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Abstract

Bayesian Networks (BN) have been a popular predictive modeling formalism in bioinformatics, but their application in
modern genomics has been slowed by an inability to cleanly handle domains with mixed discrete and continuous variables.
Existing free BN software packages either discretize continuous variables, which can lead to information loss, or do not
include inference routines, which makes prediction with the BN impossible. We present CGBayesNets, a BN package focused
around prediction of a clinical phenotype from mixed discrete and continuous variables, which fills these gaps. CGBayesNets
implements Bayesian likelihood and inference algorithms for the conditional Gaussian Bayesian network (CGBNs) formalism,
one appropriate for predicting an outcome of interest from, e.g., multimodal genomic data. We provide four different
network learning algorithms, each making a different tradeoff between computational cost and network likelihood.
CGBayesNets provides a full suite of functions for model exploration and verification, including cross validation,
bootstrapping, and AUC manipulation. We highlight several results obtained previously with CGBayesNets, including
predictive models of wood properties from tree genomics, leukemia subtype classification from mixed genomic data, and
robust prediction of intensive care unit mortality outcomes from metabolomic profiles. We also provide detailed example
analysis on public metabolomic and gene expression datasets. CGBayesNets is implemented in MATLAB and available as
MATLAB source code, under an Open Source license and anonymous download at http://www.cgbayesnets.com.
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Introduction

A Bayesian network (BN) is a data structure that encodes

conditional probability distributions between variables of interest

by using a graph composed of nodes and directed edges. In a BN,

variables in the domain are modeled as random variables and

represented by nodes, and edges between them represent a

statistical dependence of the child node on the parent node. Each

node is annotated with the conditional distribution of the variable

given the values of its parents, and this information can be used to

answer questions about the most probable values of variables in

the BN given assignments to other variables in the BN.

BNs are attractive because they offer an interpretable picture of

dependence and independence between domain variables, while

modeling complex statistical relationships among them and

providing prediction of an outcome of interest. BNs, as a

mathematical modeling formalism, has enjoyed success in recent

years [1] in predicting and modeling the genetic basis of complex

disease, including stroke [2], nicotine dependence [3], and

atherosclerosis [4]. In caricature, analysis by BNs can be broken

into two steps: building the network (called network structure

learning) and computing consequences of the network (called

inference). Both steps are necessary in order to perform prediction

of a disease phenotype in a biological dataset. First the network

structure is learned from a case-control dataset comprising various

potentially predictive biological or demographic variables, some of

which will be included in the network. Then the parameters of this

network are trained by looking at the conditional probabilities of

the variables within the dataset. Finally, inference can be

performed to predict the case or control status of new data points

that contain measurements of the same variables.

However, Bayesian inference algorithms can be extremely

complex and difficult to implement. There are several software

packages for doing BN analysis, but to our knowledge all existing

free implementations have one of two problems: 1) they do not

allow mixed discrete and continuous data in a fully Bayesian

mathematical formalism; or 2) they do not perform inference with

the BN, merely performing the network learning step. The first

limitation is one of traditional BNs, which are limited to
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considering only discrete variables. Researchers who wish to

analyze continuous data (such as gene expression or metabolomics

data) generally discretize these data, leading to loss of information

and concurrent loss of power. In the second situation, a BN

implementation that does not include inference is incapable of

making predictions on new data, and researchers wishing to use

the BN for prediction must either implement their own inference

software, or take apart the BN model and put the pieces into some

other modeling formalism, such as a logistic regression or a

support vector machine. In addition to being inconvenient, this

translation process leads to suboptimal performance since the

variables identified in a BN are chosen for their relation and

interactions to the other variables within the network –

interactions which can be difficult to accurately recapitulate in

another predictive modeling formalism.

CGBayesNets addresses both of these problems by implement-

ing both network learning and network inference in a more

modern type of Baysian network, the conditional Gaussian

Bayesian network (CGBN) [5]. This is a network formalism

wherein discrete and continuous nodes are mixed, with the

stipulation that continuous nodes have Gaussian distributions

linearly dependent upon any continuous parents with parameters

conditioned upon the values of any discrete parents. In this

formalism, discrete nodes cannot be modeled as statistically

dependent upon continuous nodes, although the joint distribution

can still be captured in the network. These are restrictions based

on the available algorithms for performing exact Bayesian

inference that we choose to implement [6,7] (see also, ‘‘Design

and Implementation’’, below). Typically, these restrictions present

little problem for the field of genomics, where we would generally

model continuous gene expression values as being dependent upon

discrete genetic polymorphisms – as in the case of expression

quantitative trait loci (eQTL) analysis [8]. Indeed, integrative

genomics applications of BNs have become increasingly attractive

[9]. In a comparison study between BNs inferred from only

expression data and BNs inferred from expression together with

other types of genomic data, the combination of multiple genomic

data types results in increased performance [10]. This agrees with

our own experience: in our previous work using earlier versions of

the CGBayesNets software we identified eQTLs in cancer datasets

[11] and predicted leukemia types by integrating single nucleotide

polymorphisms (SNPs) and messenger ribonucleic acid (mRNA)

expression levels [8].

Primary Analysis Scenario
CGBayesNets was primarily designed to aide genomic research-

ers in building predictive models of a phenotype of interest using

multimodal genomic data, combined with demographic and

clinical data, as possible predictors. A typical scenario is one

where the researcher has a case-control dataset of patients with

and without a binary condition: cancer [8], response to asthma

steroid therapy [12], and survival time past a benchmark of clinical

importance (28+ days after intensive care unit (ICU) admittance)

[13], have been used in our previous work. CGBayesNets is used

to construct a predictive BN model, which can then be used for

predicting the phenotype of new data (e.g., predicting malignant

vs. benign tumors from gene expression profiles; predicting which

asthmatics responds to inhaled corticosteroids therapy; or predict-

ing ICU prognosis from metabolomic profiles). To employ

CGBayesNets in these cases, a dataset of all the possibly predictive

variables – SNPs, gene expression measurements, demographic

data – along with the phenotype (case/control status), are

combined for each subject; this is provided to CGBayesNets.

Using CGBayesNets, the researcher can then apply one of several

network learning algorithms to find a network predictive of the

phenotype. This network may include many or few connections to

the phenotype, where variables that are unconnected are not

necessary for prediction of the phenotype. After a satisfactory

Bayesian network is obtained, the CGBayesNets inference routine

can predict the outcome (case/control status) of each patient; in

this way the predictive accuracy of the network can be assessed.

To provide the best validation of the network, the network can

then be used on a replication dataset, one that contains the same

variables and outcome as used in the network, and prediction

accuracy on a new dataset can be assessed.

Of course, the primary outcome of a clinical case-control trial

need not be used; other discrete variables of interest can be

considered the phenotype; and networks predictive of these

secondary outcomes can be computed separately. In a future

update, CGBayesNets will also allow continuous (normally-

distributed) variables to be used as the phenotype.

Related Software
While there are several software packages for learning and

predicting with Baysian networks, none provide the mix of features

presented by CGBayesNets; in particular no free implementations

provide algorithms for inference in networks of mixed discrete and

continuous variables.

Some Bayesian packages focus only on learning the network

structure, including the popular Banjo [14] package. This package

includes several methods for learning both dynamic and static

BNs, although none for inference with those networks. It does not

include a Bayesian treatment of continuous variables and requires

those to be discretized to be included in the models. Other

software for learning Bayesian networks do treat continuous

variables with full Bayesian semantics but do not implement

inference for such models. These include the DEAL [15] and

BNLearn [16] packages in the R statistical language.

Other BN packages provide network learning and inference but

do not implement inference with continuous variables without

discretization. These include the machine learning Java platform

Weka 3.6.9 [17] and the GeNIe and Smile packages (Decision

Systems Laboratory, University of Pittsburgh, http://genie.sis.pitt.

edu/index.php). Other large and comprehensive packages are

commercial, which limits their availability and availability of the

source code, and thus cannot be easily integrated into researcher’s

software, although they may provide full-featured BN processing

(e.g., Hugin Expert – Hugin, Aalborg, Denmark. http://www.

hugin.com).

Some network-learning packages are not Bayesian, but instead

use other formalisms for defining statistical relationships between

variables, such as GlobalMIT [18], which uses mutual information

to learn a dynamic (non-Bayesian) network. Also in this category is

the Uninet package which relies on conditional rank correlation to

define statistical dependence between variables [19].

GDAGSim is a Gaussian linear model simulator [20], which

allows users of the C library to define and perform statistical

inference and simulation on network models of normally

distributed quantities. This is of potential interest to those wishing

to simulate purely continuous Bayesian networks, but does not

implement the integration of discrete nodes to implement CGBNs;

nor does it include any structure learning.

Perhaps closest to our CGBayesNets package is the BNfinder

2.0 package [21], which focuses on learning dynamic BNs from

time-series data, and includes routines that select the most likely

child value for a node given the values of that node’s parents,

rather than full inference and prediction. Dynamic BNs are BNs

that include a time constraint indicating that some nodes come

CGBayesNets
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before other nodes temporally (as in time-series experiments), or

causally (as in metabolic pathways). Learning optimal dynamic

BNs is computationally easier than learning optimal traditional

(static) BNs [22], but BNfinder 2.0 can learn static BNs given K2-

style node-ordering constraints. BNfinder 2.0 does allow contin-

uous variables but only allows them to have exactly one discrete

parent and zero children, which limits some of the possible

networks that can be modeled.

In total, CGBayesNets provides new functionality: learning and

predicting with Bayesian networks composed of discrete and

continuous variables. In the following, we discuss our implemen-

tation of these and additional features.

Design and Implementation

CGBayesNets is entirely Bayesian, using the Bayesian marginal

likelihood to guide network search and for performing inference.

Using Bayesian statistics allows leveraging of Bayesian priors to

bias network structure learning toward parsimonious models that

are more likely to predict well on new datasets, while also

providing a consistent mathematical treatment throughout the

package. Please see the Supplementary Materials for a full

mathematical treatment of the Bayesian semantics.

Inference Algorithms
We refer to the process of predicting an outcome of interest

using a Bayesian network as ‘‘inference,’’ the term commonly used

for this in the BN literature. Inference in a BN can proceed either

forward or backward along the directed edges of the network. The

best prediction of a phenotype node is often obtained when that

node has no parents, but many children. This is structurally similar

to a type of network know as a Naı̈ve Bayes Network, where each

other (non-phenotype) node is conditionally independent given the

phenotype. Although Naı̈ve Bayes networks are simple, in practice

they can provide extremely good prediction [23]. The opposite

network structure – a phenotype node with many parents and no

children – frequently results in very poor predictive performance,

because a child node’s distribution is conditional on the

combination of values of each of its parents. As the number of

parents of a node increases, the number of parameters describing

the distribution of the child increases exponentially. For practical

datasets, this can result in very few datapoints of each combination

of parent values from which to estimate the phenotype’s

conditional distribution; a problem referred to as data fragmen-

tation. This leads to poor estimation of the phenotype’s

distribution, and this in turn leads to poor prediction. When

accurate prediction is required, it is thus expedient to obtain

networks where a phenotype has many child nodes and no parent

nodes – a heuristic employed in CGBayesNets.

To perform inference in a CGBN, different algorithms are used

on the discrete and continuous portions of the network. We have

implemented the Cowell algorithm for inference in conditional

Gaussian network nodes [24], and combine that algorithm with a

simple variable elimination algorithm for inference between

discrete nodes in the network [25].

We chose the Cowell algorithm for inference because it is

numerically stable. There are very few algorithms to choose from

for exact Bayesian inference in mixed networks. The Cowell

algorithm is based on the earlier Lauritzen and Jensen junction

tree algorithm [26]. Both of these are an improvement over the

original algorithms for inference in CGBNs [27] that were found

to be numerically unstable due to repeated matrix inversions. The

discrete inference algorithm is a typical variable elimination

algorithm, as described in Koller and Friedman [25]. The

algorithm involves creating factors that represent groups of nodes

in the discrete part of the CGBN, and implementing the factor

product and sum operations upon these to compute either

marginal or conditional distributions of a node given the value

of parents or children. For details, see chapter 9, Koller and

Friedman [25].

Network Learning Algorithms
While the focus of CGBayesNets is on inference in mixed

Bayesian networks, CGBayesNets provides four main network

structure search algorithms. The problem of searching for the best

Bayesian network is one that has received much attention over the

last 30 years, and there are many possible algorithms (and software

implementations of those) that a researcher may want to employ.

We have endeavored to make our software package modular and

extensible so that researchers familiar with MATLAB will be able

to easily add their own network search algorithms; we also read

common network file formats so that researchers can use other

packages that have more extensive and specialized network search

procedures to find a good Bayesian network, and then use

CGBayesNets to perform inference in that network.

In all of the network search algorithms in CGBayesNets,

network scoring is done by a metric sometimes known as the

Bayesian Dirichlet equivalent sample-size, uniform (BDeu), which is a

measure of the marginal likelihood of the data, given the network

[28], (see also supplemental material). In every algorithm,

CGBayesNets looks for the network that maximizes the marginal

likelihood of the data. Although this is not necessarily the network

with the best phenotype prediction, it is the network that is best

supported by the available evidence – the data. Since the number

of possible networks is super-exponential in the number of

variables (for n variables, there are ,2‘(n2) possible directed

networks), all networks cannot be investigated; rather heuristics are

employed to search for good networks that might be satisfactory.

One heuristic we employ throughout is a limit on the maximum

number of possible parents a node may have, which may be set by

the researcher to any appropriate value.

The first network learning algorithm we provide in CGBayes-

Nets is a K2-style [29] search that orders nodes by likelihood of

statistical independence, such that nodes so ordered can have

parents only occurring before them in the order, and that the

nodes most likely to be independent are given the fewest possible

parents. The main benefit of such a list is that cycles are

impossible, and this is important for learning BNs – which must be

acyclic. We then learn parents of each continuous node according

to this order, using a stepwise adjustment that allows the addition

of one parent to a node to trigger the removal of an existing parent

if that increases likelihood. Next we learn parents of every discrete

node, in a similar way. The K2 algorithm is very fast, considering

only k/2 * n2 possible edges, where n is the number of variables

and k is the maximum number of parents a node can have, a

parameter of the search algorithm. K2 is frequently almost as good

as other methods that consider a much larger number of possible

edges, and thus take much more computational time. The K2

procedure we have implemented can be considered a hill-climbing

algorithm that allows backtracking, but does not consider all

possible edges, only those that obey the K2 ordering constraint.

A second structure learning algorithm provided in CGBayes-

Nets is a greedy, exhaustive, search algorithm that starts with an

empty network and adds the best edge, iteratively. It does not rely

upon a K2-style node priority list to avoid cycles, but rather does

its own cycle-checking with depth-first search. This algorithm is a

greedy hill-climber, in that at every step it adds the edge that

increases data likelihood the most. It is exhaustive in that it

CGBayesNets
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considers all possible legal edges, between any two nodes (not that

it considers all possible networks). It may be run with or without

allowing backtracking, which if enabled will also consider the

removal of any existing edge, if that removal results in the greatest

increase in likelihood. This algorithm is more comprehensive than

the K2 algorithm – it considers potentially n2+kn2 edges, and may

find better networks than K2, although it is much slower. In sum,

this algorithm is appropriate for smaller datasets, and will have

prohibitive computational cost for networks with thousands of

nodes.

The third network learning algorithm provided with CGBayes-

Nets is pheno-centric search, which builds a network based around

a particular phenotype node, sufficient to perform learning and

prediction of that particular variable [8]. The Markov properties

of the BN semantics state that the distribution of a node is

conditionally independent given the values of its parents, children,

and other parents of those children (collectively, the ‘‘Markov

blanket’’ or ‘‘Markov neighborhood’’ of the node). Only these

nodes are required to predict the value of a phenotype. Thus, if we

are only interested in predicting the value of a phenotype node, we

need not build the entire BN over all of the variables in the

domain; we only need to look for its Markov blanket. Such a

pheno-centric network has two main benefits. First, it can allow

prediction in domains where building a full BN over all the

variables is computationally prohibitive, as a pheno-centric search

considers at most n+kn2 possible edges. Second, it does not require

a K2-style node order list for parent constraints, and as such does

not needlessly exclude many potential network structures from

consideration. On the other hand, it can result in overfitting of the

data: making too many connections to the phenotype that may just

be due to random noise in the dataset.

The fourth algorithm is a hill-climbing technique known as

simulated annealing [30], which is very similar to our second

algorithm (the greedy, exhaustive hill-climber). Simulated anneal-

ing search initially will add any randomly-chosen edge to a network,

rather than the best edge. As the search goes on, the probability of

adding edges that reduce, rather than increase, likelihood

decreases, slowly, to zero. This method has the benefit of being

able to run in however much time the researcher may have; and

providing solutions of increasing likelihood given increasing

computational time, indeed we recommend considering n3

possible edges to allow the search to consider many possible

permutations of the n2 possible edges in a network. However this is

the slowest of our four search algorithms and as such may perform

worse than the other three given limited computational time.

Finally, for learning networks of many variables, CGBayesNets

includes simple filtering functions that filter the number of

variables by Bayes Factor of association with the phenotype,

where the Bayes Factor is the ratio of posterior likelihood of the

data with the variable dependent upon the phenotype, to the

likelihood of the data independent of the phenotype [31]. Such

filtering strategies are necessary for pruning a dataset of many

thousands of variables down to a smaller set of informative

variables for BN analysis.

Software Features
The CGBayesNets package is intended to support all phases of

the predictive modeling process.

CGBayesNets provides the four network structure learning

algorithms, described above. In addition, in our software

implementation, CGBayesNets provides separate functions for

learning the parameters of a network and learning its structure

from data, and base functions for computing Bayesian likelihood

of variables. These functions make it easy for advanced users to

add their own network learning algorithms. Once structure and

parameters are learned, the model may be tested on a dataset:

either the existing dataset or a new (replication) dataset.

CGBayesNets provides functions for making testing on multiple

different datasets simple and direct. In all cases the Area Under the

Receiver-Operator Characteristic Curve (AUC) is reported as a

measure of predictive accuracy of the network [32]. This is

provided with its convex-hull AUC and 95% confidence intervals,

together with functions for computing p-values for difference

between two AUCs executed over the same dataset, using the

method of Delong et al. [33].

To increase the performance of networks on replication

datasets, CGBayesNets provides functions for employing cross-

validation (CV) and bootstrapping. The cross-validation functions

will either perform CV to determine the best settings of Bayesian

prior parameters, or to estimate the performance on an unknown

replication dataset. Bootstrapping is provided to obtain estimates

of the frequency of individual edges within a given Bayesian

network, by comparing frequencies of edges in different bootstrap

realizations of the dataset. This results in a single aggregate

network with fractional probabilities for each edge; functions are

provided to translate these into concrete Bayesian networks and

test their performance.

We have endeavored to make CGBayesNets easier to use by

providing several data reading and writing functions. There are

input functions for reading several different types of PED SNP

files, and text files formatted with mixed string and numeric data,

such as output by the popular R statistical language. We output

networks into Trivial Graph Format (tgf), which can be

manipulated for example by the free program yEd (yWorks,

Tubingen, Germany. http://www.yworks.com/en/

products_yed_about.html), or the SIF and GraphML formats for

use with the program Cytoscape [34].

CGBayesNets is distributed as MATLAB source code. Each

function is commented and documented with the input and output

specifications so that it may be employed in the user’s application

as necessary. To make this as easy as possible, we make

recommendations as to which functions are suggested for

modification, and which represent inner workings of the

algorithms, and should not generally be altered. We also provide

example code to copy and edit demonstrating how to combine our

lower-level Bayesian inference functions to assemble higher-level

search and diagnostic routines.

Results

Results from Biological Applications
The primary form of biological insight provided by CGBayes-

Nets is predictive network models that differentiate cases from

controls. CGBayesNets is the only existing free software package

for doing so with Bayesian networks of mixed discrete and

continuous domains.

It is clear that discretization of continuous variables is a

possibility, allowing researchers to convert continuous variables to

discrete ones and then use discrete Bayesian network methods.

However, we argue that this necessarily results in a loss of

information and a concomitant loss in power. See supplemental

material for an example of a mixed discrete-continuous domain

where we compare performance of BNs using discretization of

continuous variables to using CGBayesNets. Results from this

experiment are shown in Table 1, and the difference between

discretized performance (72.6% AUC) and the original perfor-

mance (99.3% AUC) is considerable.

CGBayesNets
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We have used CGBayesNets in several applications. We have

performed eQTL analysis with earlier versions of the software that

resulted in predictive models for subtypes of acute lymphoblastic

leukemia [8] with the gene expression and gene variation (SNP) data

available with Gene Expression Omnibus (GEO) accession

#GSE10792 [35]. Other groups have used CGBayesNets, and these

have resulted in predictive models for tree and wood characteristics

[36] from mixed gene expression and SNP datasets. This application

used the cross-validation routines in CGBayesNets to identify highly-

predictive subsets of variables for different tree phenotypes, and then

to prompt further biological analysis of these predictors.

To consider one application in greater detail, we recount the

network analysis strategy employed in our previous work: the

identification of a metabolic signature for predicting mortality in

hospital intensive-care units (ICU) from metabolomic profiling

[13]. We started with a sample of 187 biological metabolites from

90 ICU patients together with clinical and demographic data

including age, sex, renal function, and APACHE II score (an

aggregate score indicative of ICU prognosis). We used 5-fold cross-

validation on the training data to arrive at hyper parameters for

the Bayesian likelihood calculations. We performed 2500 bootstrap

realizations of the training dataset, and learned a pheno-centric

CGBN for each bootstrap realization. From the sample of 2500

networks, we built a consensus network by starting with the

phenotype node and then adding, in sequence, the most frequent

edge occurring in the bootstrap networks, and measuring the

performance of that network on the dataset in cross-validation. This

provided a way of estimating the value of adding each node to the

network, and roughly the point of diminishing returns. We used a

network with a total of seven predictive nodes to define the final

network model, as adding further nodes did not increase the

predictive performance in cross-validation. The final network of

seven metabolites achieved 91% AUC for predicting mortality in the

training dataset, and we validated that network in an independent

replication population of 120 ICU patients from a separate cohort,

obtaining an AUC of 74% - significant prediction despite significant

clinical (cancer rates) and demographic (Caucasian vs. African

American) differences in the training and testing cohorts [13]. The

seven metabolites identified (gamma-glutamylphenylalanine, gam-

ma-glutamyltyrosine, 1-arachidonoylglycerophosphocholine* (20:4),

taurochenodeoxycholate, 3-(4-hydroxyphenyl)lactate, sucrose, and

kynurenine) are potentially employable as an ICU outcome

prediction tool in future clinical settings.

Results on Test Data
We include several test datasets with the CGBayesNets

download. These are intended both to demonstrate the suggested

use of our software and to assure its correct installation and

function. We provide a metabolomic profiling dataset of a

cachexia sample from the MetaboAnalyst2.0 [37] website

(http://www.metaboanalyst.ca/MetaboAnalyst/faces/Home.jsp

‘human_cachexia.csv’). The suggested model achieves 86.8%

AUC in cross-validation. We then discuss performance of

CGBayesNets on a differential gene-expression dataset from

GEO, accession #GSE19301, as described by Bjornsdottir et al.

[38]. This identifies models using a training subset of the dataset

that are predictive of the testing subset of the dataset using several

transcripts with strong linear effects. Full details of how to compute

these results are given in the supplemental materials.

Availability and Future Directions

Bayesian Networks remain an important machine learning

methodology within bioinformatics, although their recent appli-
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cation in genomics, metabolomics, and proteomics has been

limited by the necessity to learn networks over mixed discrete and

continuous variables. The development of effective algorithms for

learning and reasoning with conditional Gaussian Bayesian networks

addresses this issue, although freely available implementations of

these algorithms have so far been unknown. Our CGBayesNets

package solves this problem and fills these needs. We are committed

to continued development of CGBayesNets to fit our own needs of

predictive Bayesian network software, as we continue to apply these

techniques to biomedical domains; these improvements will be

available to all users of CGBayesNets in the future.

The CGBayesNets package is available from the authors and

via anonymous download from www.cgbayesnets.com. CGBayes-

Nets is open source software, and is distributed as MATLAB

source. It has been verified to run on both Linux and Windows

platforms.

Supporting Information

Figure S1 Bayesian Networks of Cachexia. These net-

works are formed by running CGBayesNets bootstrapping routine

on the human cachexia dataset from (http://www.metaboanalyst.ca/

MetaboAnalyst/faces/Home.jsp ‘human_cachexia.csv’). Each net-

work shows the Markov blanket of the phenotype of interest (‘‘Muscle

loss’’), which are those nodes necessary to predict muscle loss. Arrows

between nodes indicate statistical dependence of the child node on

the parent node(s), and do not represent causality. Networks are

learned on 25 bootstrap realizations of the data, and those shown are

consensus networks including the two (a), three (b), four (c), and eight

(d) most frequently included edges in the bootstrap networks.

Performance of these networks is given in Table S1 in Text S1.

Images generated and formatted with the yEd program (yWorks).

(PNG)

Figure S2 Comparison of four different network search
algorithms on training and test data. Training performance

is measured with five-fold cross-validation. For each of four search

algorithms (K2, Pheno-Centric, Full-Exhaustive, and Naı̈ve-Bayes)

5 bootstrap realizations of the training data were generated and a

Bayesian network was learned for that realization. The x-axis

represents using the most frequent N edges occurring in the

population of bootstrap networks to create a consensus Bayesian

network of at least N edges.

(TIFF)

Figure S3 Comparison of prediction performance with
continuous features vs. discretized features. This graph

shows the difference in predictive performance (measured by

change in AUC predicting the phenotype node from training

dataset to testing dataset) in a dataset including continuous

variables and the same dataset after continuous datasets were

discretized into 10 equal-sized bins. Each circle represents a

different random network created on 25 nodes, each randomly

chosen to be discrete or continuous. The size of the circle is

proportional to the number of datapoints simulated from that

network, N, ranging from 25 at the smallest circles to 200 at the

largest circles. Experiments are ordered by increasing sample size

(N), along the x-axis. The color of the circle represents the number

of nodes in the Markov blanket of, and therefore required for

prediction of, the phenotype node. The red line represents a

regression of difference in predictive performance on the x-axis.

This regression indicates that when the number of variables is

similar to the sample size, performance is on average 13% worse

after discretizing continuous variables; while the difference goes

away when sample size far exceeds the number of variables.

Experiments where there is no difference between continuous

performance and discretized performance not included in this

analysis.

(PNG)

Software S1 This zip file contains CGBayesNets. It is

distributed as MATLAB script files along with supporting data

files, referenced in the text and in the Supporting Text S1.

(ZIP)

Text S1 This file contains additional text and material
pertaining to issues raised in the main body. Supplemen-

tal Sections: Section 1: CGBayesNets Installation. Section 2:

Example Analysis, Narrative Analysis in Metabolomics. Section 3:

Example Analysis, Code Examples with Gene Expression Data.

Section 4: Illustrative Discretization Example. Section 5: Theo-

retical Foundations.

(DOCX)
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