratio 6:12 as 

equivalent to the sixth slice of a pie (or the sixth note in a twelve-note scale or the sixth 

division in a Platonic dialogue) is to equate fundamentally incommensurable entities.   
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That said, Kennedy is right to point out the importance of ratios in Greek musical 

thought. In the Pythagorean tradition, musical intervals are indeed identified in terms of 

ratios. The ratios of 6:8:9:12 that Kennedy invokes in his article (p. 16) could be 

understood as such a system of two disconnected tetrachords, where the lower 

diatessaron (6:8  = 3:4)9 is separated by a whole-tone diazeuxis (8:9),10 which then marks 

the starting point of a second diatessaron (9:12 = 3:4). The whole compass of this 

formation spans an octave (6:12 = 1:2). In other words, these ratios describe the fixed 

parts of such an arrangement of tones, into which the moveable pitches—which will be 

placed in accordance with the required musical genus—must still be fitted. (And, as 

indicated before, such a complete scale arrangement will always comprise exactly eight 

notes within the octave.) 

Now, the ratios of 6:8:9:12 are relatively easy to explain. However, most of the 

remaining numbers that make up the complete set of 1 to 12 (i.e. 1, 2, 3, 4, 5, 7, 10, 11) 

are more difficult, as many of them do not correspond to musical intervals. Kennedy may 

argue that this supports his thesis—that “disharmonious” intervals have negative meaning 

in the layout of Plato’s texts—but the musical problems go deeper than that: most of 

these ratios are not just disharmonious but musically meaningless. In order to explain this 

we need to delve into more technical elements.  

 

3. What does Kennedy’s scale look like in musical terms? 

We can also unravel the problem from the other end: Kennedy presupposes a universal 

denominator 12 for his musical scale (which is better understood as a series of ratios). It 
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is true that the factor 12 works well with a number of smaller figures to produce simple, 

and hence harmonious ratios. But this does not mean that the number 12 was habitually 

used in Pythagorean thinking as a basis against which intervals were identified.  

To see why Kennedy’s proposed scale is very different from the scales we find in Greek 

writers, let’s go over what musical results Kennedy’s scale would look like in terms of 

the musical intervals it would generate. For mathematical simplicity, let’s set the bottom 

note of this series11 at 100Hz.12  

No.  Ratio /12 Frequency Semitones13 Closest musical interval 

12  12/12 = 1 100 Hz 0 semitones unison 
11  11 : 12  109 Hz  1.5 st  midway btw. whole and half tone 

10  10/12 = 5 : 6 120 Hz  3.16 st  minor third 
9  9/12 =  2 : 3  133 Hz  5 st  perfect fourth 

8 8/12 =  3 : 4 150 Hz  7 st  perfect fifth 
7  7 : 12  171 Hz  9.33 st  very sharp major sixth 
6 6/12 = 1 : 2 200 Hz  12 st  octave 

5  5 : 12  250 Hz 15.16 st octave plus minor third 
4 4/12 = 1 : 3 300 Hz  19 st  octave plus fifth 

3 3/12 = 1 : 4 400 Hz  24 st  double octave 
2  2/12 = 1 : 6 600 Hz 31 st  double octave plus fifth 

1  1 : 12  1200 Hz 43 st  triple octave plus fifth 
 

Put into musical notation, Kennedy’s scale would look something like Example 2, with 

12 corresponding to pitch C (the extended range of accidentals is used here, as in some 

contemporary music, to approximate tones that do not correspond exactly to any modern 

western pitch). 
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Ex. 2: Kennedy’s scale results in unevenly spaced intervals. 

Even without technical knowledge of music it becomes apparent, when comparing 

Example 1 and 2, that musical intervals designed on ratios based on the number 12 

produce a very different kind of scale.14 The intervals become progressively greater 

toward the first note of this extremely uneven series. The series in its entirety spans three 

and a half octaves—more than any one vocal part (or standard instrument) could 

reproduce. This is the where the difference between ratios and numbers, outlined above, 

becomes most pronounced: the succession of numerical divisions and the succession of 

musical intervals do not relate to each other linearly. Not only does this conglomeration 

of musical intervals not bear any resemblance to any scale systems that the Greeks 

theorized15 but it also makes for a very poor correspondence of the twelve equal parts of 

the texts that Kennedy’s twelve-tone scale is meant to relate to. 

The unevenness becomes particularly problematic when we also consider the “fine-

grained musical structure between the twelve notes” (p. 18) that Kennedy says is related 

to Plato’s “so-called ‘quarternotes’ mentioned in the Republic at 531a4” (p. 18, n. 68). 

Kennedy sees significant divisions occurring at every quarter of each of his twelve 

“notes,”16 but relating this to Plato is problematic.  The term referenced as “quarternotes” 

is actually pyknomata17 (dense or compressed things), which in the context of the 
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discussion may be considered to be equivalent to an enharmonic diesis (approximately 

the quarter of a 8:9 tone, hence often referred to as a “quartertone” in English).  

Nevertheless, there is no specific reference to a fraction of a quarter in this passage, and 

any association with quartertones is dependent on the specific idea of a tone (an 8:9 ratio 

or thereabout).  Most of Kennedy’s scale consists of intervals that are much larger than 

this 8:9 ratio.  

Moreover, Plato specifically refers in the cited passage to such intervals by saying that 

some believe “that that is the smallest interval, by which measurement is to be made, 

while others take issue with them, saying that the notes sounded are already the same.”18 

In other words, the pyknomata are intervals so small that people argue whether the two 

notes are the same or not.  In Kennedy’s division, in contrast, a “quarternote” between 

notes 1 and 2 (an octave interval) would span approximately the interval of a minor third, 

which is much larger than even an entire standard whole tone.  Clearly two pitches in 

such a large interval would not be mistaken for the same note, so connecting Plato’s 

pyknomata with Kennedy’s division is misleading.19  

It is possible that Kennedy here is potentially relating his scale to the modern twelve-note 

equally divided chromatic scale, but even there each interval is a semitone.  Twelve 

semitones per octave mean six whole tones per octave.  There would thus be 24 

quartertones in a theoretical division, not the 48 that Kennedy assumes. The ramifications 

of this mistaken assumption can be enormous when used as the basis for statistical 

analysis, since moving from a 12-fold to a 48-fold division makes it easy to find 

significant moments that line up with a dividing point.20 
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But suppose we accept this very uneven set of twelve ratios as a potential “scale.”  Even 

if we ignore the great variation in musical interval size, mapping this scale onto an equal 

twelve-fold division of dialogues, with each section being “harmonious” or 

“disharmonious” is still not straightforward.  Each note cannot itself be more or less 

“harmonious”; such a property only applies to an interval, that is, the ratio of two notes 

together.  If we consider this collection of twelve notes to constitute a musical scale 

according to any Greek concept (or any modern concept of a musical scale), the 

harmoniousness of each note can be determined by its relationship to any other note in 

the scale.  To continue the pie analogy mentioned above, any number of slices from a pie 

could be compared to any other number of slices in a ratio, not just to the whole pie. 

For example, within the 6:8:9:12 set of four notes, there are not only the three 

relationships Kennedy mentions (6:12, 8:12, 9:12), but also three other potential interval 

ratios: another fourth (6:8 = 3:4), another fifth (6:9 = 2:3), and a whole tone (8:9).21  It is 

this full complement of interval relationships that mattered to Greek theorists.22 Kennedy 

asserts that the 8th note of the series is harmonious, because it creates an interval of a 

fifth with the 12th note (8:12 = 2:3), but the 8th note could also be considered 

disharmonious with the 9th note.  Within the entire set of 12 ratios, there are not just 12 

potential intervals, but 78, since every note can potentially be related to every other note 

(including itself, creating a unison).23  Most notes within the “scale” could be considered 

“harmonious” or “disharmonious” depending on the second note chosen to create the 

interval.  In fact, there are 46 unique classes of musical intervals present among the 

twelve-note system Kennedy creates.24  
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In his interpretation, Kennedy disregards almost three-quarters of these potential 

relationships and only considers intervals created between some note and the 12th note of 

the series,25 which allows him to declare individual notes to have harmonious or 

disharmonious properties.26  Such a restriction can only make sense if the starting point is 

Plato’s text divided into twelve equal parts. From the viewpoint of music theory, this 

restriction is not only arbitrary but also lacks historical grounding; pitches within Greek 

systems were usually related to multiple other pitches within a scale system, thereby 

creating multiple intervals.  The idea that one and only one pitch within a given scale 

could act as the only note against which all others are compared is not found in 

Pythagorean traditions in Greek musical thought.27 

 

4. Pythagoreans and Harmonicists  

As we have seen, “equal division” does not mean the same thing in spatial terms as it 

does in musical terms.  As Kennedy argues, Plato’s texts can be divided into twelve equal 

parts, and it seems that the closest equivalent in the musical domain to this spatial 

division of the text would be found in the equal spatial28 division of the monochord, a 

device much in use among Greek Theorists, and discussed in passing by Kennedy (p. 16, 

n. 62).29  

The monochord is nothing but a taut string that can be divided at various points along its 

length and then plucked to produce a pitch. By comparing pitches produced by different 

string lengths along the monochord, ratios can be determined. It became the most 
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important mechanical device in music-theoretical teaching, comparable in many ways to 

the compass and ruler of ancient geometry.   

An equal division of the monochord into any number of equal parts was a basic step in 

the lengthy process of constructing a scale, just as a simple division of a line segment or a 

bisection of an angle would be part of a more complex geometric proof.  Equal divisions 

were generally used to locate a few intervals (for example, a 12-fold division allows the 

6:8:9:12 Pythagorean construction of four notes),30 rather than to construct the scale 

itself, which usually required many stages of interval derivation by various methods.  

Furthermore, there is no evidence that a 12-fold division was part of standard 

Pythagorean constructions in Plato’s time.31  

Whether calculated through monochord constructions or other methods, the precise 

determination of intervals as numerical ratios was one of the chief occupations of music 

theory during Antiquity, and it was in the method employed to determine intervals that 

the two factions of Greek music theory, Pythagoreans and Harmonicists, clashed most 

sharply.32 Put simply, the Harmonicists took an empiricist approach and insisted that the 

ear was the ultimate arbiter over interval discrimination, whereas the Pythagoreans 

believed, true to form, that pure intervals had to correspond to certain numerical ratios.  

Take the interval discussed earlier, the diatessaron or fourth, which demarcates the outer 

boundaries of the tetrachord. For Pythagoreans, this interval corresponds to the ratio 3:4. 

For Harmonicists, by contrast, the diatessaron is defined as two and a half tones. For all 

intents and purposes, this may seem like six of one and half a dozen of the other. But in 

reality there are subtle differences that divide both positions sharply from one another.  
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To understand the difference let’s take the Harmonicists’ position in terms of ratios.  

Suppose we begin with a diatessaron with a ratio of approximately 3:4.  The Harmonicist 

would envision that ratio divided into five equal parts, grouped into three segments—a 

whole tone (2 parts), a whole tone (2 parts), and a semitone (1 part).33  The only way to 

obtain a ratio for one of these parts would be to take the fifth root of 3:4 (which is 

tantamount to “dividing” this ratio by 5). This operation would obviously produce a set of 

irrational numbers.  Rather than dealing in abstract ratios, the Harmonicist would rely on 

empirical evidence to divide the interval into segments where the whole tone sounded 

alike in size and the semitone sounded like half of a whole tone.  While mathematically 

not exact, the intent was to produce a scale of even intervals. 

This is different from a Pythagorean approach which would attempt to find ratios that 

could abstractly add up to 3:4.  The early Pythagorean Archytas, for example, suggested a 

diatonic division of the diatessaron into a whole tone (8:9), an interval slightly larger 

than a standard whole tone (7:8), and an interval quite a bit smaller than a standard 

semitone (27:28).34  Multiplying these three ratios together (equivalent to adding the 

intervals) gives 3:4.  Philolaus, another early Pythagorean, allowed two equal whole 

tones (8:9), but the remainder within the fourth was 243:256, an interval called the 

Pythagorean leimma, which is a bit smaller than a standard semitone.35  Although the last 

ratio appears complex, it is easily constructed on the monochord and, more importantly to 

the Pythagoreans, it is composed of rational numbers.  

But, of course, for a Pythagorean an interval is never just an interval but an expression of 

universal principles. Numerical inaccuracies that seem perfectly legitimate to the 

Harmonicists, because they are all but inaudible, are therefore completely unacceptable to 
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the Pythagoreans. A Harmonicist would not think twice about defining a semitone as the 

two equal halves of a whole tone, whereas Pythagoreans find it mathematically necessary 

in dividing a whole tone (8:9) to introduce a major (16:17) and a minor (17:18) semitone, 

the difference between which is perceptually negligible.  

It is important to bear in mind the enormous philosophical gap between Harmonicists and 

Pythagoreans to keep Kennedy’s musical argument in perspective. Kennedy’s suggestion 

that Plato’s secret twelve-tone scale may have been based on Harmonicist thinking (p. 17, 

n. 63) is complicated by the fact that the two camps saw that the differences in 

methodology between them posed insurmountable and irreconcilable obstacles. If Plato’s 

views of music were Pythagorean, and there is good reason to believe they were, then he 

would hardly have relied on Harmonicist arguments. From the perspective of Kennedy’s 

overall argument—that Plato has embedded a secret Pythagorean code in his dialogues—

it therefore would seem important not to muddle these two traditions. 

Chronology is a complicating factor here. The earliest of the Harmonicists whose 

writings we know is Aristoxenus of Tarentum, a student of Aristotle and a harsh critic of 

Pythagorean numerical principles. It seems that Aristoxenus was active in Tarentum 

during the later years of Plato’s life. While Aristoxenus does refer to earlier harmonikoi, 

no earlier works have survived, and the question of the extent to which he began a 

genuinely new tradition of music-theoretical thought is a complex one.36  

But no matter whether Plato was familiar with Aristoxenus’ work itself, we can say with 

some confidence that the music theorists in Plato’s circle—above all Archytas, also of 

Tarentum—were very much the kind of rationalist Pythagoreans from which the 
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empiricist school of the Harmonicists was at pains to set itself off. Especially considering 

the discussions of music in the Republic, it seems safe to say that Plato did not associate 

his work with the Harmonicists.  

 

5. Music and Numbers in Plato 

There can be little doubt that numbers do matter in Plato’s philosophy. Certainly from a 

music-theoretical viewpoint, Plato’s allegiance to a Pythagorean worldview has hardly 

been under any doubt. The main problem with Kennedy’s musical argument is that his 

stichometric calculations make it necessary for him to give heightened relevance to the 

factor 12, which, as we have seen, is an expedient number for his purposes but does not 

play a particularly prominent role in Pythagorean music-theoretical traditions.  

Plato and the Pythagoreans in fact allude to other important numbers: for the 

Pythagoreans, the number 10 has great significance, as the tetractys, the mystical 

arrangement of points in rows of 1, 2, 3, and 4 elements so as to form a triangle, is based 

on this number. Orthodox Pythagorean traditions demand that musical ratios can only be 

formed from numbers taken from the tetractys (and their multiples). 

Plato himself gives one important example of a musically significant number in the 

much-discussed “Myth of Er” of the Republic. Here, Plato famously writes about a group 

of eight sirens standing on the rim of the circles of the Spindle of Necessity, each singing 

a note of constant pitch, “and the eight notes together make up a single scale [mian 

harmonian].” (Rep., 10.617b).  
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Finally, to find a Platonic musical scale derived from Pythagorean principles, we need 

look no further than a scale explicitly given by Plato himself in the Timaeus (35b-36c).  

Here Plato describes a system that Greek theorists related to an extension of the tetractys, 

the Pythagorean lambda, which is generally represented as sequences of powers of 2 

(1:2:4:8) and 3 (1:3:9:27) descending along the two strokes of a Greek lambda. (Note that 

the number 12 in not a part of either series.37)   

Plato then adds the harmonic and arithmetic means (commonly used by the Pythagoreans 

to find important ratios within a musical interval) between each pair of numbers in each 

sequence.38  For example, between 1 and 2, the two means fall at 3:4 and 2:3, the fourth 

and the fifth within the octave 1:2.39  In the other series, for the octave plus fifth ratio 

between 1 and 3, the means fall at 2:3 and 1:2, the perfect fifth and octave.  Similar 

calculations locate the means at the same musical intervals within the other octaves (2:4, 

4:8) of the first series and the other octave plus perfect fifth ratios (3:9, 9:27) of the 

second series. 

The series replicate the same patterns of intervals over and over, so it is instructive just to 

focus on one segment.  Within the octave 1:2, divisions fall at 3:4 and 2:3.  Such a 

division can also be represented by the 6:8:9:12 Pythagorean division used earlier, where 

the octave is 6:12 = 1:2, the fourth is 6:8 = 3:4, and the fifth is 6:9 = 2:3.  Note here that 

the standard of comparison for the scale is not 12, the last note of the octave (as Kennedy 

assumes), but rather 6, the first note.  This is not to give priority to the intervals with the 

first note, but rather to point out that Greek scales were generally derived in a descending 

fashion, as can be seen in the gradually decreasing fractional values beginning at the 

unison 1:1, the fourth 3:4, the fifth 2:3, and finally the octave 1:2. 



 

 

18 

Continuing with the Timaeus construction, Plato notes that his two series result only in 

intervals with the Pythagorean ratios 2:3, 3:4, and 8:9 (the whole tone).  Again, unlike 

Kennedy's 12-ratio system, here all intervals are musically meaningful and in fact 

standard Pythagorean ratios.  In the final division, Plato instructs that each 3:4 

(diatessaron) interval within the scale should be filled in with two 8:9 standard whole 

tones, with the remainder being 243:256.  (Recall that this division of the diatessaron is 

that of the early Pythagorean Philolaus, again demonstrating the Pythagorean heritage of 

Plato's system here.)  Within the first 1:2 octave, represented by the 6:8:9:12 ratios, there 

are two 3:4 ratios—6:8 and 9:12.  Each of these is therefore divided into two whole tones 

and a 243:256 Pythagorean leimma.  

Example 3 shows this pattern of intervals in the first octave, which is then repeated twice 

to complete Plato’s first 1:2:4:8 series. 40 White noteheads are used here to represent the 

fixed pitches of the tetrachords, and black noteheads represent the inner pitches, which 

are here filled in according to Plato's Pythagorean division of the tetrachord. 

 

 

Ex. 3: A Pythagorean scale described in Plato’s Timaeus 
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There is some debate among scholars about the proper way to derive all the internal 

intervals in the second series, but whatever method is used, the scale must be constructed 

entirely according to early Pythagorean principles using only Pythagorean intervals.  Like 

Kennedy's system, this scale spans many octaves, but that is the only point of 

resemblance.  Plato's Pythagorean scale in the Timaeus contains no huge intervals, but it 

is also not an equally divided scale.  If Plato were using a hidden Pythagorean musical 

scale within his dialogues, it would have to use similar principles as the Timaeus scale, 

which is a rational extension of Greek music theory and Pythagorean principles to create 

a system whose large span could represent the cosmos.  
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NOTES 

                                                
We wish to thank Michael Scott Cuthbert, David Elmer, Christopher Krebs, and Eric 

Nelson for their helpful comments on the text.  

1  Ernest McClain, The Pythagorean Plato (Stony Brook, NY: Nicolas Hays, 1987), 

5. 

2  Pitch is the technical term for what is generally referred to as tone: a musical 

sound of definite height. (“Tone” often carries implications of other parameters, 

such as instrumental timbre, whereas pitch refers to the abstract dimension of tone 

height.) 

3  Intervals describe the distance between two pitches.  

4  A note on definitions may be helpful here. Harmony in its modern sense (to which 

Kennedy alludes here) indicates the “vertical” dimension of music, the way in 

which individual pitches can be put together and sounded simultaneously to form 

consonances and dissonances. (This concept of harmony is predicated on a 

systematic, generalizable scale.) Ancient Greek music did not know harmony in 

this sense: the Greek musical term harmonia connotes other scale-related 

concepts. Kennedy uses “harmonic” in the sense of the scale’s capacity to 

generate intervals that can be expressed in terms of ratios.  

5  The classics in Greek music theory include Andrew Barker, Greek Musical 

Writings, 2 vols. (Cambridge: Cambridge University Press, 1992); Martin West, 

Ancient Greek Music (Oxford: Clarendon Press, 1992), and Thomas Mathiesen, 
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Apollo’s Lyre: Greek Music and Music Theory in Antiquity and the Middle Ages 

(Lincoln: University of Nebraska Press, 1999).  

6  Aristoxenus once asserts (El. harm. 57) that a perfect fourth interval could be 

considered to be equal in size to five semitones, but he only discusses this in the 

context of the relative size of intervals, not of the way scales could be constructed.  

Actual Greek musical scales could never contain such a division.  Later writers 

also attribute to Aristoxenus (or to the Harmonicists) the idea that an octave was 

equal in size to six tones, and therefore in principle equal to twelve semitones, but 

again, such comparisons only described the relative magnitude of various 

intervals.  These arguments, as will be seen below, were actually used by 

Harmonicists to attack the Pythagorean conception of intervals, which from the 

earliest times insisted on unequal divisions of all primary harmonious intervals, 

including the perfect fourth and the octave. 

7  Tuning ratios are usually represented in modern scholarship with the larger 

quantity first, e.g., an octave is a 2:1 ratio and the perfect fifth a 3:2 ratio.  

Kennedy uses a less common convention of placing the smaller quantity first, so 

an octave is a 1:2 (or 6:12) ratio, a fifth 2:3, etc.  The relationship between the two 

quantities is the same either way, since it makes no difference whether we 

measure an interval starting with the higher or the lower pitch. We adopt 

Kennedy’s convention here to maintain consistency with the presentation of his 

arguments. 
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8  The interval of the octave (or diapason) corresponds to the ratio 1:2, a double 

octave is, correspondingly, (1:2) × (1:2) = 1:4.  

9  The diatessaron corresponds to the ratio 3:4.  

10  The standard whole tone corresponds to the ratio 8:9. Here, the word “tone” has a 

distinct technical usage within Greek theory to refer to an interval between two 

pitches, rather than a single pitch.  Similarly, “semitone” and “quartertone” refer 

to intervals that are a half or a quarter of a tone, respectively. 

11  Unlike modern musical scales, which tend to be represented as ascending, Greek 

systems are often derived in a descending manner, so note 12 in Kennedy's 

system is the lowest note of the scale.  This can be seen from the ratios, which 

would be proportional to string lengths.  For example, a 6:12 ratio compares a 

length of string 6 units long to a length 12 units long.  Longer strings produce 

lower pitches, so in this octave ratio, the sound produced by the 12-unit segment 

is an octave below that produced by the 6-unit segment.  Frequency is inversely 

proportional to string length, so in this example the shorter segment will vibrate 

twice as fast.  If the 12-unit segment is 100 Hz, the 6-unit segment will be 200 Hz. 

12  Pitches were not correlated with precise frequencies until the early modern age. 

Since we are only talking about intervals (ratios) here it makes no difference at 

which frequency we begin. The frequencies are merely a convenient way of 

examining the acoustical properties of a system tuned to the ratios of this scale. 

13  The semitone measure used here is the same as modern 12-note equal 

temperament.  While this unit would not be used by the Greeks in this exact form, 
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it gives a consistent measure of the relative acoustical size of intervals as our ears 

perceive them, and as the Greek harmonic theory would evaluate the size of 

intervals.  The number of standard equal 12-note equal-tempered semitones can 

be derived from the interval ratio by the equation n = −12 × (log r / log 2), where r 

is the ratio expressed as a fraction.  Intervals close to a whole number will sound 

similar to a modern musical interval. 

14  There is one historical precedent that we are aware of that makes use of such a 

construct: Hugo Riemann’s Geschichte der Musiktheorie (1898) interprets Arabic 

“messel” (mathal) theory so as to result in a similar looking series (notated in 

reverse order). Riemann’s interpretation, however, has long been recognized as 

tendentious and historically inaccurate.  

15  To be sure, the Greeks used pitches that we cannot represent faithfully in our 

modern notation system, especially in the enharmonic genus. The irregular pitches 

we arrive at here, however, have no systematic place in any of the ancient genera. 

16 This interpretation is made clear by Kennedy’s references to significant moments 

in dialogues occurring at the “six and a quarter twelfths point” or the “nine and 

three-quarters point” (p. 7, n. 26). 

17  The standardized music-theoretical terms follow traditional conventions of 

transcription (hence pyknomata rather than puknomata). Since these spellings are 

the established terms in music theory, we will retain them here. See also Hagel, 

Ancient Greek Music, xviii.  
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18  Rep. 531a, , tr. from Andrew Barker, Greek Musical Writings (Cambridge: 

Cambridge University Press, 1989), II: 55. Barker has put together all the most 

important sources on Greek music theory in this excellent anthology. 

19  Even if it were easy to map quartertones onto Kennedy’s system, their musical 

meaning would be indeterminate.  Socrates himself derides the very concept of 

the pyknomata in the cited passage.  Moreover, the earliest source for the details 

of the “close-packing” (katapyknosis) by the Harmonicists is Aristoxenus, who 

makes clear that such divisions had no musical meaning and did not constitute a 

scale per se, but were instead a sort of enumeration of all possible intervals that 

notes could fall into in all possible scalic systems.  See Aristoxenus El. harm. 27–

28.  The difficulty of mixing Harmonicist and Pythagorean ideas about scale will 

be discussed in the next section. 

20  For example, a division of the 2400-line Symposium would create segments of 50 

lines each.  Kennedy at one point notes that his total line counts come out to 

round multiples of 12 “with about one to two percent accuracy” (pp. 9–10).  One 

to two percent of 2400 lines is an error of 24 to 48 lines.  If the segments are only 

50 lines long, and accuracy within only a couple percent is required, any line 

could potentially line up with a significant division. 

21 There are also four other ratios, since each note can create a unison (1:1) with 

itself. 
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22  See Philolaus frag. 6.  In one of the earliest statements of Pythagorean harmonic 

doctrine, Philolaus here enumerates all the interval relationships within the 

6:8:9:12 proportion. 

23 The number of combinations of size k drawn from a set of n elements is given by 

n! / [k! × (n−k)!].  For this situation, we have a set of 12 notes, which we combine 

2 at a time, thus 12! / [2! × (12−2)!] = 66.  Such combinations do not include 

unison intervals, which combine a note with itself in a 1:1 ratio.  This adds 12 

ratios to the total. 

24 For example, 1:2, 2:4, 3:6, 4:8, 5:10, and 6:12 are all octave (1:2) ratios and are 

here counted within the same class of intervals. 

25 Multiple passages on p. 17 of Kennedy’s article imply that every note must be 

sounded with the twelfth note to determine its harmoniousness.  

26 Kennedy declares the first and second notes “neutral,” probably because such 

enormous intervals go beyond the double octave (1:4) generally described by 

Greek music theory, and therefore we do not know whether they would be 

considered harmonious or disharmonious.  Nevertheless, the Harmonicist 

Aristoxenus refers to experiments where he compared the sounds of two 

instruments with different ranges and was able to discover that the double octave 

plus fifth (Kennedy’s second note) was concordant, as well as the triple and 

quadruple octave (though he does not mention the triple octave plus fifth, 

Kennedy’s first note ratio). See Aristoxenus, El. harm. 20–21. 
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27 From a practical musical standpoint, this system would imply that each note is 

only ever heard in relationship to the twelfth note.  A performance in such a scale 

would necessarily consist of constant returns to the twelfth note after any other 

note in the scale is played, since other melodic motions between notes would 

produce intervals that could be judged as harmonious or not.  Given the huge 

intervals between the twelfth note and the first few notes of the scale, such a 

performance would be impossible to play on standard instruments and would 

sound quite unusual within the context of Greek music. 

28  This equal spatial division of the monochord is, as seen, distinctly different from 

any equal musical division. 

29  His statement, cited earlier, that “[a]ccording to Greek theory, the third (1:4), 

fourth (1:3), sixth (1:2), eighth (2:3), and ninth (3:4) notes on the twelve-note 

scale will harmonise with the twelfth” implies an explanation conceptually 

indebted to the monochord. Moreover, this is perhaps the only explanation for 

disregarding most of the potential intervals in his system, while only focusing on 

relationships to 12 (which would represent the entire string).  Even on a 

monochord, however, one does not necessarily relate a segment to the entire 

string; it could be related to the sound of another segment. 

30  Although a 12-fold division of the monochord could line up with Kennedy's 

system of ratios, the “harmonious” properties that Kennedy ascribes to both ratios 

and portions of dialogues would map only onto the dialogues at exact division 

points. Only some string lengths at those exact division points in the 12-fold 
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division (such as 8:12 or 9:12) on the monochord are harmonious when compared 

to the entire string; the lengths between them are almost uniformly 

disharmonious. In contrast, Kennedy associates the segments of a dialogue 

between division points with the properties of the division points themselves, so 

the segment between notes 8 and 9, for instance, is considered entirely 

harmonious for him. In effect, equating such large segments with infinitesimal 

points is like confusing a slice of pie with the cut that divides it from the rest of 

the pie, to use our earlier analogy. 

31  See David Creese, The Monochord in Ancient Greek Harmonic Science 

(Cambridge: Cambridge University Press, 2010). Creese's recent comprehensive 

history of the monochord only once mentions the idea of a standard 12-fold 

division, and even there it is only presented as an inaccurate assumption by a 

previous scholar. Based on the scant evidence for any standard division, Creese 

speculates that a “twelve-unit monochord may have been standard—if there was 

ever such a standard—by the time of Thrasyllus" (p. 103, n. 76) who died in 36 

C.E. There is no evidence of such a standard division in the time of Plato, and in 

fact Creese argues that "[n]one of the arguments for a pre-Aristotelean date for the 

monochord are convincing" (p. 102), thereby questioning whether the monochord 

even existed during Plato's lifetime. 

32  One potential source of confusion may arise from the fact that the field of study 

was known as “Harmonics.” Only one faction of its practitioners, however, would 

consider themselves to be “Harmonicists.” 
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33  The following examples assume what the Greeks referred to as a diatonic division 

of the tetrachord.  Other types of divisions were possible, but the diatonic is often 

the simplest and ultimately the one Plato adopts in his own Pythagorean scale in 

the Timaeus, as will be described in the next section. 

34  See Ptolemy, Harm. 30.9–31.18, tr. in Barker, Greek Musical Writings II: 43–5. 

35  Philolaus frag. 6, tr. in Barker, Greek Musical Writings II: 36–8.  In this fragment, 

Philolaus also clearly states that the octave is irregularly divided into five tones 

and two dieses, instead of the equal six-tone division that was sometimes 

attributed to the Harmonicists. 

36  See Aristoxenus El. harm. 2.28–30. Aristoxenus mentions Epigonos, Eratokles 

and his pupils, as well as the supporters of Pythagoras of Zakynthos and Agenor 

of Mytilene. See Andrew Barker, The Science of Harmonics in Classical Greece 

(Cambridge: Cambridge University Press, 2007), esp. Chapter 2: “Empirical 

harmonics before Aristoxenus.” 

37  In fact, the number 12 is not present in the entire construction of means that is 

described below.  The pitch that falls at the number 12 is not generated by Plato’s 

literal instructions for constructing the scale, though some interpretations would 

interpolate the pitch along with the various tones and leimmata.  

38 For two numbers x and y, the arithmetic mean is (x + y) / 2 and the harmonic 

mean is 2 / (1/x + 1/y).  To divide the ratio in half exactly would require the 

geometric mean, the square root of x * y. 
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39 For x = 1/1 and y = 1/2, the arithmetic mean is (1/1 + 1/2) / 2 = (3/2) / 2 = 3/4.  

The harmonic mean is 2 / [1/(1/1) + 1/(1/2)] = 2 / (1 + 2) = 2/3.  For comparison, 

the geometric mean (an equal division) would be 1 divided by the square root of 

2, the unharmonious interval of a tritone. 

40 The interval pattern of tones (T) and leimmata (L) is given for the first octave.  

The bottom note of the example is again set to the pitch C, to allow a comparison 

with Kennedy’s scale given earlier. 


