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Abstract

Personal exome and genome sequencing provides access to loss-of-function and rare deleterious alleles whose
interpretation is expected to provide insight into individual disease burden. However, for each allele, accurate interpretation
of its effect will depend on both its penetrance and the trait’s expressivity. In this regard, an important factor that can
modify the effect of a pathogenic coding allele is its level of expression; a factor which itself characteristically changes across
tissues. To better inform the degree to which pathogenic alleles can be modified by expression level across multiple tissues,
we have conducted exome, RNA and deep, targeted allele-specific expression (ASE) sequencing in ten tissues obtained from
a single individual. By combining such data, we report the impact of rare and common loss-of-function variants on allelic
expression exposing stronger allelic bias for rare stop-gain variants and informing the extent to which rare deleterious
coding alleles are consistently expressed across tissues. This study demonstrates the potential importance of transcriptome
data to the interpretation of pathogenic protein-coding variants.
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Introduction

Recent genome sequencing studies have highlighted that healthy

individuals carry multiple loss-of-function and rare deleterious

variants whose interpretation is expected to inform individual

disease risk and facilitate precision medicine [1–3]. However,

accurate interpretation of these variants remains a considerable

challenge as phenotypic effects remain difficult to predict.

Furthermore, even when a specific function can be ascribed to a

genetic variant, the variable penetrance and trait expressivity of

genetic variants may yield important differences. In this respect, an

important modifier of a coding allele’s effect is its level of expression

(Figure 1). This type of modification is likely to have considerable

impact on interpretation of coding variant effects as genetic analyses

of gene expression have reported that allele specific expression

(ASE) influences at least 30% of genes for any given cell type [4,5]

and variability in allelic expression of pathogenic coding alleles has

already been implicated in contributing to clinical variability for

several diseases [6–10]. However, the degree to which deleterious

and loss-of-function coding variants, routinely found through

individual exome and genome sequencing, are allelically-expressed

across multiple tissue types remains unexplored.

In this study we investigated patterns of gene expression and

ASE for rare deleterious and loss-of-function variants across

multiple tissues using both RNA-Seq and mmPCR-Seq, a targeted

and high-resolution sequencing assay for measuring allelic ratios

[11]. A major advantage of mmPCR-Seq is that it uncouples a

gene’s expression level, which can characteristically vary across

tissues, from the power to measure allele-specific expression. Using

this approach, we obtain 1000s of reads per heterozygous site per

tissue to robustly quantify ASE. By comparing patterns of gene

expression to allelic expression, we observed higher variability of

allelic expression between tissues suggesting that expression level

alone may be insufficient to predict the exposure of a damaging

allele. Furthermore, we report patterns of ASE across tissues for

both rare deleterious and loss-of-function protein-coding variants.

These results demonstrate the extent to which regulatory variation

can modify the functional impact of protein-coding variation

across tissues, as well as the importance of using ASE for the

interpretation of heterozygous variants in clinical sequencing

analyses.

Results and Discussion

Collection of Deleterious and Loss-of-Function Variants
To map patterns of ASE for deleterious and loss-of-function

coding variants, we sequenced the exome from two tissues (frontal

lobe and small intestine) and RNA from ten tissues (cerebellum,
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frontal lobe, pancreas, stomach, small intestine, colon, heart, lungs,

liver, and skeletal muscle) from a single individual. From the exome

data, we identified 51,875 SNPs, of which 45,058 had consistent

genotypes across tissues and were defined as ‘‘high-confidence’’

variants (Table S1). We identified 2,767 high-confidence variants

that are private and not previously found in dbSNP [12], the 1000

Genomes Project [13], or the NHLBI Exome Sequencing Project

(ESP) [14] (Table S2). Of these, 91 were heterozygous derived

nonsynonymous variants classified by Sift [15] and Polyphen [16] as

‘‘damaging’’ and ‘‘deleterious’’, respectively. Complementing these

variants, we identified 106 SNPs that introduce premature stop-

codons in exons, of which 75 SNPs were predicted to cause

complete loss of function of all known transcripts using previously

described prediction methods [1].

Quantification of Allele-Specific Expression by RNA-Seq
and mmPCR-Seq

We performed RNA sequencing (RNA-Seq) for each tissue

(Figures S1, S2, S3) and intersected this data with high-confidence

heterozygous variants to identify ASE patterns (Figure S4). ASE

was determined on a per-heterozygote per-tissue basis using a

binomial test where p is the empirical probability that a reference

allele maps to the genome compared to a non-reference allele

across all sites (Figure S5). Quality control filtering (by depth, p-

value, bi-allelic expression and intragenic location) was performed

to identify high-confident ASE sites across all tissues (Figure S6

and Table S3). The detailed method is available at http://

montgomerylab.stanford.edu/resources.html.

The measurements of ASE by RNA-Seq are influenced by the

depth of coverage of a gene in the assayed tissue [17], introducing

challenges for ASE comparisons across tissues where genes are

characteristically differentially expressed. To more accurately

quantify ASE, we also applied our recently developed method

that couples microfluidics-based multiplex PCR and next gener-

ation sequencing (mmPCR-Seq) [11]. We applied this technique

to 74 deleterious, 50 nonsense and 205 control variants (Figure

S7). Seventeen deleterious and 25 nonsense sites were excluded

because they showed no evidence of expression in any of the ten

tissues. For each tissue, we performed two technical replicates and

mapped the merged sequence reads since we target-sequenced

specific loci (Figure S8, S9). We applied the same pipeline and

filters to detect ASE as those used for RNA-Seq. We further

evaluated the correlation of effect size between technical replicates

and observed high technical reproducibility (Figure S10). The

small intestine and skeletal muscle have the greatest reproducibility

(Pearson Correlation, R.0.93). The tissue with the lowest

reproducibility is the pancreas (R.0.70), which contains a high

concentration of nucleases and other enzymes that can degrade

RNA. The variability of effect size between the replicates was also

quantified for each tissue at varying read depths (Figure S11). As

expected, sites with higher read depths have less variability

between replicates. With the exception of the pancreas and frontal

lobe, which are two tissues known to have low RNA quality post-

mortem. Regardless, the variability of allelic ratios between

replicates was well below 0.2 across all samples read depths. For

tested sites, mmPCR-Seq provided greater depth and power to

detect ASE and in many cases facilitated estimates for sites

immeasurable without extreme RNA-seq coverage (Figures S12,

S13). For instance, for 598 measurements which had no reads with

RNA-Seq, we obtained an average of 2639 reads for mmPCR-

Seq. Furthermore, only 73 measurements had greater than 100

reads for RNA-Seq compared to 817 for mmPCR-Seq.

Figure 1. Schematic of allele-specific expression. (A) The two chromosomal copies (alleles) of a gene are shown in red and blue. In most cases,
both alleles are transcribed; this is known as bi-allelic expression (left panel). In the case of allele-specific expression (middle panel), one allele exhibits
greater expression than the other allele. When only one allele of a gene is actively transcribed, gene expression is termed monoallelic expression
(right panel). (B) RNA-Seq reads across heterozygous sites can discriminate between the two alleles and quantify the relative abundance of
expression. Although the relative gene expression levels may be similar, the allelic ratios can vary.
doi:10.1371/journal.pgen.1004304.g001

Author Summary

Gene expression is a fundamental cellular process that
contributes to phenotypic diversity. Gene expression can
vary between alleles of an individual through differences in
genomic imprinting or cis-acting regulatory variation.
Distinguishing allelic activity is important for informing
the abundance of altered mRNA and protein products.
Advances in sequencing technologies allow us to quantify
patterns of allele-specific expression (ASE) in different
individuals and cell-types. Previous studies have identified
patterns of ASE across human populations for single cell-
types; however the degree of tissue-specificity of ASE has
not been deeply characterized. In this study, we compare
patterns of ASE across multiple tissues from a single
individual using whole transcriptome sequencing (RNA-
Seq) and a targeted, high-resolution assay (mmPCR-Seq).
We detect patterns of ASE for rare deleterious and loss-of-
function protein-coding variants, informing the frequency
at which allelic expression could modify the functional
impact of personal deleterious protein-coding across
tissues. We demonstrate that these interactions occur for
one third of such variants however large direction flips in
allelic expression are infrequent.

Allelic Expression of Deleterious Variants
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Differential Gene and Allele-Specific Expression
We next examined the sharing of gene expression and allelic

effects across different tissues. Shared patterns of gene expression

are detectable for tissues with shared functional roles or embryonic

origins (Figure 2A, inset). For instance, the small intestine and

colon, which are both digestive system organs derived from the

endoderm layers, have a high degree of correlation (Spearman

Correlation, R = 0.92). Likewise, the frontal lobe and cerebellum,

which are both neural tissues derived from the ectoderm, have a

high degree of shared gene expression (R = 0.91). To test the

degree of correlation of allelic expression across tissues, we

measured concordance of allelic ratios between pairwise tissues

using the high-depth mmPCR-Seq data. Here, allelic ratios are

defined as the ratio of the non-reference allele to the sum of the

non-reference allele and the reference allele. We observed that the

concordance of ASE between tissues does not as strongly reflect

the relationships seen for shared gene expression or shared

embryonic origin (Figure 2B). The range of pairwise tissue

correlation for allelic effects ranges between 0.46 and 0.80, with

the small intestine and colon having the most similarity (R = 0.80).

We also compared in detail the pairwise correlation coefficients for

expression and allelic ratios for tissue pairs of highly similar

embryonic origin (Figure S14). We compared two neural tissues

(frontal lobe and cerebellum) both derived the ectoderm and two

intestinal tissues (small intestine and colon) both derived from the

mesoderm. Irrespective of read depth and sequencing technology,

the correlation of expression for tissues is consistently greater than

the correlation of allelic effects across tissues. This observation

suggests that allelic effects exhibit more variability than gene

expression across tissues.

We also investigated the sharing of monoallelic expression

across tissues (Figure 1). We identified five genes (NDN, MAP2K3,

FRG1B, IGSF3, and DUSP22) that showed monoallelic expression

across all testable tissues (N$5) in the RNA-Seq data. Two of

these genes were mono-allelically expressed across all ten tissues:

NDN, which is a known maternally imprinted gene [18], and

MAP2K3, which has known allele-specific expression bias [19].

For all five genes, the same allele was mono-allelically expressed in

all testable tissues suggesting that these genes are not imprinted in

a tissue-specific manner.

Patterns of Allele-Specific Expression across Tissues
The majority of sites tested by mmPCR-Seq have equal

expression of both alleles, as expected. However, many sites

exhibit consistent or variable allelic patterns across different tissues

(Figure S15). By comparing the mean and variance of allelic ratios

as quantified through mmPCR-Seq across tissues, we stratified

sites into those that exhibited no ASE, shared ASE and variable

ASE across tissues. Due to the inherent nature of the binomial test,

minor deviations from equal allelic expression will appear

significant with high read coverage and therefore p-value

significance alone is not sufficient for distinguishing between these

classes. Therefore, we also took effect size (allelic ratios) into

account when classifying sites as ASE. However, the definition of

what constitutes a biologically important allelic effect is not easily

discernable; therefore, to distinguish between each group, we

accounted for previously reported definitions of ASE [20,21] and

applied cutoffs based on the reproducibility of both the allelic ratio

and its variance across replicates (Figure S16). Variants were

classified as non-ASE sites if the allelic expression was balanced

(mean allelic ratio = 0.5+/20.15) and if there was low variance

(s2,0.2) of the allelic ratios for all tissues tested. Variants were

classified as shared ASE sites if they had a significant p-value (p,

0.01), an imbalanced mean allelic ratio (0.35,mean allelic ratio ,

0.65), and non-variable allelic ratios (s2,0.2) across all tissues.

Lastly, variants were classified as variable (tissue-specific) ASE sites

if they had a significant p-value (p,0.01) and variable allelic ratios

(s2.0.2) across tissues. The reproducibility of the groups between

replicates was tested at varying allelic ratio and variance cut-offs

(Figure S16) and was also assessed when the pancreas and frontal

lobe, two tissues that had high variability between replicates, were

removed (Figure S11). The concordance between replicates

increases as the variance cut-off increases and reaches a plateau

of ,95% at a variance of 0.2. Since the greatest reproducibility is

observed when the ASE cutoff is ,0.35 or .0.65, the variance

cutoff is 0.2, and the pancreas is removed, these cut-offs were

chosen for Figure 3. Using these cut-offs, the reproducibility

between replicates for the three groups (non-ASE, shared ASE and

variable ASE) is 93.3%. The reproducibility between replicates for

the classification of non-ASE and ASE (shared ASE plus variable

ASE) is 95.7%. In total, for sites tested with mmPCR-Seq, 172

showed no ASE across tissues, 52 showed shared ASE, and 8

showed variable ASE (Figure 3A). These proportions are similar to

those obtained with RNA-Seq (Figure S17). We then tested if sites

exhibiting shared or variable ASE are more likely to be deleterious

sites compared to sites exhibiting no ASE. Of the sites exhibiting

no ASE, only 25.0% are deleterious. Comparatively, we find no

significant enrichment in deleteriousness among sites which exhibit

variable ASE compared to non-ASE sites(p = 0.423, Fisher’s exact

test; not significant); however, a significantly higher proportion of

shared ASE sites (42.3%) are deleterious compared to non-ASE

sites (p = 0.022; Fisher’s exact test).

Next, we investigated the relationship between ASE effect sizes

and direction of effect across tissues. Figure S15 highlights the

range of effect sizes and directions of effect seen across tissues. By

focusing on the range of allelic ratios for variants tested in three or

more tissues, we further reviewed the distribution of minimum and

maximum allelic ratios observed across all tested tissues (Figure

S18). As expected, most sites have an allelic ratio around 0.5, and

imbalanced loci show similar direction of effect. Interestingly,

several sites exhibit opposing directions of effect in different tissues.

For example, heterozygous sites in genes PCDHA13, SCRIB, and

PDE4DIP have a major flip in direction of effect from an alternate

allele ratio less than 0.2 to an alternate allele ratio greater than 0.8

across tissues. Four additional heterozygous sites have a large

directional flip from an alternate allele ratio less than 0.4 to greater

than 0.8, and five more heterozygous sites have a directional flip

from an alternate allele ratio less than 0.2 to greater than 0.6.

To determine if gene expression level informed allelic expres-

sion level, we investigated the relationship between gene expres-

sion and allelic expression level as measured by mmPCR-Seq

(Figure S19). As expected, due to the nature of mmPCR-Seq, no

general pattern between absolute expression levels and ASE was

observed. Four sites (circled in Figure S19) did have noticeably

lower non-reference allele ratios and lower gene expression levels

in the pancreas, stomach and lung; however these outliers were

not enriched in any variant class and did not influence distinction

of variable versus shared ASE.

Allele-Specific Expression of Rare Deleterious Variants
across Tissues

By focusing on patterns of ASE for rare deleterious variants in

this individual, we identified 40 sites corresponding to 40 unique

genes which were quantified by mmPCR-Seq across three or more

tissues. Of these genes 28 exhibited no ASE across tissues, 11

exhibited shared patterns of ASE across tissues and 1 exhibited

variable ASE (Figure 3B; Figure S20). We next investigated if

genes with different patterns of ASE have relevant disease

Allelic Expression of Deleterious Variants
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associations using the Online Mendelian Inheritance in Man

(OMIM) database of heritable diseases (Table S4) [22]. Although

the OMIM database a limited catalog of genomic variants, OMIM

variants serve as examples of the pathogenic consequences of

deleterious alleles. Among those that exhibit shared ASE is the

FMO3 gene, which encodes a monooxygenase enzyme responsible

for hepatic metabolism and whose deficiency causes the rare

Mendelian disorder trimethylaminuria that is manifested in a

range of phenotypes (OMIM 602079; Figure S20) [23,24]. Here,

the shared allelic effect is detectable in all tissues, but the strongest

effect against the deleterious allele is detected in the liver (non-ref

to ref allelic ratio = 0.16; Figure S20). In contrast, no ASE patterns

Figure 2. Correlation of gene expression and allelic ratios across ten somatic tissues. (A) Shared patterns of gene expression were
detected for tissues with shared functional roles or embryonic origins. For example, the small intestine and colon are both digestive system organs
derived from the endoderm and have a high degree of pairwise correlation (Spearman Correlation, R = 0.92). Likewise, the frontal lobe and
cerebellum, which are both vital tissues nervous system derived from the ectoderm, have a high degree of shared expression (R = 0.91). The
hierarchical clustering was generated using pairwise Spearman correlation coefficients of FPKM expression values for all genes. (B) Shared patterns of
ASE were detected by mmPCR-Seq. The concordance of ASE between tissues does not as strongly reflect the relationships seen for shared gene
expression or shared embryonic origin. The allelic ratio is calculated as the alternate allele reads divided by the total reads. Each data point represents
a single heterozygous site tested for ASE with a total read depth greater than 200. The plots are colored by the degree of correlation of allelic bias
between the pairwise tissues. These results indicate that relationships of allelic expression across tissues are much more complex than those of total
expression level.
doi:10.1371/journal.pgen.1004304.g002

Allelic Expression of Deleterious Variants
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are observed for a deleterious SNP located in the gene encoding a

cryopyrin (NLRP3), which is associated with the Mendelian

disease Muckle-Wells Syndrome (OMIM 191900) and associated

with inflammasome function and immune responses. The single

deleterious site that demonstrates variable ASE is a gene

encoding a protocadherin (PCDHA13). In the skeletal muscle

and heart, the deleterious allele exhibits greater expression than

the normal allele, but in the liver and colon the deleterious alleles

exhibits less expression. Of interest, PCDHA13, which is known to

play a critical role in establishing specific cell-cell connections in

the brain, shows no strong patterns of ASE in the two disease-

relevant neural tissues, frontal lobe and cerebellum. While the

consequences of allelic expression of this individual’s deleterious

alleles are unknown, different patterns of allelic expression across

tissues highlight the potential importance of testing multiple

tissues to better elucidate the functional context of rare,

deleterious alleles.

Allele-Specific Expression of Loss-of-Function Variants
across Tissues

Loss-of-function alleles that introduce premature stop codons

have been identified to exhibit patterns of allelic expression

indicating nonsense-mediated decay (NMD) [1]. We sought to test

the extent of this impact across different tissues. Indeed,

comparison of ASE data using mmPCR-Seq for nonsense (stop-

gained) and control sites indicates considerable reduction in the

expression of the nonsense allele across all tissues (Figure 4A and

Table S5). We also observed lowered expression of rare,

deleterious alleles at heterozygous sites compared to control sites

(p,0.05, student’s t-test). This observation has been previously

reported in a single cell-type, with a possible explanation for this

phenomenon being that lowly-expressed alleles can better tolerate

the fitness impact of deleterious protein-coding alleles [25,26].

Furthermore, we identified that rare (MAF,5%) nonsense alleles

exhibited even stronger evidence of nonsense-mediated decay than

common alleles (Figure 4B). To ensure that genotype errors and

mappability did not affect this observation, we compared RNA

allelic bias to DNA allelic bias from exome-sequencing. Nonsense

variants were removed from the analysis if the alternative allelic

ratio was below 0.2 in both tissues. This filtration step ensures that

genotyping and mappability of non-reference variants did not

influence our observation that rare nonsense variants have

decreased allelic expression compared to common nonsense

variants. This observation suggests that haplotypes that harbor

rare nonsense variants are either considerably unlikely to be

expressed or altered transcripts are being efficiently degraded by

the NMD machinery.

In conclusion, despite the feasibility of sequencing individual

genomes, the functional impact of potentially pathogenic protein-

coding variants remains difficult to ascertain by DNA sequencing

or computational prediction methods alone. The incorporation of

transcriptome data can enhance the interpretation of such variants

by providing insight into their patterns of ASE. We demonstrate

the advantage of ASE for interpretation of pathogenic protein-

coding allele by generated high resolution measurements of ASE

for these variants across multiple tissues. Such data enables us to

identify the extent to which these alleles are modified by regulatory

effects and the extent to which this effect is detectable across

tissues. We highlight as many as a 1/3 of all deleterious alleles are

imbalanced and that nonsense alleles show characteristic and

consistently lower expression across multiple tissues. Ultimately, by

coupling interpretation of personal genomes with their corre-

sponding transcriptomes, these results highlight that it may be

possible to better understand the impact of pathogenic protein-

coding variants within different tissues of an individual.

Materials and Methods

Collection of Tissue Samples
In order to investigate the differential allelic effects of divergent

tissues in a single individual, we obtained the genomic DNA and

RNA for ten somatic tissues (cerebellum, frontal lobe, pancreas,

stomach, small intestine, colon, heart, lungs, liver, and skeletal

muscle) from Biochain Institute, Inc (Newark, CA, USA). The

samples were collected post-mortem from a healthy 25-year-old

male with no significant medical history.

Whole Exome Sequencing
Genomic DNA from the frontal lobe and small intestine were

prepared for exome sequencing. The enrichment of targeted

regions (consensus coding sequence definition of exons and

flanking introns, ,50 Mb) was performed using the Agilent

Figure 3. Patterns of ASE across tissues and their influence on
rare deleterious variant interpretation. (A) The distribution of
allelic ratios across tissues indicates that most heterozygous sites have
bi-allelic expression across all tissues (no ASE, red). A subset of sites
exhibits ASE that is consistent between all tissues (shared ASE, blue).
However, a small fraction of sites exhibit ASE that is tissue-specific
(variable ASE, green). The mean allelic ratio is on the x-axis and the
variance (standard deviation) of the allelic ratio is on the y-axis. Allelic
ratios were calculated for all sites tested by mmPCR-Seq. The
reproducibility between replicates for the three groups (non-ASE,
shared ASE and variable ASE), as well as the classification of non-ASE
and ASE (shared ASE plus variable ASE) is is 93.3% and 95.7%,
respectively. (B) Genes with rare and deleterious nsSNPs were stratified
into those that exhibited no ASE (red), shared ASE (blue), and variable
ASE (green) across different tissues. The reproducibility of genes
classified as shared ASE and variable ASE between replicates is 100%.
doi:10.1371/journal.pgen.1004304.g003

Allelic Expression of Deleterious Variants
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SureSelect Human All Exon 50 Mb Kit (Agilent Technologies,

Santa Clara, CA, USA) following the manufacturer’s recom-

mended protocol. Paired-end libraries were constructed using the

Illumina Paired End Sample Prep Kit following the manufactur-

er’s instructions and sequencing was carried out using the Illumina

HiSeq 2000 platform (Illumina, San Diego, CA, USA). Exome

sequence data was processed through a pipeline based on Picard

(http://picard.sourceforge.net/) with base quality score recalibra-

tion and local realignment at known indels and BWA [27], for

mapping reads to the human reference genome (build hg19).

GATK version v2.3-13 [28] was used for SNP calling, with the

default filters, and the additional parameters: -T UnifiedGenoty-

per; –downsample_to_coverage 75; –genotype_likelihoods_model

BOTH; -contamination 0.0; -nct 1. For ASE detection (described

below), we filtered for heterozygous variants that were present in

both the frontal lobe and small intestine.

Whole Transcriptome Sequencing
Paired-end RNA-Seq libraries were prepared using the Illumina

TruSeq RNA Sample Preparation kit. PolyA+ RNA was isolated

using Sera-Mag oligo(dT) beads (Thermo) and fragmented with

the Ambion Fragmentation Reagents kit. Complementary DNA

(cDNA) synthesis, end repair, A-base addition and ligation of the

Illumina-indexed adaptors were performed according to Illumina’s

protocol. Each sample was barcoded and all samples were

sequenced on one lane of the Illumina HiSeq 2000 platform

(26100-nt read length). In total, we obtained 13.363.7 (mean 6

SD) million paired end reads per sample. We assessed the

sequence quality using the publicly available software FastQC. For

each sample, we examined per-base quality scores across the

length of the reads to ensure that .95% of the reads had .Q60

for bases 1–100. Reads were mapped by TopHat (version 2.0.0) to

the known transcriptome (-G option; Gencode version 7 annota-

tions) the human reference genome (hg19) using default param-

eters [29]. Cufflinks (version 2.0.2) was used to quantify gene

expression for known transcripts (-G option; Gencode version 7

annotations) using the default parameters [30].

Targeted Allelic Sequencing by mmPCR-Seq
To quantify allele-specific expression at lowly expressed site, we

applied a high-throughput method that couples microfluidics-

based multiplex PCR and deep sequencing (mmPCR-Seq) [11].

We designed primers and applied this technique to 74 deleterious

nonsynonymous variants, 50 nonsense variants, and 205 control

Figure 4. ASE analysis of rare deleterious nsSNPs and nonsense variants by mmPCR-Seq. (A) ASE analysis of nonsense variants (red), rare
deleterious nsSNPs (blue), and control sites (green) tested by mmPCR-Seq in different tissues. The control sites are random heterozygous sites in the
individual’s genome. Rare, deleterious nsSNPs and nonsense alleles have significantly reduced expression compared to controls. This observation is
most significant for loss-of-function variants where the nonsense allele is likely removed through nonsense-mediated decay (student’s t-test, p,0.05,
see Table S5). (B) ASE analysis of rare (red) and common (pink) nonsense variants tested by mmPCR-Seq data across different tissues. Common
nonsense variants are defined as those with a minor allele frequency greater than 5% across the 1000 Genomes population data. Rare nonsense
alleles show significantly reduced expression compared to common nonsense alleles (student’s t-test, p,0.05).
doi:10.1371/journal.pgen.1004304.g004
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variants. The control sites are common (MAF.0.05), non-

deleterious variants. First, multiplexed PCR reactions were carried

out using the Fluidigm Access Array for each sample. Then, the

PCR products were indexed using barcoded adaptor primers via a

single PCR reaction for each tissue sample. All indexed samples

were pooled and purified using a Qiagen RNeasy. Six picomoles

were loaded into one lane of an Illumina MiSeq for deep

sequencing. The sequence reads were mapped to the human

reference genome (hg19) using the Spliced Transcripts Alignment

to a Reference (STAR, version 3.2) aligner [31]. Since we targeted

together specific heterozygous sites in the genome, the default

parameters were modified (minimum score and match filters

lowered from 0.66 to 0.3) to increase the number of mapped reads.

Allele-Specific Expression
Allele-specific expression was determined on a per-heterozy-

gote-site per-tissue basis using the pipeline depicted in Figure S4

and available online (http://montgomerylab.stanford.edu/

resources.html). First, mapped reads were sorted using the

Samtools (version 0.1.7) [32]. Next, Samtools mpileup was used

to call variants from the aligned reads using a list of known

heterozygous sites from the individual. Heterozygous sites with a

base quality score (MAQ) below 10, individual allele read depth

below 5 and a total (both alleles) read depth below 20 were filtered

out. Next, we calculated the reference to non-reference allele

mapping ratio for each tissue. To test for ASE, we performed a

binomial statistical test for each heterozygous site in each tissue

modifying p to be the empirical probability of observing a

reference versus non-reference allele across all sites. A significance

cut-off of 0.05 and 0.01 were used for the RNA-Seq and mmPCR-

Seq data, respectively.

Data Access
The raw mmPCR-seq data has been submitted to the NCBI

Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.

gov/geo/) under accession number GSE51769. The code for

ASE detection pipeline can be found online (http://

montgomerylab.stanford.edu/resources.html).

Supporting Information

Figure S1 Base quality distribution for RNA-Seq reads. The

base quality distribution for the 100-bp paired-end RNA-Seq

reads from the Illumina Hi-Seq 2000 platform. The mean quality

score at each base position for each tissue sample is plotted for

read 1 (left) and read 2 (right). The y-axis is the average quality

value, the x-axis is the base position, and each colored line

represents a corresponding tissue sample as indicated by the

legend (far right).

(TIF)

Figure S2 Mapping RNA-Seq reads. For all tissues except the

stomach, ,90% of the reads mapped uniquely to the human

genome. Reads under 20 bp were unmapped and reads that

mapped to multiple regions of the genome (multi-mapping reads)

were discarded for future analysis.

(TIF)

Figure S3 Reference mapping bias distributed by base quality

scores. The reference to non-reference mapping bias for each

tissue exhibits no distinct patterns with respect to specific tissue

sample or base quality scores.

(TIF)

Figure S4 Pipeline for the detection of allele-specific expression.

(TIF)

Figure S5 Distribution of allele-specific expression for RNA-

Seq. Density plots illustrate the distribution of the alternate allele

ratio for each tissue for all heterozygous sites that are expressed.

The alternate allele ratio was calculated from RNA-Seq reads as

the fraction of alternate allele reads divided by the total reads. In

ASE analyses using RNA-Seq reads, it is important to evaluate if

mapping bias exists that results in the favoring of reads harboring

the reference allele at heterozygous sites. In the absence of

mapping bias, the average allelic ratio is expected to be 0.5,

assuming that ASE is exhibiting in a minor fraction of

heterozygous sites.

(TIF)

Figure S6 Quality control filtering of ASE sites. The identifica-

tion of ASE sites from RNA-Seq data required quality control

filter to identify high-confident sites. The x-axis shows the

reference to non-reference mapping ratio for each sample and

the y-axis shows the percentage of ASE sites remaining after each

quality-control filter. The base quality and read depth filters

resulted in a modest (,10%) reduction in ASE sites. The p-value

(p,0.05), bi-allelic expression, and intragenic location filters

removed over 50% of the sites for each tissue. The proportion

of sites removed after each filter shows no correlation with the

reference to non-reference mapping bias for the RNA-Seq

samples.

(TIF)

Figure S7 Selection of LoF sites for mmPCR-Seq testing. Rare

and deleterious nonsynonymous SNPs were selected for testing by

mmPCR-Seq. Rare and deleterious nsSNPs are defined as SNPs

not observed in dbSNP, 1000Genomes, or ESP, and annotated as

damaging and deleterious by SIFT and POLYPHEN. The

nonsense variants selected for testing were identified as variants

that affect every full transcript in the gene.

(TIF)

Figure S8 mmPCR-Seq reads by tissue. Two technical repli-

cates of mmPCR-Seq were performed for each tissue. Since we

have observed very high concordance of allelic ratios between

technical replicates using mmPCR-Seq, the reads from each

replicate were merged.

(TIF)

Figure S9 Mapping mmPCR-Seq reads. The total reads

generated per tissue from the mmPCR-Seq experiments were

mapped to the reference genome using the STAR aligner. For

every tissue sample, approximately 98% of the reads mapped

uniquely to the reference genome.

(TIF)

Figure S10 Correlation of effect size for mmPCR-Seq technical

replicates. Two technical replicates of mmPCR-Seq were

performed and the ASE effect size was quantified. For each tissue,

the effect size for each technical replicate was plotted to

demonstrate the correlation between technical replicates for

mmPCR-Seq.

(TIF)

Figure S11 Variance of effect size for mmPCR-Seq technical

replicates. The absolute difference in effect size (allelic ratio)

between the two replicates for each tissue is plotted at varying read

depth. At higher read depths, there is less variability between

replicates. However, even at low read depths (,200), the

variability is low for most tissues, except for the pancreas and

frontal lobe, which are known to have low RNA quality post-

mortem.

(TIF)
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Figure S12 Comparison of coverage of LoF variants using

different technologies. (A) Comparison of read depth at heterozy-

gous variants using RNA-Seq and mmPCR-Seq data. The tested

heterozygous sites have consistently deeper coverage using

mmPCR-Seq. (B) Comparison of ASE detection using RNA-Seq

and mmPCR-Seq data. The comparison of p-values obtained

from the ASE binomial test for matching heterozygous sites

indicates increased enrichment for significant ASE effects using

mmPCR-Seq.

(TIF)

Figure S13 Distribution of alternate allele ratio and correspond-

ing p-value for sites tested by mmPCR-Seq.

(TIF)

Figure S14 Pairwise correlation of expression and allelic effect

for similar tissues. The Spearman correlation coefficient was

determined for the pairwise comparisons of neural tissues (frontal

lobe and cerebellum) and intestinal tissues (small intestine and

colon) for both expression and allelic effect. Independent of read

depth, the correlation of expression for tissues of similar embryonic

origin are consistently greater than the correlation of allelic effect.

(TIF)

Figure S15 Distribution of alternate allele ratio across tissues

from mmPCR-Seq. The alternate allele ratio (alternate allele reads

divided by total reads) was calculated for each heterozygous site

tested by mmPCR-Seq in all tissues. As expected, the majority of

heterozygous sites have an alternate allele ratio of 0.5. For sites

with ASE, there appears to be an equal distribution of expression

bias towards both the alternate allele (upper left tail) and reference

allele (lower right tail). Interestingly, we observed that some sites

had measurably varied alternate allele ratios across tissues, while

other tested sites had a consistent alternate allele ratio across

tissues.

(TIF)

Figure S16 Reproducibility of ASE groups for mmPCR-Seq

technical replicates. The reproducibility of the groups (shared

ASE, variable ASE, and no ASE) depicted in Figure 3 between

replicates was assessed at varying cut-offs. The correlation between

replicates was evaluated at two ASE cut-offs (0.4–0.6 and 0.35–

0.65) and at eight variance cut-offs (0.05–0.3) for all tissues as well

as without the pancreas and frontal lobe. The concordance

between replicates increases as the variance cut-off increases and

reaches a plateau of ,95% at a variance of 0.2. The greatest

reproducibility is observed when the ASE cutoff is ASE,0.35 or

ASE.0.65, the variance cutoff is 0.2, and the pancreas is

removed. Using these cut-offs, the reproducibility between

replicates for the three groups (non-ASE, shared ASE and variable

ASE) is 93.3%. The reproducibility between replicates for the

classification of non-ASE and ASE (shared ASE plus variable ASE)

is 95.7%.

(TIF)

Figure S17 Distribution of shared and variable ASE for RNA-

Seq data. The distribution of mean values and standard deviations

of the allelic ratios across tissues from the RNA-Seq data.

Genomic loci with no ASE and low variance (red), ASE and low

variance (blue), and ASE and high variance (green) were divided

into three gene groups: no ASE, shared ASE, and variable ASE,

respectively. The proportion of sites falling into each ASE group is

similar to that found from the mmPCR-Seq data.

(TIF)

Figure S18 Distribution of effect size and direction of effect for

ASE across different tissues. The minimum and maximum

alternate allele ratio observed in any tissue for each mmPCR-

Seq site tested in at least three tissues are plotted to demonstrate

the range of allelic effects observed across tissues.

(TIF)

Figure S19 Relationship of ASE effect size and gene expression.

The relationship between ASE effect size (measured by mmPCR-

Seq) and gene expression level (measured by RNA-Seq) across all

tissues was examined. There is no correlation between allelic effect

size and gene expression level. Four lowly expressed sites had low

allelic ratios (circled) but were not enriched in any class of variants

or influenced calling of variable ASE within the study.

(TIF)

Figure S20 Examples of genes with deleterious nsSNPs

exhibiting shared, variable, and no ASE. The gene FMO3, which

is associated with the rare Mendelian disorder trimethylaminuria

(OMIM 602079), exhibits decreased expression of the deleterious

allele across tissues. In contrast, gene NLRP3, which is associated

with the Mendelian disease Muckle-Wells Syndrome (OMIM

191900), exhibited no ASE across tissues. The gene PCDHA13,

which encodes a protocadherin, is an example of a gene with

variable ASE across tissues; the deleterious allele is underexpressed

in certain tissues and overexpressed in other tissues.

(TIF)

Table S1 Identification of high-confidence heterozygous and

homozygous variants.

(PDF)

Table S2 Identification of high-confidence common and rare

variants.

(PDF)

Table S3 Identification of high-confident RNA-Seq ASE sites by

quality-control filtering. To identify high-confident ASE sites, we

implemented several quality control filters. We only kept ASE sites

which met the following criteria: 1) base quality (BQ) greater than

10; 2) minimum sequencing depth of 10 reads; 3) calculated p-

value less than 0.05 from the binomial test; 4) bi-allelic expression;

and 5) intragenic location.

(PDF)

Table S4 OMIM genes associated with Mendelian disease

phenotypes harboring rare deleterious nsSNP variants.

(PDF)

Table S5 Allelic imbalance of deleterious nsSNPs, nonsense

variants, and control sites across tissues.

(PDF)
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