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Abstract 13 

Given the multitude of ecosystem services provided by mangroves, it is important to 14 

understand their potential responses to global climate change. Extensive reviews of the literature 15 

and manipulative experiments suggest that mangroves will be impacted by climate change, but 16 

few studies have tested these predictions over large scales using statistical models. We provide 17 

the first example of applying species and community distribution models (SDMs and CDMs, 18 

respectively) to coastal mangroves worldwide. Species distributions were modeled as ensemble 19 

forecasts using BIOMOD. Distributions of mangrove communities with high species richness 20 

were modeled in three ways: as the sum of the separate SDM outputs, as binary hotspots (with 21 

>3 species) using a generalized linear model, and continuously using a general boosted model. 22 

Individual SDMs were projected for 12 species with sufficient data and CDMs were projected 23 

for 30 species into 2080 using global climate model outputs and a range of sea-level rise 24 

projections. Species projected to shift their ranges polewards by at least 2 degrees of latitude 25 

consistently experience a decrease in the amount of suitable coastal area available to them. 26 

Central America and the Caribbean are forecast to lose more mangrove species than other parts 27 

of the world. We found that the extent and grain size, at which continuous CDM outputs are 28 

examined, independent of the grain size at which the models operate, can dramatically influence 29 

the number of pseudo-absences needed for optimal parameterization. The SDMs and CDMs 30 

presented here provide a first approximation of how mangroves will respond to climate change 31 

given simple correlative relationships between occurrence records and environmental data. 32 

Additional, precise georeferenced data on mangrove localities and concerted efforts to collect 33 

data on ecological processes across large-scale climatic gradients will enable future research to 34 

improve upon these correlative models. 35 
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Introduction 37 

 Sea-level rise and altered weather patterns resulting from global climate change have 38 

impacted and will continue to impact coastal systems, altering the ecological and economic 39 

services that they offer (Nicholls et al. 2007). In coastal tropical and sub-tropical areas 40 

throughout the world, salt-tolerant mangrove trees are of vital ecological and societal importance 41 

(reviewed by Walters et al. 2008). For instance, mangroves have the ability to sequester five 42 

times the amount of carbon than upland tropical forests (Siikimäki et al. 2012). Mangroves also 43 

provide critical habitat for organisms occupying the land-sea interface (Ellison 2008). Seafood 44 

production in many developing and developed countries throughout the world relies directly or 45 

indirectly on mangroves (Rönnbäck 1999, Ellison 2008). Mangroves may also provide a buffer 46 

that protects coastal and nearby inland human settlements from erosion and tropical storm 47 

damage (Das and Vincent 2009).      48 

 To better understand the uncertainty in projecting the global economic potential for 49 

decreasing carbon dioxide emissions from mangrove loss and because many other ecosystem 50 

services provided by mangroves also are affected by the diversity and distribution of mangroves, 51 

it is important to understand how large-scale patterns in their distributions are likely to respond 52 

to global climatic change (Ellison 1993, Ellison 2002). Extensive reviews of the literature 53 

summarize relationships between mangroves and environmental drivers in contemporary and 54 

historic times to speculate on how global climate change might affect mangroves worldwide 55 

(Ellison 1994, Snedaker 1995, Alongi 2008, Gilman et al. 2008). Manipulative laboratory 56 

experiments have explored fine-scale responses of mangroves to drivers associated with global 57 

climate change (e.g., elevated sea level and CO2 concentrations) (Farnsworth et al. 1996, Ellison 58 

and Farnsworth 1997, Ye et al. 2003). These reviews and experiments suggest that individual 59 
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mangrove species’ distributions may contract and local species richness and productivity may 60 

decrease in regions where climate-change scenarios forecast that precipitation and run-off will 61 

decrease while salinity soil sulfides increase (Snedaker 1995, Ellison 1994). In contrast, where 62 

precipitation and run-off increase, upland nutrients will be deposited, salinity will be reduced, 63 

and acid-sulfide soils will be moderated, leading to increased productivity, opportunities for 64 

range expansion of individual mangrove species, and potential for increases in local species 65 

richness. Latitudinal range limits of mangroves are forecast to increase as air temperatures warm; 66 

current mangrove distributions are limited by the 16°C isotherm of the coldest month (Ellison 67 

1994, Gilman et al. 2008).  68 

 Manipulative experiments and literature-based predictions of range and compositional 69 

shifts suggest hypotheses of how mangroves will respond to climate change that can be 70 

addressed using large-scale (macroecological) statistical models that directly relate future 71 

climate-change to mangrove distributions (Ellison 2002). Although they have not been widely 72 

applied to mangroves (cf., Gilman et al. 2007 for an example of a regional study), species and 73 

community distribution models (SDMs and CDMs, respectively) are a common tool used by 74 

macroecologists to assess potential threats of climate change to biodiversity (e.g., Fitzpatrick et 75 

al. 2011). These models use simple correlative relationships between species occurrences or 76 

indices of community composition and current environmental data to extrapolate species (or 77 

community) distributions across space and/or time (Guisan and Thuiller 2005, Peterson et al. 78 

2011). While such SDMs and CDMs do not incorporate many ecologically relevant factors (e.g., 79 

biotic interactions, evolutionary change), they do provide a first approximation for thinking 80 

about the large-scale impacts of climate change on organisms (Pearson and Dawson 2003). 81 
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 Previous mangrove modeling research has focused on topics such as mangrove 82 

demography (Clarke 1995), distributions (Cohen et al. 2005), stand dynamics (Chen and Twilley 83 

1998, Twilley et al. 1999, Berger and Hildenbrandt 2000; individual-based models reviewed by 84 

Berger et al. 2008), ecosystem function and services (Heald 1971, Grasso 1998), and foodwebs 85 

(Odum and Heald 1975) at geographic extents much smaller than the range of a species. Here we 86 

use SDMs and CDMs to explore how mangrove biodiversity may respond to global climatic 87 

change at large spatial extents encompassing the entirety of species’ ranges. SDMs generate 88 

detailed information on potential ranges of individual species, but are meaningful only when data 89 

are extensive (Fitzpatrick et al. 2011). In contrast, CDMs provide additional insights into rare 90 

species because they are capable of including infrequently sampled species. Of the SDMs we 91 

ask: 1) will each species’ coastal range expand, contract, or remain the same; and 2) if the 92 

species’ range does change, does it shift poleward or towards the equator?  We use CDMs to ask: 93 

1) will there be poleward shifts in areas with multiple mangrove species; and 2) given reasonable 94 

scenarios of climatic change, where do we forecast gains and losses in mangrove species 95 

richness? 96 

Methods 97 

Mangrove occurrence data 98 

 We focus our analyses on 30 species in the eight major mangrove genera (sensu 99 

Tomlinson 1986) that contribute most to the community structure in mangrove forests and 100 

provide the majority of ecosystem services (Rönnbäck 1999, Khatiresan and Bingham 2001, 101 

Ellison 2008). Mangrove occurrence (presence-only) data (Table 1) were obtained from the 102 

Global Biodiversity and Information Facility Database (GBIF: http://www.gbif.org; Appendix 1), 103 

and included data from museum specimens, peer-reviewed papers, and the Mangrove Database 104 
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of the Flanders Marine Institute (http://www.vliz.be/vmcdata/mangroves). Occurrence records 105 

were checked against species distribution maps (Spalding et al. 2010); outliers (including living 106 

specimens in botanic gardens) were removed before analysis (cf., Yesson et al. 2007).  107 

 We limited our modeling to coastal regions because mangroves are primarily coastal 108 

(Tomlinson 1986). We generated global coastal GIS layers by applying the “contour list” tool in 109 

ArcMAP 9.3 to a global topography and bathymetry digital elevation model 110 

(http://www.ngdc.noaa.gov). We generated coastlines at 0, 1, 3, and 6m contours, which 111 

correspond respectively to the current coastline and three projected increases in global sea-level. 112 

A 1-m rise corresponds to the upper limits of forecasted sea-level rise not accounting for rapid 113 

dynamical changes in ice-mass loss (IPCC 2007). Given the uncertainty in the magnitude of ice-114 

mass loss in areas such as Greenland over the next 100 years, however, we also modeled 3 and 6 115 

m rises in sea-level (Bromwich and Nicolas 2010).  116 

The coastal GIS layers were converted to 2.5-minute resolution (4,318 m grid cells) in a 117 

Goode homolosine projection for all subsequent modeling. A 2.5 minute resolution balances a 118 

sufficiently fine scale for non-climatic predictors (e.g., horizontal tide, river discharge) with 119 

computational resources. All GBIF data within 40 km of the coastline were assigned to the 120 

nearest grid cell of the current coast; these occurrence records yielded 7,085 unique records 121 

distributed across 1,847 grid cells that were used in the models, which treated each coastal grid 122 

cell as an observation unit. All data used in this study are available online through the Harvard 123 

Forest Data Archives (http://harvardforest.fas.harvard.edu/data-archives). 124 

Environmental predictors 125 

 We compiled a data set of 21 climatic, hydrological, and geomorphological variables 126 

associated with mangrove distribution patterns (Duke et al. 1998, Gilman et al. 2007, Alongi 127 
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2008). Bioclimatic variables were obtained from the WorldClim database 128 

(http://www.worldclim.org). These nineteen variables include summary statistics for temperature 129 

and rainfall (e.g., mean, range) at different temporal resolutions (e.g., annually, quarter annually) 130 

and represent average climatic conditions from 1950-2000 interpolated from weather station 131 

data. We refer to these data as “current” climate data (Hijmans et al. 2005). Estimates of 132 

horizontal tide and river discharge were based on catchment size. Horizontal tide was estimated 133 

by dividing the vertical tidal amplitude by slope, where vertical tides were obtained by summing 134 

the primary tidal amplitude constituents, M2 and K1 (Lyard et al. 2006), obtained from the 135 

NASA Planetary Geodynamics Lab, and slope was obtained from the global bathymetry and 136 

topography digital elevation model. River discharge was obtained using the “Flow 137 

Accumulation” tool in ArcMAP 9.3 applied to a global topography layer; flow accumulation was 138 

weighted by mean annual rainfall for the current and future scenarios.  139 

 For each of the 21 predictors, we used WorldClim data to generate a corresponding set of 140 

future environmental values based on the 2080 projections of the National Center for 141 

Atmospheric Research's (NCAR) CCSM3 general circulation model (GCM) under the 142 

Intergovernmental Panel on Climate Change IV's SRES A1b scenario. We chose this rapid 143 

growth, carbon intensive scenario because observed data on global fossil fuel emissions 144 

increased from 2000-2008 by 29%, suggesting that despite efforts to stabilize CO2 emissions to 145 

curtail global climatic change our planet is experiencing the more extreme of the SRES scenarios 146 

(Le Quéré et al. 2009). This GCM forecasts a +2 °C change in annual temperature within the 147 

current latitudinal limits of mangroves (32 ºN and 40 ºS; Spalding et al. 2010). Precipitation 148 

projections are more variable; some mangrove areas are forecast to have 50% less annual 149 

precipitation (most of Central America and the Caribbean), whereas other areas are forecast to 150 
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have 50% more (most of Southeast Asia). Although we recognize that there also is variation 151 

among GCMs (IPCC 2007), it was beyond the scope of this study to run different GCMs on the 152 

SRES A1b scenario.      153 

 As we did for the mangrove occurrence data, we assigned to each coastal grid cell the 154 

nearest value (within a 40-km radius) of each of the current and future environmental variables. 155 

To account for possible spatial error in the river discharge layer to coastal cells, this layer was 156 

first resampled at a 14 km grid size, taking the maximum value within that larger region before 157 

assigning values to the coastal cells. 158 

Species distribution modeling 159 

 We used BIOMOD (Thuiller et al. 2009) to generate SDMs for the 12 mangrove species 160 

that occurred in at least 50 modeled grid cells (Table 1). Note that while there were 15 species in 161 

the GBIF data with >50 occurrences, there were only 12 species with >50 occupied 2.5 minute 162 

resolution grid cells. Outputs of SDMs and CDMs are sensitive to the type of statistical model fit 163 

to the occurrence data, so it is preferable to fit many statistical models to the data and combine 164 

them into an “ensemble forecast” (Araujo and New 2007). BIOMOD generates ensemble 165 

forecasts of species distributions based on contributions from multiple statistical models and 166 

initial conditions. We fit and compared all nine of the statistical models available in BIOMOD 167 

R2.14: generalized linear models, generalized boosting models, classification and regression 168 

trees, generalized additive models, artificial neural networks, surface range envelopes, flexible 169 

discriminant analyses, multiple adaptive regression splines, and random forests (detailed in 170 

Thuiller et al. 2009, R Development Core Team 2011).   171 

 BIOMOD models require both presence and absence data. Creating pseudo-absences 172 

(i.e., background absences) is common when fitting SDMs because presence only data often are 173 
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obtained from herbaria records or online databases, so pseudo-absences are generated to better 174 

characterize the set of environmental conditions a specie’s experiences within its current range 175 

(Thuiller et al. 2009). The results of SDMs can be sensitive to the selection of pseudo-absences, 176 

the ratio of presences to pseudo-absences, and the geographic extent of pseudo-absences (Lobo 177 

et al. 2010, Barbet-Massin et al. 2012).We therefore used several approaches to generating 178 

pseudo-absences to accompany our presence-only data on mangroves. One approach we used for 179 

selecting pseudo-absences was to use all locations within 40 kilometers of the coastline in the 180 

entire mangrove occurrence data set as absences, including locations where the focal species had 181 

been found. Phillips et al. (2009) showed that including localities with known occurrences as 182 

pseudo-absences helps to minimize spatial bias in survey effort (i.e., bias due to some areas 183 

being easier to access and sample for presences than other areas). Random selection of pseudo-184 

absences is a common method (Stockwell and Peters 1999, Fitzpatrick et al. 2011), and the 185 

selection of a large number of pseudo-absences at random has been shown to have better 186 

predictive performance than more sophisticated methods based on fitting a preliminary model to 187 

identify areas of low habitat suitability (Wisz and Guisan 2009).  We generated a random 188 

selection of 500, 1000, and 10,000 locations within 40 kilometers of the coastline between 189 

latitudes 47ºS and 47ºN, with an equal weight of presence to background data. The geographic 190 

extent of the pseudo-absence locations was limited to a lower latitude area of the world because 191 

previous studies found that artificial absences that were too far from the presence locations in 192 

environmental space were not helpful in differentiating suitable from non-suitable conditions 193 

(Lobo et al. 2010, Barbet-Massin et al. 2012).  194 

 To avoid model over-fitting and to identify the most important current climate 195 

environmental variables associated with mangrove distributions, we used generalized boosted 196 
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models (GBMs) for each species within BIOMOD. GBMs allow for correlated predictors and 197 

average across all regression trees created by the boosting algorithm to give robust estimates of 198 

the relative importance of each environmental predictor in the model (Friedman 2001, Elith et al. 199 

2008). To reduce uncertainties due to the method used to generate pseudo-absences and due to 200 

the stochastic nature of the GBM algorithm, ten GBMs were fit for each of the four pseudo-201 

absence data sets (a total of 40 GBMs). The average relative importance of each predictor over 202 

these 40 GBMs was then used to identify the five most important predictor variables for each 203 

species to be used in the final SDMs (following Friedman 2001) (Tables 2 and 3). For weights in 204 

these and the final models, we used the total number of occurrence records for each species per 205 

grid cell. 206 

 These top five most important variables for each species were then used to fit the 207 

statistical models in BIOMOD for each combination of presence / pseudo-absence data. Data 208 

combinations were split randomly ten times into calibration (70%) and evaluation (30%) 209 

components, and the models were run on each of the ten calibrations and evaluation data sets. We 210 

assessed the predictive performance of each of the SDMs with the True Skill Statistic (TSS) as it 211 

is independent of prevalence (i.e., the proportion of locations with presences) and it accounts for 212 

omission and commission errors (i.e., false negatives and false positives, respectively) (Allouche 213 

et al. 2006). TSS ranges from –1 to +1; a value of +1 indicates perfect agreement between model 214 

predictions and the validation data, whereas values < 0 indicate model predictions no better than 215 

random. We present here the ensemble forecast for the current climatic conditions and future 216 

scenarios from models fit using presence / 500 random pseudo-absence data, because this 217 

combination yielded the highest TSS value. The contribution of each statistical model to the 218 
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ensemble was based on a weighted average in which the relative weight of the model's TSS score 219 

was calculated using BIOMOD’s default decay value of 1.6 (Thuiller et al. 2009).  220 

 Binary (presence/absence) outputs were generated from the continuous outputs of 221 

BIOMOD by selecting the threshold that maximized the TSS score. From these data, we 222 

calculated the percent of the total number of coastal cells occupied by each species under each 223 

scenario. We also calculated the minimum, maximum, mean, and standard deviation of the 224 

absolute value of latitude of predicted occurrences for each species. Because the models do not 225 

account for dispersal limitation, we cropped model outputs to meaningful regions for each 226 

species before summarizing. We used the GBIF data and distribution maps (Spalding et al. 2010) 227 

to determine the oceans in which the species occur, and then set projected probabilities to zero at 228 

longitudes beyond these regions (Table 4). After selecting crop lines for each species, we 229 

examined global projected distributions to ensure that the crop lines did not intersect areas 230 

predicted to have continuous occurrences. Thus, summary statistics of model outputs should not 231 

be very sensitive to the location of crop lines.  232 

Community distribution models and species richness 233 

 Mangroves tend to occur in association with multiple mangrove species, each of which 234 

may occur at specific tidal elevations (Macnae 1968). At the coarse scale of this study, we are 235 

interested primarily in identifying areas where multi-species mangrove assemblages are likely to 236 

occur, rather than distinguishing between different types of mangrove communities. We modeled 237 

local species richness (“alpha diversity”) because we had inadequate data to model species 238 

turnover (“beta diversity”).  239 

 We modeled mangrove species richness using three different approaches: a composite 240 

model, a continuous-response model, and a binary-response model. For the composite model, we 241 
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combined the independent projections of the 12 individual SDMs by summing the predicted 242 

occurrences within each coastal cell. For the continuous and binary models, we calculated the 243 

current species richness within each coastal cell based upon all 30 major mangrove species in our 244 

GBIF data set (Table 1).  245 

In the binary model, we sought to identify those cells where multi-species mangrove 246 

communities are most likely to exist. To do this, we assigned each cell with three or more species 247 

out of the 30 total species in our GBIF data a value of one and each cell with less than three 248 

species was assigned a value of zero. In this analysis, we modeled presence of cells with high 249 

species richness relative to the other cells in our data set. This process yielded 355 presences of 250 

high richness cells. We used three species as the threshold because this was the highest value that 251 

would yield enough presences of these high richness cells for sufficient predictor-to-response 252 

ratios in the models. The presence of three species may not indicate a true hotspot of mangrove 253 

diversity in the field. However, this threshold is appropriate within the context of the GBIF data 254 

set, and allows us to confidently weed out cells where only one or two mangrove species exist. 255 

We considered using different thresholds for defining high richness in the eastern and western 256 

hemispheres, because one might expect greater overall richness in the eastern hemisphere. 257 

However, we only see more high-richness cells in the east when the threshold is set at four or 258 

five species per cell (Fig. 1), at which levels there are insufficient sample sizes. We further felt 259 

that it was more appropriate to treat all of the data uniformly in the model, rather than imposing 260 

further rules that may introduce more potential for bias.  261 

We ran the binary richness data through the same BIOMOD modeling process that we did 262 

for each of the individual species. For weights in the binary model, we used the actual number of 263 

species observed in each cell (Fig. 1).  264 
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 For the continuous CDMs, we did not have access to a comprehensive software package 265 

for ensemble distribution model selection and prediction based on non-binary data (e.g., 266 

BIOMOD does not model abundance). Instead, we fit the full GBM and GLM models using all 267 

21 environmental variables as predictors and the number of mangrove species reported within 268 

each grid cell as the response. We compared models with the full suite of predictor variables to 269 

those fit using subsets of variables: the five variables with the greatest influence; or by iteratively 270 

discarding the least influential variable between pairs of variables with greater than 0.7 271 

correlations and rerunning the model until there were no more correlated environmental variables 272 

(Dormann et al. 2012). We used AIC stepwise selection to discard variables that were not 273 

significant at the 0.05 level. As we did with the SDMs, the mangrove presence data were 274 

combined with pseudo-absences generated by selecting 0, 500, 1000, or 10000 random cells 275 

from within 40 kilometers of the entire coastline.  276 

 To determine which type of model yielded the best predictive performance, we divided 277 

the world into eastern and western regions defined by a longitudinal division through central 278 

Africa at 22.46° where there are no recorded mangrove occurrences. We then trained each model 279 

on the separate halves of the world and evaluated their predictive performance on the observed 280 

data in the other half of the world. To assess predictive performance, we used the likelihood of 281 

univariate GLMs comparing observed species richness in the holdout data sets to predicted 282 

species richness. Because our ultimate aim was to examine large-scale patterns in mangrove 283 

species diversity, we also tested predictive performance of the full GBM and full GLM models at 284 

a coarser resolution. In the coarse-resolution tests, we aggregated the predicted and observed 285 

data in the holdout regions to a 500-km grid cell size before comparing predicted and observed 286 

species densities. For the final selected model, we fit the subset of predictor variables to the 287 
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entire world, and then projected forward using the environmental variables in the 2080 3m sea 288 

level rise scenario because the results of the SDMs we ran previously were not sensitive to the 289 

different sea-level rise scenarios.  290 

For the composite, binary, and continuous CDMs, we generated 500-km grid cell maps of 291 

forecasted change in species richness between current conditions and future scenarios. We also 292 

calculated means of latitude in each cell weighted by the fitted species richness in current and 293 

future scenarios for the three models. The GBM model with the full suite of variables had the 294 

best predictive performance in most scenarios (Table 5), and so we used this model for our future 295 

projections. As with the SDMs, model evaluation with holdout data suggested that models 296 

trained with the least pseudo-absences had the best predictive performance when tested against 297 

the data with the original ~4 km (i.e., 2.5 minute) grid size. However, coarse scale maps 298 

produced by these models exhibited many nonsensical predictions for current mangrove 299 

occurrences, including high species richness in high latitude regions. When examining 300 

predictions that had first been re-scaled to a 500 km grid size, inclusion of pseudo-absences 301 

improved model likelihoods, and produced maps of current fitted distributions that better 302 

matched our expectations. Because our study is focused on global changes in mangrove 303 

distributions, we opted for including 2000 pseudo-absences in the final model. This yielded an 304 

approximate presence to absence ratio of 1:1, similar to that used in the individual SDMs with 305 

500 pseudo-absences. Code for all SDMs and CDMS performed using R statistical software 306 

version 14.0 are included in Supplementary Material. 307 

Evaluation of SDM and CDM outputs 308 

We evaluated model outputs by generating summary maps at a coarser resolution in order 309 

to generalize patterns across regions. We generated these maps with 500 km grid cells and 1000 310 
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km grid cells. Within each of the larger cells, we summed the predicted species richness in all of 311 

the 4 km grid cells. The result is a mangrove species density value for each of the measured cells. 312 

This density is different from the mean species richness, because it incorporates both species 313 

richness and the number of occupied cells. A 500-km cell centered on Panama has much more 314 

coastline than a 500-km cell centered on the coast of Peru. Thus, even if every 4 km coastal cell 315 

had the same number of species, the species density measured in the 500 km grid cells would be 316 

higher in Panama than Peru.  317 

Coastline versus Latitude 318 

Our study analyzes latitudinal shifts in coastal species. To frame our results, we also 319 

needed to understand how the world’s coastlines are distributed with respect to latitude. To this 320 

end, we summed the total number of ~4 km grid cells within each 2-degree latitudinal bin. We 321 

also performed a separate analysis using ArcMap in which we compared the total length of our 322 

coastline vector data within 15° of the equator, and between 15° and 30° from the equator. The 323 

vector data was generated at a 1.7 km resolution. 324 

Results 325 

Species distribution models 326 

 The current distribution of each of the most common 12 mangrove species was best 327 

predicted by a different set of five environmental variables (Tables 2 and 3); precipitation in the 328 

warmest and coldest quarters appeared in the list of top five predictors for more than half of the 329 

mangrove species. In the variable selection process, river discharge and horizontal tide were 330 

identified as important environmental predictors only for Rhizophora apiculata, R. racemosa, 331 

and R. stylosa (Tables 2 and 3). The predictive performance of the models was high: TSS values 332 

for the twelve species averaged 0.97 (range 0.950 – 0.988), but in a few instances the SDMs 333 
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predicted current mangrove distributions outside of their current known latitudinal range (Fig. 2). 334 

Rather than focusing only on minimum and maximum latitudes, we therefore also examined the 335 

mean and standard deviations of the absolute values of latitude.  336 

 All 12 common mangrove species were forecast to change their absolute mean latitude 337 

and total suitable coastal area relative to current climatic conditions (Fig. 2). Half of the modeled 338 

species were projected to have a poleward shift of two degrees of latitude or more in the absolute 339 

mean latitudes of their distributions under the future climate scenario (Fig. 2). These six species 340 

also were forecast to suffer losses in the total area of suitable coastal habitat available within 341 

their expanded ranges (Fig. 2). This loss of the amount of suitable coastal habitat available for 342 

species with poleward range shifts could be due to the lower amount of total coastline in higher 343 

tropical latitudes compared to equatorial areas (Fig. 3). All of the species that did not experience 344 

a poleward shift in the absolute mean values of their distributions gained total suitable coastal 345 

habitat under the future scenario regardless of the amount of sea-level rise.   346 

 The four species with current ranges limited to the Americas, western and central Africa, 347 

and the western Pacific islands – Avicennia germinans, Laguncularia racemosa, Rhizophora 348 

mangle,  Rhizophora racemosa –were all forecast to experience overall losses in total suitable 349 

coastal habitat and poleward shifts under the future climate scenario compared to current 350 

climatic conditions (Figs. 2, and 4-27). The NCAR-CCSM3 GCM forecasts that the annual 351 

precipitation in these regions will decrease by at least 50% and that annual temperature will 352 

increase by at least 2°C. Our forecasts of mangrove loss in these areas supports previous 353 

hypotheses that individual mangrove species’ distributions will contract and richness will decline 354 

as rainfall and runoff decrease while salinity and extent of acid-sulfide soils increase (Snedaker 355 

1995, Ellison 1994). 356 
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The remaining eight species, with current ranges limited to eastern Africa, Asia, and 357 

Australia, had more variable forecasts. Lumnitzera littorea and Rhizophora mucronata were 358 

projected to shift polewards and lose suitable coastal habitat, while Avicennia marina, Ceriops 359 

tagal, Lumnitzera racemosa, and Rhizophora apiculata were forecasted to gain potential coastal 360 

area with absolute mean latitudinal gains of less than two degrees. Sonneratia alba  and 361 

Rhizophora stylosa were projected to gain coastal habitat and experience decreases in absolute 362 

mean latitude (i.e., equatorial range contractions). With forecasted gains in suitable coastal area 363 

of 260% to 290% of its current projected distribution, R. stylosa was forecast to gain a 364 

remarkable 110 to 185% additional habitat relative to its current distribution. 365 

Community distribution models and species richness 366 

 The means of the absolute value of latitude weighted by fitted current species density 367 

were 14.5º, 14.3º and 17.0º for the composite model, the binary model, and the continuous 368 

model, respectively. The projected mean latitudes for the 3m sea-level rise were 14.6º, 14.2º, and 369 

15.7º for the same three models. The projected maps of change in species density differed 370 

between the three model types, although there were a few areas of overlap (Fig. 28). All three 371 

models predicted gains in mangrove species density across much of southeastern Asia, southern 372 

Brazil, northern Chile, eastern Australia, southeastern Africa, parts of northern Africa, and parts 373 

of northwestern Mexico. All three models also predicted losses of mangrove species density in 374 

the Caribbean Islands, parts of Central America and parts of northern Australia (Fig. 28). 375 

Coastline versus latitude 376 

In summing the ~4 km coastal cells vs. latitude, we found that the total length of coastline 377 

between the equator and ±15° was 42% greater than the length of coastline between 15° and 378 

30°N or S (i.e., 182,000 km versus 129,000 km, respectively; Fig. 3).  The vector analysis 379 
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similarly showed 43% more coastline within 15° of the equator than between 15° and 30° from 380 

the equator. 381 

Discussion 382 

 Species and community distribution models are widely used techniques for evaluating the 383 

potential impacts of climatic change on biodiversity (Fitzpatrick et al. 2011). These models use 384 

simple correlative relationships to project potential distributions for future climate scenarios in 385 

order to inform management and climate-change policy (Hannah et al. 2007). Although 386 

distribution models usually perform well in characterizing and predicting current distributions 387 

(Franklin and Miller 2009), a number of issues have been raised in regards to the lack of 388 

important ecological processes and the methodological issues of such models (e.g., Pearson and 389 

Dawson 2003, Record et al. 2013). Previous mangrove species distribution modeling research 390 

has been performed at geographic extents much smaller than the ranges of the species modeled 391 

(Cohen et al. 2005, Gilman et al. 2007). The work presented here is the first application of 392 

species and community distribution modeling to provide a first approximation of how future 393 

climate-change scenarios will influence global distributions of mangrove species and 394 

assemblages at geographic extents encompassing the entirety of species’ ranges. Understanding 395 

the response of mangrove distributions to climate change is timely because mangroves are 396 

substantial potential carbon sinks (Siikamäki et al. 2012). Our results provide insights into the 397 

effort to understand how coastal organisms, such as mangroves, will be impacted by climate 398 

change at the global level. Our study also highlights some of the methodological limitations and 399 

untested ecological assumptions of distribution models. 400 

 First, we found that species projected to shift their ranges polewards by at least 2 degrees 401 

of latitude consistently experience a decrease in the amount of suitable coastal area available to 402 
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them. Previous studies have suggested that mangroves will occupy higher latitudes in a warmer 403 

climate because current mangrove distributions are limited to the 16°C isotherm for annual 404 

temperature of the coldest month (Ellison 1994, Alongi 2008, Gilman et al. 2008), but the link 405 

between mangrove distributional shifts and coastal area losses at higher latitudes has not been 406 

previously explored.  407 

 Second, Central America and the Caribbean are forecast to suffer a greater loss of 408 

mangrove species density than other parts of the world. Three of the four species exhibiting 409 

declines in Central America and the Caribbean are the best represented species in the GBIF 410 

dataset, suggesting that our forecasts for these species are more robust than those for species with 411 

sparser occurrence records, such as many species in the Indo-West Pacific (Table 1). Continued 412 

contributions of quality georeferenced occurrence records by researchers is imperative to 413 

improving our understanding of whether the variation we see in species forecasted distributions 414 

in locations such as the Indo-West Pacific are realistic or reflect only artifacts of sampling and 415 

reporting.  416 

 Third, our study also highlights the importance of considering spatial scale (both grain 417 

size and extent) in SDMs. Past studies have demonstrated that mangroves are sensitive to factors 418 

including sea-level rise, tidal zones, and river discharge (Ellison and Farnsworth 1997, Ye et al. 419 

2003, reviewed by Duke et al. 1998, Gilman et al. 2007, Alongi 2008). However, these forces are 420 

primarily important in influencing the distribution of individual mangrove species at relatively 421 

small scales. At larger scales, these relationships break down in the field (Bunt 1996, Ellison et 422 

al. 2000), and this breakdown is reflected in the coarser-scale (500-km grid cell) analysis of our 423 

community distribution models.  424 
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 For researchers hoping to advance techniques for distribution models based on 425 

continuous data, our model selection process offers a further lesson in considering spatial scale. 426 

We found that the extent and grain size at which continuous model outputs are examined, 427 

independent of the grain size at which the models operate, can dramatically influence the number 428 

of pseudo-absences needed for optimal parameterization. That small scales are best modeled 429 

without pseudo-absences, but large-scale models are benefited by pseudo-absence is somewhat 430 

intuitive. Without pseudo-absences, the models evaluate finer scale differences within sites 431 

occupied by mangroves, whereas with many pseudo-absences, the models can better evaluate the 432 

coarser scale differences between areas with and without mangroves. This issue should only 433 

apply to continuous data where all presences are not identical, unlike in binary data. 434 

 The SDMs and CDMs presented here provide a first approximation of how mangroves 435 

will respond to climate change given simple correlative relationships between occurrence records 436 

and environmental data (Peterson et al. 2011). In reality, additional factors, such as coastal 437 

development, forestry, and biotic processes (e.g., propagule dispersal, recruitment limitation, 438 

interspecific competition, and plant-animal interactions) will also play important roles in 439 

structuring future mangrove distributions (e.g., Rabinowitz 1978, Clarke and Kerrigan 2002, 440 

Farnsworth and Ellison 1997b, Ellison 2008). Our modeling forecasts are thus optimistic because 441 

they assume that species will occur wherever the environmental conditions are suitable for them 442 

and these other processes will remain constant (cf., Farnsworth and Ellison 1997a). Future 443 

studies in which researchers across the world collaborate to provide consistent data on such 444 

biotic and social drivers of mangrove distributions across a range of spatial and temporal scales 445 

(Farnsworth 1998) would help to make it possible to better understand and model the future fate 446 

of mangroves in a global context.  447 
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Table 1. List of the 30 mangrove species for which there were data in the Global Biodiversity 608 

Information Facility (GBIF) database. 609 

Species Abbreviated 

name 

# GBIF records # modeled grid 

cells 

Avicennia alba Blume AVAL 15 11 

A.bicolor Standley AVBI 156 43 

A. eucalyptifolia (Zipp. ex Miq.) Moldenke AVEU 20 12 

A. germinans (L.) Stearn† AVGE 1569 569 

A. integra Duke AVIN 5 3 

A. lanata Ridley AVLA 1 1 

A. marina (Forssk.) Vierh. † AVMA 1244 394 

A. schaueriana Stapf. & Leechman ex 

Moldenke 

AVSC 4 3 

Ceriops australis CEAU 72 45 

C. decandra (Griff.) Ding Hou CEDE 23 19 

C. tagal (Perr) c.B. Robinson† CETA 196 142 

Kandelia candel (L.) Druce KACA 72 23 

K. obovata Sheue, Liu & Yong  KAOB 30 7 

Laguncularia racemosa (L.) Gaertn. F. † LARA 1385 556 
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Lumnitzera littorea (Jack) Voigt† LULI 72 56 

L. racemosa Willd. † LURA 184 137 

Nypa fruticans (Thunb.) Wurmb. NYFR 37 24 

Rhizophora apiculata Bl. † RHAP 85 59 

R. harrisonii Leechman RHHA 29 13 

R. mangle Guppy† RHMA 1166 528 

R. mucronata Lamk. † RHMU 126 75 

R. racemosa Meyer† RHRA 227 89 

R. stylosa Griff. † RHST 167 118 

R. x. harrisonii Leechman RHHAx 33 13 

R. x. lamarckii Montr. RHLAx 7 7 

Sonneratia alba J. Smith† SOAL 127 89 

S. apetala Buch. -Ham. SOAP 2 1 

S. caseolaris (L.) Engler SOCA 36 31 

S. ovate Backer SOOV 6 2 

S. x. gulngai N.C. Duke SOGUx 2 1 

 610 
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Note: Abbreviated names follow a 4-5 letter naming convention (first two letters of the 611 

generic and specific epithets followed by a lowercase ‘x’ for hybrids). Modeled grid cells 612 

were 2.5 minutes in size. Tables 2 and 3 and Figure 2 refer to the abbreviated names.  613 

† Footnote: indicates that the species had >50 occupied 2.5 minute resolution grid cells 614 

and were modeled by the individual species distribution models. 615 

  616 
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Table 2. The five most important environmental predictors identified by general boosted models 617 

and the exclusion of correlated variables for Avicennia germinans, A. marina, Ceriops tagal, 618 

Laguncularia racemosa, Lumnitzera littorea, and L. racemosa. These species’ names are 619 

indicated by abbreviations from Table 1. All of these species individual distributions were 620 

modeled.  621 

Bioclimatic variable AVGE AVMA CETA LARA LULI LURA 

Annual mean temp. 1 … … … … … 

Mean diurnal range 2 … … 3 4 … 

Isothermality … 3 5 2 … … 

Temp. seasonality … … … … … … 

Max. temp. of warmest month … 5 … 1 … … 

Min. temp. of coldest month … … … … … … 

Temp. annual range … … … … … … 

Mean temp. of wettest quarter … 4 1 … … 2 

Mean temp. of driest quarter … 1 3 2 … 4 

Mean temp. of warmest quarter … … … … … … 

Mean temp. of coldest quarter … … … … 3 … 

Annual precip. … … … … … … 

Precip. of wettest month … … … … … … 

Precip. of driest month … … … … … … 

Precip. seasonality 4 … … … … 3 

Precip. of wettest quarter … … … … 5 … 
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Precip. of driest quarter … … … … … … 

Precip. of warmest quarter 5 2 4 … 1 1 

Precip. of coldest quarter 3 … 2 4 … 5 

Flow accumulation … … … … … … 

Horizontal tide … … … … … … 

Note: Other abbreviations are as follows: temperature (temp.), precipitation (precip.), 622 

maximum (max.), and minimum (min.). Mean diurnal range is the mean of 623 

monthly(maximum temperature - minimum temperature). Isothermality is (mean diurnal 624 

range/temperature annual range) multiplied by100. Temperature seasonality is the 625 

standard deviation of temperature values multiplied by 100. Temperature annual range is 626 

the maximum temperature of the warmest month minus the minimum temperature of the 627 

coldest month. Precipitation seasonality is the coefficient of variation of precipitation 628 

values. Not all of the 19 bioclimatic predictors listed here were in the top predictor lists 629 

for the mangrove species. Ellipses indicate when a variable was not one of the five most 630 

important environmental predictors for one of the  mangrove species modeled by an 631 

individual species distribution model. 632 

  633 
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Table 3. The five most important environmental predictors identified by general boosted models 634 

and the exclusion of correlated variables for Rhizophora apiculata, R. mangle, R. mucronata, R. 635 

racemosa, R. stylosa, and Sonneratia alba. These species’ names are indicated by abbreviations 636 

from Table 1. All of these species individual distributions were modeled.  637 

Bioclimatic variable RHAP RHMA RHMU RHRA RHST SOAL 

Annual mean temp. … … … … … … 

Mean diurnal range … 4 … 4 … … 

Isothermality … 1 … … 5 … 

Temp. seasonality 5 … 5 2 … 2 

Max. temp. of warmest month … 2 … … … … 

Min. temp. of coldest month … … … … … … 

Temp. annual range … … … … … … 

Mean temp. of wettest quarter 4 … 3 5 1 1 

Mean temp. of driest quarter … 5 … … … … 

Mean temp. of warmest quarter … … … … … … 

Mean temp. of coldest quarter … … … … … … 

Annual precip. … … … … … … 

Precip. of wettest month … … … 1 … … 

Precip. of driest month 1 … … … … … 

Precip. seasonality … … … … … 4 

Precip. of wettest quarter … … … … 4 … 

Precip. of driest quarter … … 4 … … … 
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Precip. of warmest quarter 3 … 1 … 3 5 

Precip. of coldest quarter … 3 2 … … 3 

Flow accumulation 2 … … … … … 

Horizontal tide … … … 3 2 … 

  638 
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Table 4. Minimum and maximum longitudinal values of extents used to crop outputs of 639 

individual species projections. 640 

Species Longitude minimum (m) Longitude maximum (m) 

Avicennia germinans -2.1 × 107 1.8 × 106 

Avicennia marina -1.8 × 106 2.0 × 107 

Ceriops tagal -1.8 × 106 2.0 × 107 

Laguncularia racemosa -2.1 × 107 1.8 × 106 

Lumnitzera littorea 7.0 × 106 2.0× 107 

Lumnitzera racemosa 1.8 × 106 2.0 × 107 

Rhizophora apiculata 7.0 × 106 2.0 × 107 

Rhizophora mangle -2.1 × 107 1.8 × 106 

Rhizophora mucronata 1.8 × 106 2.0 × 107 

Rhizophora racemosa -1.5 × 107 2.0 × 107 

Rhizophora stylosa 1.0 × 107 2.0 × 107 

Sonneratia alba 1.8 × 106 2.0 × 107 

 641 

 Note: Map projection is Interrupted Goode Homolosine, land-centered. 642 

  643 
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Table 5. Negative log-likelihoods of continuous community distribution models used to predict 644 

mangrove species densities. 645 

Model Resolution 

(km) 

Training 

data 

Validation 

data 

Number 

of 

absences 

Mean Standard 

deviation 

GBM full 4 East West 0 -7156 37.0 

GBM full 4 West East 0 -6629 16.0 

GBM full 4 East West 500 -7301 29.0 

GBM full 4 West East 500 -6631 14.0 

GBM full 4 East West 1000 -7380 32.0 

GBM full 4 West East 1000 -6632 13.0 

GBM full 4 East West 2000 -7526 12.0 

GBM full 4 West East 2000 -6655 9.8 

GBM full 4 East West 10000 -7603 2.5 

GBM full 4 West East 10000 -6674 0.6 

GBM top 5 variables 4 East West 0 -7245 49.0 

GBM top 5 variables 4 West East 0 -6670 10.0 

GBM top 5 variables 4 East West 500 -7396 33.0 

GBM top 5 variables 4 West East 500 -6669 4.1 

GBM top 5 variables 4 East West 1000 -7487 32.0 

GBM top 5 variables 4 West East 1000 -6668 8.2 

GBM top 5 variables 4 East West 2000 -7586 13.0 

GBM top 5 variables 4 West East 2000 -6680 7.2 
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GBM top 5 variables 4 East West 10000 -7614 2.4 

GBM top 5 variables 4 West East 10000 -6708 0.8 

GBM uncorrelated 

variables 

4 East West 0 -7245 49.0 

GBM uncorrelated 

variables 

4 West East 0 -6670 10.0 

GBM uncorrelated 

variables 

4 East West 500 -7396 33.0 

GBM uncorrelated 

variables 

4 West East 500 -6669 4.1 

GBM uncorrelated 

variables 

4 East West 1000 -7487 32.0 

GBM uncorrelated 

variables 

4 West East 1000 -6668 8.2 

GBM uncorrelated 

variables 

4 East West 2000 -7586 13.0 

GBM uncorrelated 

variables 

4 West East 2000 -6680 7.2 

GBM uncorrelated 

variables 

4 East West 10000 -7614 2.4 

GBM uncorrelated 

variables 

4 West East 10000 -6708 0.8 

GLM full 4 East West 0 -7582 280.0 
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GLM full 4 West East 0 -6673 19.0 

GLM full 4 East West 500 -7629 190.0 

GLM full 4 West East 500 -6687 17.0 

GLM full 4 East West 1000 -7554 180.0 

GLM full 4 West East 1000 -6693 9.0 

GLM full 4 East West 2000 -7803 57.0 

GLM full 4 West East 2000 -6711 3.2 

GLM full 4 East West 10000 -7831 1.0 × 10-12

GLM full 4 West East 10000 -6721 4.5 × 10-13 

GLM AIC stepwise 4 East West 0 -7363 57.0 

GLM AIC stepwise 4 West East 0 -6688 31.0 

GLM AIC stepwise 4 East West 500 -7524 68.0 

GLM AIC stepwise 4 West East 500 -6697 28.0 

GLM AIC stepwise 4 East West 1000 -7610 49.0 

GLM AIC stepwise 4 West East 1000 -6705 13.0 

GLM AIC stepwise 4 East West 2000 -7782 20.0 

GLM AIC stepwise 4 West East 2000 -6728 16.0 

GLM AIC stepwise 4 East West 10000 -7844 1.4 × 10-12 

GLM AIC stepwise 4 West East 10000 -6721 5.6 × 10-13 

GLM significant 

variables 

4 East West 0 -7276 190.0 

GLM significant 

variables 

4 West East 0 -6664 44.0 
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GLM significant 

variables 

4 East West 500 -7414 88.0 

GLM significant 

variables 

4 West East 500 -6694 39.0 

GLM significant 

variables 

4 East West 1000 -7618 75.0 

GLM significant 

variables 

4 West East 1000 -6703 19.0 

GLM significant 

variables 

4 East West 2000 -7803 12.0 

GLM significant 

variables 

4 West East 2000 -6738 6.2 

GLM significant 

variables 

4 East West 10000 -7850 1.3 × 10-12 

GLM significant 

variables 

4 West East 10000 -6752 3.2 × 10-13 

GLM uncorrelated 

variables 

4 East West 0 -7724 190.0 

GLM uncorrelated 

variables 

4 West East 0 -6725 29.0 

GLM uncorrelated 

variables 

4 East West 500 -7338 56.0 

GLM uncorrelated 4 West East 500 -6725 31.0 
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variables 

GLM uncorrelated 

variables 

4 East West 1000 -7366 16.0 

GLM uncorrelated 

variables 

4 West East 1000 -6667 48.0 

GLM uncorrelated 

variables 

4 East West 2000 -7492 110.0 

GLM uncorrelated 

variables 

4 West East 2000 -6700 11.0 

GLM uncorrelated 

variables 

4 East West 10000 -7819 3.2 × 10-13 

GLM uncorrelated 

variables 

4 West East 10000 -6716 0.0 

GBM full 500 East West 0 -2641 2.4 

GBM full 500 West East 0 -2297 0.3 

GBM full 500 East West 500 -2429 22.0 

GBM full 500 West East 500 -2248 4.8 

GBM full 500 East West 1000 -2467 34.0 

GBM full 500 West East 1000 -2244 5.4 

GBM full 500 East West 2000 -2517 31.0 

GBM full 500 West East 2000 -2237 4.6 

GBM full 500 East West 10000 -2640 21.0 

GBM full 500 West East 10000 -2217 4.5 
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GLM full 500 East West 0 -2401 0.0 

GLM full 500 West East 0 -2285 0.0 

GLM full 500 East West 500 -2997 650.0 

GLM full 500 West East 500 -2270 7.3 

GLM full 500 East West 1000 -2722 450.0 

GLM full 500 West East 1000 -2275 5.7 

GLM full 500 East West 2000 -2977 410.0 

GLM full 500 West East 2000 -2281 6.2 

GLM full 500 East West 10000 -3192 190.0 

GLM full 500 West East 10000 -2310 5.9 

 646 

Note: Models were fit using only data from the eastern or western world regions, and 647 

then tested against data in the other regions. Values represent negative log-likelihoods of 648 

generalized linear models comparing observed species densities to predicted densities in 649 

the holdout regions.  650 
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Figure1.  Number of 4.318 km coastal grid cells containing at least zero to eight mangrove 651 

species in the Global Biodiversity Information Facility database. One grid cell in the eastern 652 

region had 11 species in it. All other grid cells had fewer than eight species. 653 

Figure 2. Predicted latitudinal distributions of 12 mangrove species under each sea-level rise 654 

scenario. Thin vertical bars represent minimum and maximum latitudes, thick vertical bars 655 

represent standard deviations, and horizontal bars represent means. Labels above each maximum 656 

represent the current ('c') fitted distributions as well as the projections for sea level rise of 0m, 1 657 

m, 3 m, or 6 m. The colors of the projected vertical bars represent the percent change in the total 658 

number of predicted occupied cells relative to the current fitted values (see color legend). 659 

Species names are as in Table 1. Species  are ordered from left to right in decreasing order of the 660 

number of GBIF occurrence records. 661 

Figure 3. Length of coastline plotted against absolute value of latitude. Coastline is calculated as 662 

the sum of coastal grid cells in our data set multiplied by the cell width (4,318 m). 663 

Figure 4. Change in predicted occupancy for Avicennia germinans under the National Center for 664 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 665 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 666 

1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain the 667 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 668 

occurrence records. 669 

Figure 5. Change in predicted occupancy for Laguncularia racemosa under the National Center 670 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 671 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 672 

each 1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain 673 
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the focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 674 

occurrence records. 675 

Figure 6. Change in predicted occupancy for Rhizophora mangle under the National Center for 676 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 677 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 678 

1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain the 679 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 680 

occurrence records. 681 

Figure 7. Change in predicted occupancy for Avicennia marina under the National Center for 682 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 683 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 684 

1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain the 685 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 686 

occurrence records. 687 

Figure 8. Change in predicted occupancy for Ceriops tagal under the National Center for 688 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 689 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 690 

1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain the 691 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 692 

occurrence records. 693 

Figure 9. Change in predicted occupancy for Lumnitzera racemosa under the National Center 694 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 695 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 696 
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each 1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain 697 

the focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 698 

occurrence records. 699 

Figure 10. Change in predicted occupancy for Rhizophora stylosa under the National Center for 700 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 701 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 702 

1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain the 703 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 704 

occurrence records. 705 

Figure 11. Change in predicted occupancy for Rhizophora racemosa under the National Center 706 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 707 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 708 

each 1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain 709 

the focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 710 

occurrence records. 711 

Figure 12. Change in predicted occupancy for Sonneratia alba under the National Center for 712 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 713 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 714 

1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain the 715 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 716 

occurrence records. 717 

Figure 13. Change in predicted occupancy for Rhizophora mucronata under the National Center 718 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 719 
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2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 720 

each 1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain 721 

the focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 722 

occurrence records. 723 

Figure 14. Change in predicted occupancy for Rhizophora apiculata under the National Center 724 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 725 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 726 

each 1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain 727 

the focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 728 

occurrence records. 729 

Figure 15. Change in predicted occupancy for Lumnitzera littorea under the National Center for 730 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 731 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 732 

1,000 km cell represents the change in the number of 2.5-minute cells predicted to contain the 733 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 734 

occurrence records. 735 

Figure 16. Change in predicted occupancy for Avicennia germinans under the National Center 736 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 737 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 738 

each 200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 739 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 740 

occurrence records. 741 
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Figure 17. Change in predicted occupancy for Laguncularia racemosa under the National Center 742 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 743 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 744 

each 200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 745 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 746 

occurrence records. 747 

Figure 18. Change in predicted occupancy for Rhizophora mangle under the National Center for 748 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 749 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 750 

200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 751 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 752 

occurrence records. 753 

Figure 19. Change in predicted occupancy for Avicennia marina under the National Center for 754 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 755 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 756 

200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 757 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 758 

occurrence records. 759 

Figure 20. Change in predicted occupancy for Ceriops tagal under the National Center for 760 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 761 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 762 

200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 763 
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focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 764 

occurrence records. 765 

Figure 21. Change in predicted occupancy for Lumnitzera racemosa under the National Center 766 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 767 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 768 

each 200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 769 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 770 

occurrence records. 771 

Figure 22. Change in predicted occupancy for Rhizophora stylosa under the National Center for 772 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 773 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 774 

200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 775 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 776 

occurrence records. 777 

Figure 23. Change in predicted occupancy for Rhizophora racemosa under the National Center 778 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 779 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 780 

each 200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 781 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 782 

occurrence records. 783 

Figure 24. Change in predicted occupancy for Sonneratia alba under the National Center for 784 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 785 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 786 
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200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 787 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 788 

occurrence records. 789 

Figure 25. Change in predicted occupancy for Rhizophora mucronata under the National Center 790 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 791 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 792 

each 200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 793 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 794 

occurrence records. 795 

Figure 26. Change in predicted occupancy for Rhizophora apiculata under the National Center 796 

for Atmospheric Research's CCSM3 general circulation model climate scenario projected for 797 

2080 and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within 798 

each 200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 799 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 800 

occurrence records. 801 

Figure 27. Change in predicted occupancy for Lumnitzera littorea under the National Center for 802 

Atmospheric Research's CCSM3 general circulation model climate scenario projected for 2080 803 

and 3m of sea-level rise relative to current fitted predicted occupancy. Color shading within each 804 

200 km cell represents the change in the number of 2.5-minute cells predicted to contain the 805 

focal species. Species in figures 4-15 are ordered in decreasing order of the number of GBIF 806 

occurrence records. 807 

Figure 28. Change in predicted mangrove species richness in 2080 with a 3m rise in sea level. 808 

Color shading within each 500-km grid cell represents sum over 2.5-minute grid cells of: (a) 809 
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species richness as observed in the GBIF data; (b) change in the number predicted occupancies 810 

for 12 independently modeled species; (c) predicted distribution of mangrove "hot spots" based 811 

on a binary model of cells where more than 3 species co-occur; and (d) predicted species 812 

richness based on a continuous model of species richness within each cell. The color scale for the 813 

three projected maps has been standardized to represent change in future fitted predictions 814 

relative to the mean over all cells in the current fitted predictions. 815 

  816 
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Appendix: A list of the Global Biodiversity Information Facility data contributors. 817 

Biodiversity occurrence data published by: Australian National Herbarium, Berkeley Natural 818 

History Museums, Bernice Pauahi Bishop Museum of Natural History, Biologiezentrum Linz 819 

Oberoesterreich, Botanic Garden and Botanical Museum Berlin-Dahlem, Botanical Museum 820 

Copenhagen, Botanical Research Institute of Texas, Cameroon National Herbarium, Colecciones 821 

Instituto Alexander von Humboldt, Comision Nacional para el Conocimiento y Uso de la 822 

Biodiversidad de Mexico, Conservation International Rapid Assessment Program Biodiversity 823 

Survey Database, Consortium of California Herbaria, Ecole de Faune de Garoua, Fairchild 824 

Tropical Botanic Garden, Finnish Museum of Natural History, Flora del Municipio de la Huerta 825 

Jalisco, Harvard University Herbaria, Herbario del Jardin Botanic Marimurtra, Herbarium 826 

Hamburgense, Herbarium of the Institute of Traditional Medicine Tanzania, Herbarium of the 827 

New York Botanical Garden, Herbarium of Plantae TAIF (Tawian e-Learning and Digital 828 

Archives Program TELDAP), Herbarium of the University of Aarhus, Herbarium of the 829 

University Libre de Bruxelles, Herbarium Universitat Ulm, Herbarium of the University of 830 

Zurich, Herbarium Senckenbergianum, Herbario del CIBNOR, Herbario del Instituto de 831 

Ecologio Mexico, Herbario los Tuxtlas, Herbario de la Universidad de Granada, Herbario de la 832 

Universidad de Salamanca, Herbario SANT Universidad de Santiago de Compostela, Herbier 833 

des Conservatoires et Jardins Botaniques de Nancy, Herbier de la Guyane, Herbier du Bacnin, 834 

Indian Ocean Node of OBIS, Institut Botanic de Barcelona, Institute of Ecology and 835 

Evolutionary Biology National Taiwan University, Instituto de Botanica Daewinion, Instituto de 836 

Ciencias Naturales, Instituto de Investigacion Cientifica Tropical, Instituto Nacional de 837 

Biodiversidad (INBio) Costa Rica, Kew Royal Botanic Gardens, Taiwan Forestry Research 838 

Institute, Louisiana State University Herbarium, Missouri Botanical Garden, Museo Nacional de 839 
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Costa Rica, Museum National d’Histoire Naturelle, National Herbarium of the Netherlands, 840 

National Herbarium of New South Wales, National Museum of Nature and Science Japan, 841 

Natural History Museum Vienna, New South Wales Department of Environment Climate 842 

Change and Water, New Zealand National Plant Herbarium, Ocean Biogeographic Information 843 

System Bioresources Library (OBIS Australia), Phanerogamic Botanical Collections of Sweden, 844 

Real Jardin Botanico de Madrid, Royal Botanic Garden Herbarium Edinburgh, Royal Museum of 845 

Central Africa, South African National Biodiversity Institute, South Australia Department of 846 

Environment and Natural Resources, Southern Cape Herbarium, Taiwan National Museum of 847 

Natural Science, Tama Forest Science Garden Forestry and Forest Products Research Institute, 848 

Tela-Botanica, TELDAP Endemic Species Research Institute, The European Genetic Resources 849 

Catalogue, UNIBIO IBUNAM Collecion de Plantas Acuaticas, United States National Museum 850 

of Natural History Botany Collections, Univerisidad de Costa Rica, University of Alabama 851 

Biodiversity and Systematics Herbarium, University of Alberta Museums Vascular Plant 852 

Herbarium, University of Arizona Herbarium, University of California Davis Herbarium, 853 

University of California Santa Barbara Marine Science Institute, University of Connecticut 854 

Herbarium, University of Gottingen Herbarium, University of Kansas Biodiversity Research 855 

Center, University of Loma Herbarium, University of Montreal Marie-Victorin Herbarium, 856 

University of Oregon Museum of Natural and Cultural History, University of Strasbourg 857 

Herbarium, University of Tennessee Knoxville, University of Vienna Institute for Botany 858 

Herbarium, University of Washington Burke Museum, USDA PLANTS Database, Western 859 

Australian Herbarium, Wildlife Institute of India, Yale University Peabody Museum (Accessed 860 

through GBIF Data Portal, http://www.data.gbif.org, 2012-03-15). 861 

  862 
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Supplement 863 

R code for single species and community distribution models. 864 
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