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ABSTRACT 

 Systems paleobiology seeks to interpret the history of life within the framework of 

Earth’s environmental history, using physiology as the conceptual bridge between 

paleontological and geochemical datasets.  In some cases, physiological performance can be 

estimated directly and quantitatively from fossils – this is commonly the case for vascular 

plant remains.  In other instances, statistical inferences about physiology can be made on 

the basis of phylogenetic relationships. Examples from research in paleobotany, marine 

micropaleontology, and invertebrate paleontology illustrate how physiological 

observations, experiments and models can link biological radiations and extinctions to both 

long term environmental trajectories and transient perturbations to the Earth system.  The 

systems approach also provides a template for evaluating the habitability of other planets, 

not least the ancient surface of Mars.  Expanding physiological research motivated by 

concerns about our environmental future provides an increasing diversity of tools for 

understanding the relationship between Earth and life through time.  The geologic record, 

in turn, provides critical input to research on contemporary global change. 
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INTRODUCTION 

 In universities and medical schools around the world, systems biology has emerged as a 

critical focus for 21st

 Paleontology has been affected by this disciplinary shift, as more and more 

paleontologists strive to interpret the fossil record within the context of Earth’s dynamic 

planetary history.  Indeed, environmental history provides a necessary framework for 

understanding the history of life.  For this reason, and with an admiring wink toward systems 

biology, I’ve come to think of the integrated history of Earth and life as “systems paleobiology.”  

We can use the fossil record, illuminated by comparative biology, to reconstruct a narrative 

history of life.  And, increasingly, geochemical analyses of sedimentary rocks are revealing a 

history of both long term environmental change and transient perturbations to the Earth system.  

Biological and environmental history can, in turn, be linked by stratigraphic correlation, but to 

 century research in the life sciences.  As a discipline, systems biology 

reflects the maturation of molecular biology from its early concentration on single genes and 

their products to the realization that it is the interaction of genes and their products that 

determines the structure and function of organisms.  Over the past decade, the Earth sciences 

have traveled a comparable path, recognizing that the physical and biological Earth are not 

separate entities but rather interacting components of an integrated Earth system.  A Web of 

Science search for “Earth System” retrieved two papers from 1988, neither of which conforms to 

current use of this term.  The same search for 2011 yielded 237 citations.  A comparable search 

of CSA Illumina (Georef) yielded 87 hits for the entire decade of 1980-1990 versus 746 for 2011 

alone, an increase in publication rate of two orders of magnitude. 
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interpret correlation in terms of causal mechanisms, we need a bridging concept.  Here I argue 

that physiology provides the necessary bridge.   

 Physiology makes intuitive sense as the conceptual glue between physical and biological 

history because it provides the proximal interface between life and environment (e.g., Knoll et 

al., 2007a).  But, can we know enough about the physiological properties of extinct organisms to 

constrain interpretations of evolutionary pattern and process?  Obviously, there are aspects of 

physiology that can’t be reconstructed with confidence – optimal growth temperature, for 

example, or the oxygen-binding capacity of hemoglobins in a Paleozoic invertebrate.  That said, 

there are environmentally important aspects of physiological performance that can be estimated 

from fossils, and these provide important and underexploited avenues for systems 

paleobiological research.   

 In some organisms – as discussed, below, vascular plants provide a particularly good 

example – important features of physiology can be read with confidence from fossils for the 

simple reason that physiological performance is strongly biophysical in nature and, therefore, can 

be inferred from preserved anatomy and morphology.  In other organisms, physiological traits 

can be inferred from the phylogenetic placement of fossils.  If, for example, all veneroid bivalves 

have comparable physiological mechanisms of shell formation, then the recognition that a fossil 

belongs to the Veneridae directly informs interpretation of its skeletal physiology.  Comparative 

biology shows that individual species may depart from a phylogenetically-shared physiological 

norm (e.g., Widdicombe and Spicer, 2008), but what the fossil record provides is actually a 

statistical digest of biological responses to environmental change within and between clades 

(Knoll and Fischer, 2011).  Thus, it may be impossible to determine why one coral species 

survived end-Triassic environmental perturbation while another didn’t, but perfectly feasible to 
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draw inferences from the observation that, on average, corals and mollusks responded differently 

to end-Triassic events.    

 A compelling argument can be made that physiology has long informed interpretations of 

Precambrian microbial evolution (e.g., Knoll et al., 2012), especially in the case of isotopic 

biogeochemistry, where laboratory experiments guide the interpretation of observed 

fractionations (e.g., Thode et al., 1961; Farquhar et al., 1989; Habicht et al., 2002; Sim et al., 

2011).  Here, however, the focus is mainly on Ediacaran and Phanerozoic evolution, where the 

advantages of a physiological perspective have more recently come into sharp focus. 

 

PHYSIOLOGICAL INFERENCE FROM PLANT FOSSILS 

 

 In 1884, the Russian geographer Wladimir Köppen published a climate map of the world 

(Köppen, republished in 2011) that, with only limited modification, remains in use today (e.g., 

Kottek et al., 2006; Peel et al. 2007).  One might ask how much data on temperature and rainfall 

was available in the late nineteenth century for places like the upper Amazon basin or the Hindu 

Kush, and the answer, not surprisingly, is “very little.”  Köppen’s effort captured climate 

distribution so well because it was, in essence, a vegetation map.   The geographic distributions 

of plants co-vary with climate because they reflect the fine physiological balance between carbon 

gain and water loss dictated by annual variations in temperate and rainfall (e.g., Venevsky and 

Veneskaia, 2003; Harrison et al., 2010).  To a large extent, this balance is maintained 

biophysically, with leaf morphology and the distribution of surface openings called stomata 

governing the uptake of carbon dioxide, and both stomata and water supply from vascular tissues 

controlling the hydration of photosynthetically active cells.  Thus, plant form dictates 

physiological performance and, in consequence, the environmental distribution of living plants 
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(e.g., Givnish, 1979).  By extension, preserved features of morphology and anatomy can provide 

insights into the physiological capabilities and environmental tolerances of ancient plants.   

 If plants co-vary with climate in space, we might also expect them to do so in time, and 

the use of plant fossils as paleoenvironmental proxies has a long, rich, and, at times, contentious 

history.  Early in the last century, Bailey and Sinnott (1916) noted that the proportional 

representation of angiosperm species with entire (smooth) versus non-entire (toothed, lobed or 

incised) leaf margins varies as a function of mean annual temperature (Fig. 1); they were keenly 

aware that this empirical relationship could illuminate Cenozoic climate history (Bailey and 

Sinnott, 1915).  Insofar as leaf shape reflects the economics of growth, performance and 

maintenance (Givnish, 1979; Nicotra et al., 2011), it is not surprising that leaf morphology 

should vary with climate.  Continuing research has verified the relationship between leaf margins 

and mean annual temperature, although quantification of this correspondence depends on 

geography and (related to this) phylogeny, and is complicated by water availability (Peppe et al., 

2011).  Several hypotheses have been advanced to account for the observed distribution (e.g., 

Feild et al, 2005; Royer and Wilf, 2006), but to date empirical observations run ahead of 

physiological explication.  

 The close relationship between leaf form and climate has been used to reconstruct 

continental climates through the last 100 million years.  In general, leaf morphology has been 

used to estimate a single climate parameter at the time and place of deposition -- usually mean 

annual temperature (e.g., Wolfe, 1971; Greenwood and Wing, 1995), but occasionally mean 

annual precipitation (Wilf et al., 1998).  Single estimate variables of ancient climate can be 

compromised, however, because the balance between CO2 gain and water loss reflects the 

integration of temperature and precipitation variables, manifest in transpiration: the loss of water 
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vapor from open stomata.  Multivariate estimates of ancient climate are beginning to provide 

more nuanced estimates of Cenozoic environmental history (e.g., Peppe et al., 2011). 

 Paleoclimate has also been estimated on the basis of climatic distributions of the closest 

living relatives of preserved plant fossils (e.g., Mosbrugger et al., 2005).  This method implicitly 

integrates physiological tolerances, depending critically on the assumption that closeness of 

phylogenetic relationship provides a good estimate of physiological performance.  Expanding 

research at the interface between phylogeny and ecology suggests that close phylogenetic 

relationship does indeed predict both niche dimensions (e.g., Smith and Donoghue, 2010) and 

climatically sensitive physiological traits (e.g., Davis et al., 2010) and does so well, if not 

perfectly.  In general, then, plant physiology provides tools for reconstructing Paleogene and 

Neogene climatic history from plant fossils.  As systems paleobiologists, however, we would 

also like to understand Cenozoic climate change has influenced plant evolution.   Examples 

abound, including the differentiation of a temperate flora rich in herbs from woody ancestors 

now most common in tropical and subtropical forests (Judd et al., 1994) and the expansion of 

grasslands in general (Strömberg, 2011) and C4 grasses in particular as temperature, rainfall and 

pCO2

 Stomata provide more specific evidence of physiological linkage between plant form and 

environmental variables, in this case pCO

 changed through the era (Cerling et al., 1997; Edwards et al., 2010; Osborne and Sack, 

2012). 

2.   Leaves are covered by cuticle, a waxy coat that 

retards the loss of water vapor from leaf surfaces.  As cuticle is equally effective in blocking the 

diffusion of CO2 into leaves, photosynthetic function requires that leaves have openings (the 

stomata) through which carbon dioxide can reach photosynthetically active cells in the leaf 

interior.  Water vapor escapes from open stomata, and so the potential for leaf dehydration 
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requires that stomatal opening and closure be regulated physiologically.  Beginning in the late 

1980s it became clear that the number, size and distribution of stomata vary with pCO2 via an 

incompletely understood feedback loop between physiology and development.  One might 

predict from first principles that when pCO2 is higher, a lower density of stomata will suffice for 

carbon gain, decreasing water loss.  Woodward (1987) carried out an innovative test of this 

hypothesis, showing that herbarium specimens of leaves collected before the industrial age had a 

higher stomatal density than samples of the same species found today in same area.  

Investigations of stomata through the last glacial-interglacial cycle extended this empirical 

relationship (Beerling et al., 1993), and laboratory experiments have further contributed to the 

quantification of stomatal index (stomatal density normalized to the size of surrounding 

epidermal cells) as a proxy for pCO2 (reviewed in Beerling and Royer, 2001; Konrad et al., 

2008).  The individualistic responses of plants to experimental changes in ambient CO2

 As water supply determines the degree to which leaves can afford to lose water by 

transpiration through open stomata, vascular tissue provides a third point of entry into the 

relationship between plant evolution and environment.  Trees perform a remarkable biophysical 

feat, lifting water, sometimes for tens of meters, without expending energy.  They can 

accomplish this because the evaporative loss of H

 indicate 

that the stomatal index is sensitive to phylogeny, habitat, and water supply from vascular tissues 

(Konrad et al., 2008; Jordan, 2010).  Thus, while stomata provide an important focus for systems 

paleobiology, quantification remains a topic of active research.    

2O from stomata creates a tension that pulls 

water upward through the plant’s vascular tissue.  The rate at which water can move through the 

vascular system depends directly on the size, shape, and porosity of xylem elements (Sperry, 
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2003; Pittermann, 2010), and as these can be recovered from anatomically preserved plant 

fossils, paleontologists can generate quantitative models for fluid flow in extinct plants.   

 Cichan (1986) pioneered paleobotanical estimates of fluid flow in Paleozoic plants, and 

with a new generation of physiological models, based on experimental data (e.g., Sperry and 

Hacke, 2004), additional insights into the water relationships of ancient plants have become 

available.  For example, Wilson et al. (2008) modeled fluid flow for the stem-group vascular 

plant Medullosa, a common constituent of overbank habitats in everwet tropical forests of the 

late Paleozoic Era.  Paleobotanists have long understood that medullosans hydrated exceptionally 

large fronds by means of a relatively modest stem, and Wilson et al. (2008) showed how this was 

accomplished.  The long, wide, and abundantly pitted tracheids of medullosans conducted water 

at rates more similar to those of vessel-bearing angiosperms than to living gymnosperms, thereby 

providing the water required by their large fronds (Fig. 2).  Medullosan tracheids contributed 

little to the mechanical strength of the stem and indeed would have been highly vulnerable to 

implosion and cavitation (the formation of gas bubbles that occlude fluid flow) at times of even 

moderate transpirational stress.  In light of this, the unusual vascular architecture of medullosans 

can be interpreted as a means of rehydrating cavitated tracheids and providing a redundant (and 

therefore, physiologically safe) water supply to leaves.  It also helps to explain why medullosans, 

ecologically successful in wet tropical forests, did not expand widely beyond these environments 

and why their populations dwindled in the face of Permian climatic change (Wilson et al., 2008). 

 Paleophysiological investigations of fossil plants continue to expand, fueled by novel 

insights from plant physiology, itself.  For example, over the past decade it has become clear that 

the vascular system is not simply a passive conduit for fluid flow but rather a system that can be 

regulated actively by the ionic concentration of ascending water (Zwieniecki et al., 2001; Nardini 
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et al., 2011).  It is thought that pectin in cell membranes acts as a hydrogel, expanding and 

contracting in response to ionic concentration and, thereby, widening or narrowing the pores 

through which water passes from one cell to the next.  This becomes interesting to 

paleontologists because the degree to which vascular systems respond to changes in ionic 

concentration appears to correlate with the presence or absence of lignin in primary cell walls, a 

property that can be determined for well-preserved fossils via X-ray spectroscopy (Boyce et al., 

2004).  Thus, paleobotanists can explore the active regulation of fluid flow by plants that have 

been extinct for millions of years.     

 Increasing research is also documenting the physiological consequences of high vein 

densities in angiosperm leaves, relative to those of other seed plants and ferns.  High vein density 

reduces the distance between stomata and vascular supply, increasing the photosynthetic capacity 

of angiosperm leaves (Boyce et al., 2009; Brodribb et al., 2010).  Fossil leaves preserve vein 

density well, and, indeed, document a secular increase in the vein density of early angiosperms.  

This, in turn, provides new perspective on the radiation of flowering plants into successive 

habitats through the later Cretaceous Period (Feild et al., 2011).  The increased photosynthetic 

capacity of flowering plants leaves would have been accompanied by increased rates of 

transpiration, providing a positive feedback to regional climate that may have facilitated the 

expansion of rainforests (Boyce and Lee, 2010).   

 This last point highlights the fact that organisms have not simply responded to 

environmental change through time – they have been active participants in that change.  On 

scales of time and space that vary from trees shading the ground beneath themselves (i.e., niche 

construction; Odling-Smee et al., 1996) to the permanent consequences of evolving 
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photoautotrophs  for atmospheric O2 (e.g., Knoll, 2003) and CO2

 

 (e.g., Berner 2003), 

physiological processes have fed back onto environmental state throughout evolutionary history. 

PHYSIOLOGY AND PHOTOSYNTHESIS IN THE SEA  

 Paleontologists have long recognized the Mesozoic Era as a time of faunal transition in 

the oceans. Commonly called the Mesozoic marine revolution (Vermeij, 1977), this interval is 

characterized by a major increase in energy consumption by marine invertebrates (Finnegan et 

al., 2011), the radiation of large vertebrates as top predators in the oceans (Benson et al., 2010), 

and an acceleration of the evolutionary arms race between marine predators and their 

skeletonized prey (Aberhan et al., 2006).  Bambach (1993, 1999) argued convincingly that faunal 

change was driven from the bottom up by an increase in the resource base of marine 

communities -- and specifically pointed to enhanced runoff of nutrients and particulate organic 

matter from terrestrial environments increasingly dominated by flowering plants.   

 Boyce and Lee (2011) have argued that the nutritional consequences of angiosperm 

radiation for marine communities would have been too small and too late to explain observed 

evolutionary changes in the sea, leaving marine photosynthesis, especially by phytoplankton, as 

a potential source of bottom-up ecosystem transformation.  Microfossils, biomarker molecules, 

and molecular clocks agree that during the Mesozoic Era the principal primary producers in 

continental shelf waters changed from green algae and cyanobacteria to the modern dominants of 

coccolithophorids, dinoflagellates and diatoms (CDD algae; Knoll et al., 2007b).  The transition 

began late in the Triassic Period with the radiations of coccolithophorids and photosynthetic 

dinoflagellates, and expanded during the Cretaceous to include diatoms, the group that dominates 

export production in the present day oceans (Falkowski et al., 2004).    
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 What factors facilitated the rise of CDD algae after several hundred million years of 

green algal dominance among eukaryotic phytoplankton?   A case can be made that each CDD 

clade expanded due to individual adaptation, for example the ability of diatoms to store nitrate in 

intracellular vacuoles (Kooistra et al., 2007).   But one might also ask whether common features 

of these groups also underpin their correlated rise to ecological prominence.  Phytoplankton 

distributions in the modern ocean reflect physical and chemical water mass characteristics 

(Follows et al., 2007).  Might, then, long term transitions in seawater chemistry or circulation 

have facilitated Mesozoic phytoplankton evolution?    

 Physiology has a role to play in addressing this issue.  For example, Quigg et al. (2003, 

2011) noted that the CDD algae have a relatively low demand for iron compared to green algae 

and cyanobacteria.  Perhaps, they argued, increasing ventilation of subsurface oceans during the 

Mesozoic Era diminished the availability of Fe in the photic zone, favoring CDD clades.  Ratti et 

al. (2011) also looked to ecological stoichiometry, but took a different tack.  Noting that CDD 

algae have an S:C ratio higher than that in most green algae and cyanobacteria for which data are 

available, and recognizing, as well, that seawater sulfate levels increased (albeit not 

monotonically) from the early Paleozoic to the present day, Ratti et al. hypothesized that greater 

S availability might additionally or alternatively have facilitated the rise of phytoplankton with 

relatively high S demand.   

 Putting this hypothesis to physiological test, Ratti et al. (2011) grew representative green 

algae, diatoms, coccolithophorids, dinoflagellates and cyanobacteria in synthetic seawater with 

[SO4
2-] ranging from 1 to 30 mM (in modern seawater, [SO4

2-] = 28 mM) .   The green and 

cyanobacterial cultures showed no growth response to increasing sulfate levels, but the three 

CDD algae did, at least up to 10 mM, a threshold first exceeded during the late Paleozoic Era 
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(Fig. 3).  In direct competition experiments, diatoms outgrew green algae and cyanobacteria in 

modern seawater, but green algae grew best under culture conditions thought to approximate 

Paleozoic seawater.  Thus, laboratory tests provide support for the sulfate-facilitation hypothesis.  

 As Ratti et al. (2011) made clear, this does not, by itself, solve the problem of the 

Mesozoic phytoplankton revolution.  That will require more experiments on a wider diversity of 

phytoplankton species.  It does, however, illustrate how physiological experiments can illuminate 

geologically-based hypotheses that link phytoplankton evolution and environmental transition.  

 Whatever combination of environmental and biological factors drove Mesozoic 

phytoplankton transition, its consequences would have been important for community 

organization in the oceans.  On average, diatoms and dinoflagellates have cell volumes up to 

several orders of magnitude greater than those of green phytoflagellates and cyanobacteria in the 

same waters, possibly reflecting size selection associated with grazing or fluctuations in nutrient 

supply (Cermeno et al., 2011; Edwards et al., 2011).  Given the decreasing calculus of energy 

transfer from one trophic level to the next, packaging nutrients into larger phytoplankton cells 

could conceivably have resulted in greater resources for top carnivores.  That is to say, that the 

Mesozoic revolution of phytoplankton might have facilitated the Mesozoic marine revolution of 

animals.   As two of the three radiating phytoplankton clades produced biomineralized skeletons, 

Mesozoic phytoplankton reorganization also had important consequences for the marine 

carbonate (Ridgwell and Zeebe, 2005) and silica (Maliva et al., 1989) cycles. 

 The Mesozoic transition was not the first major reorganization of phytoplankton in the 

oceans.  An earlier shift took place late in the Proterozoic Eon when, following some three 

billion years of bacterial domination, eukaryotes – largely green algae in the phytoplankton (e.g., 

Kodner et al., 2008) -- became important contributors to marine primary production.   Fossils 
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(Butterfield, 2000), biomarker molecules (Knoll et al., 2007a), and molecular clocks (Parfrey et 

al., 2011) all indicate that this rise of eukaryotic photoautotrophs to ecological prominence long 

postdates the acquisition of photosynthesis by nucleated cells.  Can physiology help resolve this 

transition as well? 

 Beginning with a seminal paper by Canfield (1998), geochemistry has increasingly 

suggested that for much of the Proterozoic Eon, anoxic water masses commonly lay beneath a 

moderately oxic surface ocean (Shen et al., 2002, 2003; Canfield et al., 2008; Scott et al., 2008; 

Arnold et al., 2004; Johnston et al., 2009; Dahl et al., 2011).  In places, perhaps especially on 

highly productive shelves, the oxygen minimum zone sometimes became sulfidic, but 

ferruginous water masses may have been even more widespread (Planavsky et al., 2011). How 

might Proterozoic redox structure have affected the composition of phytoplankton in surface 

waters?    

 Fixed nitrogen levels would have been low in Proterozoic surface waters: upwelling 

ammonia would have been oxidized via nitrification and anammox as it reached the oxic-anoxic 

interface, while denitrification and anammox would have consumed nitrate and nitrite (Anbar 

and Knoll, 2002; Fennel et al., 2005).  In a photic zone with strong N-limitation, physiological 

advantage would go to species able to fix nitrogen (Schade et al., 2005), namely cyanobacteria 

and other photosynthetic bacteria.  Consistent with this, at times of transient subsurface anoxia, 

prokaryotic primary producers have episodically re-expanded in Phanerozoic shelf waters (e.g., 

Grice et al., 2005; Knoll et al., 2007b; Xie et al., 2010; Hays et al. 2012).  

    The upward penetration of sulfide into the photic zone is documented regionally by 

biomarker molecules for purple and green photosynthetic bacteria in mid-Proterozoic shales 

from Australia (Brocks et al., 2005).  To the extent that anoxygenic photosynthesis provided a 
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persistent if small contribution to marine primary production, this could have sustained a series 

of biogeochemical feedbacks that worked to limit oxygen accumulation in the atmosphere and 

surface oceans (Johnston et al., 2009).  Geochemical data suggest that as late as 750 Ma, anoxic 

water masses remained common, even in relatively shallow (above storm wave base) 

environments (Johnston et al., 2010).  This, in turn, suggests that low pO2

 In mid-Proterozoic oceans low nitrogen availability would have influenced the 

composition of marine phytoplankton, but not necessarily the amount of primary production -- at 

least insofar as nitrogen fixation by photosynthetic bacteria could have supplied bioavailable N. 

 (perhaps no more than 

a few percent of present day values; Gaidos, 2010) persisted until well into the Neoproterozoic 

Era. 

Anbar and Knoll (2002), however, proposed that nitrogen availability might indeed have limited 

primary production in the oceans of Earth’s middle age, reasoning that Mo, required as a metallic 

cofactor in functionally efficient nitrogenase (the enzyme complex responsible for biological 

nitrogen fixation), would have been in short supply.  Zerkle et al. (2006) provided a 

physiological test of this hypothesis, growing N-fixing cyanobacteria in seawater solutions that 

approximated the amount of Fe and Mo in ancient seawater.  They found that even at Mo 

concentrations estimated for the mid-Proterozoic ocean, supply was sufficient to sustain high 

rates of nitrogen fixation, although rates of primary production fell by a factor of two relative to 

experiments under optimal concentrations, possibly due more to Fe limitation than to 

molybdenum.  Thus, Mo availability may have been sufficient to sustain relatively high levels of 

photosynthesis in Proterozoic oceans (see also Glass et al., 2010).  Once again, physiological 

experiments provide a means of addressing systems paleobiological hypotheses linking 

biological and environmental history.   
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 Interestingly, Buick (2007) has proposed a different trace metal influence on the 

Proterozoic nitrogen cycle.  Before the late Neoproterozoic oxygenation of deep oceans, copper 

would have existed at low abundances in seawater (Saito et al., 2003).  Copper is an essential 

metallic cofactor in the enzyme nitric oxide synthase that reduces N2O to N2, thereby completing 

the biological reduction of oxidized nitrogen to nitrogen gas.  In the absence of sufficient Cu, 

Buick reasoned, N2

 Both microfossils and biomarker molecules suggest an increasing presence of algae in 

later Neoproterozoic primary production (Knoll et al., 2006, 2007b; Close et al., 2011).  As 

oxygen pervaded the subsurface ocean, nitrate would have begun to accumulate in seawater and 

so, for the first time, eukaryotes would have become competitive in the marine phytoplankton.  

One might expect that Proterozoic lakes with relative shallow bottoms would have become fully 

oxic long before the ocean did, with nitrate accumulating in the absence of a strong redoxcline.  

Consistent with this, geochemical analyses of interpreted lacustrine strata of the 1000 Ma Stoer 

and Torridon groups, northern Scotland, show evidence of an oxic water column (Parnell et al., 

2010), while microfossils in the same succession show evidence of relatively abundant and 

diverse eukaryotic cells (Strother et al., 2010).  The Torridonian succession reminds us that while 

nonmarine environments are commonly out of sight in Proterozoic successions, they should not 

be out of mind. 

O would have escaped to the atmosphere, providing an ongoing supply of 

this potent greenhouse gas that would have helped to keep the Earth free of continental ice sheets 

for more than a billion years of Proterozoic Earth history. 

 The paleontological and biogeochemical tools needed to reconstruct the history of 

primary production in the oceans have improved markedly over the past decade, as has the 

capacity to understand the chemical history of marine water masses.  Physiological experiments 
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have a strong potential to elucidate the systems paleobiological interactions between evolving 

phytoplankton and changing seawater, providing an improved framework for investigations of 

animal evolution in the oceans. 

 

OXYGEN AND ANIMAL EVOLUTION 

 Fossils record animal responses to both long term trajectories of environmental change 

and transient perturbations in the Earth system.  Both have provided major foci for 

paleontological inquiry, and in both cases physiological insights are reshaping research.  No long 

term trajectory has attracted greater interest than the history of oxygen in the atmosphere and 

oceans, with particular attention to environmental constraints on early animal evolution.  The 

hypothesis that redox history constrained early metazoan evolution goes back more than half a 

century (e.g., Nursall, 1959; Cloud, 1968) and reflects physiological experiments completed still 

earlier (Krogh, 1919).  In the present day ocean, animals show a strong and predictable pattern of 

diversity decrease, smaller size, and lower mobility along gradients of decreasing oxygen 

availability (Rhoads and Morse, 1971; Diaz and Rosenberg, 1995; Levin, 2003).  Where O2

 Invertebrate diversity shows only limited effects of hypoxia down to levels of about 2 

ml/l (20-25% of surface saturation, commonly used as the threshold of dysoxia), but below that 

the effects begin to mount, especially below 10% surface saturation (Diaz and Rosenberg, 1995). 

 is 

chronically absent, only a few physiologically specialized animals can live, for example, tiny 

loriciferans whose mitochondria have evolved into hydrogenosome-like organelles adapted for 

anaerobic metabolism (Danovaro et al., 2010).  Even these species, however, rely indirectly on 

oxygen as they obtain sterols required for growth by eating cells that synthesize these molecules 

in overlying oxic waters. 
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Animals in strongly dysoxic waters display a number of physiological adaptations to low oxygen 

availability, many of which could not be inferred from fossils.  In general, however, these faunas 

are characterized by two features that do preserve in the rocks: small body size and a dearth of 

feeding modes requiring persistent, active locomotion (Levin, 2003).   

 As noted in the preceding section, geochemical evidence suggests that for most of the 

Proterozoic Eon, even the most oxygen-rich environments would have been strongly dysoxic, 

and persistently anoxic water masses were common in the subsurface oceans.  Increasingly, 

geochemical data support the hypothesis that more persistently oxic oceans appeared only during 

the Ediacaran Period, and mostly after 580-560 Ma (recently reviewed, with new data, by Li et 

al., 2010, and Johnston et al., in press).  This does not, by itself, contradict molecular clock 

estimates of 800 Ma for the initial diversification of animals (Erwin et al., 2011), but does place 

constraints on the body plans and feeding modes available to those earliest animals.  Neither 

does the strengthening evidence for Ediacaran redox transition obviate important roles for 

developmental genetics and ecology in animal diversification (e.g., Butterfield, 2007; Erwin et 

al., 2011), although many key events of gene diversification must have preceded the late 

Ediacaran appearance of large bilaterians (Domazet-Lošo et al., 2008), and major effects of 

active predation really become apparent only during Cambrian diversification (e.g., Bengtson 

and Conway Morris, 1992; Erwin et al., 2011).  What geochemistry does indicate is that the 

genetic and ecological determinants of early animal evolution were themselves constrained by 

environment before the later Ediacaran Period.  Only as stably oxygen-rich environments spread 

through the oceans did large, motile bilaterians begin to assume ecological importance (Johnston 

et al., in press).    
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 Once the Ediacaran state change was complete, did oxygen cease to shape the evolution 

of animals?   Some have postulated that many evolutionary events recorded by Phanerozoic 

fossils reflect oxygen rise or fall (Berner et al, 2007), while others have argued that perhaps none 

do (Butterfield, 2009).  Unsurprisingly, increasing research favors a position somewhere between 

these extremes.   It isn’t easy to track Phanerozoic pO2, although a number of biogeochemical 

models estimate its course through time (e.g., Berner, 2006; Bergmann et al., 2004).  Leading 

models differ in detail, but are consistent in suggesting relatively low pO2 in the early Paleozoic 

and higher than present oxygen levels late in the era.  Mo isotope data corroborate the view that 

pO2 may first have risen to something like modern values about 425-400 million years ago (Dahl 

et al., 2010).  Consistent with this, predatory fish greater than one meter in length first spread 

through the oceans during the Devonian Period.  Physiological research on living fish shows that 

active predators suffer strongly deleterious effects at oxygen levels well above the canonical 

threshold for dysoxia; pO2

 Most biogeochemical models agree that the Pennsylvanian and Early Permian periods 

experienced oxygen concentrations higher than today’s, and this has been tied to the fossil record 

of exceptionally large insects.  In an arresting paleontological application of physiology, 

VandenBrooks et al. (2011, see also Harrison et al., 2011) grew phylogenetically disparate 

insects under conditions of hypoxia, normoxia, and hyperoxia, showing that some but not all 

insects respond to elevated pO

 even half that of present levels would have placed strong constraints 

on the early Paleozoic evolution of vertebrates as top carnivores (Dahl and Hammarlund, 2011, 

and references therein).     

2 by increasing body size.  The clade-specific capacity for 

increased size at higher pO2, which mirrors the selective size increase recorded by late Paleozoic 
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insect fossils, appears to reflect a developmentally modulated change in tracheal investment not 

unlike the feedback between stomatal density and pCO2

 It has also been proposed that late Permian decline in the diversity of terrestrial 

vertebrates can be tied to a concomitant decline in pO

 in leaves.  

2 (Huey and Ward, 2005) and that the 

origin and increasing size of placental mammals through time reflects a nearly monotonic 

increase in pO2 modeled by Berner (2006) for the past 200 million (Falkowski et al., 2005).  The 

latter argument remains in limbo, as other models for Phanerozoic oxygen history suggest that 

oxygen has not dipped below present day values for the past 200 million years and, indeed, may 

have been higher than at present during at least part of the Mesozoic Era (Bergmann et al., 2004).  

This emphasizes the need for new geochemical tools to provide better empirical estimates of pO2 

through Phanerozoic time.  Belcher et al.’s (2010) experimental calibration of the constraints 

placed by fossil charcoal on pO2

 

 illustrates the way forward   

PHYSIOLOGY AND MASS EXTINCTIONS 

 

 In addition to its long term trajectory, oxygen shows evidence of transient depletion in 

subsurface waters during the Phanerozoic Eon. Indeed there seems to be a broad directional 

change in the susceptibility of subsurface water masses to anoxia, with persistently anoxic 

oxygen minimum zones in Proterozoic oceans, episodic subsurface anoxia in Paleozoic seas 

(Berry and Wilde, 1978), a handful of transient anoxic events in the Mesozoic (Jenkyns, 2010), 

and few if any globally widespread anoxic events during the past 60 million years.  Some 

Phanerozoic episodes of expanded subsurface anoxia correlate with major extinctions.   

Intriguingly, however, observed patterns of extinction are not those one might predict based on 

mapped distributions of animal species across oxygen gradients or experimentally determined 
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energetic requirements (Knoll et al., 2007a).  The spread of anoxic waters across shelf seafloor 

would undoubtedly have produced mass mortality, as it does in seasonally expanding submarine 

“dead zones” today (Karlson et al., 2002), and sustained over time scales that are geologically 

resolvable, expanded anoxia would cause extinction.  The extinctions, however, would be 

indiscriminate within a basin, removing essentially all animal species in affected areas, whereas 

the pattern actually documented across extinction horizons is one of selective extinction and 

survival.   Extinctions associated stratigraphically with expanded anoxia show a common pattern 

of selectivity, with the highest proportional loss of taxa among hypercalcifying animals and 

greatest rates of survival among clades with actively motile species (e.g., Knoll et al., 2007a; 

Simpson and Kiessling, 2011; Clapham and Payne, 2011).  This suggests that if subsurface 

anoxia played a role in mass extinction selectivity, it was not primarily through asphyxiation (see 

also Winguth and Winguth, 2012).   

 When first proposed in 1996, the hypothesis that CO2 rather than O2 determined 

observed patterns of end-Permian mass extinction (Knoll et al., 1996) was received politely at 

best.  Since that time, however, the increasingly resolved correlation between massive volcanism 

and the extinction event has provided a mechanism for the rapid increase in pCO2 required for 

this gas to have deleterious physiological effects.  Moreover, growing awareness of present day 

ocean acidification and its potential consequences for the marine biota (Gattuso and Hansson, 

2011) has focused paleontological interest on rapid CO2

 Much of this interest has focused on the consequences of ocean acidification for the 

formation of CaCO

 increase as an agent in a number of 

extinction events (Kiessling and Simpson, 2011).   

3 skeletons.  Beginning with experiments on coccolith formation by Riebesell 

et al. (2000), research on pH and skeleton formation has expanded to include phylogenetically 
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diverse marine animals and protists.  As shown clearly by Ries and colleagues, organismic 

responses to imposed carbon dioxide are neither linear (Ries et al., 2009) nor uniform (Ries et 

al., 2010).  They are, however, consistent with the hypothesis that hypercalcifiers, organisms that 

deposit large volumes of skeletal carbonate but have only limited physiological ability to buffer 

the fluids from which they precipitate their skeletons, are differentially vulnerable to the 

deleterious effects of ocean acidification.  This pattern is consistent with the pattern of selective 

extinction observed at the Permo-Triassic boundary (Fig. 4; Knoll et al., 2007a) and several other 

times of extinction (Kiessling and Simpson, 2011).  

 Modeling indicates that the doubling time for atmospheric CO2 must be about 10,000 

years or less to overwhelm Earth’s capacity to buffer seawater pH and so decrease Ω, the degree 

of saturation with respect to calcite or aragonite (e.g., Hönisch et al., 2012).   It is the effect of 

saturation state on skeletonization that has that has occupied center stage in many studies of 

ocean acidification.  Independent of Ω, however, hypercapnia, or high internal CO2, can have 

systemic effects on physiological performance, among other things, influencing oxygen 

transport, growth rate and fecundity (e.g., Pörtner, 2008; Melzner et al., 2009; chapters in 

Gattuso and Hansson, 2011). The observation that diverse marine invertebrates thrived in Early 

Paleozoic oceans beneath a CO2-rich atmosphere tells us that here, too, rate must be important.  

The rate at which populations can adapt genetically to hypercapnic stress is poorly known and 

probably quite variable, but, in general the faster the change, the lower the probability that 

populations will adapt successfully. Rapidly increasing pCO2

 

 will also fosterglobal warming, 

with extinction rates expected to peak when rates of climatic change exceed the capacity of 

populations to adapt or migrate.     
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 In the integrated Earth system, warming induced by rapid injection of CO2 into the 

atmosphere should increase rates of continental weathering, enhancing nutrient delivery to 

oceans, while decreasing the capacity of downwelling water masses to transport oxygen into the 

subsurface ocean (e.g., Winguth and Winguth, 2012).  While anoxia, ocean acidification and 

global warming have all been implicated individually in end-Permian extinction, experiments 

show that their physiological effects are synergistic (e.g., Pörtner, 2008; Melzner et al., 2009; 

chapters in Gattuso and Hansson, 2011).  Melzner et al. (2009) summarized this burgeoning 

literature concisely, noting that more tolerant taxa are characterized by high metabolic rates and 

high rates of mobility – pretty much what is observed in ancient extinctions linked to rapid CO2

 This brings us back to the question of oxygen.  As noted at the beginning of this section, 

subsurface anoxia is associated with some past extinctions, including the early Cambrian demise 

of archaeocyathids, late Devonian reef collapse, the end-Permian mass extinction, and major 

extinctions in the late Triassic Period.  Is oxygen depletion simply a non-discriminating correlate 

of CO

 

increase (Fig. 4; Knoll et al., 2007a; Kiessling and Simpson, 2011).    

2 injection when hypercalcifiers disappear, or does subsurface anoxia contribute to the 

stresses that selectively doom these organisms?  Higgins et al. (2009) developed a model of the 

marine carbonate system in which they showed that the expansion of subsurface anoxia fosters 

anaerobic respiration pathways whose product is HCO3
- rather than CO2, resulting in deep 

waters that are less undersaturated with respect to calcite and aragonite than today’s, but also 

surface waters that are less oversaturated.  This suggests that expanding subsurface anoxia 

should affect the ability of shallow marine hypercalcifiers to make skeletons much in the way 

that ocean acidification does, but on times scales that can run to millions of years (further 
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modeled by Fischer, in Knoll and Fischer, 2011).  Thus, widespread subsurface anoxia may have 

joined ocean acidification in a one-two punch at the end of the Permian Period and, more 

broadly, may help to explain the episodic collapse of metazoan reefs through time, as well as the 

prolonged paucity of hypercalcifiers in later Cambrian and Early Triassic oceans (Pruss et al., 

2010; Gill et al., 2011; Knoll and Fischer, 2011). 

 Clearly, then, physiology helps us to understand how and why animals have responded 

through time to both long term and transient changes to the Earth system. Accelerating 

physiological research motivated by concerns for the future provide important insights into our 

understanding of the past – and vice versa.   

 

SYSTEMS ASTROPALEOBIOLOGY 

 

 A final exercise in systems paleobiology looks upward.  We live at a remarkable moment 

in human history, when longstanding questions about life in the universe can, for the first time, 

be addressed through observation and exploration.  Both because it is relatively nearby and 

because remote sensing early on showed its surface to be sculpted by fluid flow, Mars has 

become a principal focus for astrobiological research.  We don’t know whether Mars ever 

harbored life, but with each successive mission, we learn more about the environmental history 

of our planetary neighbor.  Adopting the systems approach, we can use known environmental 

history and the empirically determined physiological tolerances of terrestrial organisms to 

constrain speculation about possible biological history.    

 Liquid water is not stable on the present day surface of Mars, but numerous observations 

indicate that water once flowed across the martian surface and interacted chemically with its 
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basaltic crust.  Geomorphologic evidence includes branched channel systems, outwash plains, 

deltas, and paleolakes (Carr, 2007; Fasett and Head, 2011), whereas remotely sensed (Bibring et 

al. 2006; Ehlmann et al, 2011) and ground-based (Squyres et al., 2004, 2011; McLennan et al., 

2005) geochemical observations identify clay minerals and salts that record both chemical 

weathering and ionic transport.  Additional compounds might provide biofriendly media under 

some circumstances, but on Mars water would probably have been required for the emergence of 

life, as it was on Earth. In the past, water clearly flowed on Mars, but merely observing that it 

was once present is not sufficient to draw inferences about habitability. We need to know 

something about the properties and duration of surface water, and this is where physiology 

assumes importance. 

 The “ancient mariner’s dilemma” illustrates the issue.  In Samuel Taylor Coleridge’s 

famous poem “The Rime of the Ancient Mariner,” a grizzled sailor lies adrift in a boat, 

surrounded by water but dying of thirst: 

Water, water, every where, 
And all the boards did shrink; 
Water, water, every where, 
Nor any drop to drink.  

 

 Why is the mariner dying?  Coleridge insists that it is because he killed an albatross, but 

physiologists know it is because humans cannot tolerate water with the salinity (more properly, 

water activity = aw) of seawater.   Indeed, all species on Earth, whether animal, plant, fungal, or 

bacterial, have an empirically observable lower limit to the water activity they can tolerate.   

 This becomes relevant to Mars because the water activity of the fluids from which 

martian salts precipitated can be calculated using thermodynamics, if we can make reasonable 

assumptions about the ionic composition of parent fluids (Tosca et al., 2008).  Mg-sulfates 
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identified at Meridiani Planum, for example, conservatively suggest a water activity of about 

0.78 at their time of formation.  That is a physiologically daunting figure, only slightly above the 

aw

 Clearly the brines from which martian salts precipitated evolved from more dilute 

solution, which might, themselves, have been habitable, and, indeed, gypsum veins recently 

discovered along the margin of Endeavour crater likely precipitated from relatively dilute 

groundwater (Squyres et al., 2011).  The fate of these waters, however, was inevitably to 

evaporate, and at Meridinai Planum, microscopic images show little petrographic evidence for 

repeated wetting and drying.  It appears that water pervaded the Meridiani Planum surface, left, 

and pretty much stayed gone.  The persistence on Mars of jarosite, opaline silica, smectites and 

other minerals that are unstable in the continuing presence of water further suggests that many 

parts of the martian surface have seen very little water since these minerals formed an estimated 

three billion or more years ago (Tosca and Knoll, 2009). 

 for seawater saturated with respect to NaCl.  Few terrestrial organisms can tolerate this water 

activity, but it gets worse -- sodium chlorides deposited from martian waters as late stage 

evaporites at Meridian Planum and elsewhere record water activities below any known to 

support terrestrial life (Fig. 5; Tosca et al., 2008).     

 This doesn’t necessarily mean that Mars has always had a lifeless surface, but it does 

suggest that if the martian surface were ever habitable, it was during a relatively limited span of 

time early in martian history.  (Speculation about subsurface life is less easily constrained.)  One 

might argue that it is inappropriate to use terrestrial life as a physiological yardstick for Mars, as 

life there might have evolved along a different path.  Games without rules have many possible 

outcomes, and so, in the absence of any alternative examples, it makes sense to be guided by the 

life we know.  Regardless of evolutionary origin and molecular makeup, however, life might 
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have been compromised in brines like those at Meridian Planum due to high concentrations of 

chaotropic anions that disrupt the structure of proteins and other macromolecules (Zhang and 

Cramer, 2006; Williams and Hallworth,2009).  

   In the end, questions about life on Mars must be answered empirically, but the systems 

paleobiological perspective can help to constrain speculation and identify the most promising 

targets for those precious opportunities when rovers encounter the martian surface. 

  

CONCLUSIONS 

 

 In this essay, I have touched on issues that range from fluid flow in ancient plants to the 

persistence of water on other planets.  Again and again in the geologic record, the stratigraphic 

correlation of paleobiological and paleonvironmental data suggests a causal relationship between 

evolution and environmental change.  And in numerous cases, our expanding understanding of 

physiology, rooted in experiments and modeling, suggests means of testing correlation-based 

hypotheses.  At present, it is possible to see the way forward, although answers may remain 

elusive.  A decade from now, I suspect that a new appreciation of the evolutionary past will be 

within our grasp, bolstered in no small part by physiological research aimed at understanding the 

21st

   

 century and beyond.  At the same time, continuing efforts to understand the biological 

consequences of current global change will draw increasingly on Earth history.  Whether our 

research looks toward the past or the future, Systems Paleobiology will play an important role in 

understanding how the Earth system works. 
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FIGURE CAPTIONS 
 
 
Figure 1. Leaf shape varies systematically as a function of climate, as shown by this plot of the 

proportional representation of entire-margined species and mean annual temperature 

(data from Wolfe, 1971). 

 

Figure 2.  The rate at which water can be conducted upward through the stem is related to 

conductivity of individual xylem elements (specific conductivity, or Ksp). The plot shows 

modeled Ksp for a variety of living and Paleozoic seed plants (data from Wilson and 

Knoll, 2010).  Living gymnosperms (blue) have relatively small, thick-walled tracheids 

that conduct water at low rates, whereas angiosperms (red) commonly have vessels with a 

high Ksp.  Pennsylvanian seed plants (black) included the conifer-like Cordaites, with 

low per tracheid conductivity, but also genera such as Lyginopteris, Callistophyton and, 

especially, Medullosa that had Ksp

 

 intermediate between those of modern gymnosperms 

and angiosperms.  Indeed, the large, porous conducting cells of Medullosa had a specific 

conductivity matched only by vessel-bearing flowering plants.  

Figure 3.  Growth rates of four phylogenetically distinct algal populations in synthetic sweater 

 with sulfate contents from 1 to 30 mM (slightly above the modern oceans); redrawn from 

 Ratti et al., 2011).  Specific growth rate, µ = proportional increase in biomass per day 

 during exponential growth phase. The green alga Tetraselmis suecica (in green) shows no 

 systematic effect of increasing [SO4
2-], but the CDD algae (in orange) -- the diatom 

 Thalassiosira weissflogii, the coocolithophorid Emiliania huxleyi and the dinoflagellate 

 Protoceratium reticulatum -- do (the latter two significantly) up to 10 mM. 
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Figure 4.  Selectivity during the end-Permian mass extinction, as a function of skeletal 

physiology (from Knoll and Fischer, 2011).  Hypercalcifiers (left) show a high proportion 

of genus extinction, as do low activity clades such and crinoids and brachiopods, thought 

on the basis of physiological experiments to be vulnerable to ocean acidification (Barry et 

al., 2011).  Genera with little or no reliance on calcium carbonate skeletons (right) mostly 

survived the extinction event, while genera with carbonate skeletons but relatively strong 

physiological control over the fluids from which skeletal carbonate is precipitated show 

intermediate levels of extinction. 

 

Figure 5:  As water evaporates from solutions of known ionic composition, water activity can be 

calculated for the point at which specific minerals precipitate.  The blue line depicts 

seawater evaporation on Earth; the red line shows an evaporation sequence on Mars, with 

ionic composition based on the experimental dissolution of basalts under martian 

conditions and the observed sedimentary record at Meridiani Planum (redrawn from 

Tosca et al., 2008).  

 



30

20

10

M
ea

n 
A

nn
ua

l T
em

pe
ra

tu
re

 (˚
C)

100 80604020

Percent of species with entire-margined leaves (%)



10-3 10110010-110-2

Ksp, conduit-speci�c conductivity (m2/MPa * s)

Conifers

Cycads

Cordaites

Lyginopteris

Callistophyton

Medullosa

Angiosperm vessels

Ginkgo



5 10 15 20 25 30   (mM)

[SO4
2-]

0.0

0.6

0.4

0.2

Sp
ec

ifi
c 

G
ro

w
th

 R
at

e 
(µ

)









 









 













T. weissflogii
T. suecica

E. huxleyi
P. reticulatum





n = 173

86%

n = 229

54%

n = 43

5%

1007550250

% Extinction (genus diversity)

Heavy CaCO
3
 skeleton 

(low metabolic rate)
 Rugosa

 Stenolaemata

 Rhynchonelliform brachiopods

   -Orthida

   -Strophomenida

   -Spiriferida

   -Rhynchonellida

   -Terebratulida

 Acrotretida

 Crinoidea

Moderate CaCO
3
 skeleton 

(high metabolic rate)
 Gastropoda

 Bivalvia

   -Infaunal burrowers

   -Epifaunal, attached

 Nautiloidea

 Ammonoidea

 Ostracoda

 Malacostraca

 Echinoidea

Little or no CaCO
3
 skeleton

 Ctenostomata

 Lingulida

 Polychaeta

 Holothuroidea

 Conodontophorida

 Chondrichthyes




	Knoll GSA Bulletin revised ms
	Gaidos, E., 2010, The biogeochemical context of animal origins, in DeSalle, R., and Schierwater,  B., eds. Key Transitions in Animal Evolution: Boca Raton FL, CRC Press, p. 345–359,  DOI: 10.1201/b10425-19.
	Pörtner, H.O., 2008, Ecosystem effects of ocean acidification in times of ocean warming: a  physiologist's view: Marine Ecology-Progress Series, v. 373, p. 203-217, DOI:  10.3354/meps07768.

	Knoll GSA Fig 1
	Knoll GSA Fig 2
	Knoll GSA Fig 3
	Knoll GSA Bull Fig 4
	Knoll GSA Fig 5

