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OPEN

Review

Cell-to-cell variability in cell death: can systems
biology help us make sense of it all?

X Xia1,2,3, MS Owen1,2,3, REC Lee1,2 and S Gaudet*,1,2

One of the most common observations in cell death assays is that not all cells die at the same time, or at the same treatment
dose. Here, using the perspective of the systems biology of apoptosis and the context of cancer treatment, we discuss possible
sources of this cell-to-cell variability as well as its implications for quantitative measurements and computational models of cell
death. Many different factors, both within and outside of the apoptosis signaling networks, have been correlated with the variable
responses to various death-inducing treatments. Systems biology models offer us the opportunity to take a more synoptic view
of the cell death process to identify multifactorial determinants of the cell death decision. Finally, with an eye toward ‘systems
pharmacology’, we discuss how leveraging this new understanding should help us develop combination treatment strategies to
compel cancer cells toward apoptosis by manipulating either the biochemical state of cancer cells or the dynamics of signal
transduction.
Cell Death and Disease (2014) 5, e1261; doi:10.1038/cddis.2014.199; published online 29 May 2014
Subject Category: Cancer

Facts

� Responses to apoptosis-inducing drugs or ligands are
often heterogeneous.

� Single-cell measurements are key to accurate character-
ization and modeling of heterogeneous responses.

� State-space maps allow contextualization of protein func-
tion in cellular response.

� Single-cell signaling dynamics can encode information on
cellular responses.

Questions

� Can computational models of cell death incorporate multi-
ple sources of cell-to-cell variability?

� Can multivariate analysis approaches direct the design of
effective combination therapies?

� Can we improve on current anticancer therapies by
optimizing treatment sequence and dosing schedules?

Cell death in its various forms, including apoptosis and
necrosis, has an essential role in development and in tissue
homeostasis. When cell death regulation is derailed, disease
ensues: too much cell death can lead to neurodegenerative

diseases, while too little cell death can lead to autoimmune
disorders or cancer. Nevertheless, when observing cell death
under a microscope or plotting a dose-response curve to a
drug or ligand, one observation recurs frequently, that some
cells live and others die. How does this cell-to-cell variability
affect our understanding of cell death? How does it impact
human health and disease treatments? Although the concepts
that we aim to cover are likely relevant to all forms of cell death
and to the treatment of many diseases, we will focus largely on
apoptosis in cancer, a context in which cell death has been
heavily studied using a systems biology approach. Triggering
programmed cell death or circumventing a defect in this
process have been long-standing goals in cancer therapy and
the systems biology of apoptosis is so far a pillar of the
budding field of systems pharmacology.

How can systems biology help our efforts to understand and
co-opt cell death in cancer? It may help by extracting
mechanistic insights in cancer cell behavior and providing a
broader view of signaling systems, while applying the iterative
strategy to ‘measure, model, and manipulate’. Biologists have
long applied this strategy, but systems biology makes it more
explicit by bringing formalized, or mathematical, models to the
forefront. Here we will discuss how we interpret measure-
ments of cell death, how cell-to-cell variability impacts it, and
how we build computational models to understand and predict
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cell death responses. We also explore the impact of what we
have learned about the sources of cell-to-cell variability on our
approaches to manipulating the biochemical state of cancer
cells to induce cell death.

Interpreting Measurements of Cell Death in the Presence
of Cell-to-Cell Variability

With its emphasis on quantitative results, one of the
cornerstones of the systems biology of cell death is
quantitative, or semiquantitative, measurements of various
steps in the cell death process. Many assays developed to
characterize programmed cell death since ‘apoptosis’ was
coined1 have been leveraged for systems-level studies. Here
we consider existing expertly cataloged assays,2 and the
information they provide about cell-to-cell variability in cancer
cell death.

As Figure 1 illustrates, certain steps in apoptotic cell death
can be measured by several techniques. These techniques
vary significantly as to whether or not they can: (1) be
quantitative, (2) yield single-cell measurements and (3) inform
us about system dynamics. An illustrative example is to
consider measurements of caspase activation. One option is
to detect cleaved caspase substrates from cell lysates
collected at specific end points by immunoblots. Immunoblots
can be made semiquantitative – or even quantitative with
proper calibration curves – and therefore are suitable to a
systems biology approach (e.g., high-throughput microwes-
terns).3 However, because they measure protein abundance
in homogenates of thousands of cells, by design they do not
inform on cell-to-cell heterogeneity. With a series of measure-
ments, one could effectively determine which conditions
yielded more aggregate caspase activity in the cell population,
but not how that activity was distributed across single cells
within this population.

Another common assay uses fluorogenic caspase sub-
strates to quantify total caspase activity.4,5 When used on sets
of cellular lysates, this assay provides the same kind of
aggregate, population-level information that immunoblots
give us. However, if instead one labels intact cells with a
fluorescent dye that accrues in the nucleus in response to

caspase activation, the accumulation of caspase activity can
be measured in single cells, revealing the extent of hetero-
geneity in the population.4,5 By assessing a population of
single cells the experimenter obtains semiquantitative infor-
mation on caspase activation across this population and can
determine whether the distribution of caspase activation is
bimodal (some cells on, some cells off; Figure 2b), or
unimodal (all cells activating caspases, with some variation
around the average; Figure 2c). Taking it a step further,
fluorescent protein-based biosensors designed to detect
caspase activity enable measurements in individual living
cells at multiple time points, providing information about the
dynamics of caspase activation.6–12 Single-cell observations
of activation dynamics accurately reflect dynamics in a single
instance of the biochemical system – a cell undergoing a cell
death decision process – and are therefore often the ultimate
goal of system biology approaches.

How much information is missing from population-level
measurements? That depends on the dynamics and the cell-
to-cell variability of the process under study and, for the above
examples, it depends on which caspase is assayed. During
extrinsic apoptosis, death ligands bind to their receptors and,
following assembly of a death-inducing signaling complex
(DISC), activate initiator caspases-8/-10.13–15 Owing to
cell-to-cell variations in the abundance of receptors,
caspase-8, and protein components of the DISC, the timing
and extent of caspase-8 activation can vary considerably
between cells exposed to the same death ligand dose.6,11

Thus, a population-level measurement of caspase-8 activity
cannot distinguish between a small amount of caspase
activation in most cells, and a large amount of activation in a
few cells (Figures 2a and c). In contrast to caspase-8,
population-level measurements of effector caspase-3 activity
can effectively report on how many cells have activated the
protease en route to apoptosis. This is because single-cell
measurements of caspase-3 activation dynamics have already
revealed that in extrinsic apoptosis, caspase-3 activation rapidly
goes from nearly zero to maximal.6,9 This rapid activation
results in most cells having either no, or full, caspase-3
activation at any given time (also observable by flow cytometry;
Figure 1 and detailed, for example, in Albeck et al.6).

*Noted here as ‘Semi-Quantitative’ although the method can be made quantitative with the inclusion of appropriate calibration standards.
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Figure 1 Different aspects of apoptosis can be assayed qualitatively or quantitatively at the single-cell level. For each experimental method listed, we note the apoptotic
cell death processes that it measures as well as whether the measurements can be made in single cells or at the population level, whether they are quantitative or not, and
whether they enable the tracking of response dynamics. IF, immunofluorescence; IHC, immunohistochemistry; PS, phosphatidylserine
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Figure 2 Characteristics of heterogeneous and homogeneous signaling responses for different forms of measurements. (a) Schematic representations of population-level
measurements of signaling and apoptosis over time (left) or for a dose response (right). These are expected to be similar whether the cells respond heterogeneously or
homogeneously. Dose-response curves can be characterized by the maximal effectiveness (Emax), the half-point of effectiveness (E50) and the concentration at E50 (EC50).
Recent work (Fallahi-Sichani et al.76) has shown that a shallow slope in a dose-response curve (black versus gray dotted line) may indicate heterogeneity in the response, see
also Box 1. (b and c) Schematic representations of hypothetical results of various single-cell measurements – end point measurements such as flow cytometry (top) and
dynamic measurements for time-dependent (bottom left) or dose-dependent (bottom right) data series. Although these are all consistent with the hypothetical population-level
measurements shown in a, they illustrate how population-based measurements can fail to distinguish between heterogeneous all-or-none signals (b) and homogeneous
graded signals (c)
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This knowledge of typical single-cell caspase-3 activation
dynamics should influence our interpretation of population-
level measurements of extrinsic apoptosis. For example,
when observing twice as much caspase-3 activity in a sample,
we can reasonably rule out that caspase activity doubled in
each cell and instead conclude that there are twice as many
apoptotic cells. This is a rather context-specific scenario and
experimenters are still encouraged to use single-cell mea-
surements, especially when their conclusions depend on
knowing the distribution of responses within a population.

Importantly, the single-cell observations of caspase activa-
tion dynamics, coupled with computational models of caspase
regulatory networks, have cemented our understanding of
effector caspase regulation during apoptosis.6–8,10,16

Caspase-3 is normally under the tight control of the inhibitory
protein XIAP (X-linked inhibitor of apoptosis protein).
However, after mitochondrial outer membrane permeabili-
zation (MOMP), a key ‘point of no return’ event in both intrinsic
and extrinsic apoptosis,17,18 XIAP is disabled and caspase-9,
an activator of caspase-3, is activated. This, in effect, is as if
the cell simultaneously releases the brake (disabling XIAP)
and presses on the accelerator (activating caspase-9).
MOMP is therefore an event that promotes the ‘snap-action’,
rapid increase in caspase-3 activity characterized in single-
cell assays.6,9,12 Computational modeling predicted, and
subsequent experiments validated, that feedback mecha-
nisms (e.g., via XIAP cleavage, or caspase-6 activation) are
not required for the ‘snap-action’ dynamics.7

Implications of Cell-to-Cell Variability for the
Computational Modeling of Cell Death

Systems biology models of cell signaling and cellular
behaviors have been built using several strategies.19 For
computational models of both extrinsic (ligand-induced) and

intrinsic (damage-induced) apoptosis, strategies include
Boolean or fuzzy logic,20–22 data-driven23–30 or Bayesian
algorithms.31 Each method is suited to a specific type of
question, but the modeling approach that can most easily
relate to the underlying molecular mechanisms is the use of a
system of ordinary differential equations (ODEs). The system
of ODEs mathematically encodes the biochemical reactions
that are understood, or assumed, to take place in a cell death/
survival decision.32,33 Many ODE models of ligand-induced
cell death have been published, simulating and predicting the
cell death response to Fas ligand (FasL), TNF-related
apoptosis-inducing ligand (TRAIL) or tumor necrosis factor
(TNF) with various degrees of details.7,10,34–38

Most ODE models recapitulate a series of biochemical
reactions that take place over time, and therefore simulate
response dynamics in a signaling network. It is worth noting
that one instance of the model represents one instance of the
biochemical network, and thus represents one cell. Accordingly,
simulation results should be compared with experimental
measurements characterizing the dynamic behavior of
single cells.

Which cell should a model attempt to recapitulate: a cell
matching population-averaged measurements or, perhaps, a
‘typical’ cell? Although seemingly fastidious, this is a crucial
decision in the context of models of cell death, principally
because certain measurable steps of the cell death process,
like caspase-3 activation, have an ‘all-or-none’ character, as
we discussed in the previous section. In general, if there is
substantial cell-to-cell variability in the cell death process
being modeled, especially if the cellular responses are
asynchronous, there may not exist any individual cell within
the population that responds with a behavior that tracks the
measured average (Figure 2b). One clear example of the risk
of relying on population-based measurements when deve-
loping ODE models of cell death lies with the concept of an

Box 1 Assessing cell-to-cell heterogeneity using population-based measurements

The traditional interpretation of a result from a population-based assay is that it defines an expected, or mean, cellular
behavior. However, the presence of cell-to-cell heterogeneity can still be revealed through careful experimental design and
thoughtful inspection of population-based data.

Single-cell heterogeneity from dose-response curves

One way to determine if cellular responses vary between cells is to closely inspect dose-response curves, which can be
parameterized with a conventional logistic sigmoid function (equation 1 and Figure Box 1a).

y ¼ Einfþ
E0�Einf

1þ D
EC50

� �HS

0
B@

1
CA ð1Þ

Here, y measures the response of cells at dose D (e.g., viability of cells at a given drug concentration), E0 and Einf are the
theoretical minimal and maximal effects as defined by the top and bottom asymptotes of the response curve, EC50 is the
dose at which the half-maximal effect (E50) is observed and HS is the hill slope coefficient. Although E0 is measurable, as the
effect of the absence of drugs, Einf is estimated from the dose-response curve, or from Emax, the maximal measured effect.
For viability measurements, if the theoretical maximum effect (Einf) is suboptimal and therefore does not reach zero or 100%
(depending on whether the stimulus promotes, or inhibits cell death, respectively), then there must be heterogeneity in the
cell population.
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‘EC50’ (or half-maximal effective concentration). At the EC50

for a certain cell death-inducing drug or ligand, half of the
treated cells die but, in all likelihood, no cell ‘half-dies’.
Therefore, matching a model solely to a population-average
measurement can be a foiled exercise and may yield a model
that does not behave like any cell in the population.

What if the only accessible quantitative data are from
population-based assays? As we discuss in Box 1, recent
work points to ways to analyze population-based data to infer
whether there is heterogeneity in the cellular responses of
interest. This could be done by interpreting a dose-response
curve or by statistical analysis of repeated measurements on

When measuring a signal or an outcome that is not binary or categorical in nature, other more subtle metrics may be more
telling. Recently, Fallahi-Sichani et al.76 showed that for the relative viability of cancer cells treated with phosphatidylinositol-
4,5-bisphosphate 3-kinase (PI3K) pathway inhibitors, a shallow dose-response curve was associated with cell-to-cell
variability in the degree of signal inhibition. For competitive kinase inhibitors, one would expect the dose-response curve to be
well fitted with a HS of B1; a shallow curve would have HS // 1 (e.g., Figure Box 1). Fallahi-Sichani et al.76 found that the
slope of the dose-response curve for some PI3K/Akt/mammalian target of rapamycin pathway inhibitors was particularly
shallow, with HS // 1 for several cancer cell lines. Single-cell analyses showed that the response to these particular PI3K
pathway inhibitors had larger coefficients of variation, indicating greater cell-to-cell variability in the population.

Single-cell heterogeneity from stochastic profiling

Many experimental techniques are sensitive to the abundance of starting material, limiting their usefulness for single-cell
analysis. One clever approach to circumvent these limitations, and infer variability within a population of cells, is to make
several measurements on samples of a few cells (10–20) and quantify the variability between samples. The statistical
approach, referred to as ‘stochastic profiling’, reveals heterogeneity, or more specifically bimodality, in the distribution of
responses across a population of cells.77 Heterogeneity is detected when the distribution obtained from 12 to 15 replicate
measurements from small cell populations is broader than expected from simple sampling and measurement error (Figure
Box 1b).78 Applying this approach, Bajikar et al. used microarray gene expression data from 10-cell samples78 and
maximum-likelihood inference to reveal a surprisingly large spectrum of single-cell regulatory states in mammary epithelial
cells in acinar structures. Some of these regulatory states were common (B25% of the cells in each acinar structure), other
states were rare, (onlyB1 out of 40 cells);79 and therefore not previously observed or described. Single-cell heterogeneities
in gene expression can therefore be deconvolved from population-based experiments by using statistical data models of
expected measurement distributions.
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Figure Box 1. Cell-to-cell heterogeneity can be inferred from population-based data. (a) Schematic of drug dose-
response curves with differing hill slope coefficients (HS). The curves have an increasingly shallow slope as HS becomes
smaller. Hypothetical data points are plotted for the scenario where HS¼ 1 (dark blue curve) and the parameters of the
logistic sigmoid function describing this curve are depicted (E0, E50, Emax, Einf and EC50). (b) Hypothetical distributions for a
homogenously distributed quantitative trait (blue) and for a heterogeneous trait with a bimodal distribution (red) are show at
the top. At the bottom, a reference, or ‘expected’, distribution of population-based measurements for the homogeneously
distributed trait (gray line) is compared with a hypothetical distribution of measurements from small numbers of cells. As the
proportion of ‘high’ versus ‘low’ cells fluctuates from sample to sample, the variability in measurement values is broader than
the reference distribution if the trait has a bimodal distribution (red histogram), indicating the presence of cell-to-cell
heterogeneity.
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small numbers of cells (Box 1). Nevertheless, how should we
then compare model simulation results to population-based
data? One promising approach to modeling heterogeneous
cell responses is to run ‘populations’ of models, to recapitulate
the behavior of populations of cells. In this approach, sets of
many simulations of the same model with variations in
parameters representative of cell-to-cell variability sources
(the sources of this variability are discussed in the next
section) are used to approximate the behavior of an ensemble
of cells.11,39–44 Averaged simulation results can be compared
with population-average measurements, or when single-cell
data are available, sets of simulations can be directly
compared with sets of single-cell data. Toward this end, the
recent development of Bayesian and Monte Carlo Markov
Chain approaches for parameter estimation, where the
distributions of possible parameter values are derived by
calculating the best fits to distributions of single-cell measure-
ments, should prove particularly useful.45

In conclusion, when comparing results from simulations and
experiments, computational modelers should ask: are the
data semiquantitative, quantitative or qualitative? Do the data
provide single-cell information? If so, do they provide
information about single-cell dynamics? Any type of measure-
ment can be useful, but knowledge of its information content
will allow the modeler to compare the data with the appropriate
modeling results. One final point that we have not yet
addressed is that to accurately predict experimental results,
we need to understand, with precision, what activity each
assay measures. Going back to our example of caspase
activation discussed in the previous section, one must know:
(1) whether the assay measures the activity of a specific
caspase or whether it is a measurement of total caspase
activity (even ‘caspase-specific’ substrates tend to have
cross-reactivity with other caspases),46 and (2) whether the
assay measures caspase cleavage, caspase activity or
accumulated caspase cleavage product. For example, it is
known that cleaved poly (ADP-ribose) polymerase, a product
of effector caspase activity is relatively stable, and therefore
can perdure as evidence of past caspase activity. By contrast,
cleaved caspase-3 itself is relatively unstable, and evidence of
its activation can disappear over time if monitored solely via
cleaved caspase-3 abundance. In fact, modeling predicted,
and experiments validated, that the short half-life of caspase-3
is important to the dynamics of cell death: if one deletes the E3
ubiquitin ligase domain of XIAP responsible for tagging
caspase-3 for degradation, cells can lose the ‘snap-action’
cell death dynamics and may survive with damaged proteins
and DNA.8 Just as crucial as comparing population averages
with simulation averages and comparing single-cell data sets
to sets of single model instances, accurate pairing of
measured and modeled entities is key to the development of
high-quality models.

Sources of Cell-to-Cell Variability in Cell Death
Responses

As we remarked in our introduction, the motivation for single-
cell approaches to measurements arose from the observation
that, more often than not, the response to death-inducing
stimuli is variable. What are the sources of this cell-to-cell

variability? Which sources are relevant when building systems
biology models of cancer cell death?

Perhaps the most obvious source of variation in a
population of cancer cells is genetic changes. Almost 100
years ago, the idea of mutations being at the origins of cancer
first emerged (reviewed in Wunderlich47), and so did the
observation that cancer cells tend to lose or gain chromo-
somes.48 It is well established that chromosomal or mutational
genomic instability is one of the hallmarks of cancer, an idea
first proposed nearly 40 years ago (Nowell49; reviewed in
Negrini et al.50). As a result of this genomic instability, tumors
are heterogeneous and even cancer cells in culture accumu-
late mutations, including mutations that lead to anticancer
drug resistance. For example, treatment with epidermal
growth factor receptor (EGFR) kinase inhibitors selects for
cells with mutations in EGFR,51 ABL (Abelson murine
leukemia viral oncogene homolog 1) kinase mutations lead
to resistance of leukemia cells treated with imatinib52 and
mutations in the pro-apoptotic protein Bax (B-cell lymphoma 2
(Bcl-2)-associated X protein) emerge when selecting for cells
resistant to TRAIL.53

When genetic changes directly impinge on the signaling
events and cellular responses represented in a systems
biology model, they must be implemented to obtain accurate
predictions. Different types of mutations require different
changes to a model: (1) if a tumor-suppressor protein species
is lost, it can be removed from the model; (2) if a mutation
instead affects binding or enzymatic activity, the appropriate
reaction rate constants should be modified; (3) if a mutation
affects protein stability, it can be implemented by changing the
parameters for synthesis or degradation or, in a less detailed
model, by changing the concentration of the protein to reflect a
new equilibrium value.

But what if one is modeling a cell population heterogeneous
for a mutation? Then it will become relevant to model a
population of cells, using a mixture of ‘wild-type’ and ‘mutant’
models, as we introduced in the previous section. Another
plausible scenario is that mutations arise as a consequence of
treatment (as they do for the examples listed above). In that
scenario, one could model a population of cells and assign to
each cell a probability for a switch to the mutant phenotype.
Such an approach has been effectively applied to model the
evolution of pancreatic tumors and a model prediction, later
experimentally validated, correctly inferred the effect of
dosing schedule on the acquisition of resistance in lung
cancer.54,55 Efforts such as the Cancer Cell Line Encyclope-
dia project, aiming to catalog genetic mutations and drug
sensitivity, will help customize our computational models to
each experimental model cell line.56

Although ‘fractional kill’, the concept that one round of
chemotherapy generally does not kill all cells in a tumor, can
be partly explained by genetic heterogeneity, we now also
appreciate the importance of non-genetic heterogeneity. A
common idea for a non-genetic cause of fractional kill is that
rapidly dividing cancer cells exhibit different drug sensitivity in
different cell cycle phases. This explanation makes sense for
cytotoxic drugs that target cell cycle processes � taxanes
that target microtubules could preferentially act on mitotic
cells and DNA-damaging agents could be especially toxic for
cells replicating their DNA or already committed to mitosis.
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Indeed, rapidly proliferating cells in the body, such as bone
marrow or hair cells, are specifically targeted by these drugs.
However, although tumor cells do inappropriately proliferate,
the fraction of cells in mitosis at any time within a solid tumor
can be very small, likely too small to explain the amount of cell
death observed with anti-mitotic drug treatment (reviewed in
Mitchison57 and Komlodi-Pasztor et al.58). Therefore,
although cell cycle phase impacts the response of cancer
cells to cytotoxic treatment, other non-genetic sources of
variability are required to explain the observed response of
tumors.

Are other inducers of cancer cell death similarly affected by
variability in cell cycle phase? For apoptosis-inducing ligands,
the cell cycle effect hypothesis has been disproved for
TRAIL,11 but the question is unresolved for FasL and TNF.
Early work had reported that TNF lengthened the G2 phase
and induce death preferentially during or soon after mitosis in
mouse L929 fibroblasts,59 while a later study reported that B
lymphoma cells preferentially die at exit from S phase, and are
more sensitive to TNF-induced apoptosis if treated during
G1.60 The use of single-cell and more quantitative
approaches should allow us to elucidate whether the cell
cycle-associated variability in response to TNF is cell type-
specific or whether there is a generalizable effect.

When cell cycle effects are observed, or hypothesized,
accurate models of the cellular responses to apoptosis-
inducing treatments will have to include them. A rigorous
approach would be to integrate cell-cycle driving pathways
into the model, as was done to investigate the interplay
between cell cycle and DNA-damage response pathways
regulating cell cycle arrest.44 This model predicted, and
experiments confirmed, that knocking out p21 would allow
endoduplication of DNA in about 50% of g-irradiated cells,
showing that the model successfully captured the cell cycle
and DNA-damage response pathway crosstalk.44 A simpler
approach to integrate cell cycle effects would be to simulate a
population of models with a data-based distribution of cell
cycle phases while including, for each cell cycle phase, a
probability that quantifies the likelihood of pathway activation.

Cell cycle phase is an example of a potential source of
variability outside the cell death signaling networks, but what
about variability within these networks? It is now appreciated
that the general biochemical ‘state’ of all cells is somewhat
plastic, because transcription occurs in stochastic bursts.61,62

This ultimately results in variability in the abundance of all
proteins both across a cell population and in the same cell
over time (e.g., as observed in Cohen et al.63). Therefore,
even a deterministic cell death process – which always has
the same outcome if starting conditions are the same – can
have a variable outcome because each cell starts with
different initial protein concentrations. Notably, because the
state of each cell changes over time, this plasticity actually
allows cell populations decimated by a death-inducing
stimulus to repopulate and recapitulate the sensitivity profile
of the original population after a few days.11,64

How can this noise in gene expression be incorporated into
models of cell death? The most faithful, if cumbersome,
representation would be to model the synthesis of each
protein from first principles, with bursts of transcription.
An effective alternative approach is to model a population of

cells, as introduced above, by sampling from measured
distributions of protein concentrations to build a ‘population’ of
models.11,39–42 This approach can be used to mimic any
measurable, or hypothesized, cell-to-cell variability in protein
abundance, whether from noise in gene expression or, for
example, from longer-lasting chromatin-encoded epigenetic
changes, which have been shown to impact the response of
genetically equivalent tumor cells to chemotherapeutics
in vitro65,66 and in xenograft models (Kreso et al.67; reviewed
in Marusyk and Polyak68).

In summary, both genetic and non-genetic sources of cell-
to-cell variability that impact the response to anticancer
agents have already been identified. Additional sources of
variability certainly exist in vivo; for example, the microenviron-
ment differences across different regions of a solid tumor that
could influence how cancer cells respond to anticancer drugs
(reviewed in Hanahan and Weinberg69). To design effective
cancer treatments, we will have to account for these diverse
forms of variability and incorporate them into our systems
biology models of cancer treatments. Although this may seem
like a daunting task, as long as we can measure the source of
variability we can also model its impact on cellular responses,
whether the variability arises from outside or inside the
signaling network of interest.

Master Regulator versus Multifactorial Regulation – A Road
to Combinatorial Anticancer Therapies

Above, we discussed possible sources of cell-to-cell hetero-
geneity and examples of approaches to account for them in
systems biology models. But is that complexity necessary?
What if there was a single master regulator of the cell death
decision process, a single source of variability? In the
apoptosis literature, there are countless examples of correlat-
ing cell fate with the abundance of a key protein. When
Khaider et al.70 reviewed factors contributing to TRAIL
resistance, they found articles citing the importance of
receptor abundance, receptor trafficking, abundance of
Bcl-2, Bim (Bcl2-interacting mediator gamma), BID (BH3
interacting-domain death agonist), PUMA (p53 upregulated
modulator of apoptosis), Noxa, BAD (Bcl-2 antagonist of cell
death), Mcl-1 (myeloid leukemia cell sequence 1), Bcl-xl (B-cell
lymphoma-extra large), FLIP (FLICE (FADD-like IL-1b-con-
verting enzyme)-inhibitory protein), STAT5 (signal transducer
and activator of transcription 5), pro-caspase-8, pro-caspase-3,
FADD (Fas-associated protein with death domain), p53 and
even constitutive Akt activation. Which, if any, of these
cited studies identified the correct ‘master regulator’ of
TRAIL-induced cell death versus survival decisions?
Perhaps tellingly, several implicated two or more regulators.
Taken together, these studies suggest that the regulation of
cell death is highly context dependent and multifactorial.
Although purely experimental approaches often necessarily
take a reductionist view to identify a key regulator in a specific
context, systems biology models that formalize our
accumulated knowledge will enable a multivariate view of
the system, and ultimately allow reconciliation of many
experimental findings.

The multifactorial nature of cell death decisions is a
powerful rationale for pursuing combinatorial anticancer
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therapies, where one drug sensitizes cancer cells to the action
of the other. For example, although TRAIL-based mono-
therapies have proven unsuccessful, many different co-
drugging strategies are being investigated (reviewed in
Hellwig and Rehm71). Essentially, each drug changes the
biochemical ‘state’ of each cell over a period of time. This
‘state’ is determined by factors such as the relative abundance
of signaling proteins or cell cycle phase and the values of
these factors can be used to plot the location of each cell in a
multidimensional ‘state-space’. Co-drugging chemotherapeutic
strategies aim for one drug to shift cancer cells from a
state-space region where they are resistant to the second
drug to one where they are sensitive (Figure 3a). Models and
experiments can help us map this state-space and predict the
most promising co-drugging interventions.

State-space mapping of cellular responses to death-
inducing stimuli will necessitate predictive, well-validated
models. For ligand-induced apoptosis, high-quality models
exist and mapping results are emerging. For example,
Howells et al.72 created a model to identify which cellular
parameters determine whether abundance and phosphoryla-
tion of BAD, a pro-apoptotic Bcl-2 family protein, influence
MOMP and ultimately cell fate. Although not yet experimen-
tally validated, this model helps predict scenarios where BAD-
mimicking drugs would increase sensitivity to death-inducing
ligands. In this study, a cellular response map was derived

from bifurcation analysis, a mathematical method that maps
where steady-state cellular responses transition from one to
another (e.g., to map the blue plane separating ‘resistant’ and
‘sensitive’ states in Figure 3a). However, not all apoptosis-
inducing signals evolve to a steady state. When transient
events dominate the cell death decision, bifurcation analysis
becomes inadequate. For the response of cells to CD95
(cluster of differentiation 95, also known as Fas receptor)
activation, Neumann et al.36 aptly used forward model
simulations, predicting system behavior within a multidimen-
sional grid of initial conditions, to map regions of the cellular
FLIP (c-FLIP) versus pro-caspase-8 space that lead to strong
activation of pro-survival (NF-kB) nuclear factor kappa-light-
chain-enhancer of activated B cells signaling versus pro-
apoptotic caspase-3. This map predicted how to manipulate
c-FLIP and/or caspase-8 abundance or activity to promote cell
death, and these predictions were confirmed experimentally
using genetic manipulations to vary protein abundance and
small molecule inhibitors of caspases to manipulate caspase
activity.36

A third method, the calculation of Lyapunov exponents, can
similarly be applied to highlight where system (or cellular)
behavior diverges in state-space (see also overview in Box 2
of Aldridge et al.8). Lyapunov exponents were applied to a
seven-dimensional state-space of a computational model of
TRAIL-induced cell death and predicted that the cellular
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Figure 3 Multivariate and dynamic analyses of cell state to predict synergistic effects of drug regimens on cellular responses. (a) Hypothetical three-parameter ‘state-
space’ maps showing the position of a population of cells (blue), as well as the plane separating regions of state-space leading to sensitivity (back) or resistance (front) to
treatment. Here ‘parameters’ could quantify the abundance or activity of certain proteins, for example. In the scenario illustrated here, the values of parameters 1 and 2 are
found to govern the sensitivity of the cells to a given drug. The middle graph shows the results of a moderately successful intervention, which results in many cells becoming
sensitive to the drug. The graph on the right shows a successful intervention where the entire population becomes sensitive. Note that interventions can also lead to changes in
other parameters, such as parameter 3, which do not affect the sensitivity of the population. (b) Graphs showing hypothetical cell death response surfaces for treatment with
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concentration of several proteins, namely ligand, receptor,
initiator caspases-8 (and -10), XIAP and caspase-3 influenced
whether or not cells required MOMP to commit to extrinsic
apoptosis.8 Experiments confirmed that, indeed, XIAP to
caspase-3 ratio and ligand concentration were major deter-
minants of the requirement for MOMP. Interestingly, another
prediction from this analysis was that while in certain
biochemical contexts (or regions of state-space), cell-to-cell
variability in XIAP and caspase-3 concentration should cause
phenotypic cell-to-cell variability, in other contexts all cells
were predicted to have the same phenotype. This was
validated experimentally by showing that whereas the fraction
of MOMP-dependent cells in the T47D breast carcinoma line
was ligand concentration dependent, other cell lines, such as
the SKW6.4 B-cell lymphoma line, had no phenotypic
heterogeneity and were even insensitive to overexpression
of XIAP.8 This context dependence of the impact of variability
in protein abundance on cellular responses likely arises in part
from the underlying network topology and can be explored
using state-space maps (see also Gaudet et al.39).

Using these mapping approaches and others, we can start
to understand how to maximize the impact of co-drugging
strategies by re-positioning cancer cells into region of the
‘state-space’ where the entire population is drug sensitive
(Figure 3a). As discussed above, in concept, drug treatments
shift the biochemical ‘state’ of a cell. This shift is dynamic and
thus the position of cells will depend on time since drug
addition. Lee et al.23 expertly demonstrated this principle, a
process they refer to as dynamic network rewiring. They
optimized relative timing and sequence of drug addition
(Figure 3b); over time, the first drug ‘rewires’ the signaling
network, by moving cells within state-space, maximizing
responses to subsequent drugs. They found that treatment
with the EGFR inhibitor erlotinib 4 h before addition of
doxorubicin, a conventional DNA-damaging chemotherapy,
markedly enhanced killing of triple-negative breast cancer
cells compared with either drug alone, both drugs added
simultaneously, or doxorubicin preceding erlotinib.23 A data-
driven model was built from systematic time-dependent
measurements within the responsive signaling networks
following EGFR inhibition by erlotinib, and the model identified
a key predictive dynamic biomarker for cell sensitization. Late
increase in cleaved caspase-8 was specifically associated
with synergistic effects of sequential erlotinib–doxorubicin
treatment, likely indicating reactivation of otherwise dysregu-
lated extrinsic apoptosis.23 Although no simple systematic
way exists to probe whether synergy could arise from specific
sequential or co-drugging regimens, it is clearly a promising
frontier for the systems biology of anticancer treatments.

The shape of cleaved caspase-8 accumulation over time is
a biomarker for the synergistic response to sequential erlotinib
and doxorubicin treatment, and there are other examples
where signaling dynamics encode information for cellular
responses. One striking example involves the p53 tumor
suppressor: in single cells, g-irradiation induces oscillations in
p53 nuclear abundance and cell-cycle arrest, while ultraviolet
treatment induces sustained p53 nuclear localization and
apoptosis (reviewed in Purvis and Lahav73). Could pharma-
cological interventions that manipulate signaling dynamics be
used to induce specific cell fates? Purvis et al.74 showed that

this could be done for p53: as predicted by their model, timed
treatments with nutlin-3, an inhibitor of MDM2 (mouse double
minute 2 homolog)-directed degradation of p53, forced
sustained elevated nuclear abundance of p53 after g-
irradiation, resulting in cell death. Such manipulations could
also apply to other well-characterized systems, as enticingly
proposed by Behar et al.75 They used computational models
to virtually screen for conditions yielding specific dynamics,
then applied their findings to NF-kB-driven transcription. They
found that, as predicted by their analysis, different inhibitor
treatments yielded stimulus-specific effects on early versus
late NF-kB target gene expression.75 By combining accurate
measurements of cell ‘states’ and single-cell response
dynamics, we can learn how signaling dynamics encode cell
fate, and use models to predict how to manipulate these
dynamics to obtain the desired cellular outcomes.

Conclusion

There is an oft-quoted phrase from George EP Box, a British
statistician, stating that ‘all models are wrong, but some are
useful’. As models are by necessity an approximation of
reality, all models are ‘wrong’. However, when carefully
developed and solidly anchored in high-quality data, models
can be predictive, leading to testable and falsifiable hypoth-
eses and thereby allowing us to learn about the system under
study. Here we have discussed the frequently observed
phenotypic heterogeneity in the response of human cells to
various death-inducing stimuli as well as the sources of this
variability and implications for measuring and modeling cell
death. We are entering an era of ‘biology in the second
moment’ where the focus is not the average, or dominant,
behavior exhibited by a population of cells, but rather the focus
is on the variance, and we anticipate that this new focus will
continue to contribute to our understanding of the regulation of
cell death in health and disease.
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