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ABSTRACT

Cys2-His2 zinc finger proteins (ZFPs) are the largest
family of transcription factors in higher metazoans.
They also represent the most diverse family with
regards to the composition of their recognition
sequences. Although there are a number of ZFPs
with characterized DNA-binding preferences, the
specificity of the vast majority of ZFPs is unknown
and cannot be directly inferred by homology due to
the diversity of recognition residues present within
individual fingers. Given the large number of unique
zinc fingers and assemblies present across eukary-
otes, a comprehensive predictive recognition model
that could accurately estimate the DNA-binding
specificity of any ZFP based on its amino acid
sequence would have great utility. Toward this
goal, we have used the DNA-binding specificities
of 678 two-finger modules from both natural and
artificial sources to construct a random forest-
based predictive model for ZFP recognition. We
find that our recognition model outperforms previ-
ously described determinant-based recognition
models for ZFPs, and can successfully estimate
the specificity of naturally occurring ZFPs with
previously defined specificities.

INTRODUCTION

Defining the grammar underlying the transcriptional regu-
latory elements within the human genome remains a
critical step in understanding both developmental and
disease processes (1). The advent of high-throughput
sequencing technology has fueled the development of
methodologies for the genome-wide characterization of
regulatory features, such as global histone modifications
(1–10). These data coupled with global analysis of RNA
transcript levels (6,11), chromatin immunoprecipitation
(ChIP)-based occupancy data for sequence-specific
transcription factors (TFs) (7,12–14) and chromatin con-
formational capture techniques (15) provide a framework
for deconvoluting regulatory networks directing gene ex-
pression patterns (16,17). Currently, only a small subset of
human TFs has been characterized by ChIP-based
approaches in any given cell line (7,13,14), although
some sequence occupancy can be inferred from DNaseI
(12,17) and MNase (18) data. In the absence of genome-
wide binding data, knowledge of the DNA-binding
specificities of the TFs within regulatory networks in
concert with data sets on sequence conservation, chroma-
tin accessibility and histone modifications can be exploited
by computational algorithms to predict TF genomic occu-
pancy, and thereby construct more elaborate
transcriptional regulatory models (1,9,17,19–24). Given
the difficulty in characterizing the diverse binding
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patterns of all expressed TFs in all possible temporal and
spatial expression patterns in vertebrates, the ability to
estimate the specificity of the constellation of TFs ex-
pressed at any given time in a given cell type provides a
critical data set for constructing these regulatory models.

Cys2-His2 zinc finger proteins (ZFPs) are the largest
class of TFs within most metazoans (25), with an
estimated 675 members in the human genome (26) harbor-
ing an average of 8.5 finger units per gene (27). The
majority of these ZFPs are believed to be involved in
DNA-recognition, as many of the neighboring fingers
are connected by a Krüppel-type TGE(K/R)P linker,
which is a hallmark of DNA-binding fingers (28). The
canonical DNA-recognition model for an individual
finger is based on the ZFP-DNA co-crystal structure of
Zif268 (29,30) and other naturally occurring and engin-
eered ZFPs (31–35), wherein each finger potentially recog-
nizes a 4-bp subsite that overlaps the recognition site of
the neighboring N- and C-terminal fingers by 1 bp
(Figure 1A). Amino acid residues at positions �1, +2,
+3 and+6 of the recognition helix typically mediate the
recognition preference of a finger within its subsite. The
target site preference of a tandem array of fingers reflects a
complex interaction between the individual finger
modules, as the recognition properties of an individual
finger can be influenced by its position within an array
and the recognition determinants displayed by its imme-
diate neighbors (36–41).

DNA-binding specificities have been determined for
only a small fraction of ZFPs in metazoan genomes
(13,17,26,47–50). Unlike other TF families where the
majority of the resident factors in diverse species share a
high degree of homology (26,51–54), evolutionary analysis
of ZFPs indicates that a substantial fraction of resident
members do not have highly conserved homologs across
metazoans. Instead, the number and composition of
fingers within these ZFPs is dynamic between species
(27,55,56) and can even vary within a species [e.g. the
variation in human PRDM9 isoforms (57,58)]. The speci-
ficity determinants within these ZFPs are under strong
positive selection, implying the rapid diversification of
their recognition potential (27). Consequently, naturally
occurring ZFPs can specify a wide variety of different
DNA sequences based on both the number and compos-
ition of fingers within the array.

Although some principles that govern the recognition
properties of zinc fingers have been established, the
accurate prediction of their DNA-binding specificity
remains challenging. Specificity determinants at individual
recognition helix positions with defined base preferences
have been extracted from the biochemical and struc-
tural characterization of naturally occurring ZFPs
(42,47,49,50,59–61) and the selection and characterization
of artificial ZFPs that recognize novel target sequences
(37,38,41,44,62–74). These data provide a foundation for
the construction of predictive recognition models that
estimate DNA-binding specificity based on the sequence
of the recognition helix of each incorporated finger. Initial
models focused on using the amino acid identity at key
determinant positions (�1,+2,+3 and+6) to estimate the
base preference at their primary DNA contact positions

Figure 1. (A) Schematic representation of the canonical recognition
pattern of two zinc fingers recognizing a hexamer sequence. Each
zinc finger unit spans �30 amino acids and folds into a bba-motif
around a tetrahedrally coordinated zinc ion (42,43). DNA-binding
specificity is typically mediated by residues at positions �1, +2, +3
and +6 of the recognition helix, where the numbering scheme refers
to the position of each residue relative to the start of the a-helix.
The boxed base pair (N4) represents the position of potential
recognition overlap in the canonical recognition model. (B) Schematic
representation of the two-stage process used to identify two-finger
modules with the desired sequence preference. In Stage 1, the B2H
system is used to select two-finger modules from an OPEN-based
library, where the finger pools used correspond to the finger 2 (F2)
and finger 3 (F3) subsites in each target site (44,45). These two-finger
libraries are selected in the context of a constant finger 1 (F1) module
that recognizes GCG in the neighboring subsite. The DNA-binding
specificity of active clones recovered from the B2H selection was
determined using the B1H system using a 6-bp randomized library
adjacent to the constant GCG F1 binding site. The recovered binding
sites are determined by Illumina sequencing and then a binding site
motif is calculated from these sequences (46).
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within the DNA subsite bound by each individual finger
(75–77). Recently, more advanced predictive models have
been constructed with improved performance that incorp-
orate context-dependent recognition, which allows deter-
minants to influence more binding site positions than
prescribed by the standard recognition model (76–82).
However, the construction of these models has been
hampered by the limited amount of existing quantitative
specificity data for ZFPs that links individual fingers with
recognition of particular subsites.
A comprehensive recognition model for canonically

binding ZFPs should be achievable using the growing
archive of quantitative specificity data from recent bacter-
ial one-hybrid (B1H) analysis of a large number of artifi-
cial (41,62,71) and naturally occurring ZFPs (49,50),
where the position of each finger within the recognition
sequence is defined or can be inferred. This data set spans
678 two-finger modules, including the characterization of
95 two-finger modules generated using the Oligomerized
Pool ENgineering (OPEN) system (44,45) described
herein. A sizeable fraction of these data explicitly
examines the impact of recognition residues at the
finger–finger interface on the preferred specificity at
the junction of the finger binding sites, which remains
the most challenging recognition feature to model. These
data permit an improved estimation of context-dependent
effects requiring the use of predictive models [such as
support vector machine (83) or random forests (RFs)
(84)] that implicitly capture these complex properties.
Building on our previous efforts using RF models to
estimate the specificity of homeodomains (85), we have
constructed an RF predictive model for ZFPs using our
B1H data that are superior to existing predictive models
and that can effectively estimate the DNA-binding speci-
ficity of a number of naturally occurring ZFPs.

MATERIALS AND METHODS

OPEN finger selections

OPEN selections were performed to generate a set of two-
finger modules that recognize all 64 possible GNNGNG-
type sequences in the context of an N-terminal ‘GCG’
binding anchor zinc finger (recognition helix:
RSDTLAR). All target sites used in the selection of
novel recognition fingers were of the form
GNNGNGGCG. Zinc finger libraries for each target
site were assembled from the corresponding Finger 2
and Finger 3 OPEN pools as previously described but
with a fixed Finger 1 module (44,45). OPEN selections
were performed essentially as previously described
(44,45) but using a beta-lactamase (bla) antibiotic-
resistance gene instead of the HIS3 gene (70). For each
of the 64 selections, we assayed the abilities of up to five
clones to activate expression of a lacZ reporter gene in a
bacterial two-hybrid (B2H) system as previously described
(45) and determined the amino acid sequences of these
clones. Fifty-eight of the 64 selections displayed active
clones, from which we chose 95 clones that could
activate expression of lacZ in the B2H system by

�2.5-fold or more for further evaluation via B1H
binding site selections (Supplementary Table S1).

CV-B1H method

To determine binding site specificities of OPEN-selected
and other 2F-modules, the CV-B1H (Constrained
Variation Bacterial one-Hybrid) assay was performed es-
sentially as described previously (46). Two-finger modules
were evaluated as fusions to the GCG anchor finger.
Following transformation into the selection strain,
1� 106 cells containing the zinc finger plasmid (1352-
omega-UV2-ZFP) and the 6-bp randomized binding site
library (in pH3U3) were plated on selective NM minimal
medium plates (100 � 15mm) containing 50 mM IPTG
and 1 or 2mM 3-AT and grown at 37�C for 22–30 h. All
cells on the plate were pooled, and the pH3U3 plasmids
containing the compatible binding sites were isolated for
identification of the functional DNA sequences. The
binding site region was PCR amplified, barcoded and
sequenced via Illumina sequencing, and then binding
specificities were determined from these data using
GRaMS modeling and the log-odds method (46,71,86).

Construction of the RF ZFP regression model

Based on a pilot study and previous work with
homeodomain recognition modeling (85), we developed
a recognition modeler based on a RF regression
approach (84) using the ‘randomForest’ module from
the R package [http://www.r-project.org/(87)]. Two differ-
ent ZFP RF regression models were trained based on the
B1H specificity data: one-finger and two-finger models.
The training data for the two-finger model consisted of
678 protein sequences for two fingers of ZFPs and the
position frequency matrices (PFMs) obtained from the
B1H experiments described above. The one-finger model
was trained on the same set but contained 1209 individual
fingers (redundancy removed, Supplementary Table S2).
Preliminary analysis showed that including additional
protein positions beyond the canonical �1, +2, +3 and
+6 recognition positions in each finger did not improve
the accuracy of the model, so all further training used only
those positions. Of the 678 two-finger examples, there are
530 unique combinations of residues at positions �1,+2,
+3 and+6; all of them are kept in the data set because the
PFMs, while similar between repeats, are not identical and
this maintains the inherent variability in the data. These
models use the RF regression engine that was previously
described (85). The modeler predicts the PFM for a zinc
finger protein based on its sequence at the recognition
positions, and the RF regression minimizes the mean-
squared error (MSE) between the predicted and
observed PFMs. MSE values for a single position can
range from 0, if the two PFMs are identical, to 0.5 if
they contain probabilities of 1.0 for different bases. A
random position (probability of 0.25 for each base)
would have a maximum MSE of 0.1875 compared with
a position with probability of 1.0 for any base. This has
the effect of generating PFMs that tend toward random at
some positions instead of making high probability predic-
tions that are frequently incorrect.
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We used the default value of 500 trees while training the
RF model. In this model, a single tree picks predictive
variables, specific amino acids at specific positions,
randomly and then applies regression to estimate their
contribution to each PFM parameter. The set of individ-
ual trees are then weighted by regression to minimize the
overall MSE between the observed and predicted PFMs.
Accuracies were determined by 10-fold cross-validation,
where the total data set was divided into 10 subsets and
training was based on nine of them and the accuracy
measured on the remaining subset. Each of the subsets
was left out in turn, and the testing accuracy is reported
as the means and medians on the test sets.

We chose to minimize MSE because we are specifically
trying to find optimal PFMs that fit the entire distribution
of binding site affinities. However, other objectives could
be used instead. There have been a large number of dif-
ferent methods proposed to compare motifs with each
other and determine a quantitative measure of similarity
(88–94). The MSE that we use is closely related to
maximizing the Pearson correlation and is often a highly
ranked method, particularly when trying to assign a motif
to a specific class of transcription factors. In other
approaches more emphasis is put on matching high infor-
mation content positions in the binding sites and low
information content positions are scored similar to
mismatches. For example, the recently published zinc
finger predictor from the Princeton group (82) specifically
maximizes the number of correctly predicted positions
with high information content, which has advantages for
some purposes (see later in the text).

Construction of ZFP recognition motif predictions

We established a Web site that will predict the binding
motif for an input ZFP containing any number of
fingers (http://stormo.wustl.edu/ZFModels/). ZFP
sequences can be submitted in two forms as follows: a
concatenation of the four critical recognition residues of
each finger (�1, +2, +3 and +6) or the entire protein
sequence. In the latter case, the Web site will determine
the locations of the recognition residues in each finger
based on a HMMER analysis (95) of zinc finger motifs
present within the sequence. Three different ZFP motif
generation methods are available based on the trained
RF regression models: one-finger model, multi-finger
model and the average of these models. In the one-finger
model, the predictions are based on training of single
fingers, and the complete motif is predicted by
concatenating the individual predictions. In the multi-
finger model, the predictions are based on the two-finger
training data, and the complete motif is stitched together
from the overlapping two-finger predictions, where the
positions of overlap between the motifs are averaged
(Supplementary Figure S1). The third method averages
together the prediction from the one-finger and two-
finger models to generate the final prediction. Generally,
the different predictions are in close agreement but
sometimes there is a divergence and the most accurate
may depend on the specific zinc finger protein; therefore,

we advocate testing with each model to examine the
inherent variation.

Evaluation of Bcl6 predictive motif for predicting
ChIP-seq peaks

The predicted DNA-binding specificity of Bcl6 was
estimated using the multi-finger model through the
ZFModels interface. The top 100 ChIP-seq peaks for
Bcl6 (96) were extracted using Galaxy (97), and a motif
for Bcl6 was extracted from these peaks using MEME
(zoops mode) (98). MSE was calculated from this PFM
against different motifs as described above. FIMO (99)
was used to determine the number of the top 100 ChIP
peaks containing favorable Bcl6 binding sites (P< 10�4)
based on each motif.

RESULTS

Selection and characterization of two-finger modules
recognizing GNNGNG target sites

We used OPEN selections (44,45) to identify two-finger
modules recognizing 64 different 6-bp target sites of the
form GNNGNG (Figure 1B). This set of target sites was
chosen to include a focused set of sequences that were
available in the OPEN system to explore the quality of
the B2H-generated fingers. In addition, for the defined
target positions (constant guanines), there are strong
expectations about the complementary recognition deter-
minants that would be selected. Deviations from the
expected residues in the recovered sequences would be
indicative of context-dependent effects. These two-finger
modules were selected via the B2H system in the context
of a three-finger array harboring a fixed N-terminal
anchor finger that recognizes a GCG subsite. Fifty-eight
of these selections yielded zinc finger arrays that bound
their target site as evidenced by their ability to activate
transcription in a B2H lacZ reporter assay
(Supplementary Table S1).
We determined the DNA-binding specificity of a repre-

sentative set of the B2H-selected two-finger modules using
the B1H system (49,71). Each two-finger module was
characterized using a reporter system containing a 6-bp
randomized binding site library adjoining the finger 1
recognition element—GCG (46,71) (Figure 1B). After
selection, surviving colonies carrying the functional
DNA-sequences for each two-finger module recovered
from this library were pooled and characterized by
Illumina sequencing from which a preferred recognition
motif was determined (46). This analysis yielded
motifs for 95 OPEN-selected two-finger modules
(Supplementary Figure S2). For 64 of these two-finger
modules, the preferred recognition sequence matched the
expected target site. The remaining modules are comple-
mentary to their target sequence, but actually prefer a
related binding site. These modules expand the population
of characterized two-finger modules for the construction
of artificial zinc finger arrays, and the coupled specificity
data provide additional information on the recognition
potential of specific determinant combinations for the
construction of improved predictive models.
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Assessing context dependence in our selected
two-finger modules

As a basis set for constructing predictive recognition
models for ZFPs, we have used quantitative B1H specifi-
city data on a large group of naturally occurring (49,50)
and artificial (41,62,71) zinc finger arrays. To facilitate the
evaluation of DNA-recognition by these zinc fingers, we
have parsed this data set into 1209 different one-finger
modules or 678 different two-finger modules. For
example, a characterized three-finger array is broken
down into three one-finger modules or two overlapping
two-finger modules with their associated subsite motifs
(Supplementary Figure S1). Figure 2 shows the base pref-
erences at base pair positions 1, 2 and 3 within the core
subsite (contacted by specificity determinants at positions
+6,+3 and �1, respectively; see Figure 1) for this data set
of one-finger modules. In general, the observed amino acid
to base correlations at each position are consistent with
previous studies of recognition preferences for zinc finger
proteins (42,43,50,76–78). The strongest correlations are
observed at the central base; amino acid changes at
position +3 in the recognition helix primarily influenced
recognition at the middle base position of the altered
finger subsite in our two-finger modules when examined
over the data set (Supplementary Figure S3). The inde-
pendence of recognition at this position was previously
harnessed to expand the recognition diversity of our
two-finger modules in a directed manner in many
instances (71).
Weaker correlations at other positions highlight the role

of context on specificity. The influence of context depend-
ence on the DNA-binding specificity of individual fingers

is apparent from a qualitative analysis of finger sets within
our data set, particularly at the finger–finger interface for
a subset of two-finger modules where residues on both
sides of the interface were randomized to more effectively
capture these effects (Figure 1A) (62,71). For many indi-
vidual two-finger modules, the base at position 4 is highly
specified. However, when the preferred specificity at this
position is binned across the data set based on the type of
residue at position +6 of the N-terminal finger
(Figure 3A), some amino acids are associated with each
of the four bases in different C-terminal finger contexts.
Glutamate at position +6 provides a notable example,
where two-finger modules containing this residue display
distinct preferences for each of the four bases at position 4
(Figure 3B). The potential influence of residues within the
C-terminal finger, in particular the residue at position+2,
on recognition at base position 4 are well documented
(29,31,38,100). Consistent with the potential influence of
position +2 on recognition, changes in the residue at
position +2 in the recognition helix in many instances
appear to influence neighboring base preference, particu-
larly at position 4 (Supplementary Figure S4). These data
highlight the need for a predictive model that can capture
the influence of each determinant position on multiple
base positions within the zinc finger recognition sequence.

RF recognition models for ZFPs

Zinc fingers have been the focus of several studies on
qualitative recognition codes [reviewed in (42,43)]. More
recently, several groups have developed models that
predict quantitative motifs for zinc finger proteins based
on the residues present at canonical recognition positions

Figure 2. Base preferences observed across the data set for specificity determinants at each of the canonical recognition positions (+6,+3 and �1).
For each amino acid (X-axis) at the finger positions+6 (top), +3 (middle) and �1 (bottom), the corresponding base preferences, averaged over all
examples, are garnered from the B1H-determined recognition motifs. Base preferences at binding site position 1 are indicated for position +6
specificity determinants; base preferences at binding site position 2 are indicated for position +3 specificity determinants; base preferences at
binding site position 3 are indicated for position �1 specificity determinants.
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within each finger (76–79). Although superior to purely
qualitative recognition codes, their accuracies leave
considerable room for improvement. These models were
limited because they were trained primarily on qualitative
data: collections of proteins and their binding sites with
high binding affinity, but where the preference of each
ZFP for its target site relative to other sequences was
unknown. Our B1H-characterized zinc finger data
provide a much larger training set with quantitative infor-
mation about the preferences of different proteins for
different DNA binding sites, which allows us to train
new recognition models to obtain higher accuracy predic-
tions. In pilot studies, we tested the feasibility of creating
recognition models using several different machine
learning algorithms, including neural networks (78),
support vector machines (83), k-nearest neighbors (101),
partial linear regression (102) and RF (84). We found that
RF-based models performed as well or better than those
of other methods and its implementation was compu-
tationally less demanding, so we used an RF regression
algorithm to create a predictive model for ZFPs. The
results of these preliminary studies were similar to those
we previously reported for predicting the specificity of
homeodomain proteins (85).

We trained RF predictive models on either one-finger or
two-finger module specificity data, where the latter model is
designed to capture context-dependent effects between
neighboring fingers. Training the two-finger model takes
as input the amino acids at the eight canonical recognition

positions (�1, +2, +3 and +6 of each finger) and builds
regression trees to predict recognition preference over the
entire 6-bp binding site. (The one-finger model was
similarly trained on individual fingers and each 3-bp
binding site.) Importantly, these models are not restricted
to the canonical interactions between particular finger
recognition positions and bases within the binding site,
unlike many previous recognition models (76,77). Because
we have a much larger training set than was available for
previous models, a wider range of potential interactions
between these recognition positions and the binding site
are allowed within the model to capture context-dependent
effects observed within the data. Consequently, each recog-
nition position within the two-finger module contributes to
the overall predicted PFM, although the strongest contri-
butions within the model will be between the most highly
correlated amino acids and base pairs.
The objective during model training is to minimize the

MSE between the observed and predicted PFM values for
each two-finger module. Table 1 shows the average value
(both the mean and median with standard deviations)
obtained in a 10-fold cross-validation of our two-finger
model. This was compared with predictions by each of
four other published models that were readily available
for testing (76–79). The MSE is greatly reduced with the
new ZFModels predictions to less than half for means and
less than one-third for medians when compared with other
prior models. The prediction error is fairly evenly
distributed across the positions of the binding sites

Figure 3. Context-dependent preferences observed for the base at position 4 (P4) recognized by the two-finger modules across the entire data set.
(A) Stacked bar plot showing the distribution of base preferences dictated by each amino acid at position +6 of N-terminal finger in a two-finger
module. The height of each bar corresponds to the number of zinc finger modules with the amino acid labeled on the X-axis. The height of each
colored bar segment corresponds to number of modules preferring a particular base. Preference was defined as nonspecific if the information content
at a position is <0.3. (B) Examples of context-dependent preference at position P4. Logos representing the specificity of four different two-finger
modules with Glu at position+6 (red) of N-terminal finger with different base preferences at P4. Above each observed motif are the amino acids at
the four canonical recognition positions (�1,+2,+3 and+6) for the N-terminal and C-terminal fingers.

Nucleic Acids Research, 2014, Vol. 42, No. 8 4805

While 
random forest (
)
utilized
very 
-
&amp; 
context 
Position Frequency Matrix (
)
mean-squared error (
)
two 
to
one 


(Table 2). Figure 4 displays several examples that are near
the median value of MSE to show the degree of similarity
between observed and predicted PFMs. Many of the
highest accuracy examples contain guanine at positions 1
and 6 because the training set was biased with fingers
recognizing guanine at these positions. Figure 4 highlights
examples deviating from this pattern, demonstrating that
our ZFModels can generate accurate predictions for a
wide variety of different types of motifs. As expected,
the two-finger predictive model can capture the context
dependence at the finger–finger junction observed in our
data set, such as the motifs in Figure 3B, whereas the
one-finger predictive model fails to capture this subtlety
(Supplementary Figure S5).

Evaluating the utility of the RF-based zinc finger
recognition model

Several published studies have determined specificity of
ZFPs using SELEX (26,103–105). None of these
examples were included in the training data and so they
constitute an independent test set. Supplementary Figure
S6 contains the logos from the published PFMs for a
subset of these ZFPs and the logos predicted by
ZFModels. In every case, the predictions match preferred
binding sites from the experiments when we take into
account the variable spacing between neighboring fingers
due to noncanonical linkers in some instances. However,
the quantitative models are less consistent than the
average fits to zinc fingers within our data set via cross-
validation analysis (Supplementary Table S3). This may
be due to the SELEX data being evaluated after multiple
rounds of selection where the resulting PFM is heavily
weighted toward a subset of the highest affinity sites,
leading to an over-specified motif. We also compared
the ZFModels predictions on some of the same data sets
with the predictions made by a recently published method
(zf.princeton.edu) based on support vector machine

training (83). ZFModels makes more accurate predictions
as measured by MSE (Supplementary Table S4) on these
independent test sets than the Princeton model, although
the Princeton model often contains more matching
positions with high information content (see Discussion).

Ideally, our recognition model would also allow predic-
tion of ZFPs with uncharacterized DNA-binding specifi-
city throughout the genome. We chose to evaluate its
predictive utility for Bcl6, as this ZFP has been
characterized by B1H (50), PBM (47) and SELEX-seq
(26), which allows a comparison of our predictive motif
against DNA-binding specificities determined via multiple
methods, and against ChIP-seq data for this factor (96).
The Bcl6 recognition motifs produced by B1H, PBM and
SELEX-seq are all similar, although the SELEX-seq motif
appears over-specified (Figure 5). We also generated a
predicted recognition motif for Bcl6 using the Princeton
SVM model for comparison with our model. The
Princeton motif has greater information content than
our ZFmodel motif, but at many positions, the
Princeton motif predicts a particular base with absolute
certainty, which much like the SELEX-seq motif suggests
that it is over-specified. When judged against an independ-
ent source, a MEME (98) motif from the top 100 Bcl6
ChIP-seq peaks (96), the B1H and PBM motifs appear
most similar. The ZFModels multi-finger predictive
model also shows good similarity to the determined
motifs (MSE values 0.04 from the MEME-ChIP motif,
0.05 from either the PBM- or B1H-based motifs, 0.05
from the Princeton motif and 0.08 from the SELEX-seq
motif), but it is a bit worse than the average value of <0.01
in our cross validation studies. FIMO analysis (99) of
these ChIP peaks using each motif confirms this assess-
ment: the MEME-derived motif from the Bcl6 ChIP data
discovers a good Bcl6 binding site (P< 10�4) in 74 of 100
peaks, the B1H motif in 56 of 100 peaks, the PBMmotif in
52 of 100, the SELEX-seq motif in 43 of 100, the
ZFModels predicted motif in 25 of 100 and the
Princeton motif in 9 of 100, where only four would be
expected by chance. Thus, our predictive motif has value
for the discrimination of binding sites within the genome,
and in this example is superior to the Princeton motif, but
it can still benefit from the incorporation of additional
experimental data to improve its quality. Figure 5
displays logos in two formats, the original information-
based method (106) and a PFM-based method where the
height of each base is proportional to its frequency in the
model (107). The frequency representation demonstrates
that even in cases where our model does not make a con-
fident (high probability and high information content)

Table 2. MSE for each position, for one-finger and two-finger models (mean/median)

Nucleotide
position

1 2 3 4 5 6

1 finger 0.016/0.004 0.015/0.005 0.008/0.001
2 fingers 0.006/0.001 0.007/0.003 0.006/0.001 0.012/0.004 0.010/0.004 0.004/0.000

Note: The reported median values represent the bin the median value falls in, where the bins are 0.001 wide and labeled with the lower value. So if
the median value is reported as 0.000 that means the median is in the bin between 0.000 and 0.001. These values come from training and testing on
the complete data rather than from cross-validation, resulting in lower values than in Table 1.

Table 1. MSE for several prediction programs

Program ZFModelsa Benosb Kaplanc Zifnetd ZIFIBIe

Mean 0.017� 0.005 0.044 0.047 0.040 0.072
Median 0.009� 0.002 0.033 0.035 0.032 0.063

aThis work. Values are mean and standard deviation from 10-fold
cross-validation.
bRef. (76).
cRef. (77).
dRef. (78).
eRef. (79).
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prediction, it generally gets the preferred base correct.
Combining all of the experimental models with the
MEME model from the ChIP-seq data, one finds a
consensus sequence of TTCCTnGAAAG (positions 5–15
in the alignment). Our model agrees at every position
except 13, where it prefers G slightly to A, but many of
those predictions are low confidence. In contrast, the
Princeton model has more high information content pos-
itions that match the consensus, but it also contains
several positions where the preferred base is assigned a
very low probability. Our model has an overall better fit
to the other models, as evaluated by MSE and similarities
to the rank distributions of all possible binding sites, but
there are some purposes for which maximizing the
number of high confidence, correct predictions is useful
(see ‘Discussion’ section).

DISCUSSION

The development of platforms for rapidly characterizing
the specificity of transcription factors has dramatically

increased the amount of data that is available for all of
the major TF families (108), but there are still barriers to
generating data for all naturally occurring ZFPs. The
average number of fingers in a human ZFP is 8.5 (27),
and these polydactyl (i.e. many fingered) ZFPs may have
complex binding modes due to the presence of independent
DNA-recognition modules. For example, genome-wide
ChIP analysis of NRSF (109,110), a 9-finger ZFP, re-
covered two different types of binding sites: a prominent
motif that contains a juxtaposition of two subsites and a set
of additional motifs with variable spacing between these
subsites. Taipale and colleagues noted the difficulty in
characterizing ZFPs by either SELEX-seq or PBM (26):
they successfully characterized only 8% of ZFPs and only
3% with more than eight fingers (26). Similarly, our B1H
motif set includes only seven naturally occurring ZFPs with
�8 fingers with a success rate of �38% of the attempted
Drosophila ZFP genes (50). With the possibility that poly-
dactyl ZFPs use different finger sets to bind multiple
distinct motifs, describing their recognition properties is
critical to understanding their regulatory mechanisms.

Figure 4. Examples of observed motifs for two-finger modules that are within our data set, and predicted motifs for these fingers using our final
predictive model. Above each observed motif are the amino acids at the four canonical recognition positions (�1,+2,+3 and+6) for the N-terminal
and C-terminal fingers. The MSE value between the observed and predicted PFMs is displayed above the predicted motif.
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The growing body of quantitative specificity data for
naturally occurring and artificial ZFPs provides a founda-
tion for the development of improved predictive models for
this family to help facilitate a broader understanding of
their function as regulators within the genome, where
other direct analysis methods may be challenging to use.
Our efforts to construct an improved predictive model

have focused on two aspects of the problem as follows:
expanding the population of quantitatively characterized
finger modules and using new methods for training
improved recognition models. We have used OPEN-
based ZFP selection methods (44,45) to expand our
existing set of B1H-characterized artificial and naturally
occurring fingers to 1209 one-finger modules and 678 two-
finger modules. The latter group captures context-depend-
ent effects that can occur at the finger–finger interface,
allowing the construction of recognition models that
span more than a single finger, thereby providing add-
itional information on the recognition potential of
specific determinant combinations for the construction
of improved predictive models. These finger archives and
the underlying data also have value in the design of
artificial ZFPs to recognize specific sequences. Thus, the
assembly of these modules can be data driven by applying
‘rules’ for recognition of particular sequences to estimate

which assembled finger models are likely to provide the
desired composite specificities.

Our assessment of ZFModels shows that the motif
predictions obtained are superior to previously published
predictors. This is likely due to our larger and better
(i.e. quantitative) training sets that allow us to consider
more interactions, not just the canonical ones that have
been primarily used in the past. We have also leveraged
our two-finger module data to extend the model construc-
tion beyond a one-finger to two-finger units, where the
two-finger model constructs motifs by assembling inter-
faces via a stitching assembly (62) to try to minimize
edge effects of the two-finger module data on the resulting
motif. This model is accessible to the community though
our Web site (http://stormo.wustl.edu/ZFModels/). Users
can input a protein sequence and an HMM-based
algorithm will extract the determinants in each finger for
construction of a recognition motif. Users can use either
the one-finger or multi-finger model, or a hybrid (average)
of these two models for generating a motif for their factor.
On an independent test set, the hybrid model performed
slightly better (Supplementary Table S3), although the
results from each method are similar.

There is still room for improvement in our predictive
model, especially for some classes of C2H2 ZFs with

Figure 5. Comparison of the MEME motif from the top 100 Bcl6 ChIP peaks (96) with the motif predicted for the five canonically linked fingers by
ZFModels and the Princeton SVM method (82) and the recognition motifs determined directly for Bcl6 by B1H (50), SELEX-seq (26) and PBM (47).
The left column displays the motifs as information content, whereas the right column displays the motifs as position frequency plots. The frequency
of a strong motif match (P< 10�4) for each motif in the top 100 ChIP peaks as determined by FIMO is indicated above each motif.
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noncanonical linkers that may lead to alternate finger
sequences or binding modes, but in nearly every case
tested the predictions are at least partially correct and
allow for the alignment of the individual fingers with the
segments of the binding motifs that they interact with. A
recently reported large compendium of zinc finger proteins
selected for binding to specific DNA sequences (74), and
then with their specificities determined by B1H, may
provide additional, more diverse information to improve
the predictive models further, but this has not been tested
yet. Currently, predictions from our models are not
accurate enough on their own to make reliable regulatory
networks, but may be useful in conjunction with accessi-
bility data and DNaseI footprinting data (12) to identify
their regulatory sites. They can also aid in assigning
ZF-TFs to particular motifs that are discovered through
computational analysis of other genomic features,
although for that particular problem, the alternative
SVM approach of the Princeton group (82) will sometimes
work better. Their approach trains their model to
maximize the number of high information content
positions that are correctly predicted. By then applying
string matching methods, one can sometimes identify a
ZF-TF that is likely to bind to a known motif
[e.g. PRDM9 (58)] in cases where our model may yield a
less definitive consensus because it may predict many low
information content positions. In some cases, these
approaches may also allow us to determine whether only
a subset of ZFs are used to recognize DNA, or if different
subsets are used to recognize different classes of binding
sites, as when ZFPs use alternative modes of binding for
interacting with different sequences. Given the rapid
diversification of ZFPs during evolution and the technical
challenges associated with experimental determination of
their specificities, the continued refinement of predictive
models will likely play an important role in understanding
the roles of these proteins in transcriptional regulatory
networks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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