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Genetic inhibition of hepatic acetyl-CoA
carboxylase activity increases liver fat and
alters global protein acetylationa
Jenny D.Y. Chow 1, Robert T. Lawrence 2, Marin E. Healy 1, John E. Dominy 3,4, Jason A. Liao 1,
David S. Breen 1, Frances L. Byrne 1, Brandon M. Kenwood 1, Carolin Lackner 6, Saeko Okutsu 1,
Valeria R. Mas 5, Stephen H. Caldwell 5, Jose L. Tomsig 1, Gregory J. Cooney 7, Pere B. Puigserver 3,4,
Nigel Turner 8, David E. James 7, Judit Villén 2,**, Kyle L. Hoehn 1,5,9,*
ABSTRACT

Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The
enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to
prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how
the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes
of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in
the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC
enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-
mitochondrial space.

� 2014 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. INTRODUCTION

The liver plays an important role in the regulation of whole body lipid
and carbohydrate homeostasis during fluctuations in nutrient intake
[1]. During fasting, the liver maintains euglycemia by releasing glucose
into circulation. Hepatocyte glucose output is facilitated by an altered
metabolic state wherein fatty acids are preferentially oxidized as an
energy source to prevent the catabolism of glucose. In contrast, food
intake triggers a rapid switch in hepatocyte metabolism that promotes
the oxidation and metabolism of excess carbohydrates to glycogen and
fat. With feeding, fat oxidation is repressed to prevent the catabolism of
newly made lipid [2]. The acetyl-CoA carboxylase (ACC) enzymes ACC1
and ACC2 are important regulators of these metabolic transitions
through their product malonyl-CoA [3,4]. ACC1 is localized in the
cytosol and generates malonyl-CoA for de novo lipogenesis, while
ACC2 is bound to the mitochondrial outer membrane and produces
malonyl-CoA that can be used both as a substrate for lipogenesis [5]
and as a negative modulator of mitochondrial fat oxidation by
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inhibiting carnitine palmitoyltransferase 1a (CPT1a). Thus, ACC-
dependent malonyl-CoA production is considered to be a central
control point for metabolic flexibility [6].
Both ACC isotypes are susceptible to dysregulation and are
commonly over-expressed or over-activated in disease states
associated with fatty liver [7e9]. Simple hepatosteatosis alone is
thought to have a benign course [10,11], but up to 25% of patients
progress to advanced diseases [10]. Fatty liver disease is a risk
factor for insulin resistance, diabetes, and hepatocellular cancer.
Thus, there is considerable interest in developing small molecule
drugs that inhibit ACC enzymes [12,13]. Recently, it was shown that
chronic activation of ACC enzymes in mice is sufficient to increase
hepatic fat accumulation [14]; however, it remains unclear how the
complete and chronic inhibition of ACC activity will impact liver lipid
content, whole body metabolic physiology, or the metabolic fate of
cytosolic acetyl-CoA in hepatocytes. To investigate these questions,
we generated and characterized liver-specific ACC1 and ACC2
double knockout mice.
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Original article
2. MATERIALS AND METHODS

2.1. Mice and diets
Ozgene Australia (Murdoch, Australia) was contracted to generate
Acc1 and Acc2 floxed mice described previously [15,16]. Mice were
produced on a pure C57BL/6 background using Bruce4 embryonic
stem cells. Acc1 and Acc2 floxed mice were bred with C57BL/6 FLPe
mice to delete the neomycin selection cassettes. To generate liver-
specific deletions, female Acc1lox/lox/Acc2lox/lox mice were bred with
male Acc1lox/lox/Acc2lox/lox mice expressing liver-specific albumin-Cre.
Offspring from this cross produced a 1:1 ratio of LDKO (liver-specific
double ACC knockout) to flox control offspring. Mice were maintained
on a 12 h lightedark cycle and fed normal chow ad libitum (7912
Teklad LM-485 from Harlan Laboratories; 25 kcal% protein, 17 kcal%
fat and 58 kcal% carbohydrates). All animal experiments were per-
formed according to standard operating procedures approved by the
Institutional Animal Care and Use Committee at University of Virginia.

2.2. Respirometry
Oxygen consumption rate (VO2) and respiratory control ratio (RCR) were
measured under consistent environmental temperature (20e22 �C)
using an indirect calorimetry system (Oxymax series, Columbus In-
struments, Columbus, OH), as described [15]. Studies were
commenced after acclimation to the metabolic chamber with airflow of
0.5 L/min. Gas samples were measured at 16-min intervals over a
24 h period with food and water provided ad libitum unless indicated
otherwise.

2.3. Cell culture and drug treatment
Primary hepatocytes from control and LDKO mice were isolated based
on established protocol [17], seeded in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 4.5 g/L glucose, 10% fetal bovine
serum, 1 mM dexamethasone and 0.1 mM insulin for 4 h, and cultured
overnight prior to experiment in serum-free DMEM with 4.5 g/L
glucose, 0.2% bovine serum albumin, 100 nM dexamethasone and
1 nM insulin. For protein acetylation experiments, primary hepatocytes
were treated with nicotinamide (NAM) at 5 mM for 24 h. For insulin
stimulation experiments, hepatocytes were cultured in serum-free
DMEM with 1 g/L glucose, 0.2% bovine serum albumin, 100 nM
dexamethasone and no insulin for 3 h prior to addition of insulin for
10 min. DMSO was used as vehicle control.

2.4. Metabolic substrate competition assays and enzyme activity
assays
Substrate competition assays were performed on monolayered hepato-
cytes (20,000 cells/cm2) in Krebs-Ringer Phosphate buffer (1.2 M NaCl,
6 mM Na2HPO4, 60 mM KCl, 4 mM NaH2PO4, 12 mM MgSO4, 125 mM
HEPES pH7.4, 10 mM CaCl2) supplemented with non-labeled substrates:
50mM acetate, 5 mM glucose, 0.5 mM glutamine, 125 mM palmitate and
1 mM carnitine, and one of the following radioactive labeled substrates:
10 mCi/mL 14C-acetate (de novo lipogenesis), 10 mCi/mL 3H-glucose
(glycolysis) or 2 mCi/mL 14C-palmitate (fatty acid oxidation). Cells were
incubated in sealed wells at 37 �C for 1.5 h. Lipids were extracted by the
Folch method [18] and analyzed by scintillation counting or thin-layer
chromatography to measure de novo lipogenesis. Palmitate oxidation
was determined by acidifying each well with 2 M perchloric acid and
trapping carbon dioxide in 2 M NaOH in a small tube placed in the well.
Acid soluble 14C-labeled metabolites were extracted by centrifugation to
determine incomplete palmitate oxidation [19]. Glycolysis was measured
by scintillation counting 3H-glucose that was converted to 3H-H2O using
the diffusion equilibrium method. Measurements of the activity of
420 MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH
oxidative enzymes involved in metabolism and mitochondrial function
were performed as described previously [20].

2.5. Acetyl-CoA measurements
Acetyl-CoA levels were measured by mass spectrometry using
methods described in Refs. [15,21]. For quantification in mouse liver,
tissue pieces (40 mg) were homogenized in 500 mL ice-cold isolation
media (250 mM sucrose, 10 mM TriseHCl and 1 mM EGTA), and
centrifuged at 800� g for 5 min at 4 �C to pellet cell debris and nuclei.
Cleared cell lysate was centrifuged at 10,000� g for 10 min at 4 �C to
obtain a pellet enriched in mitochondria. Pellets were resuspended in
1 mL of 6% perchloric acid, and the supernatant (cytoplasm and
microsome) fraction was mixed with an equal volume of 12%
perchloric acid. 13C-3-malonyl-CoA (0.5 mM final) was added as a
recovery standard. After centrifugation and ultracentrifugation of
extract, supernatant was applied to a solid-phase extraction column
(Oasis HLB 1 cce30 mg, Waters) preconditioned with acetonitrile then
milliQ water. Bound acyl-CoAs were washed with milliQ water, eluted
with acetonitrile, dried under nitrogen gas at 37 �C, and resuspended
in 120 mL of solvent A (2% ACN, 10 mM ammonium acetate, 5 mM
acetic acid, 10 mM DIPEA) and analyzed by HPLCeMS. Analyses were
performed using a triple quadrupole mass spectrometer (AB-Sciex
4000 Q-Trap) coupled to a Shimadzu LC-20AD LC system equipped
with a Supelco Discovery C18 column (50 mm � 2.1 mm � 5 mm
bead size) integrated with a precolumn (4 � 4 mm). A binary solvent
system (total flow 0.25 mL/min) was used that consisted of the
following solvents, A: 98.6% H2O, 2% acetonitrile, 5 mM acetic acid,
10 mM N,N-Diisopropylethylamine, 10 mM ammonium acetate; B:
75% acetonitrile, 25% solvent A. Chromatographic runs started at
100% A for 1 min, a linear gradient to reach 100% at 3.5 min, then
100% B for 2 min, and finally 100% solvent A for 2.5 min (8 min total).
Column temperature was set to 30 �C and the flow rate was 0.5 mL/
min. Measurements were carried out in positive mode using previously
published transitions for acetyl-CoA (m/z 857.2 / m/z 350.2) and
13C-malonyl-CoA (m/z 810.4 / m/z 303.2) [21,22] using the
following settings (DP, EP, CE, CXP, in volts: 91, 10, 43, 8; 106, 10, 41,
10; 116, 10, 43, 10). Quantification was carried out by measuring peak
areas using the software Analyst 1.5.1 that were corrected for recovery
using 13C-malonyl-CoA as an internal standard.

2.6. Proteomics sample preparation
Liver tissue was dounce homogenized in 9 M Urea with addition of
complete EDTA-free protease inhibitor cocktail (Roche), 10 mM
nicotinamide, and 50 mM butyric acid. After sonication on ice for 30
seconds, lysates were centrifuged at 10,000 � g and assayed for
protein content using the BCA method. Protein extracts were reduced
with 5 mM DTT and alkylated with 15 mM iodoacetamide. A 2.5 mg
aliquot of protein from each sample was diluted 5-fold with 50 mM
Tris pH 8.2 and digested overnight with trypsin (Promega) at 37 �C.
The resulting peptides were acidified to pH 2 with trifluoroacetic acid
(TFA) and desalted (but not eluted) using a tC18 SepPak cartridge
(Waters) prior to on-column isotopic labeling of primary amines by
reductive dimethylation [23]. After desalting, 5 mL of labeling reagent
(light: 0.4% CH2O, 60 mM NaCNBH3 in 0.5 M MES pH 5.5, heavy:
0.4% CD2O, 60 mM NaCNBD3 in 0.5 M MES pH 5.5) was passed
through the column at approximately 0.5 mL/min. The reaction was
quenched by 15 column volumes of 1% TFA, washed with 0.5%
acetic acid. Labeled peptides were eluted and mixed in a 1:1 ratio for
further analysis.
Immediately after mixing heavy (þ34.0689 Da) and light
(þ28.0313 Da) peptides, a 100 mg aliquot was removed for
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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quantitative analysis of the unmodified proteome and dried by vac-
uum centrifugation. Peptides were resuspended in 0.1% NH4OH and
fractionated in step-wise format with increasing concentrations of
acetonitrile on microfilters constructed in-house using pH-resistant
SDB-XC reverse phase chromatography material (3M Empore) [24].
Eluates were dried by vacuum centrifugation and stored at �20 �C
prior to further analysis. Labeled peptides containing acetylated ly-
sines were enriched after mixing by immunoaffinity purification.
Briefly, 4.9 mg of dried peptides were resuspended in 50 mM MOPS-
NaOH pH 7.2, 10 mM Na2HPO4, 50 mM NaCl and incubated overnight
at 4 �C with pre-conjugated acetyl-lysine antibody (Immunechem).
Immunoprecipitates were washed four times and eluted with 0.15%
TFA. Acetylated peptides were desalted and fractionated in a step-
wise format with increasing concentrations of NH4HCO3 using
microfilters constructed in-house using SCX material (3M Empore).
Eluates were desalted, dried, and stored at �20 �C prior to further
analysis.

2.7. LCeMS/MS and data processing
Samples were subjected to reverse phase liquid chromatography on an
EASY nLC (Thermo) equipped with a 40 cm � 75 mm column packed
in-house with 1.9 mM Reprosil C18 particles (Dr. Maisch) and online
analyzed by tandem mass spectrometry in a Q-Exactive (for unmodi-
fied peptides, 90 min gradients) or an LTQ Orbitrap Velos (for acety-
lated peptides, 120 min gradients). Mass spectra were acquired using
a data dependent acquisition method (twenty most intense precursors
selected for fragmentation) with dynamic exclusion (30 seconds). Raw
spectra were converted to mzXML open data format and searched
using Sequest against a concatenated forward and reverse version of
the Uniprot mouse protein sequence database (v11/29/2012), digested
with trypsin and allowing for up to two missed cleavages. Peptide
mass tolerance was 50 ppm. Fragment ion tolerance was 0.36 for
LTQ-Orbitrap-Velos data and 0.01 for Q-Exactive data. Carbamido-
methylated cysteine (þ57.021464), dimethylated lysine (þ28.0313),
and dimethylated peptide N-terminus (þ28.0313) were searched as
fixed modifications. Oxidized methionine (þ15.994915), heavy dime-
thylated lysine (þ6.03766), and heavy dimethylated peptide N-ter-
minus (þ6.03766) were searched as variable modifications in all
cases. For acetyl-lysine enriched samples, an additional variable lysine
modification was used: þ13.97926, which corresponds to the dif-
ference between an acetyl group (þ42.0105) and the fixed dimethyl
group (þ28.0313). This accounts for the fact that a lysine can be
acetylated or dimethylated, but not both. Identified peptides were
filtered to a false discovery rate of <1% and allowing only peptides
that were correctly labeled and a minimum of 7 amino acids in length.
For protein analysis, peptides were additionally filtered to a protein
level FDR of <1%. In general, because acetylation events cause
missed cleavages to occur yielding only one possible lysine candidate,
site localization was not an issue. Nevertheless, localization scores and
site refinement were performed using an in-house implementation of
the Ascore algorithm [25] where an Ascore >13 equates to p <0.05.
Maximum peak intensities and heavy-to-light (H/L) ratios for identified
peptides were calculated using an in-house peptide quantification
algorithm. To be considered for quantitation, we required a peptide
signal to noise ratio >5. For most peptides (>90%), both light and
heavy isotope intensities were measured. If only one isotope was
measured, a ratio was calculated between peptide intensity and local
noise. When more than one peptide was measured, the average H/L
ratio was computed. For protein quantitation, H/L ratios for peptides
mapping to the same protein were averaged. Similarly, for acetylation
site quantitation, H/L ratios for peptides mapping to the same site were
MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH. This is an o
www.molecularmetabolism.com
averaged. Resulting datasets were log2 transformed. To control for
mixing error, both the acetylation site data and protein data were
normalized to the median protein ratio. Finally, acetylation site quan-
tifications were individually corrected for changes in its respective
protein by subtracting the log2 ratio of the parent protein from the
acetylation site ratio.

2.8. Bioinformatics
Statistical analysis was performed in R version 2.15.2. For subcellular
compartment analysis, protein identifications were mapped to Gene
Ontology Cellular Component terms using gene sets from the Molec-
ular Signatures Database MsigDB [26]. For mitochondrial protein
analysis, the mouse MitoCarta database [27] was converted to Uniprot
identifiers and used to assign high confidence mitochondrial proteins
to the datasets. Metabolic pathways and proteins were manually
curated from IUBMB-Nicholson metabolic pathway diagrams (http://
www.iubmb-nicholson.org), and plotted according to log2 fold
change using Cytoscape v2.8.3 [28]. Functional enrichment analysis
was performed using DAVID bioinformatics resources v6.7 [29].
Acetylated proteins were queried for enrichment against a background
containing all proteins found in the proteome dataset.

2.9. Triglyceride production and oral triglyceride tolerance assays
To measure hepatic triglyceride production rate, female mice (12 wks
of age) were injected i.p. with 1 g/kg body weight Poloxamer 407 [30]
and serum triglyceride levels were measured over 24 h. Mice were
fasted from 9 ame1 pm, and tail vein whole blood was sampled prior
to injection then at 1, 2, 6, and 24 h after injection. To determine oral
triglyceride tolerance, mice were fasted for 4 h (8 ame12 pm) prior to
receiving safflower oil by oral gavage (10 mL/g body weight). Tail vein
blood was sampled prior to gavage then hourly for 6 h. Serum was
isolated and stored at �20 �C until triglyceride assay (Pointe
Scientific).

2.10. Tissue and serum metabolites
Submandibular whole blood was sampled from 16-week-old mice at
fed (9 pm) then 12 h fasted states. Serum was isolated by centrifu-
gation at 2,000 � g for 15 min at 4 �C. Metabolites were determined
according to manufacturers’ protocols: Triglyceride assay (Pointe
Scientific); Cholesterol assay (Infinity Cholesterol Liquid Reagent,
Thermo Scientific); Free fatty acid assay (BioVision); Insulin ELISA
(Crystal Chem Inc); Ketone assay (Cayman); NADþ assay (BioAssay
System).

2.11. Histology
Liver samples were fixed in 10% neutral buffered formalin and
paraffin-embedded for microtome sectioning (5 mm thick) and he-
matoxylineeosin staining. Frozen-sections from OCT-embedded liver
samples were used for Oil-Red-O staining as previous described [31].
Microscopy was performed and analyzed on a ScanScope.

2.12. Tolerance tests
Glucose, insulin and pyruvate tolerance tests were performed 6 h after
the removal of food (8 ame2 pm). Glucose (1.5 g/kg), insulin (1 U/kg)
or pyruvate (2 g/kg) tolerance tests were performed via i.p. injection.
Blood glucose was measured with an AccuChek II glucometer (Roche).

2.13. Western blotting
Liver ACC proteins were analyzed using avidin-pulldown as described
previously [15]. For acetyl-lysine immunoblotting, liver tissue or cells
were lysed in RIPA buffer (50 mM TRIS pH 8.0, 100 mM NaCl, 2 M
pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Figure 1: Loss of hepatic ACC activity increases fat storage. (A) Liver Acc1 and Acc2 mRNA transcripts quantified by qPCR in flox control and LDKO mice (p < 0.0001, n ¼ 10, ManneWhitney).
(B) Avidin-bead pulldown with immunoblotting for ACC enzymes in liver lysates from flox and liver-specific ACC1 and ACC2 knockout (LDKO) mice, with pyruvate carboxylase (PC) and propionyl-CoA
carboxylase (PCC) enzymes serving as protein loading controls. (C) Incorporation of 14C-acetate into fatty acids and sterols in primary hepatocytes. (DeF) Glucose, pyruvate and insulin tolerance tests
(D and E, n ¼ 5; F, n ¼ 3). (G) Liver to body weight percentage and (H) triglyceride content of flox and LDKO mice (female LDKO (n ¼ 8) and Flox (n ¼ 5), male LDKO (n ¼ 5) and Flox (n ¼ 3);
*p < 0.05, ManneWhitney.). Data expressed as mean � SEM. (I) Representative liver sections stained with hematoxylin and eosin (H&E) and Oil-Red-O; Scale bars equal 100 mm.

Original article
EGTA pH 7.0, 0.4% v/v Triton X-100, 10 mM nicotinamide), with
protease inhibitors cocktail (Roche) and phosphatase inhibitors (2 mM
sodium orthovanadate, 1 mM sodium pyrophosphate, 10 mM sodium
fluoride, 250 nM microcystin LR), and immunoblotted with an anti-
acetyl-lysine antibody (Cell Signaling 9441). Other antibodies used in
422 MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH
this study: phospho-Akt (S473) (587F11; Cell Signaling 4051), pan Akt
(C67E7, Cell Signaling 4691), pan 14-3-3 (H-8, Santa Cruz, sc-1657),
Mitomix rodent OXPHOS cocktail (Mitosciences MS604), CPT1 (H-40,
Santa Cruz, sc-98834) and alpha-tubulin (H-300, Santa Cruz, sc-
5546). Line scan analysis was performed using Image J.
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.molecularmetabolism.com


2.14. Reverse transcription realtime PCR
Liver (2 mg, Trizol) or cells (1 mg, Direct-zol) total RNA was semi-
quantitated by standard two-step RT-PCR (High Capacity cDNA
synthesis kit, Roche; Sensifast SYBR Green mix, Bioline) using gene-
specific primers (Integrated DNA Technologies). Acaca-sense, 50-CAT-
CACCATCAGCCTGGTTACA-30, Acaca-antisense 50-ACTGTGTACGCTCT
TCGGCAT-30; Acacb-sense, 50-GTTTGGGCACTGCTTCTCCT-30, Acacb-
antisense, 50-CACACACCACCCCAAGCAT-30; Acadm-sense 50-GCAG
GTTTCAAGATCGCAATG-30,Acadm-antisense 50-TGAAACTCCTTGGTGCT
CCACT-30; Ppargc1b-sense 50-GACGAGCTTTCACTGCTACAGA-30, Ppa-
rgc1b-antisense, 50-TGCCATCCACCTTGACACA-30; Esrrg-sense, 50-
GAGGACGATTCAAGGTAACATAGAG-30, Esrrg-antisense, 50-GACGGAC
CCCTTCTTTCAGC-30. Other genes of interest were performed using
primer pairs established in previous publications: Ppara, Fgf21, and Pdk4
[32]; Acox1 and Hmgcs2 [33]; Cpt1a [34]; Pck1 and G6pc [35]; Ppargc1a
and Esrra [36]; Ppifa (housekeeping gene) [37].

2.15. Statistical analyses
Data are expressed as means � standard error of the mean (SEM). p-
values were calculated by ManneWhitney test or one-way ANOVA with
Fisher’s PLSD post-hoc test, unless otherwise stated. Statistical sig-
nificance was set at p <0.05.

3. RESULTS

3.1. Increased hepatic triglyceride accumulation in the absence of
ACC activity
Other groups have reported single gene knockout of either ACC1 or
ACC2 individually in mice [5,15,38,39]. However, no studies have
genetically knocked out both ACC enzymes specifically in mouse
liver. In this study we generated liver-specific ACC1 and ACC2
double knockout (LDKO) mice, as follows. ACC1 and ACC2 floxed
mice were bred with mice expressing Cre under the control of a
liver-specific albumin promoter. Knockout was confirmed at the
mRNA and protein levels in liver tissue (Figures 1A and B). To verify
that ACC enzymatic activity was deficient in the liver, we isolated
primary hepatocytes from LDKO and flox control mice and tested
their capacity to utilize 14C-acetate (a cell-permeable precursor to
cytosolic acetyl-CoA) for lipogenesis. Hepatocytes from LDKO mice
were completely deficient in lipogenic conversion of acetate into
lipid, but were fully capable of synthesizing sterols from this sub-
strate (Figure 1C). The utilization of 14C-acetate for sterol synthesis
was expected because this process does not require ACC activity.
Compared to flox controls, LDKO mice had similar body weight and
adiposity (Supplemental Figure S1), and had normal energy
expenditure and respiratory quotient in both fed and fasted states
(Supplemental Figures S2 and S3). The LDKO mice also demon-
strated normal responses to metabolic challenges with a bolus in-
jection of glucose, pyruvate, or insulin (Figure 1DeF). LDKO mice
had similar serum glucose, insulin, free fatty acid, and triglyceride
Fed

Flox LDKO

Triglyceride (mg/dL) 204.5 � 28.8 (9) 233.8 � 27

Cholesterol (mg/dL) 91.4 � 6.7 (9) 71.9 � 5.4

Free fatty acid (mM) 0.92 � 0.11 (9) 0.87 � 0.0

Glucose (mg/dL) 170.8 � 18.5 (6) 171.3 � 22

Insulin (ng/ml) 0.97 � 0.12 1.34 � 0.2

Table 1: Serum parameters of fed or 12 h-fasted LDKO and flox mice.

Data expressed as mean � SEM. * Significant difference (p < 0.05) between Flox vs. LDKO o
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levels to flox controls in both the fed and fasted states, but had 22%
less (p < 0.05) serum cholesterol in the fasted state (Table 1).
Hepatocytes and liver tissue demonstrated normal insulin-
stimulation of Akt (Supplemental Figure S4). Together, these data
demonstrate that loss of ACC activity in the liver does not adversely
affect whole body nutrient handling or insulin sensitivity. However,
we did find that LDKO liver mass was increased (Figure 1G)
concomitant with increased triglyceride content (Figure 1H). Histo-
logical analysis of liver tissue by Oil-red-O and H&E staining
revealed that LDKO hepatocytes accumulated microvesicular fat
(Figure 1I), a phenotype normally associated with a defect in fat
oxidation [40]. ACC enzymes normally function to promote fat
storage; therefore, the finding that ACC deletion increases basal
liver fat accumulation was unexpected.

3.2. ACC inhibition paradoxically suppresses fatty acid oxidation
Hepatic fat accumulation can be caused by numerous mechanisms
including defective lipid export, increased lipid intake, increased
lipid synthesis, or decreased fat oxidation. Lipid synthesis can be
ruled out (Figure 1C); therefore, we measured triglyceride export
from the liver, the clearance of triglyceride after a bolus oral gavage
of safflower oil, and the oxidation of the saturated fatty acid
palmitate (Figure 2AeC). The rate of lipid efflux from the liver was
measured by treating LDKO and flox mice with the lipoprotein lipase
inhibitor, Poloxamer 407, and monitoring serum triglyceride accu-
mulation over time (Figure 2A). LDKO mice had greater rates of
triglyceride export from the liver compared to flox control mice
(Figure 2A), thus indicating the increase in hepatic fat in LDKO mice
was not due to impaired lipid efflux from the liver. We next chal-
lenged LDKO and flox mice with an oral bolus of safflower oil and
measured triglyceride appearance and clearance from the serum.
This experiment showed that LDKO mice had normal uptake and
clearance of lipid (Figure 2B). Finally, we measured fatty acid
oxidation in LDKO and flox primary hepatocytes using 14C-palmitate.
This experiment revealed that LDKO hepatocytes had a significant
decrease in fatty acid oxidation compared to flox controls (48%
decrease, p < 10�4, Figure 2C).
The mechanism(s) of reduced fat oxidation were investigated in more
detail by assaying the activity of key enzymes in the mitochondrial and
peroxisomal fatty acid oxidation pathways in liver lysates. Compared to
flox control tissue, LDKO liver lysates had decreased activity of mito-
chondrial 3-hydroxyacyl-CoA dehydrogenase (b-HAD, p ¼ 0.002),
mitochondrial medium-chain acyl-CoA dehydrogenase (MCAD,
p ¼ 0.07), and peroxisomal acyl-CoA oxidase (ACOX, p ¼ 0.002)
(Figure 2DeF). The LDKO liver tissue also had lower mRNA and protein
expression of CPT1a; the rate-limiting enzyme in mitochondrial fat
oxidation (Figure 2G and H). Furthermore, LDKO mice showed a trend of
impaired fasting-induced ketone production; an indirect marker of he-
patic fat oxidation in vivo (Figure 2I). To determine whether the decrease
in fat oxidation was compensated by altered glucose utilization, as
Fasted

Flox LDKO

.0 (10) 156.0 � 12.9 (9) 136.3 � 5.0 (11)

(10) 93.6 � 6.0 (9) 73.5 � 3.7* (11)

9 (10) 1.40 � 0.15 (9) 1.15 � 0.12 (11)

.9 (4) 124.9 � 7.6 (17) 144.5 � 7.9 (17)

7 0.42 � 0.08 0.51 � 0.11

f same condition (fed or fasted). Parentheses indicate the number of mice per group.
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Figure 2: The loss of ACC activity decreases hepatic fat oxidation. (A) Hepatic triglyceride production assessed by serum triglyceride levels at time points after i.p. treatment of 1 g/kg lipoprotein lipase
inhibitor, Poloxamer 407 (n ¼ 5 LDKO vs. n ¼ 4 flox). (B) Oral triglyceride tolerance assessed by serum triglyceride levels at various time points after a bolus of safflower oil (n ¼ 5). Data expressed
as mean � SEM; *p < 0.0001, multiple unpaired t-test with correction using Holm-Sidak method. (C) Rate of palmitate oxidation in isolated primary hepatocytes (*p < 0.001, ManneWhitney, seven
independent experiments). Enzyme activity assays of (D) 3-hydroxyacyl-CoA dehydrogenase (b-HAD), (E) media-chain acyl-CoA dehydrogenase (MCAD), and (F) peroxisomal acyl-CoA oxidase (ACOX)
in liver tissue (*p < 0.05, ManneWhitney, n ¼ 7 LDKO vs. n ¼ 5 flox). (G and H) Hepatic CPT1a transcript levels and protein expression.14-3-3 serves as a protein loading control. (I) Serum ketone
levels at fed and fasted states (ManneWhitney; n ¼ 5 flox vs. n ¼ 10 LDKO). (J) Rate of glycolysis in isolated primary hepatocytes (*p < 0.01, ManneWhitney, five independent experiments). Data
expressed as mean � SEM.
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predicted by the Randle cycle [2], we measured the rate of glycolysis in
isolated primary hepatocytes from LDKO and flox mice. These data
revealed a 40% increase in glycolysis in LDKO hepatocytes compared to
flox controls (Figure 2J). Collectively, these data identify that inhibition of
ACC enzymes leads to reprogramming of hepatic glucose and fatty acid
metabolism that resembles the chronic fed state.
Peroxisomal proliferator-activation receptor alpha (PPARa) regulates
the expression of several hepatic genes involved in fat oxidation,
including Cpt1a. Therefore, we investigated transcriptional changes in
pathways involved in nutrient metabolism including 5 other PPARa-
regulated genes: Pdk4, Fgf21, Acox1, Hmgcs2 and Ppara. In contrast
to Cpt1a, no other PPARa-regulated genes were down regulated and
both Pdk4 and Hmgcs2 were upregulated in liver tissue from LDKO
424 MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH
mice compared to controls (Figure 3A). Furthermore, there were no
statistically significant transcriptional changes in other glucose or fatty
acid metabolic genes regulated by SREBP1c, PGC-1a or PGC-1b
(Figure 3BeD). These data also show that the decreases in ACOX and
MCAD activity in LDKO liver tissue (Figure 2DeF) was not due to al-
terations in transcription of their respective genes, Acox1 and Acadm
(Figure 3A and D).

3.3. Liver ACC inhibition disrupted acetyl-CoA homeostasis and
altered protein acetylation
Acetyl-CoA is a versatile cellular metabolite utilized for ATP production,
cholesterol and lipid biosynthesis, and protein acetylation. Given the
high flux of acetyl-CoA through ACC enzymes for lipogenesis, we
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Figure 3: PPARa, SREBP1c, and PGC-1 target gene transcription in LDKO vs. flox liver. (AeD) qPCR analysis of target genes regulated by PPARa, SREBP1c, PGC-1a and PGC-1b. Data
expressed as mean � SEM (n ¼ 5, *p < 0.05 LDKO vs. Flox).
investigated whether the perturbation of ACC activity could impact
acetyl-CoA utilization for protein acetylation. Primary hepatocytes and
liver tissue from LDKO and flox control mice were immunoblotted with
an antibody that recognizes acetylated lysine residues (Figure 4A and
B). Compared to flox controls, the LDKO tissues and cells had
increased immunoblotting signals across a broad range of molecular
weights (Figure 4A and B). Since deacetylase enzymes may also
regulate protein acetylation, we measured NADþ levels and compared
the acetylation pattern of ACC-deficient cells with the pattern caused
by the NADþ-dependent deacetylase inhibitor, nicotinamide. NADþ

levels were similar in flox and LDKO liver lysates (Figure S5A), and
NAM treatment induced a different pattern of protein acetylation than
was observed with ACC inhibition (Figure 4A). These data reveal that
ACC inhibition promotes global protein acetylation, and indicate that
NADþ-dependent deacetylase inhibition cannot account for the
changes in lysine acetylation.

3.4. Subcellular compartmentalization of ACC-dependent changes
in protein acetylation
It was recently shown in Saccharomyces cerevisiae that ACC1 inhi-
bition increases nuclear histone acetylation [41]; however, the Western
blots demonstrated lysine hyper-acetylation across a broad range of
protein molecular weights that are not indicative of histones. To
identify the proteins that were hyper-acetylated, we enriched for
acetyl-peptides by an anti-acetyl-lysine antibody pulldown and quan-
tified them by proteomics (Figure 4C). This approach resulted in the
quantification of 26,843 acetylated peptides corresponding to 3586
unique acetylation sites on 1151 proteins (Supplementary Dataset S1).
After normalization to protein abundance (Supplementary Dataset S2),
the distribution of acetylation site relative abundances were positively
biased (mean Log2(LDKO/flox) ¼ 0.30), signifying global hyper-
MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH. This is an o
www.molecularmetabolism.com
acetylation in the LDKO liver. Specifically, 788 acetylation sites were
increased by greater than 2-fold (22% of the unique sites identified)
(Figure 4D). Curiously however, 274 acetylation sites (8% of the unique
sites identified) were decreased by more than 2-fold compared to
floxed controls. Since ACC enzymes only have access to cytoplasmic
acetyl-CoA, we investigated whether subcellular protein distribution
correlated with lysine acetylation. These analyses identified a signifi-
cant enrichment in the acetylation of proteins in the extra-
mitochondrial space and hypo-acetylation of proteins located in
mitochondria (Figures 4E and 5A).
We next evaluated whether altered protein acetylation patterns caused
by ACC inhibition were biased toward particular biological or metabolic
pathways. Functional enrichment analysis identified that proteins
involved in intermediary nutrient metabolism were highly acetylated in
the liver tissue of LDKO mice compared to flox controls (eight out of the
ten most acetylated pathways, Figure 5B). In livers from LDKO mice,
glycolytic and peroxisomal fatty acid metabolic enzymes were
generally hyper-acetylated, while mitochondrial proteins involved in fat
oxidation and the tricarboxylic acid cycle (TCA) were generally unaf-
fected or hypo-acetylated compared to floxed controls (Figures 5C and
6). To determine whether protein acetylation corresponded with acetyl-
CoA levels, we measured acetyl-CoA in mitochondrial and cytoplasmic
fractions of flox control and LDKO liver tissues. Curiously, both mito-
chondrial and cytoplasmic acetyl-CoA levels were similar between flox
and LDKO liver tissues (Supplementary Figure S5B). These data sug-
gest that alterations in metabolic substrate flux or increased protein
acetylation balance cellular acetyl-CoA levels independently of func-
tional ACC enzymes.
Sincemitochondria were generally hypo-acetylated, we investigated the
activity and acetylation status of complexes I, II and IV of the electron
transport chain (ETC) and citrate synthase of the tricarboxylic acid cycle
pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Figure 4: ACC inhibition alters the liver acetyl-lysine proteome. (A) Acetyl-lysine immunoblotting of whole cell lysates of primary hepatocytes treated with or without 5 mM nicotinamide, isolated from
LDKO and flox mice. (B) Acetyl-lysine immunoblotting of liver tissue from LDKO and flox mice with line scan analysis. (C) Work flow of quantitative acetylproteomics experiments on flox and LDKO livers.
(D) Distribution of relative abundances in acetylation sites between LDKO and flox mice, expressed in logarithmic scale (log2) for the entire proteome and (E) mitochondrial vs. non-mitochondrial proteins
according to Mitocarta classification (n ¼ 3, p ¼ 2.2e-16, ManneWhitney).
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(TCA). The expression of all ETC complexes was similar between flox
and LDKO livers as determined by Western blot using antibodies against
complex I subunit NDUFB8, complex II subunit of 30 kDa, complex III
core protein 2, complex IV subunit I and complex V alpha subunit
(Figure 7A). However, proteomics analysis of acetylated ETC compo-
nents revealed variable differences in the expression and acetylation of
other individual components of the ETC (Figure 7B). To determine
whether these changes affected complex activity, we measured their
activity (Figure 7C). LDKO liver lysates had increased activity of ETC
complex I, lower activity of complex II, and similar activity of complex IV
426 MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH
compared to control (Figure 7C). In addition, citrate synthase enzyme
activity was increased in LDKO tissue lysates (Figure 7C).

4. DISCUSSION AND CONCLUSIONS

ACC enzymes are attractive drug targets for fatty liver diseases
because inhibition of their activity is predicted to decrease lipogenesis,
increase fat oxidation, and thereby reduce fat storage. Our observation
that the deletion of ACC activity in the liver promotes excess fat
accumulation is entirely unexpected based on previous work in this
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
www.molecularmetabolism.com
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Figure 5: ACC-mediated alterations in protein acetylation are enriched for metabolic networks
involved in intermediary nutrient metabolism. (A) Boxplot distribution of acetylation site of proteins
based on their annotated subcellular localizations. (B) Functional enrichment analysis of acetylated
proteins identifies that metabolic networks are significantly affected. Bubble size represents the
number of proteins in each cluster. (C) Boxplot distribution of protein acetylation sites based on
their metabolic process.
area. The only study to genetically target both ACC enzymes in vivo
utilized an antisense oligonucleotide (ASO) in rats. The ASO markedly
decreased ACC expression in both adipose tissue and liver, and
resulted in a decrease in hepatic fat and improved insulin sensitivity
MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH. This is an o
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when rats were fed a high-fat diet [42]. The phenotype of the LDKO
mouse and ASO treatment are not directly comparable for many rea-
sons including differences in the species of rodent, the diet, the
duration of inhibition, and the different tissues targeted. Regardless of
these discrepancies, the LDKO mouse described herein has allowed us
to evaluate the consequences of hepatic ACC inhibition on liver fat
metabolism and whole animal physiology. Importantly, the increase in
liver fat storage in LDKO mice reveals a gap in knowledge concerning
the role of ACC enzymes in liver fat metabolism.
The increase in liver fat in LDKO hepatocytes is likely caused by
reduced fatty acid oxidation, as supported by our findings demon-
strating decreased CPT1a expression; decreased fasting ketone pro-
duction; accumulation of microvesicular fat; and reduced activities of
peroxisomal acyl-CoA oxidase, mitochondrial bHAD and mitochondrial
MCAD enzymes in the LDKO liver compared to floxed controls.
Furthermore, since complex II is involved in FADH2 oxidation that is
driven by fatty acid catabolism, the reduced activity of this complex
may also contribute to impaired fatty acid oxidation in LDKO hepato-
cytes. These data indicate that ACC inhibition triggers multiple
mechanisms to repress fatty acid oxidation.
It has been suggested that newly synthesized lipids are ligands for
PPARa [33,43]. However, our data indicate that liver-derived lipo-
genesis is not required for PPARa-mediated gene transcription since
only CPT1a was decreased in LKDO liver tissue compared to flox
controls, while five other PPARa regulated genes were unaltered or
upregulated (Pdk4 and Hmgcs2). Furthermore, we did not observe
significant effects on other metabolic genes regulated by SREBP1c,
PGC-1a or PGC-1b in LDKO mice. These data reveal the existence of a
very precise, but unknown, mechanism whereby ACC inhibition spe-
cifically targets CPT1a at the mRNA level to decrease fatty acid
oxidation without disrupting other closely regulated genes involved in
carbohydrate and mitochondrial metabolism.
In organelles such as the nucleus, the regulation of protein acetylation
is fairly well-characterized with respect to the roles of histone ace-
tyltransferases and deacetylases. By contrast, the regulation of protein
acetylation in the cytoplasm is insufficiently understood. In recent
years, several reports have demonstrated that protein acetylation,
particularly in cytoplasmic proteins, plays an important role in liver
metabolism [44,45]. In LDKO liver, protein hyper-acetylation was
observed in all organelles except mitochondria, indicating an important
regulatory role for ACC enzymes in the control of protein acetylation in
the extra-mitochondrial space. It is likely that the metabolic phenotype
of reduced fat oxidation and increased glycolysis observed in LKDO
liver is related to the alterations in protein acetylation. For example,
hyper-acetylation of glycolytic enzymes is known to promote glycolysis
[44,46,47].
The mechanisms that underlie the compartment-specific changes in
acetylation caused by ACC inhibition require further investigation, and
several scenarios are possible. First, the loss of ACC activity in the
extra-mitochondrial space may increase the availability of acetyl-CoA
for protein acetyltransferases. Several acetyltransferases are known
to localize in the cytoplasmic compartment including GCN5 and PCAF
[48e50]; however, it remains unclear whether these acetyl-
transferases have the broad substrate specificity or subcellular dis-
tribution necessary to mediate the hyper-acetylation observed in LDKO
liver tissue. Another possibility is that the increase in protein hyper-
acetylation occurs non-enzymatically, as has been demonstrated
previously [51e53]. Studies in yeast demonstrate that ACC gene in-
hibition is sufficient to promote histone acetylation due to increased
availability of acetyl-CoA [41]. Similarly, inhibition of AMPK in yeast
activated ACC and led to reduced histone acetylation [54]. Therefore, a
pen access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Figure 6: Schematic showing the protein acetylation sites in metabolic pathways that are most differentially acetylated in LDKO/flox liver. Pathway color scheme: Red, increased in LDKO vs. flox; blue,
decreased; red or blue box, enzymes; circle, acetylation sites on each enzyme.
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similar regulation of protein acetylation by ACC enzymes may also exist
in the mammalian hepatocyte on non-histone proteins. Although we
were unable to detect an increase in acetyl-CoA levels in LDKO liver, it
remains possible that certain nutritional or hormone-activated states
are required to observe acetyl-CoA accumulation. It is less likely that
decreased NADþ-dependent deacetylase activity drives global protein
acetylation since NADþ levels were unchanged in LDKO tissue and
nicotinamide did not increase protein acetylation with a similar pattern.
428 MOLECULAR METABOLISM 3 (2014) 419e431 � 2014 The Authors. Published by Elsevier GmbH
Finally, it was recently shown that decreased activity of mitochondrial
ETC complex I is associated with increased mitochondrial protein
acetylation [55]. The LDKO liver had significantly higher complex I
activity concomitant with a decrease in protein acetylation in mito-
chondria, thus it is possible that mitochondrial hypo-acetylation may be
secondary to increased complex I activity.
In summary, we observe that complete inhibition of hepatocyte ACC
enzymes triggers the activation of a compensatory pathway that
. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Figure 7: Protein expression and activity of electron transport chain complexes. (A) Western blot analysis of a liver lysates from LDKO and flox mice separated by SDS-PAGE and immunoblotted with
five monoclonal antibodies recognizing a representative protein in each complex involved in mitochondrial oxidative phosphorylation. (B) Changes in protein expression (boxes) and acetylation (circles) of
electron transport chain complexes I, II, III, and IV. (C) Enzyme activity of complexes I, II, and IV, and citrate synthase in tissue lysates from LDKO and flox control liver (n ¼ 5 flox, n ¼ 8 LDKO,
*p < 0.05, ManneWhitney, n ¼ 5 flox, n ¼ 8 LDKO). Data expressed as mean � SEM.
preserves fat storage in the liver. We hypothesize that the mechanism
linking the loss of ACC activity to increased fat storage is due to
increased acetylation of key metabolic enzymes and transcriptional
regulatory sensors. These sensors interpret hyper-acetylation as a
nutrient replete state and coordinate the feeding response to decrease
fatty acid oxidation; an appropriate response to nutrient excess. Future
mutational studies are required to test this hypothesis and to define
how specific acetyl-lysine sites identified in this study affect protein
function. Collectively, this new information advances our under-
standing of the role of ACC enzymes in hepatic nutrient metabolism
and protein acetylation, and also reveals the existence of a therapeutic
window for drug discovery efforts targeting ACC. One possibility is that
an ideal ACC inhibitor would impair lipogenesis but maintain enough
residual activity in specific subcellular compartments to prevent pro-
tein hyper-acetylation and avoid the compensatory inhibition of fat
oxidation. These data also implicate acetyl-CoA, like malonyl-CoA, as a
potent regulator of hepatic metabolic flexibility.
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