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Abstract

Mechanisms that generate transcript diversity are of fundamental importance in eukaryotes. Although a large fraction of
human protein-coding genes and lincRNAs produce more than one mRNA isoform each, the regulation of this phenomenon
is still incompletely understood. Much progress has been made in deciphering the role of sequence-specific features as well
as DNA-and RNA-binding proteins in alternative splicing. Recently, however, several experimental studies of individual
genes have revealed a direct involvement of epigenetic factors in alternative splicing and transcription initiation. While
histone modifications are generally correlated with overall gene expression levels, it remains unclear how histone
modification enrichment affects relative isoform abundance. Therefore, we sought to investigate the associations between
histone modifications and transcript diversity levels measured by the rates of transcription start-site switching and
alternative splicing on a genome-wide scale across protein-coding genes and lincRNAs. We found that the relationship
between enrichment levels of epigenetic marks and transcription start-site switching is similar for protein-coding genes and
lincRNAs. Furthermore, we found associations between splicing rates and enrichment levels of H2az, H3K4me1, H3K4me2,
H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3, H3K36me3, H3K79me2, and H4K20me, marks traditionally associated
with enhancers, transcription initiation, transcriptional repression, and others. These patterns were observed in both normal
and cancer cell lines. Additionally, we developed a novel computational method that identified 840 epigenetically regulated
candidate genes and predicted transcription start-site switching and alternative exon splicing with up to 92% accuracy
based on epigenetic patterning alone. Our results suggest that the epigenetic regulation of transcript isoform diversity may
be a relatively common genome-wide phenomenon representing an avenue of deregulation in tumor development.
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Introduction

Molecular processes such as alternative splicing and transcrip-

tion start-site switching are primary drivers of transcript diversity.

About 95% of the ,23,000 human genes are estimated to produce

more than one mRNA isoform [1]. Beyond the genes with protein-

coding potential, recent discoveries suggest that the approximately

8,000 large intergenic noncoding RNAs (lincRNAs) found in the

human genome generate on average 2.3 isoforms per lincRNA

locus [2].

The analysis of transcript diversity regulation has traditionally

focused on splicing factors and RNA sequence features such as

splicing enhancers and silencers [3,4]. In recent years, however,

experimental studies have expanded to include other regulatory

factors such as histone modifications, suggesting that epigenetic

features may have the ability not only to determine when and in

which tissues certain genes are expressed, but also to influence how

these transcripts are processed. Genome-wide analyses indicate

that nucleosomes and histone modifications are not randomly

distributed, but often coincide with exon boundaries [5–7]. This

observation, combined with recent evidence that most events of

alternative splicing in human cells occur co-transcriptionally [8,9],

strongly suggest a regulatory potential of histone marks [2,10].

While the connection of epigenetic regulation with overall gene

expression has largely been elucidated [11–14], it is much less

clear whether and how epigenetic marks determine relative

isoform abundance. Qualitative and quantitative models have

been built to predict expression on the level of genes using histone

modification enrichment information alone [15]. Interestingly, a

quantitative prediction model based on histone modification

enrichment outperforms models based on transcription factor

binding [15]. However, a systematic evaluation of the association

of epigenetic marks with transcription start-site switching and

splicing frequency is still lacking in the literature. Work by Ernst et

al. [16,17], who classified chromatin states to functionally annotate

the genome, identified a combination of histone modifications,

which were associated with transcription start site and spliced

exons. However, since in this work, the histone mark ChIP-seq tag

counts were processed into binary presence and absence calls and

since isoform abundance was not estimated from the expression
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data, the critical question remains whether different levels of

epigenetic enrichment are associated with the rates of transcription

start-site switching and splicing.

In addition to elucidating the epigenetic regulation of

transcript diversity, further open questions remain. These

questions pertain for instance to the genome-wide prevalence of

epigenetic regulation of transcript diversity generated via

alternative splicing or transcription start-site switching. Further-

more, it is unclear to what extent the involvement of epigenetic

marks in the regulation of transcript diversity is gene-specific, ie.

whether individual genes respond to different histone marks or

whether there is a ‘‘universal’’ set of marks for alternative

splicing. Several studies aimed at deciphering the association

between histone modifications and alternative splicing on a

genome-wide scale [18–22] but relied solely on gene annotation

for the assignment of alterative splicing events rather than on a

comprehensive transcription analysis [22], or with no more than

three cell lines lacked the breadth of conditions analyzed

[18,19,21]. Finally, the association of epigenetic patterning with

transcript diversity in cancer cells has not been analyzed

methodically in a genome-wide manner; however, understanding

the prevalence of this phenomenon is of particular importance in

cancer where cells are known to undergo vast epigenetic

aberrations [23]. Indeed, epigenetically divergent regions in

cancer cell lines are enriched for cancer-associated genes

(Module S1 in Text S1).

Here, we sought to perform a detailed study investigating the

association between histone modification enrichments and the

processes that influence isoform abundance – transcription start-

site switching and splicing – on a genome-wide level (Fig. 1A
and Table 1). We further developed a novel approach that

identified a set of 840 genes for which transcription start-site

switching and splicing was strongly associated with at least one

epigenetic mark. We also showed that histone modification

enrichment alone can predict exon splicing and transcription

start-site switching with up to 92% accuracy in an independent

sample set. Our work strongly suggests a broad-scale involvement

of epigenetic factors in transcription start-site switching and

alternative splicing.

Results

Data sets and analyses
We examined RNA-seq data from nine human cell lines

(Gm12878, Hsmm, Huvec, Hepg2, Helas3, K562, H1hesc, Nhek,

Nhlf) (http://genome.ucsc.edu/ENCODE/), of which six were

normal (Gm12878, Hsmm, Huvec, H1hesc, Nhek, Nhlf) and three

were cancer cell lines (Hepg2, Helas3, K562). For all nine cell

lines, we obtained information of the genome-wide patterns of the

following twelve histone marks: H3K4me1, H3K4me2,

H3K4me3, H3K9ac, H3K9me1, H3K9me3, H4K20me1,

H3K27ac, H3K27me3, H3K36me3, H3K79me2, H2az.

Our analysis of the association between histone enrichment

and transcript diversity utilized two different approaches: (i) a

genome-wide approach, and (ii) an exon-specific approach. The

genome-wide method analyzes each cell line individually and

investigates all exons with a given characteristic (i.e. spliced, not

spliced, transcription start site exon, etc.) at once, irrespective of

the gene of origin. The exon-specific approach, in contrast,

analyzes one exon at a time across multiple cell lines. The latter

approach is able to identify candidate exons or genes with

potential epigenetic regulation of transcription diversity and is

analogous to an experimental setup in which each cell line

represents an experimental condition (i.e. varying levels of

histone modification enrichment) resulting in a particular exon

inclusion or transcription start site outcome. The genome-wide

approach requires a set of assumptions (see Discussion section);

however, due to the large sample size of exons, it may uncover

associations that would otherwise not be significant at a single

gene level. With sufficiently many samples and sequencing

depth, the patterns of associations uncovered by both approach-

es converge.

The splicing exon inclusion rate and transcription start
site inclusion rate

To assess the level of transcript diversity in the human

genome, we analyzed RNA-seq data from nine human cell

lines and quantified the abundance of specific mRNA isoforms

for each protein-coding gene and lincRNA. We mapped and

assembled the transcriptome of each cell line using the

TopHat2 and Cufflinks2 softwares [24,25], respectively, using

merged UCSC reference annotation with lincRNA annotation

from Cabili and colleagues [2] as a set of assembly models (see

Methods). In order to minimize confounding issues, for

instance with the misalignment of RNA-seq reads, we excluded

paralogs that were more than 95% identical on the DNA

sequence level. Exons were grouped into four categories:

transcription start site, internal, transcription end site, or

overlapping exons. Only internal and transcription start site

exons were used for further analysis. The level of expression of

an internal and transcription start site exon was quantified by

calculating the splicing exon inclusion rate (SEIR, ranging

from 0 to 1) and transcription start site inclusion rate (TSSIR,

ranging from 0 to 1) respectively, both of which reflect the

proportion of transcripts containing a given exon at a given

gene locus (Fig. 1B). An SEIR of 0 implies that a given exon is

always spliced in all expressed isoforms of a gene, whereas an

SEIR of 1 implies that a given exon is always retained. A

TSSIR of less than 1 signifies that a given exon occasionally

represents the first exon of an expressed isoform, whereas a

TSSIR of 1 indicates that a given exon serves as the

transcription start site for all expressed isoforms. The SEIR

and TSSIR measures therefore identify exons contributing to

transcript diversity of a given gene.

Author Summary

Traditionally, the regulation of gene expression was
thought to be largely based on DNA and RNA sequence
motifs. However, this dogma has recently been challenged
as other factors, such as epigenetic patterning of the
genome, have become better understood. Sparse but
convincing experimental evidence suggests that the
epigenetic background, in the form of histone modifica-
tions, acts as an additional layer of regulation determining
how transcripts are processed. Here we developed a
computational approach to investigate the genome-wide
prevalence and the level of association between the
enrichment of epigenetic marks and transcript diversity
generated via alternative transcription start sites and
splicing. We found that the role of epigenetic patterning
in alternative transcription start-site switching is likely to
be the same for all genes whereas the role of epigenetic
patterns in splicing is likely gene-specific. Furthermore, we
show that epigenetic data alone can be used to predict the
inclusion pattern of an exon. These findings have
significant implications for a better understanding of the
regulation of transcript diversity in humans as well as the
modifications arising during tumor development.

Epigenetic Effect on Transcript Isoform Diversity
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Transcriptome-wide association of histone mark
enrichment with TSSIR and SEIR

We hypothesized that, if histone modification enrichment

patterns play a significant role in transcript diversity, then the

levels of transcription start-site switching and splicing should

correlate with the enrichment levels of certain histone modifica-

tions within each cell line analyzed. We therefore investigated the

transcriptome-wide association between histone mark enrichment

and TSSIR and SEIR within each cell line. To address the

possibility that transcript diversity in cancer cell lines is regulated

differently as compared to that in normal cell lines, we quantified

the level of association in the normal cell lines first and then

assessed the degree of similarity in this pattern between normal

and cancer cell lines. To this end, we determined the expression

profiles as well as histone modification enrichment for all

annotated exons of protein-coding genes and lincRNAs in the

normal cell lines (Methods). Out of the twelve histone marks

examined, seven (H3K4me1, H3K4me2, H3K4me3, H3K9ac,

H3K27ac, H3K79me2, and H2az) showed a strong positive

association with transcription start-site switching for both protein-

coding genes and lincRNAs (Fig. 1C and 1D). Although the

involvement of H3K4me2 and H3K4me3, H3K9ac, and

H3K27ac in transcription initiation was expected given the

findings of previous studies [16,17], the presence of H3K79me2

and H2az was not anticipated. These results suggest that the

transcription initiation of both protein-coding genes and

lincRNAs is probably regulated via similar molecular mecha-

nisms.

Figure 1. Analysis workflow and association between histone modification enrichment and transcription start site inclusion rate.
(A) Schematic of the analysis workflow employed in this study. (B) The exon inclusion rate (SEIR and TSSIR) represents the proportion of transcripts of
a given gene stemming from a given exon. In this example, three transcripts representing three different splice forms are generated from a single
gene. The three isoforms are generated via two transcription start sites and one splicing event. Exon 1 is present in two transcripts, and since it is a
transcription start site (TSSIR = 0.67). Exon 2 is present in three transcripts and is a transcription start site for one of the isoforms (TSSIR = 0.33). Exon 3
is present two transcripts and is spliced out in one isoform (SEIR = 0.33). Lastly, exon 4 is a transcription end site and is not considered in our analysis.
(C) and (D) are correlations between transcription start site inclusion rate and enrichment of selected histone modifications in normal cell lines for
protein coding genes and lincRNAs, respectively. Black dots represent median Spearman rank correlations between exon inclusion rate and
H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K27ac, H3K79me2, H3K36me3, and H2az enrichments in normal cell lines. All correlation coefficients were

transformed using a Fisher’s transformation before plotting. Notches were calculated as +1:58|
IQRffiffiffi

n
p

� �
where IQR stands for inter quartile range

and n for sample size. Distances from exon represent genomic blocks of a given size from exon start (upstream regions) or exon end (downstream

regions).
doi:10.1371/journal.pcbi.1003611.g001

Epigenetic Effect on Transcript Isoform Diversity
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The transcription profiles of the nine cell lines revealed that

many protein-coding genes as well as lincRNAs undergo

alternative splicing. Given the fact that transcription start-site

switching occurs in a similar epigenetic background for protein

coding genes as well as lincRNAs, we then sought to investigate

whether splicing in protein-coding genes and lincRNAs is also

associated with a similar set of histone marks. We found that

splicing in protein-coding genes was most strongly positively

correlated with the enrichment of H3K36me3 and negatively

correlated with H3K4me2 and H3K4me3 (Fig. 2A). H3K36me3

has been previously found to mark actively transcribed regions and

to regulate the splicing of FGFR2 [26], thus confirming our

results. However, splicing of lincRNAs did not reveal any

association with histone mark enrichment (Fig. 2B), suggesting

that splicing of non-coding RNAs is either independent of the

epigenetic background, involves sequence-specific regulation,

and/or occurs post-transcriptionally.

We then aimed to investigate whether this pattern was

consistent when taking into account exon number per gene, gene

expression patterns, and genomic features such as simple repeats,

microsatellites, and conserved elements. Controlling for these

factors, the correlations between TSSIR and H3K4me2 as well as

H3K9ac were very robust, varying for instance in the Gm12878

cell line between 0.35,r,0.37 for H3K4me2 (uncontrolled

correlation r= 0.37) and between 0.35,r,0.38 for H3K9ac

(uncontrolled correlation r= 0.37). Similarly, controlling for

H3K9ac enrichment reduced the correlation between TSSIR

and H3K4me2 by only 0.5%, and controlling for H3K4me2

enrichment reduced the correlation between TSSIR and H3K9ac

by only 3.18%. These observations suggest that, while the

interplay between transcript diversity and epigenetics probably

involves many other factors, which might occlude the signal, the

association between the SEIR and specific histone marks is

genuine.

Spatial patterns of correlation between histone
enrichment, TSSIR, and SEIR

Recently, a study examining the alternative splicing of CD45

showed that molecular interactions as far as 1 kb downstream of

exon 5 affected its inclusion rate [27]. To investigate how

epigenetic marks at a distance from exons influences transcript

diversity on a genome-wide scale, we analyzed histone enrichment

profiles at distances of 1 kb, 2 kb, and 5 kb immediately upstream

and downstream of the exon locus (Methods). We identified

pronounced differences in spatial patterns of correlation strength

between the previously identified histone marks H3K4me1 and

H3K79me2 and the TSSIR of protein-coding genes in normal

cells (Fig. 1C). For example, the correlation between TSSIR and

H3K4me1 at the exon locus was very weak (z0 kb = 0.09) but rose

to much higher levels as close as 1 kb upstream and downstream

of the spliced exon (z21 kb = 0.28, z1 kb = 0.28); this level of

correlation was also observed for distances of 2 kb and 5 kb

upstream and downstream of the exon (z25 kb = 0.22,

z22 kb = 0.29, z2 kb = 0.33, z5 kb = 0.30). Interestingly, a very

different spatial pattern was observed for the histone mark

H3K79me2, for which the correlation between TSSIR and

histone enrichment upstream and at the exon locus was weak

(z25 kb = 0.03, z22 kb = 0.07, z21 kb = 0.08, z0 kb = 0.15), but be-

came much stronger at distances of 1–5 kb downstream of the

exon (z1 kb = 0.26, z2 kb = 0.27, z5 kb = 0.26). The spatial pattern of

correlation between H3K4me1 enrichment and TSSIR for

lincRNAs was less pronounced (Fig. 1D), showing lower levels

of correlation at the exon locus compared to up- and downstream

regions (z25 kb = 0.17, z22 kb = 0.18, z21 kb = 0.15, z0 kb = 0.13,

z1 kb = 0.19, z2 kb = 0.20, z5 kb = 0.19).

The only spatial pattern evident for an association between

histone enrichment and SEIR was observed for H3K36me3

(Fig. 2A). While the correlation outside the exon boundaries

ranged from 0.30,z,0.36, the correlation at the exon locus itself

was slightly diminished to z0 kb = 0.26. It remains unclear which

factors drive the spatial distribution of H3K36me3; for example,

Luco et al. showed that H3K36me3 interacts with the FGFR2 pre-

mRNA via the MRG15/PTB chromatin-adaptor complex, which

regulates the inclusion rates of alternatively spliced IIIb and IIIc

exons [28]. Work by others has further showed that additional

proteins can act as ‘‘chromatin-adaptors’’ [29–32]. The question

remains to what extent different chromatin adaptor complexes

regulate splicing and which nucleosomes they interact with. A

possible explanation of why the correlation of H3K36me3 with

SEIR is diminished at the exon locus may lie in the position,

relative to the exon, where different chromatin adaptors assemble

and interact with H3K36me3 to regulate splicing. Further

complicating the situation is a recent report demonstrating

opposite causality, where alternative splicing was shown to

modulate the levels of H3K36me3 enrichment [33,34]. We

observed no obvious spatial patterns between histone enrichment

and splicing for lincRNAs (Fig. 2B).

Overall, our observations suggest that histone mark enrichment

is associated with transcription start site exon inclusion and

splicing and has a strong spatial signature. In addition to these

analyses, we performed several control studies to establish that our

results are genuine. First, our findings were robust even after

controlling for gene expression, exon number, and genomic

features such as simple repeats, microsatellites, and evolutionary

Table 1. Summary of datasets used in this study.

Feature Data type Cell type Source

Gene expression RNA-seq Gm12878, Hsmm, Huvec, Hepg2,
Helas3, K562, H1hesc, Nhek, Nhlf

ENCODE

Histone modification ChIP-seq for H3K4me1, H3K4me2,
H3K4me3, H3K9ac, H3K9me1, H3K9me3,
H4K20me1, H3K27ac, H3K27me3,
H3K36me3, H3K79me2, H2az

Gm12878, Hsmm, Huvec, Hepg2,
Helas3, K562, H1hesc, Nhek, Nhlf

ENCODE

lincRNA annotation GTF human genome version hg19 Ref. 2

Gene annotation GTF human genome version hg19 www.genome.ucsc.edu

ENCODE – data generated by the ENCODE consortium [8], available at http://genome.ucsc.edu/ENCODE/downloads.html.
GTF – gene transfer file format used for human genome annotation.
doi:10.1371/journal.pcbi.1003611.t001
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conservation. Although the overall correlation between both

TSSIR and SEIR and various histone modifications was moderate

transcriptome-wide, the rapid change of correlation over short

distances from exons and consistent patterns across multiple cell

lines suggest an authentic relationship.

TSSIR, SEIR, and histone marks in cancer cells
Since cells accumulate many genetic and epigenetic aberrations

during tumorigenesis [23,35–37], normal and cancer cells may

differ substantially in their epigenetic regulation of transcript

diversity. To investigate this possibility, we studied whether the

association between TSSIR, SEIR and histone modifications in

cancer cell lines followed similar patterns as those observed in the

normal cells. We thus repeated the analyses described above using

the cancer cell line data and tested for significant differences

between the results using normal and cancer cell data for both

protein-coding genes as well as lincRNAs. Remarkably, protein-

coding genes in cancer cell lines displayed very similar patterns of

association between the TSSIR and histone modifications as

normal cell lines; the histone marks H3K4me1, H3K4me2,

H3K4me3, H3K9ac, H3K27ac, H3K79me2, and H2az, which

we previously found to be highly correlated in normal cell lines,

were also highly correlated with TSSIR in cancer cells (Fig. 2C
and 2D). Their correlation profiles across upstream and

downstream exon regions also did not significantly differ from

those of normal cell lines (T-test, 0.13.p.0.89 across all 25 kb,

22 kb, 21 kb, 0 kb, 1 kb, 2 kb, and 5 kb regions). Similarly, the

other comparisons between normal and cancer cells, for both

protein-coding genes and lincRNAs, did not show significant

differences either (see Fig. 2, Table S1–S4 in Text S1, and
Figure S5 in Text S1). These findings imply that the same

histone modifications are associated with transcript diversity in

both normal and cancer cells and that perturbation of the

epigenetic environment via experimental manipulation in normal

cells would potentially be informative of cancer cells.

Gene-specific association of histone mark enrichment
with TSSIR and SEIR

So far, our transcriptome-wide and within-cell line approach

identified an association between TSSIR, SEIR and histone

Figure 2. Comparison of epigenetic association between normal and cancer cell lines. We analyzed (A–C) six normal human cell lines
(Gm12878, Hsmm, Huvec, H1hesc, Nhek, Nhlf) and (D) three cancer cell lines (Hepg2, Helas3, K562) for associations between transcription start site
inclusion rate and splicing exon inclusion rate and histone modification enrichment for protein-coding genes (A,C, and D) and lincRNAs (B). Values
represent the average of Fisher transformed Spearman rank correlations to enable direct comparison. Coefficients are color-coded, with red
representing increasingly negative and green representing increasingly positive correlation. Distance from exon categories signifies a region relative
to a given exon where histone enrichment was measured; 0 kb represents region within given exon boundaries, and 1 kb, 2 kb, and 5 kb signify
regions from the exon boundary either upstream (negative) or downstream (positive).
doi:10.1371/journal.pcbi.1003611.g002

Epigenetic Effect on Transcript Isoform Diversity
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enrichment across all exons but was unable to identify individual

candidate genes with epigenetically regulated transcript diversity.

We thus aimed to complement our investigation with a method

that analyzes each exon individually across multiple cell lines. This

approach is able to determine candidate genes with potential

epigenetic regulation of transcript diversity and is analogous to an

experimental setup where each cell line represents an experimental

condition (i.e. varying levels of histone modification enrichment)

resulting in a particular exon inclusion outcome. For example, the

gene HPS4 (Hermansky-Pudlak syndrome gene 4) is expressed in

all nine cell lines; its 3rd exon is always excluded (SEIR = 0) in all

HPS4 isoforms in H1hesc, Helas3, Hsmm, Huvec, and Nhlf cells,

but is only occasionally included (0.03,SEIR,0.15) in Gm12878,

Hepg2, K562, and Nhek cells (Fig. 3). Interestingly, the cell

lines that always exclude this exon do not show a significant

enrichment for H3K4me2 within exon boundaries (Fig. 3),

whereas the remaining cell lines do and the difference between

these two groups is significant (T-test, FDR-corrected p,0.003,

Methods).

We thus analyzed all exons across all cell lines in a similar

fashion, first only taking into account histone enrichment at the

exon locus. Given the TSSIR and SEIR values across cell lines,

each exon may be constitutively excluded (TSSIR = 0 and

SEIR = 0), occasionally excluded (TSSIR.0 and SEIR,1), or

retained (TSSIR = 1 and SEIR = 1). We then directly compared

the histone modification levels for the inclusion pattern of a given

exon across all available cell lines. The three possible two-way

comparisons are: i) cell lines in which a given exon is always

excluded versus retained (TSSIR = 0 vs. TSSIR = 1 or SEIR = 0

vs. SEIR = 1), ii) cell lines in which a given exon is retained versus

occasionally excluded (TSSIR = 0 vs. 0,TSSIR,1 or SEIR = 0

vs. 0,SEIR,1), and iii) cell lines in which a given exon is

occasionally excluded versus retained (0,TSSIR,1 vs.

TSSIR = 1 or 0,SEIR,1 vs. SEIR = 1). Unfortunately, since

the number of cell lines with available histone modification was

limited, the power of this test was low. Nonetheless, given our

stringent criteria (Methods), we identified 840 genes for which

transcript diversity was significantly associated with histone

Figure 3. Differential H3K4me2 enrichment near exon 3 of HPS4. The HPS4 gene produces up to 8 isoforms. Three of these isoforms
(isoforms 2, 3, and 8 – TSS exon marked with red dashed line) utilize the 3rd exon as the transcription start site (TSS) and four isoforms (isoforms 4–7,
exons marked with green dashed line) utilize the 3rd exon as an internal exon. Considering the H3K4me2 modification within the exon 3 TSS
boundaries (red dashed lines), the enrichment significantly differs between cell lines in which no isoforms with TSS at the 3rd exon position (isoforms
2, 3, and 8) are expressed (EIR = 0) and cell lines that express isoforms with TSS at the 3rd exon position.
doi:10.1371/journal.pcbi.1003611.g003
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modification enrichment at the exon locus (Supplementary
Dataset S1). Specifically, 399 and 473 genes displayed a

significant association between splicing and transcription start-site

switching, respectively. Note that a single gene can be significant

for the association between epigenetic patterning and both splicing

and transcription start-site switching. To understand whether

obtaining 840 candidate genes was a result of chance, we

performed 1000 permutations by randomly reassigning exon

labels for TSSIR and SEIR while keeping the epigenetic

background of a gene constant. Observing 840 candidate genes

in total was significantly higher (p,0.001) as compared to what

was expected by chance (Fig. 4). These 840 genes were enriched

for several GO terms (Table S6 in Text S1) including the

regulation of the response to stimulus and development process.

Thirty three of these genes were cancer-associated genes

(Supplementary Dataset S1) (http://www.sanger.ac.uk/

genetics/CGP/Census/).

Histone modification enrichment predicts TSSIR and SEIR
We then aimed to predict exon inclusion patterns in an

independent sample set. Specifically, given the histone enrichment

levels and the inclusion pattern in the nine previously studied cell

lines, we sought to determine, in independent cell lines, whether a

given exon was always retained (SEIR = 1), always excluded

(SEIR = 0), or occasionally excluded (0,SEIR,1) with regard to

splicing or transcription start-site switching (TSSIR = 1,

TSSIR = 0, or 0,TSSIR,1, respectively). These predictions

were performed in the Hmec and Monocytes CD14 cell lines,

for which more complete epigenetic information became available

(http://genome.ucsc.edu/ENCODE/downloads.html). We limit-

ed our predictions to the 840 candidate genes identified above,

since the cell lines previously analyzed provided evidence for an

involvement of epigenetic marks in transcript diversity for only 840

candidate genes; attempting to predict exon inclusion based on

epigenetic information for genes that are not epigenetically

regulated would thus not be appropriate.

To illustrate our approach, consider exon 5 of the ETV1 gene

in the Hmec cell line; for this exon, we generated a matrix

containing enrichment values for all histone modifications, which

were significantly associated with SEIR (in this case H3K9ac,

H3K4me3, H3K4me2, and H3K27ac) for the original cell line set

(Gm12878, Hsmm, Huvec, Hepg2, Helas3, K562, H1hesc, Nhek,

and Nhlf), and identified the SEIR of this exon in each cell line. All

ETV1 isoforms in Gm12878 and Hepg2 cell lines lacked exon 5

(SEIR = 0) whereas some isoforms expressed in H1hesc, Hsmm,

Huvec, K562, Nhek, and Nhlf cell lines contained exon 5 (SEIR

range 0.43–0.69) (Fig. 5A). The difference in histone enrichment

between these groups was striking: the Gm12878 and Hepg2 cell

lines completely lacked enrichment in H3K9ac, H3K4me3,

H3K4me2, and H3K27ac while the remaining cell lines were

strongly enriched in those marks (Fig. 5A). We then calculated the

pairwise Euclidean distance between all cell lines and the first

validation line, Hmec, and determined the three nearest-neighbor

cell lines signified by the smallest Euclidean distance (Methods).

Since Hmec was enriched for all four histone marks in exon 5, its

epigenetic profile was closest to that of the Nhlf, K562, and Huvec

cell lines. We therefore predicted that in Hmec, exon 5 of ETV1

was occasionally excluded from some fraction of isoforms (0,

SEIR,1), which was validated by the finding that in this cell line,

SEIR = 0.74. When extending this approach to all candidate

genes, we predicted the correct exon inclusion category with an

accuracy of 91.82% and 84.65% for Hmec and Monocytes CD14

cell lines, respectively (Fig. 5B). To establish whether such high

prediction accuracy can be established across all cell lines, we

performed leave-one-out cross-validation following the approach

described above. The accuracies for individual cell lines ranged

from 72.1% in the Helas3 cell line to 91.8% in the Nhek cell line,

with an average accuracy of 87.2% (Fig. 6). We also calculated the

overall accuracy separately for splicing and for transcription start-

site switching, which was 90.16% and 85.81%, respectively.

Although the 0,EIR,1 vs. EIR = 1 comparison is the most

frequent (76%), the accuracy for all comparisons consistently were

high, at 90.00%, 95.00%, and 87.28% for EIR = 0 vs. 0,EIR,1,

EIR = 0 vs. EIR = 1, and 0,EIR,1 vs. EIR = 1, respectively.

Details regarding the fraction of genes that could be assigned into

comparative groups and the number of significant genes for each

validation step are displayed in Table S7 in Text S1. These

findings suggest that the histone modification enrichment levels

alone can be used to predict the inclusion pattern of an exon.

Discussion

In this study, we analyzed the association between transcription

start-site switching, spliced exon inclusion rates and histone

modification patterns across multiple normal and cancer cell lines

for protein-coding genes and lincRNAs. Unlike previous studies

[8,16,17], which established the relationship between epigenetic

patterning and gene expression levels, we addressed the association

of the epigenetic background of a gene with its transcript isoform

diversity. The main difference between ours and previous

investigations therefore is that our study investigates relative

isoform diversity of expressed genes, and not actual expression

levels.

We used two approaches to address this issue. The first

approach correlated transcriptome-wide (ie ‘‘within cell line’’)

transcription start site inclusion rates and spliced exon inclusion

Figure 4. Number of significant genes expected by chance. We
randomly reassigned exon TSSIR and SEIR labels, but left the same
epigenetic background constant, and performed gene-specific analysis
1000 times to obtain a distribution of the number of significantly
associated genes with transcript diversity (in blue). Observing 840
candidate genes in total (red horizontal line) was significantly higher
(p,0.001) then expected by chance.
doi:10.1371/journal.pcbi.1003611.g004
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rates with histone enrichment levels. The second approach

investigated gene-specific associations between transcription start

site inclusion rates, spliced exon inclusion rates and histone

enrichment levels. The shortcomings and assumptions made by

each method are discussed below. Overall, our study led to four

main findings. (i) The role of epigenetic patterning in transcription

start-site switching is likely to be common across the genome for

both protein-coding genes as well as lincRNAs. (ii) The role of

epigenetic patterns in splicing is likely gene-specific, with the

exception of H3K36me3 (discussed below). (iii) Our gene-specific

approach led to the identification of 840 candidate genes whose

exon inclusion rates for transcription start-site switching and

splicing were strongly associated with patterns of histone

modifications. (iv) Lastly, histone modification data alone can be

used to predict the inclusion pattern of an exon.

Our first and second findings are based on the observation that

both transcriptome-wide and gene-specific approaches identified a

common set of histone marks that were associated with

transcription start-site switching (H3K4me1, H3K4me2,

H3K4me3, H3K9ac, H3K27ac, and H2az), whereas the results

of these two methods differed for the case of splicing.

Transcriptome-wide analysis for splicing showed a pronounced

association of splicing inclusion rates with H3K36me3 whereas the

gene-specific approach identified H2az, H3K4me1, H3K4me2,

H3K4me3, H3K9ac, H3K9me3, H3K27ac, H3K27me3,

H3K36me3, H3K79me2, and H4K20me1 as significantly associ-

ated marks. This discrepancy is likely a result of a bias by the

transcriptome-wide approach to detect common genome-wide

trends and the gene-specific approach to identify unique

relationships for each exon.

Observing both common and gene-specific histone marks

associated with splicing is in line with the proposed models of

epigenetic regulation of splicing: the kinetic model and the

chromatin-adaptor model [38]. According to the kinetic model,

chromatin structure affects the elongation rate of RNA polymer-

ase, which in turn influences the competition between weak and

strong splice sites for the recruitment of splicing factors [38]. The

chromatin-adaptor model, on the other hand, describes an

interaction between specific histone marks and pre-mRNA

molecules through a chromatin-adaptor complex, which aids in

the recruitment of splicing factors to pre-mRNA splicing sites

[26,30,39]. Since these two models are not mutually exclusive, one

can imagine H3K36me3, known to be associated with transcrip-

tion elongation [16,17], to act as a common factor in splicing

genome-wide, while other histone marks can act in a gene-specific

manner. Interestingly, histone marks traditionally associated with

transcription initiation and transcription repression, such as

H3K4me3 and H3K9me3, respectively, were also found in our

study to be associated with splicing gene-specifically. This

observation is in line with experimental studies describing splicing

chromatin-adaptor complex for H3K4me3 [40] and for

H3K9me3 [41]. Further extending the realm of epigenetic

regulation of transcript diversity is a recent work by Mercer and

colleagues, which presented evidence for the role of 3-dimensional

DNA conformation in splicing [42]. According to this study, exons

sensitive to DNase I are spatially located close to transcription

factories near promoter regions containing initiating Pol II as well

as other general transcription and splicing factors.

Interestingly, a large fraction of alternatively spliced exons are

DNase I sensitive [42]. This finding suggests that the epigenetic

Figure 5. Prediction of ETV1 exon 5 inclusion in the Hmec cell line and overall prediction accuracy. (A) Exon 5 of ETV1 is present in
isoforms 9 and 11, but it is spliced in isoforms 10, 12, and 13. Comparing the enrichment of H3K9ac, cell lines from which exon 5 was constitutively
spliced (Gm12878 and HepG2) displayed an absence of H3K9ac, whereas the remaining cell lines, including Hmec, showed varying levels of H3K9ac
enrichment. Since the Hmec cell line H3K9ac enrichment resembles that of the cell lines in which the 5th exon was not constitutively spliced out, we
predicted that exon 5 in Hmec would only occasionally be excluded. (B) The numbers of exons for which the inclusion pattern was correctly vs.
incorrectly predicted in Hmec and Monocytes CD14 cell lines.
doi:10.1371/journal.pcbi.1003611.g005
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background of an exon cannot only interact with splicing factors

via chromatin adaptor complexes, but potentially also induce 3-

dimensional DNA conformation changes that enhance the

likelihood of interactions with general transcription factors, and

perhaps thus influence the splicing frequency. This 3-dimensional

conformation is likely enhanced via particular sets of histone

modifications. Interestingly, our second analysis, testing individual

exon across all cell lines, revealed that alternatively spliced exons

were frequently associated with different enrichment levels of

histone marks well known to be associated with promoters and

enhancers, such as H3K4me1, H3K4me2, H3K4me3, H3K27ac,

and H3K9ac [16,17] (Fig. 7). Accounting for such a 3-

dimensional model could further strengthen the association found

between histone modification enrichment and transcription start-

site switching and splicing,

There are however shortcomings to both approaches. The

transcriptome-wide method makes two assumptions that may be

violated in cells. First, correlating transcription start site inclusion

rates and spliced exon inclusion rates with histone mark

enrichment assumes that (i) transcript diversity of all genes is

associated with their epigenetic background, and additionally (ii)

these rates are associated with the same histone modification.

Likely, it is for these reasons that the correlations between exon

inclusion rates and histone mark enrichment are rather moderate.

As mentioned above, however, because of the rapid change of

these correlations over short distances from exons and the

consistent patterns across multiple cell lines, these associations

suggest a genuine relationship. The shortcoming of the gene-

specific approach lies in the low statistical power of eleven cell lines

analyzed and the natural tendency to miss tissue specific exon

behavior. This is particularly the case for lincRNAs, of which

30%, according to recent estimates, have tissue specific expression

[2].

Figure 6. Prediction accuracy. (A) Prediction accuracy of exon inclusion categories from leave-one-out cross-validation by cell line being
predicted. (B) Prediction accuracy by exon inclusion category comparison. (C) Prediction accuracy of exon inclusion categories for splicing
(‘‘SPLICING’’) and transcription start-site switching (‘‘TSSS’’).
doi:10.1371/journal.pcbi.1003611.g006

Figure 7. Frequency of histone modification marks found
significantly associated with transcription start-site switching
(marked red) and splicing (marked green). Our gene-specific
approach identified 840 candidate genes for which transcript diversity
significantly associated with histone modification enrichment. Note that
transcription start-site switching and splicing of a single gene can be
associated with multiple histone marks.
doi:10.1371/journal.pcbi.1003611.g007
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Since a large body of experimental data indicates that aberrant

splicing of gene transcripts significantly contributes to many areas

of cancer biology, including metabolism, apoptosis, cell cycle

control, invasion and metastasis [43–45], it is imperative to

further our understanding of the regulatory and/or potentially

disruptive role of epigenetic patterning in alternative splicing and

transcription start site selection in tumorigenesis. Significant effort

has been devoted to the discovery of DNA aberrations that drive

cancer progression [35–37,46]; surprisingly, however, there is

only a small number of recurrent genomic changes within and

across cancer types, with few prominent exceptions [47–49].

While the identification of affected pathways rather than

individual genes affected by DNA mutations might lead to more

informative results, the possibility remains that aberrant pheno-

types in cancer are largely driven by the epigenetic component of

gene expression and transcript deregulation [23,50,51]. Our

study identified several histone modifications (H3K4me1,

H3K4me2, H3K4me3, H3K9ac, H4K27ac, H3K36me3, and

H3K79me2) that are strongly associated with transcript diversity

across multiple independent cell types as well as 840 candidate

genes for which there is evidence of epigenetic co-regulation of

transcript diversity. Our work represents a step towards

identifying the functional consequences of histone modifications

on transcript diversity and suggests a rational methodology for

the analysis of modern, large-scale datasets, which can be applied

to any sample sets.

Methods

Data sets analyzed
Cell lines. We analyzed RNA-seq data from nine human cell

lines (Gm12878, Hsmm, Huvec, Hepg2, Helas3, K562, H1hesc,

Nhek, Nhlf) (http://genome.ucsc.edu/ENCODE/), of which six

were normal (Gm12878, Hsmm, Huvec, H1hesc, Nhek, Nhlf) and

three were cancer cell lines (Hepg2, Helas3, K562). For all nine

cell lines, we obtained information of the genome-wide patterns of

the following twelve histone marks: H3K4me1, H3K4me2,

H3K4me3, H3K9ac, H3K9me1, H3K9me3, H4K20me1,

H3K27ac, H3K27me3, H3K36me3, H3K79me2, H2az

(Table 1).

RNA-seq data. RNA-seq data (paired-end 75 nt reads) from

nine human cell lines (Gm12878, Hsmm, Huvec, Hepg2, Helas3,

K562, H1hesc, Nhek, Nhlf) was downloaded from the UCSC

ENCODE database (http://genome.ucsc.edu/ENCODE/

downloads.html) and used to calculate relative exon expression.

Prior to mapping reads to the human genome (hg19), each fastq

file was processed in the following way: quality score statistics at all

nucleotide positions for all fastq files were obtained using a python

script [52] from GALAXY (https://main.g2.bx.psu.edu/). All

reads in each fastq file were trimmed at the same position, at

which the second lowest quartile quality score dropped below 20.

This procedure resulted in read lengths of about 50–70 bp,

depending on the quality of the sequencing run. Multiple

replicates were pooled and analyzed together. Read alignment

was performed using the TopHat software package [24], which is

an alignment tool optimized for mapping reads across exon-exon

junctions. During the alignment step, we allowed for one

mismatch between the read and the genome and used UCSC

gene annotation (hg19) as a guiding gene model set to

accommodate for lower quality bias toward the 39 read end but

also to maintain a nearly identical match to the genome. The

TopHat output was then further processed with Cufflinks software

[25], which assembles transcript isoforms and quantifies isoform

expression. Cufflinks was run with the option of assembling only

those transcript isoforms that are strictly supported by a given gene

annotation (UCSC hg19).

ChIP-seq data. In order to assess the level of histone

modifications across all exons, we analyzed pre-computed bam

files from ENCODE ChIP-seq experiments [17,53] for 12 histone

marks (H3K4me1, H3K4me2, H3K4me3, H3K9ac, H3K9me1,

H3K9me3, H4K20me1, H3K27ac, H3K27me3, H3K36me3,

H3K79me2, H2az). Since the genomic regions of interest had

known boundaries (i.e. exon coordinates), we directly counted the

number of overlapping reads with a given genomic region to attain

the raw signal. The minimum overlap between a read and a

genomic location was set to one nucleotide.

Determination of the exon inclusion rate
Exons were grouped into four categories: transcription start site,

internal, transcription end site, or overlapping exons. We then

quantified the presence of each exon type. Only internal and

transcription start site exons were used for further analysis. The

relative presence of transcription start site exons (TSSIR –

transcription start site inclusion rate) and spliced exons (SEIR –

splicing exon inclusion rate) was calculated from the Cufflinks .gtf

output file and reflects the fraction of all isoforms from a given

gene that contain a given exon. The inclusion rates therefore have

ranges of 0,TSSIR#1 and 0#SEIR#1.

Determination of histone modification enrichment
Using raw signal read counts of histone marks and reference

samples (input DNA) for each cell line, we calculated the presence

of histone mark enrichment using a Fisher’s test statistic and

considered enrichment significant [17] if p,0.0001. The level of

enrichment was calculated as E~ln
RPKMsample

RPKMinput

. RPKM is

defined as RPKM r(R1:106):(L:103), where r represents the

number of reads mapped to a given exon, R is the total number

of reads mapped, and L defines the length of a given exon. RPKM

therefore denotes the number of reads per kilobase of exon per

million reads mapped.

Association between histone modifications and SEIR as
well as TSSIR

Prior to further analysis, we filtered our exon set to contain

only internal exons and exons of genes that express more than

one isoform in at least one normal or cancer cell line. In order

to avoid potential problems with mapping RNAseq reads to

closely related genes, we further excluded genes with paralogs

more than 95% identical on the DNA level to generate the

final curated exon dataset. We then calculated the Spearman

rank correlation (which is more robust for asymmetrical

distributions of TSSIR and SEIR and a large fraction of ties

than Pearson’s correlation) between TSSIR and SEIR and

histone enrichment values, excluding all exons for which

Fisher’s test for histone enrichment was not significant (p.

0.0001).

Spatial patterns of correlations
To assess the spatial patterns of correlation between histone

modifications and SEIR as well as TSSIR, we calculated the

extent of histone enrichment inside 1 kb, 2 kb, and 5 kb blocks

immediately upstream or downstream of exons. The upstream

1 kb, 2 kb, and 5 kb regions extended from the upstream exon

coordinate a given distance whereas the downstream 1 kb, 2 kb,

and 5 kb regions extended from the downstream exon coordinate

for a given distance. The Spearman rank correlation was then
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determined between each upstream or downstream block and the

corresponding exon TSSIR or SEIR.

Fisher transformation of correlation coefficients
To allow for direct comparisons between correlation coefficients

of different cell lines and histone modifications, we transformed

the Spearman p using the Fisher transformation formula,

z~
1

2
ln

1zp

1{p

� �
.

Identification of candidate genes with epigenetically
regulated transcript diversity

To identify genes with epigenetically regulated transcript

diversity, we analyzed each exon in the context of the nine cell

lines (Gm12878, Hsmm, Huvec, Hepg2, Helas3, K562, H1hesc,

Nhek, Nhlf). We categorized the exon inclusion rate into three

groups: SEIR = 0, 0,SEIR,1, and SEIR = 1. We followed the

same approach for TSSIR. Next, we tested whether any histone

modification displayed a statistically significant difference in its

enrichment in any possible two-group comparison, given an exon’s

SEIR values across the nine cell lines. For example, if the pattern

of SEIR values for a given exon allowed us to separate the nine cell

lines into two groups that showed either SEIR = 0 or SEIR = 1, we

used T-test to determine whether the respective histone modifi-

cation enrichment among the two groups of cell lines was

statistically different. All p-values were corrected for false discovery

rate (FDR) [54]. To discover cell-specific events, we allowed for

comparisons where only one cell line versus many could be

assigned to an SEIR or TSSIR group. Naturally, given the lower

power of this test, most of these did not pass our 5% FDR cutoff.

This approach identified 840 genes, for which at least one exon

showed a statistically significant association between SEIR and at

least one histone modification (ie. statistically significant difference

in histone modification enrichment between two SEIR groups for

a given exon).

Prediction of exon exclusion or retention with histone
modification enrichment

We limited our predictions of exon exclusion or retention in

the Hmec and Monocytes CD14 cell lines to the 840 candidate

genes that showed significant association between the TSSIR

or SEIR and histone modification enrichment in the original

set of nine human cell lines (Gm12878, Hsmm, Huvec, Hepg2,

Helas3, K562, H1hesc, Nhek, Nhlf). For a given exon, we

constructed a Euclidean distance matrix with the formerly

identified set of histone modifications for all cell lines,

including Hmec and Monocytes CD14. Next, we determined

the three closest neighbors of Hmec and Monocytes CD14

from among the original set of nine cell lines (Gm12878,

Hsmm, Huvec, Hepg2, Helas3, K562, H1hesc, Nhek, and

Nhlf). Because the exon inclusion rates for a given exon were

known in the original set of nine cell lines, we separated these

cell lines into three comparison groups: i) cell lines in which a

given exon was always excluded versus retained (SEIR = 0 vs.

SEIR = 1), ii) cell lines in which a given exon was retained

versus occasionally excluded (SEIR = 0 vs. 0,SEIR,1), and

iii) cell lines in which a given exon was occasionally excluded

versus retained (0,SEIR,1 vs. SEIR = 1). The inclusion

status - retained, occasionally excluded, or always excluded -

of a given exon in the Hmec or Monocytes CD14 cell lines was

then determined based on what comparison group the majority

of the three closest neighbors belonged to. For example, if the

majority of Hmec’s three closest neighbors (based on the

Euclidian distance matrix) belonged to the group SEIR = 1,

then we would predict that particular exon in the Hmec cell

line was always retained, ie. a given gene was expressing only

those isoforms that included our exon of interest. We applied

the same approach to transcription start site exons and their

respective TSSIR values.

Identification of epigenetically conserved and divergent
regions in cancer

Epigenetic conservation. Cancer cells often undergo dra-

matic epigenetic reprogramming [23,51]; we therefore aimed to

identify genes residing in epigenetically aberrant regions as well as

the positional effect of a gene on its splicing patterns. We divided

the genome into 100 kb non-overlapping blocks; we excluded all

100 kb blocks spanning across UCSC coordinates of centromeric

or telomeric regions, and obtained a total of 32,433 blocks. We

then determined the extent of epigenetic conservation of each

block and each histone modification in the following way: since

conserved regions are expected to have very similar histone

enrichment levels across multiple cell lines, for each 100 kb block,

we calculated an index of dispersion, iod~
VE

E
, where VE

represents the histone enrichment variance across normal cell

lines, and E is the enrichment mean of normal cell lines

(Gm12878, Hsmm, Huvec, H1hesc, Nhek, Nhlf). Regions lacking

any enrichment were excluded from the subsequent quantile

analysis. We identified those 100 kb blocks with the lowest quartile

index of dispersion (iod) as epigenetically conserved regions. Next,

we compared these epigenetically conserved regions in normal cell

lines to each of the cancer cell lines (Helas3, Hepg2, K562) and

calculated a Z statistic. In a given cancer cell line, genomic regions

with the lowest quartile absolute value Z score were deemed

‘‘conserved’’ whereas regions with the highest quartile absolute

value Z score were identified as ‘‘divergent’’. This approach

identified between 11,285 and 22,506 conserved and between 616

and 1410 divergent regions given a particular histone modifica-

tion.

Gene enrichment analysis. To assess whether epigenetical-

ly perturbed regions in cancer cell lines harbored cancer-

associated genes, we performed a gene enrichment analysis. We

utilized the cancer gene census (COSMIC) maintained by the

Welcome Trust Sanger Institute (http://www.sanger.ac.uk/

genetics/CGP/Census/) for a curated list of known cancer

associated genes. For each cancer cell line and histone modifica-

tion, we then performed a hypergeometric test on the enrichment

of cancer-associated genes in epigenetically divergent regions.

Taking into consideration all cancer-related genes classified in the

COSMIC database, we found that regions with a significant

enrichment of H3K4me3 and H3K79me2 displayed an enrich-

ment for cancer-associated genes. For example, regions that were

aberrant in H3K4me3 in cancer cells as compared to normal cells

were enriched for cancer-associated genes in the Helas3 and K562

cell lines (hypergeometric test, p = 0.023 and p = 0.009 respectively,

Table S8 in Text S1). Similarly, aberrant regions for

H3K79me2 were enriched for cancer-associated genes in the

Hepg2 and K562 cell lines (p = 0.040 and p,0.001, respectively).

Supporting Information

Dataset S1 This workbook contains 11 sheets with leave-one-

out cross-validation candidate genes and 1 sheet with a union of all

840 candidate genes from leave-one-out cross-validations. Indi-

vidual cross-validation candidate gene data is named after the cell

line analyzed. P-values are corrected for multiple testing using
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FDR. Comparison categories 0 vs 1, 0 vs .0, and 1 vs ,1

represent combinations tested given the scenario, where each exon

may be constitutively excluded (TSSIR = 0 and SEIR = 0),

occasionally excluded (TSSIR.0 and SEIR,1), or retained

(TSSIR = 1 and SEIR = 1). The ‘‘SplicingOrTsss’’ column then

differentiates whether a given comparison category corresponds to

transcription start site switching or splicing. Note that column

‘‘Statistic’’ frequently contains value ‘‘-Inf’’; this refers to the case

for comparisons where one of the groups has an enrichment of 0,

ie. no histone mark enrichment.

(XLSX)

Text S1 Supporting Materials. Includes: Module S1 in Text S1.

Epigenetically aberrant regions in three cancer cell lines are

enriched for oncogenes; Table S1 in Text S1. Association between

the transcription start site inclusion rate (TSSIR) of lincRNAs and

histone modification enrichment in normal cell lines; Table S2 in

Text S1. Association between splicing exon inclusion rate (SEIR)

of protein coding genes and histone modifications in cancer cell

lines; Table S3 in Text S1. Association between transcription start

site inclusion rate (TSSIR) of lincRNAs and histone modification
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