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Abstract

Purpose: Glycine N-methyltransferase (GNMT) affects genetic stability by regulating the ratio of S-adenosylmethionine to S-
adenosylhomocysteine, by binding to folate, and by interacting with environmental carcinogens. In Taiwanese men, GNMT
was found to be a tumor susceptibility gene for prostate cancer. However, the association of GNMT with prostate cancer risk
in other ethnicities has not been studied. It was recently reported that sarcosine, which is regulated by GNMT, increased
markedly in metastatic prostate cancer. We hereby explored the association of GNMT polymorphisms with prostate cancer
risk in individuals of European descent from the Health Professionals Follow-up Study (HPFS).

Methods: A total of 661 incident prostate cancer cases and 656 controls were identified from HPFS. The GNMT short tandem
repeat polymorphism 1 (STRP1), 4-bp insertion/deletion polymorphisms (INS/DEL) and the single nucleotide polymorphism
rs10948059 were genotyped to test for their association with prostate cancer risk.

Results: The rs10948059 T/T genotype was associated with a 1.62-fold increase in prostate cancer risk (95% confidence
interval (CI): 1.18, 2.22) when compared with the C/C genotype. The STRP1 $16GAs/$16GAs genotype was associated with
decreased risk of prostate cancer when compared with the ,16GAs/,16GAs genotype (odds ratio (OR) = 0.68; 95% CI: 0.46,
1.01). INS/DEL was not associated with prostate cancer risk. Haplotypes containing the rs10948059 T allele were significantly
associated with increased prostate cancer risk.

Conclusion: In men of European descent, the GNMT rs10948059 and STRP1 were associated with prostate cancer risk.
Compared to the study conducted in Taiwanese men, the susceptibility GNMT alleles for prostate cancer had a reverse
relationship. This study highlights the differences in allelic frequencies and prostate cancer susceptibility in different
ethnicities.
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Introduction

Glycine N-methyltransferase (GNMT, EC2.1.1.20) is a protein

with multiple functions. It affects genetic stability by regulating the

ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine

(SAH), by binding to folate [1,2], and by interacting with

carcinogens such as benzo(a)pyrene and aflatoxin B1. We

previously showed that these interactions altered the liver

detoxification pathway and prevented DNA adduct formation

and subsequent cytotoxicity [3–5]. In addition, GNMT regulates

genes related to detoxification and antioxidation pathways [6]. We

previously generated a Gnmt2/2 mouse model and showed that

Gnmt2/2 mice developed chronic hepatitis and glycogen storage

disease in the liver [7]. The Gnmt2/2 mice were followed till 24

months old and all the female and half of the male mice developed
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hepatocellular carcinoma (HCC) spontaneously [8]. These find-

ings suggest that GNMT deficiency results in decreased ability in

eradicating endogenous free radicals and xenobiotic compounds

both at the cellular level and in an animal model; and therefore,

homeostasis of GNMT expression is very important for the cellular

defense against both endogenous and exogenous stress.

GNMT is expressed in the liver, pancreas, prostate, and kidney

[9]. In studies conducted in Taiwanese men, GNMT was found to

be a tumor susceptibility gene for HCC [9,10] and prostate cancer

[11]. However, the association of GNMT with prostate cancer in

other races or ethnicities remains unclear. A recent study by

Sreekumar et al. reported that sarcosine (N-methylglycine) — a

differential metabolite regulated by GNMT — increased markedly

in tissue and serum of metastatic prostate cancer and was found in

the urine after digital rectal examination in organ-confined disease

[12]. They showed a stepwise elevation of sarcosine tissue

concentration during prostate cancer progression from benign

prostate to clinically localized prostate cancer to metastatic disease.

GNMT is the enzyme responsible for converting glycine to

sarcosine, and they showed that knockdown of GNMT attenuated

prostate cancer invasion. However, subsequent studies on the role

of sarcosine as a potential biomarker for early prostate cancer

detection failed to see any association between sarcosine concen-

tration in the urine and either tumor grade or tumor stage [13,14],

and studies on the association of serum sarcosine levels and

prostate cancer reported conflicting results [15–17].

The human GNMT gene is located at chromosome 6p12 and

we previously reported that it has 3 polymorphic sites in the

promoter region that may affect transcriptional activity: short

tandem repeat 1 (STRP1), a (GA)n dinucleotide repeat polymor-

phism, INS/DEL with insertion or deletion of a GAGT

tetranucleotide, and rs10948059 [9,11,18]. A recent study in

Italians by Ianni et al. showed that the GNMT rs9462856 T allele,

which is also located in the promoter region upstream of

rs10948059, was associated with increased prostate cancer risk

[19]. Using the publicly available HapMap version 3, release R2

database, strong linkage disequilibrium was found between Ianni

et al.’s rs9462856 and rs10948059 (D9 = 1.000 and r2 = 0.760 in

Utah residents with Northern and Western European ancestry

from the CEPH collection and D9 = 0.946 and r2 = 0.737 in Han

Chinese in Beijing, China). In this study, we tried to determine the

association of the GNMT polymorphisms STRP1, INS/DEL and

rs10948059 and prostate cancer risk in Americans of European

ancestry.

Methods

Study population
In this nested case-control study, incident prostate cancer cases

were identified from the ongoing Health Professionals Follow-up

Study (HPFS) in the United States. In 1986, 51,529 males in

health professions (e.g., dentists, pharmacists, optometrists, oste-

opath physicians, podiatrists, and veterinarians) were enrolled in

HPFS. At baseline, participants completed a questionnaire on

demographics, diseases, and health-related topics. These ques-

tionnaires were repeated every two years. Information on deaths

was obtained from family members, follow-up questionnaires, or a

search of the National Death Index and was conducted through

March 2011 [20].

Between 1993 and 1995, blood samples were obtained from

18,018 participants, collected in EDTA tubes, shipped by

overnight courier, and centrifuged. Aliquots, including plasma,

erythrocytes, and buffy coat, were stored in liquid nitrogen, and

DNA was extracted using a QIAamp blood extraction kit (Qiagen,

Inc., Valencia, CA).

A total of 661 incident prostate cancer cases and 656 controls

were identified from the HPFS for our study between 1993 (time of

blood return) and January 31, 2000. Matching was one-to-one.

Each case was matched with a control that was alive, had not been

diagnosed with cancer by the date of the case’s diagnosis, and had

a prostate specific antigen (PSA) test performed. We restricted the

analysis to individuals of European descent to reduce the potential

for population stratification.

Demographic data recorded from all subjects included age,

body mass index (BMI), and family history of prostate cancer. In

prostate cancer cases, clinicopathological data including PSA level,

Gleason score and disease stage were recorded. Patients were

classified as having aggressive prostate cancer if they had PSA.

20 ng/ml, tumor stage $III or N1 or M1, or Gleason score $8.

Lethal prostate cancer cases were those who had metastases at

diagnosis or who progressed to metastases or prostate cancer

specific death. This study was approved by the Human Subjects

Committee at the Harvard School of Public Health and the

Human Subjects Committee at Brigham and Women’s Hospital.

Written consent was given by the patients for their information to

be stored in the hospital database and used for research.

Genotyping of the GNMT genetic polymorphisms
Three polymorphisms of GNMT were analyzed in this study:

STRP1, INS/DEL and rs10948059. A TaqMan 59 nuclease assay

was used for genotyping of rs10948059, and automated fragment

analysis (GeneScan) was used for genotyping of STRP1 and INS/

DEL. Details of the methods and primers used have been

described previously [18].

Statistical analysis
Genotype frequencies were tested for Hardy-Weinberg equilib-

rium among controls by chi-square test. Odds ratios (OR) and

95% confidence intervals (CI) were computed for the associations

between each genotype with prostate cancer by logistic regression

models adjusted for age at blood draw. Analyses restricted to

prostate cancer subtypes (e.g. aggressive and lethal) used all

controls. We used polytomous logistic regression to assess whether

the associations were different with aggressive and non-aggressive

cancers. The GENECOUNTING software (version 2.0), which

implements an estimation-maximization algorithm, was used to

estimate the haplotype frequencies and to calculate linkage

disequilibrium between the markers [21,22]. Statistical analyses

were done using SAS v9.2 statistical software (SAS Institute, Cary

NC), and 2-sided p-value of,0.05 was considered significant.

Results

Characteristics of the study participants were described in a

previous study [23] and selected characteristics are presented in

Table 1. In summary, the mean age at blood draw in cases and

controls was about 66 years and the mean age at diagnosis in cases

was about 69 years. Fourteen percent of prostate cancer cases and

11 percent of controls had a family history of prostate cancer.

In prostate cancer cases, the median PSA level was 7.0

(interquartile range: 5.2, 10.8), with the majority of patients

(n = 445, 67.3%) having an initial PSA level 10 ng/ml or less.

Only 67 (10.1%) cases had a Gleason score between 8 and 10 and

the majority (n = 546, 82.6%) of the cases had T1 or T2 disease.

Twenty-four percent (161) of the cases were classified as aggressive

and 11.8% (78) had distant metastases at diagnosis or progressed

to death or metastases.

GNMT and Prostate Cancer Risk in HPFS
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rs10948059 genotype frequencies in controls were in Hardy-

Weinberg equilibrium (p = 0.55). There was an increased risk of

total prostate cancer for those with the T/T genotype compared

with the C/C genotype (OR = 1.62; 95% CI: 1.18, 2.22) (Table 2).

The relationship was suggestively stronger in non-aggressive cases

(OR = 1.81; 95%CI: 1.30, 2.53) when compared with aggressive

cases (OR = 1.21; 95%CI: 0.76, 1.92) although the p-heterogene-

ity (0.09) was not statistically significant (Table 3).

STRP1 alleles were categorized into two groups: ,16GAs and

$16GAs. Genotypic frequencies in controls were: 32.8% ,

16GAs/,16GAs, 56.3% ,16GAs/$16GAs, and 11.0% $

16GAs/$16GAs. Subjects with $16GAs/$16GAs had decreased

risk of prostate cancer when compared to those with ,16GAs/,

16GAs (OR = 0.68; 95% CI: 0.46, 1.01) (Table 2). This protective

association of $16GAs was consistently seen in non-aggressive,

aggressive and lethal prostate cancers (Table 3).

INS/DEL was not in Hardy-Weinberg equilibrium in controls

(p,0.0001). An association between INS/DEL and prostate

cancer was not seen (Table 2).

Linkage disequilibrium was not strong among the 3 markers. D9

was 0.837 for STRP1-INS/DEL, 0.634 for INS/DEL-

rs10948059, and 0.560 for STRP1-rs10948059. Haplotype

analysis of STRP1-rs10948059 showed that, when compared with

the other haplotypes, haplotypes with the rs10948059 T allele

were significantly associated with increased prostate cancer risk

(OR = 1.19, 95%CI: 1.00, 1.42 for 10GAs-T; OR = 1.46, 95%CI:

1.02, 2.10 for 16GAs-T), while those with the rs10948059 C allele

tended towards a protective effect against prostate cancer

(OR = 0.76, 95%CI: 0.63, 0.92 for 16GAs-C). (Table 4)

Discussion

In our study of men of European descent, GNMT STRP1 and

rs10948059 were indeed associated with prostate cancer risk.

Those with an increased number of tandem repeats ($16GAs/$

16GAs) had a 32% decreased risk of prostate cancer compared to

those with less repeats (,16GAs/,16GAs). In addition, those

with the rs10948059 T/T genotype had a 62% increased risk of

prostate cancer compared to those with the C/C genotype This

association appeared to be stronger in non-aggressive compared

with aggressive cancers. These findings are in agreement with

those of a recent study by Koutros et al., which showed a stronger

Table 1. Characteristics of prostate cases (PCa) and controls.

Cases (n = 661) Controls (n = 656)

Age at blood draw, mean (sd) 65.8 (7.5) 65.7 (7.4)

Time to PCa diagnosis from blood draw (years), median (IQR) 3.2 (1.7, 4.5)

Age at diagnosis, mean (sd) 68.9 (7.3)

,65 years 180(27.2%)

. = 65 years 481(72.8%)

Stage, n (%)*

T1, T2 (N0, M0) 546 (82.6%)

T3a (N0, M0) 51(7.7%)

T3b (N0, M0) 24 (3.6%)

T4 (N0, M0) 0 (0%)

N1 10 (1.5%)

M1 10 (1.5%)

Gleason score, n (%)**

2 to 6 337 (51.0%)

7: 3+4 or no major score defined 156 (23.6%)

7: 4+3 70 (10.6%)

8 to 10 67 (10.1%)

PSA at diagnosis, median (IQR)*** 7.0 (5.2, 10.8)

0 to 4 78 (11.8%)

4.1 to 10 367 (55.5%)

10.1 to 20 120 (18.2%)

.20 52 (7.9%)

Aggressive (PSA at diagnosis.20 or

Gleason 8–10 or stage T3 or higher) 161 (24.4%)

Deaths/metastases due to PCa, n (%) 78 (11.8%)

PCa deaths without recorded metastatic date 48

Metastases to bone or organ on follow-up 20

Metastases at diagnosis 10

* 20 missing data on stage (3.0%).
** 31 missing data on Gleason score (4.7%).
*** 44 missing data on PSA at diagnosis (6.7%).
doi:10.1371/journal.pone.0094683.t001

GNMT and Prostate Cancer Risk in HPFS
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association between serum sarcosine and non-aggressive prostate

cancer, but no association with aggressive prostate cancer [17]. It

is therefore possible that GNMT may be a biomarker for early

non-aggressive prostate cancer.

Our study results are also supported by a study on the genotypic

and phenotypic association of GNMT, which demonstrated that

promoters containing either STRP1 10 GAs (,16 GAs) or

rs10948059 T allele had significantly higher transcriptional

activity than promoters containing STRP1 16 GAs ($16 GAs)

or rs10948059 C allele [18].

Although GNMT acts as a tumor suppressor and was found to

be down-regulated in HCC, its role in the pathogenesis of prostate

cancer remains unknown. Gnmt2/2 mice developed HCC but

not prostate cancer, suggesting that other risk factors contributed

to the tumorigenesis of prostate cancer besides deficiency or

perturbation of the expression level of GNMT. Previously, we used

a yeast two-hybrid system to screen proteins interacting with

GNMT and found that DEPTOR [24] and NPC2 [25] bound

directly with GNMT. We postulate that maybe GNMT exerts its

function by interacting with other effectors including DEPTOR

and NPC2. DEPTOR is an mTOR inhibitor reported to have an

important and more direct role in prostate carcinogenesis [24].

Therefore, further studies on the association of DEPTOR and

NPC2 with prostate cancer are needed.

Findings of this study are in contrast to those of our study in

Taiwanese men, which showed that the rs10948059 T allele was

not significantly associated with non-aggressive prostate cancer

(OR = 0.68, 95%CI: 0.36, 1.27) and had a protective association

against aggressive prostate cancer (OR = 0.67, 95%CI: 0.47, 0.96)

[11]. The distributions of allelic and genotypic frequencies were

also significantly different between ethnicities (p,0.0001 for all

comparisons). (Table 5) In Taiwanese men, the $16 GAs allele

was more common (63.8%), while in men of European descent,

the ,16 GAs allele was more common (61.0%). The ,16 GAs

allele was not associated with prostate cancer risk in Taiwanese

men, while it was associated with a 23 percent increase in prostate

cancer risk in men of European descent. In Taiwanese men, the ,

16GAs/,16GAs genotype was present in 12% of prostate cancer

cases and 13% of controls, while in the HPFS, it was present in

39% of prostate cancer cases and 33% of controls. These findings

clearly illustrate different allelic and genotypic distributions in

Taiwanese and European American men.

In Taiwanese men, the rs10948059 C allele was significantly

more common than the T allele (85% vs. 15%), while in men of

European descent, the C allele was slightly more common than the

T allele (54% vs. 46%). In Taiwanese men, the rs10948059 T

allele had a protective association against prostate cancer

(OR = 0.72). In contrast, in men of European descent, the T

allele was associated with increased prostate cancer risk

(OR = 1.27). Therefore, the rs10948059 T allele has opposite

associations in different ethnic groups. This difference further

suggests that it is necessary to validate in a specific ethnicity any

associations seen in other ethnicities. Racial and ethnic variations

in cancer risk may reflect differences in environmental exposure or

differences in susceptibility and biologic response [26]. Polymor-

phic expression of genes may affect, either by activation or

detoxification, the metabolism of carcinogens, such as polycyclic

aromatic hydrocarbons, aromatic amines, heterocyclic amines,

and other factors. In turn, exposure to different environmental

factors may affect the genes and select against specific genetic

polymorphisms. Over time, these gene-environment interactions

may result in the variable effects seen in different races and

ethnicities. It is possible that genes involved in detoxification

pathways may be more susceptible to such influences. Kato et al.

reported opposite associations of Cytochrome P450IIE1 polymor-

phisms with lung cancer risk in European and African Americans

[27]. Moreover, our study showed that polymorphisms of GNMT,

which also participates in detoxification, have variable associations

in men of European descent and Asians.

All of the prostate cancer cases and controls in this study were of

European descent. It is therefore uncertain whether these GNMT

genetic polymorphisms are associated with prostate cancer risk in

Table 2. Frequency of GNMT polymorphisms and association with prostate cancer risk.

Cases n(%) Controls n(%) aOR (95% CI) p-value

rs10948059*

CC 156(25.3) 176(29.0) 1.00 (ref)

CT 283(45.9) 309(50.8) 1.03 (0.79, 1.35) 0.814

TT 177(28.7) 123(20.2) 1.62 (1.18, 2.22) 0.003

per-allele 1.27(1.08–1.48) 0.003

STRP1

,16GAs/,16GAs 247(38.8) 209(32.8) 1.00 (ref)

. = 16GAs/,16GAs 332(52.2) 359(56.3) 0.78 (0.61–0.99) 0.039

. = 16GAs/. = 16GAs 57(9.0) 70(11.0) 0.68 (0.46–1.01) 0.058

per-additional GAs 0.81 (0.68–0.97) 0.019

INS/DEL**

DEL/DEL 77(12.3) 86(13.6) 1.00 (ref)

DEL/INS 415(66.4) 418(66.2) 1.12 (0.80, 1.57) 0.520

INS/INS 133(21.3) 127 (20.1) 1.18 (0.80, 1.75) 0.415

per-additional 4-bp 1.08(0.89–1.31) 0.433

aOR = age-adjusted OR.
*Minor allele frequency in controls = 0.456.
**not in HWE.
doi:10.1371/journal.pone.0094683.t002
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other ethnicities such as African Americans. A study comprising of

50% Mexican American, 18% European American, 18% African

American, 12% Asian and 1% Arab women reported a

rs10948059 T allele frequency of 36.4% [28], which is lower

than the 45.8% reported in this study. Studies in other ethnic

groups, which could all have varying allelic frequencies, are

therefore necessary to clarify these associations.

In our previous study in Taiwanese men comprising of 326 prostate

cancer cases and 327 controls [11], the allelic frequencies were

comparable to those of another study by our group [29]. The

frequency of the T allele remained constant at around 15% in controls

after pooling subjects from both studies (.600 controls), suggesting

that the allelic frequencies were not affected by sample size.

INS/DEL was excluded from haplotype analysis because it was

not in Hardy-Weinberg equilibrium (p,0.0001). Haplotype

analysis of STRP1-rs10948059 showed that the most common

haplotype was 10GAs-T accounting for 40% of controls and 44%

of cases, followed by 16GAs-C, and 10GAs-C. (Table 4) Haplo-

types with the rs10948059 T allele had ORs greater than 1,

suggesting that presence of the rs10948059 T allele per se

increased susceptibility to prostate cancer. In Taiwanese men,

linkage disequilibrium among the 3 markers was stronger (D9 was

0.988 for STRP1-INS/DEL, 0.948 for INS/DEL-rs10948059,

and 0.945 for STRP1-rs10948059). The 10GAs-INS-T haplotype

was associated with decreased prostate cancer risk in Taiwanese

men (OR = 0.68, 95%CI = 0.48–0.95).

The strength of this study was that we were able to see the

variable associations of GNMT with prostate cancer in different

ethnicities. A limitation of this study was the lack of data on GNMT

expression levels, so a correlation with genotypes could not be made.

Immunohistochemical studies may be performed to further

elucidate the association of GNMT with prostate cancer in these

Table 4. Haplotype frequencies and their association with prostate cancer risk (haplotype STRP1- rs10948059).

Haplotypes* PCa cases** Controls** OR (95% CI) p-value

10GAs-T 44.1% 39.8% 1.19 (1.00–1.42) 0.048

16GAs-C 25.4% 31.0% 0.76 (0.63–0.92) 0.005

10GAs-C 16.6% 18.7% 0.87 (0.69–1.09) 0.212

16GAs-T 7.5% 5.3% 1.46 (1.02–2.10) 0.039

17GAs-C 4.1% 3.9% 1.05 (0.67–1.63) 0.841

*Only haplotypes with estimated frequencies .1% are listed.
**Estimated numbers of informative haplotypes: PCa cases = 1034, controls = 1003.
doi:10.1371/journal.pone.0094683.t004

Table 5. Frequency of the polymorphisms and association of the risk alleles with prostate cancer in Taiwanese prostate cancer
study and HPFS controls.

Taiwanese prostate cancer
study7 HPFS p-value*

rs10948059

Allelic frequencies

C:T 0.85:0.15 0.54:0.46 ,0.0001

Genotypic frequencies

C/C:C/T:T/T 0.72:0.25:0.02 0.29:0.51:0.20 ,0.0001

STRP1

Allelic frequencies

$16 GAs:,16 GAs 0.64:0.36 0.39:0.61 ,0.0001

Genotypic frequencies

$16GAs/$16GAs:$16GAs/,16 GAs:,16GAs/,16GAs 0.41:0.46:0.13 0.11:0.56:0.33 ,0.0001

INS/DEL

Allelic frequencies

DEL:INS 0.65:0.35 0.47:0.53 ,0.0001

Genotypic frequencies

DEL/DEL:INS/DEL:INS/INS 0.42:0.46:0.12 0.14:0.66:0.20 ,0.0001

OR (95%CI) OR (95%CI)

rs10948059 (per-additional T allele) 0.72 (0.52–0.99) 1.27 (1.08–1.48)

STRP1 (per-reduced GAs) 1.09 (0.88–1.37) 1.23 (1.03–1.47)

INS/DEL (per-additional 4-bp) 0.89 (0.71–1.12) 1.08 (0.89–1.31)

*Comparison of GNMT allelic and genotypic distributions between Taiwanese population and HPFS (chi-square test).
doi:10.1371/journal.pone.0094683.t005
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men of European descent. Immunohistochemical staining using the

GNMT monoclonal antibody 14-1 at 1:25 dilution was previously

performed in prostatic tissues obtained from Taiwanese men and a

tissue array of Asian men [11]. GNMT expression tended to be

higher in non-cancerous than in prostate cancer and tumor-

adjacent tissues; and in the cancer tissues, staining was higher in low

stage than high stage cancers. These findings are in contrast to those

from Song et al.’s study in 148 Japanese men, which showed that

high cytoplasmic GNMT expression was correlated with higher

Gleason score, higher pathological stage, and lower disease-free

survival [30]. While both studies were performed in Asian men,

Song et al. used a polyclonal antibody for immunohistochemical

staining, so there could be specificity issues, and results from both

studies cannot be directly compared. Longitudinal follow-up studies

may help clarify the relationship between GNMT expression and

disease progression and aggressivity.

Finally, it is worth noting that a higher proportion of subjects in

this study had localized (stage I or II) disease (85%) when

compared to our previous Taiwanese study (32%) [11]. The study

in Taiwanese men was hospital-based, while the HPFS is

composed of health care professionals. Health care professionals

are more health-conscious and are more likely to have regular

physical examinations than the general population. The use of

PSA screening was high in the HPFS.

Conclusions

In men of European descent, the GNMT rs10948059 and

STRP1 were associated with prostate cancer risk. Compared to the

study conducted in Taiwanese men, the susceptibility GNMT alleles

for prostate cancer had a reverse relationship. This study

demonstrated the importance of validating associations in different

ethnicities, as the allelic and genotypic frequencies were different,

and the resulting associations between markers and prostate cancer

also differed. Results from this study suggest that GNMT plays a

role in prostatic carcinogenesis, but in view of the conflicting results

of recent studies on sarcosine, further studies are needed to elucidate

the role of GNMT in prostate cancer aggressivity.
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