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We show that it is possible to realize significant nonlinear optical interactions at the few photon level in

graphene nanostructures. Our approach takes advantage of the electric field enhancement associated with

the strong confinement of graphene plasmons and the large intrinsic nonlinearity of graphene. Such a

system could provide a powerful platform for quantum nonlinear optical control of light. As an example,

we consider an integrated optical device that exploits this large nonlinearity to realize a single photon

switch.
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Introduction.—Nonlinear optical processes find ubiqui-
tous use in modern scientific and technological applica-
tions, facilitating diverse phenomena like optical
modulation and switching, spectroscopy, and frequency
conversion [1]. A long-standing goal has been to realize
nonlinear effects at progressively lower powers, which is
difficult given the small nonlinear coefficients of bulk
optical materials. The ultimate limit is that of single-
photon nonlinear optics, where individual photons strongly
interact with each other. Realization of such nonlinear
processes would not only facilitate peak performance of
classical nonlinear devices, but also create a unique
resource for implementation of quantum networks [2]
and other applications that rely on the generation and
manipulation of nonclassical light.

One approach to reach the quantum regime involves
coupling the light to individual quantum emitters to take
advantage of their intrinsically nonlinear electronic spec-
trum [2,3]. While a number of remarkable phenomena have
been demonstrated with these systems [4], their realization
remains a challenging task. Specifically, in contrast to
conventional bulk nonlinear systems, coherent single quan-
tum emitters are generally unable to operate under ambient
conditions, suffer from relatively slow operating speeds,
are prone to strong decoherence in solid-state environ-
ments, and have limited tunability of their properties.

Fueled by these considerations, there has been renewed
interest in nonlinear optical materials that can reach the
quantum regime [5–7]. In particular, recent experiments
demonstrated the realization of a quantum nonlinear me-
dium, featuring single photon blockade [8] and conditional
two-photon phase shifts [9], in a cold, dense gas of strongly
interacting atoms. The essence of these approaches is that
the interaction probability for two photons becomes sub-
stantial if the photons are confined to a sufficiently small
mode volume of the nonlinear medium for sufficiently long
times. Motivated by these recent developments, in this
Letter we explore the potential for using nanoscale surface

plasmon excitations in graphene for quantum nonlinear
optics. Graphene, a single atomic layer of carbon atoms,
has attracted tremendous interest for its unique electronic,
mechanical, and quantum transport properties [10–12].
Recently it has also been realized that the unique properties
of graphene have a strong effect on the guided electromag-
netic surface waves in the form of surface plasmons (SPs)
[13–15]. In particular, recent theoretical [14–17] and ex-
perimental [18–20] results indicate that graphene plasmons
can be confined to volumes millions of times smaller than
in free space. We show that under realistic conditions,
this field confinement enables deterministic interaction
between two plasmons (i.e., photons) over picosecond
time scales as illustrated in Figs. 1(a) and 1(b), which is
much shorter than the anticipated plasmon lifetime [21].
We show how one can take advantage of this interaction to
realize a single photon switch [see Figs. 1(c) and 1(d)] and
produce nonclassical light.
Through electrostatic gating, it is possible to introduce a

net carrier concentration, which shifts the Fermi energy
@!F away from the Dirac point to a nonzero value. The in-
plane conductivity of graphene is well approximated by the
expression �ð!Þ � ðie2=�@Þð!F=!þ i�Þ at frequencies
below twice the Fermi frequency !< 2!F [22], which
describes a Drude-like response of electrons within a single
band. In realistic systems the conductivity will also have a
small term � describing dissipation due to impurity or
phonon-mediated scattering. There are two limits on the
existence of low-loss SP modes in graphene. First, at
frequencies !> 2!F, graphene suffers from strong inter-
band absorption [15,16]. Second, for frequencies above the
optical phonon frequency @!op � 0:2 eV, there is addi-

tional loss due to scattering into optical phonons [15,23],
although narrow plasmons above !op have recently been

observed in graphene nanorings [20]. To minimize the
losses we focus on the regime where the frequencies fall
below 2!F and !op. In this regime, we can approximate

� ¼ ev2
F=�@!F where � is the mobility [24]. The ability
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to tune !F, and consequently the optical properties,
through electrostatic gating makes graphene unique com-
pared to normal metals.

Like in noble-metal plasmonics [25], the free nature of
charge carriers described by the Drude response gives rise
to SP modes in graphene [14,15]. At first order in ksp=kF
the SP dispersion is given by

!2
sp ¼ e2!F

2��0@
ksp � 4:2!FvFksp; (1)

where vF � 106 m=s is the Fermi velocity [13]. This
dispersion relation implies a remarkable reduction of the
SP wavelength compared to the free space wavelength
�0 ¼ 2�c=!sp, as �sp=�0 � vF=c� 3� 10�3. Thus, the

smallest possible mode volume of a graphene SP resonator,
V � �3

sp, can be�107 times smaller than in free space [16].

Nonlinear plasmonics in graphene.—To describe the
nonlinear properties of the plasmons we employ the semi-
classical Maxwell-Boltzmann equations. This is a good
approximation when the plasmon momentum is much
less than the Fermi momentum and the plasmon properties
are dominated by intraband transitions. The distribution
function fðx; k; tÞ for an electron at in-plane position x and
with Bloch momentum k evolves under the Maxwell-
Boltzmann equation as

@tfþ vFk̂ � @xfþ e@x’ � @kf ¼ 0; (2)

where the electostatic potential�ðx; z; tÞ satisfies Poisson’s
equation r2� ¼ en�ðzÞ=�0�. Here z is the out-of-plane
coordinate and n ¼ R

dkf is the 2D electron density.

For weak excitations of the electron distribution, the term
@kf in the Maxwell-Boltzmann equation can be replaced

by the equilibrium value @kf
ð0Þ, yielding a linear equation

supporting SPs with the dispersion given in Eq. (1) and an
electrostatic wave given by E ¼ �r� / �n sinðkx�!tÞ.
For sufficiently large density perturbations �n, the non-

linear interaction between the nonequilibrium distribution
@kf and potential must be accounted for. This effect can be
interpreted as a backaction induced by the electrostatic
wave on the electrons via a ponderomotive force Fp �
@xE

2 � k�n2 sin2kx, which grows with the amplitude of
the SPs. This nonlinear force directly excites a second
plasmon wave at wave vector 2k and frequency 2!, i.e.,
second harmonic generation, and gives rise to the second
order conductivity calculated in Ref. [26]. We show
(see the Supplemental Material [27]) that this leads to a
nonlinear shift at the original wave vector k and frequency
!, with an effective third order conductivity for the SPs
given by

�ð3Þðksp; !Þ ¼ �i
3�

4

v4
F

!3
F

�20
@!

: (3)

This result differs from the nonlinear conductivity as seen
by free-space light normally incident on a graphene sheet,

where one finds that �ð3Þ � 1=!3 [28]. Remarkably, as we
discuss next, the tight confinement of SPs in graphene
implies that the fields associated with even single quan-
tized SPs are strong enough that nonlinear effects are
observable.
Nonlinear graphene plasmon cavity.—Anticipating the

large strength of nonlinear interactions at the level of single
SPs in nanoscale graphene resonators, we are motivated to
introduce a quantum description of such a system. We
write the Hamiltonian as H ¼ H0 þHc, where H0 char-
acterizes the excitation spectrum of the graphene resonator,
and Hc describes an external coupling to the resonator
[as in Figs. 1(c) and 1(d)], which allows one to probe the
resonator properties or utilize the nonlinearities for appli-
cations such as a single-photon transistor.
We first consider the intrinsic properties of the resonator

given by H0. Considering the fundamental SP mode of the
resonator with corresponding annihilation operator aq and

number operator nq ¼ ayqaq, the effective Hamiltonian H0

is given by (see the Supplemental Material [27] and
Refs. [29,30])

H0 ¼ ð!q � i	=2þ 
qðnq � 1ÞÞnq: (4)

This Hamiltonian describes the quantum analog of a cavity
exhibiting an intensity-dependent refractive index, where
the resonance frequency !q þ 
qðnq � 1Þ shifts depend-
ing on the intracavity photon number. Here we have also
included the total cavity linewidth 	 ¼ 	ex þ � into the
cavity description which includes the intrinsic losses �
and radiative losses of the cavity into other optical or

(a)

(c)

(b)

(d)

FIG. 1 (color online). (a) A doped graphene disk confines
photons as plasmons to mode volumes millions of times smaller
than free space. (b) This induces a large dispersive nonlinearity

 [defined in Eq. (5)] so that only a single photon can resonantly
excite the cavity. (c) Integrated nonlinear optical circuit for using
the graphene plasmon cavity to realize a single photon switch.
First the photons are converted into planar plasmons of a
graphene waveguide via a grating, then they couple to the
plasmon cavity, after which they are converted back into wave-
guide photons. For the frequencies we consider the waveguide
and grating could be fabricated from etched Si. (d) Top down
view of the plasmon cavity from (c) showing the width W of the
plasmon cavity, the width W 0 of the graphene nanoribbon, and
the spacing d between the cavity and nanoribbon.
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plasmonic modes, given by 	ex. For graphene, the non-
linear interaction strength is given by (see the
Supplemental Material [27])


q ¼ 7�!q

64Ak2F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q3

2�gk
3
F

vuut ; (5)

where �g � e2=4��0@vF � 2 and A is the mode area of

the resonator, which can be given by A ¼ �2
sp=4 for a

diffraction-limited structure. The
q / A�1 scaling reflects

that the field intensity of a single SP grows inversely with
its confinement. For such small structures one might expect
that quantum size effects become important; however, as
shown in Ref. [31], for graphene nanostructures larger than
�10–20 nm the use of the bulk dielectric response is a
valid approximation.

At the quantum level, the interaction parameter 2
q

indicates the additional energy cost to excite two versus
one photon in the cavity, as can be seen in the cavity
excitation spectrum [see Fig. 1(b)]. When 2
 � 	, the
graphene sheet behaves as a two-level atom because it can
only resonantly absorb a single photon as illustrated in
Fig. 1(a); thus, we describe this as the quantum nonlinear
regime. The ratio 2
q=	 is then a good measure of the

quality of the cavity as a quantum emitter. Figure 2(a)
shows 2
q=� for the fundamental mode with decreasing

mode volume (assuming mobilities of 105 and
104 cm2=Vs), where we see that this ratio can be as large
as 100. The parameter 
=	 / Q=A, where Q is the quality
factor of the resonator.

The enabling mechanism for a two-level atom to be
useful for quantum information processing is that it can
only emit single photons at a time. This can be character-
ized by the second order correlation function of the emitted

light, which is identical to that of the cavity mode, gð2ÞðtÞ¼
hayð�Þayðtþ�Þaðtþ�Það�Þi=hayð�Það�Þi. For a stationary

process, gð2Þð0Þ< 1 indicates nonclassical ‘‘antibunching’’

and approaches gð2Þð0Þ ¼ 0 in the limit of an ideal two-
level emitter. We consider the case where the resonator is
driven by an external laser from the side and emission is
collected from a different direction. In the limit of weak
driving we find that

gð2Þð0Þ ¼ 	2

4
2 þ 	2
; (6)

thus establishing 
 & 	 as the regime where quantum
properties become observable. In Fig. 2(b) we take
	ex ¼ 0 and we see that, for the largest nonlinearities,

gð2Þ < 1 can be readily observed for high mobility
graphene.
Efficient coupling and a single-photon switch.—In order

to exploit the large nonlinearity of graphene, we need an
efficient method to convert SPs into external optical modes
on time scales short compared to the intrinsic losses.
Specifically, one needs that the total linewidth 	 ¼ 	ex þ
� contains a large component 	ex that goes into desirable
external channels compared to the intrinsic losses �. One
approach is to use the direct dipolar emission of the cavity
into free space radiation. For the square cavities described
above, the dipole moment is given by p ¼ 2ek2F=k

3
sp,

which gives a decay rate into radiation of

	ex ¼ k30p
2

3��0@
¼ 16�g

3

k3F
k3sp

V0!F; (7)

where V0 � ð�sp=�0Þ3. For cavities in the quantum non-

linear regime, this is a small contribution to the total losses;
thus, a more practical approach is needed for coupling the
photons to free space.
We envision a two-step process illustrated in Figs. 1(c)

and 1(d): first, a waveguide photon is converted into the
planar plasmon of a graphene waveguide via a dielectric
grating, then this plasmon can tunnel directly into the
nonlinear cavity. We first consider the direct coupling
between the cavity and the bulk plasmons. We take the
cavity of widthW to be separated a distance d from a long
nanoribbon of widthW 0 as shown in Fig. 1(d). For d � W,
�sp the coupling is dipolar and small, which allows us to

calculate the decay of the fundamental cavity mode into
the nanoribbon via Fermi’s golden rule (see the
Supplemental Material [27])

	c�r ¼ 32

�2

krF
kcF

W!

k�spk4spd6
; (8)

where kr;cF is the Fermi wave vector in the nanoribbon (r)
and cavity (c) and k�sp is the wave vector for the nanoribbon
plasmon that is resonant with the cavity mode. The cavity
can be efficiently controlled through the nanoribbon by
operating at a distance d such that this decay is the domi-
nant loss channel for the cavity.

(a) (b)

FIG. 2. (a) Nonlinear shift [calculated from Eq. (5)] for the
fundamental mode relative to the plasmon linewidth with de-
creasing mode volume V0 ¼ ð�sp=�0Þ3. Here we take the line-

width as � ¼ ev2
F=�@!F with the Fermi energy @!F ¼ 0:2 eV

and a mobility of � ¼ 105ð104Þ cm2=Vs corresponding to a
quality factor of roughly 600(60). (b) gð2ÞðtÞ for the graphene
plasmon cavity driven by a weak coherent state for @!sp ¼
0:2 eV and two different mobilities. gð2Þð0Þ< 1 indicates a
transition to an effective two-level system as illustrated sche-
matically in Figs. 1(a) and 1(b).
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Once the plasmon is in the nanoribbon it still remains
to outcouple it to the waveguide. Due to the large mismatch
in wave vectors, ksp=k0 � c=vF, the bare coupling of the

plasmons to the waveguide mode will be very small.
Achieving efficient conversion between conventional op-
tics and plasmons (in graphene and noble metals) is an area
of active research with several different approaches being
pursued [32–38]. We consider the conceptually simplest
solution, which is to directly fabricate a dielectric grating
to enable momentum conservation, as recently demon-
strated in Ref. [38]. We take a single-mode dielectric
slab waveguide in vacuum coupled to a graphene nano-
ribbon via the dielectric grating. For the frequencies we
consider here one could fabricate the waveguide and grat-
ing by etching Si. For parallel propagation, the grating
wave vector kg should be given by kg ¼ ksp � k0. This

geometry can be analyzed via coupled mode theory and
optimized as a function of the slab thickness [39]. Taking
the grating profile to be of the form �gðxÞ ¼ �� coskgx

gives the power conversion for weak losses between the
waveguide and plasmon mode as cos2ðxÞ where  is the
spatial coupling between the TM mode of the waveguide
and nanoribbon

 �
ffiffiffiffiffiffi
W

W 0

s
��e��?hk0: (9)

HereW 0 >W, �2
? ¼ �2 � k20 is the transverse wave vector

of the slab mode,� is the longitudinal wave vector, and h is
the distance between the slab and the graphene. Because
the factor in  in front of k0 is order unity, the plasmon
conversion for a weak grating is limited to distances
��0 � �sp. As a result the spatial decay rate of the

plasmons must be much larger than k0 to achieve efficient
conversion. When losses are dominated by impurity scat-
tering the spatial decay rate is given by �ksp=!sp �
evF@!sp=2�E2

F, which decreases with Fermi energy.

Figure 3(a) shows the transmission of a single photon
through the geometry displayed in Figs. 1(c) and 1(d).
The device depicted in Figs. 1(c) and 1(d) can be used

as a nonlinear single-photon switch. To characterize this
process, it is first necessary to understand how an input
field through the waveguide is transformed upon interact-
ing with the nonlinear resonator, which can be done
through an input-output formalism. In the case of
Figs. 1(c) and 1(d) of a resonator equally coupled to two
waveguides, the resonator evolves under the incoming
fields of the left- and right-going modes under the
Hamiltonian Hc ¼ ffiffiffiffiffiffiffi

	ex
p ðarin þ alinÞay þ H:c:, while the

output fields are given by arðlÞout ¼ arðlÞin þ i
ffiffiffiffiffiffiffi
	ex

p
a.

This one dimensional model has been solved exactly for
the case of one and two resonant photons input from a
single direction in the waveguide [40]. The response is
characterized by the effective Purcell factor P ¼ 	ex=�,
which measures the fraction of cavity emission into the
waveguide, and the normalized nonlinearity ~
 ¼ 
=	.
The transmission t and reflection r coefficients for a single
photon incident on resonance with the cavity are given by
t ¼ �P=ð1þ PÞ and r ¼ 1=ð1þ PÞ. The two photon
response, however, is modified by the nonlinearity. For
example two photons at frequency !sp will be blocked

from entering the cavity due to the nonlinearity. This leads
to antibunching in the transmission and bunching in the
reflection as shown in Figs. 3(b) and 3(c). The suppression
in the transmission scales as ~
2 similarly to Eq. (6), while
the bunching in reflection scales as P4 for ~
 � P � 1
[40]. Figure 3(c) shows that such a device realizes a single
photon transistor where one control photon can block
several signal photons from propagating through the cavity
for a time given by the inverse cavity lifetime.
Experimental tests of these ideas require single photon

detectors in the midinfrared wavelength regime between 2
and 10 �m. While this is challenging to realize, recent
work on superconducting nanowire single photon detectors

(a) (b) (c)

FIG. 3. (a) Single photon transmission through the device depicted in Figs. 1(c) and 1(d). We take  ¼ k0=2 and P � 1 so the only
losses are in the nanoribbons. The plasmon frequency is 0.2 eV and we assume the decay rate � is dominated by impurity scattering.
The three curves are for a fixed plasmon frequency with increasing Fermi energy, which increases the spatial propagation length of the
plasmons. (b) Bunching in reflection for two incident photons from the left with @!sp ¼ 0:2 eV, EF ¼ 0:23 eV, P ¼ 2, and mobility

� ¼ 104ð105Þ cm2=Vs [dashed(solid)] corresponding to a lifetime of 0.2(2) ps and a cavity quality factor of 60(600). (c) Antibunching
in transmission for P ¼ 0:1 with other parameters as in (a).
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and transition edge sensors have achieved single photon
detection in this regime [41–43]. Alternatively, frequency
up-conversion may allow efficient detection [41].

Our analysis shows that graphene plasmonics may pro-
vide a powerful platform for the nonlinear quantum optical
control of light. Combined with the scalable fabrication of
graphene this could allow the creation of complex quantum
networks for many applications in quantum information
and quantum simulation, as well as in classical nonlinear
optics. Such a system is ultimately limited either by the
losses in graphene or the strength of the nonlinearity.
We estimate currently achievable quality factors for the
plasmon cavity range from 10 to 103; however, estimates of
the ultimate limit to the graphene plasmon lifetime suggest
that quality factors greater than 104 are possible [21].
To enhance the nonlinearity further hybrid structures can
be envisioned if one can fabricate the structure on top of a
strong nonlinear substrate.

We thank P. Zoller for useful discussions. D. E. C. and
F. H. L. K. acknowledges support from Fundacio Privada
Cellex Barcelona. We acknowledge support from the
Harvard Center for Quantum Optics, NSF, ARO, CUA,
AFOSR-MURI Grant No. FA9550-10-1-0264, and the
Packard Foundation. F. K. acknowledges support by the
ERC Career integration Grant No. 294056 (GRANOP)
and the ERC starting Grant No. 307806 (CarbonLight).

[1] R.W.Boyd,NonlinearOptics (Academic,NewYork, 2003).
[2] H. J. Kimble, Nature (London) 453, 1023 (2008).
[3] L.-M. Duan and C. Monroe, in Advances In Atomic,

Molecular, and Optical Physics, edited by E. Arimondo,
P. R. Berman, and C. C. Lin (Academic, New York, 2008),
Vol. 55, pp. 419–463.

[4] S. Haroche, Rev. Mod. Phys. 85, 1083 (2013).
[5] N. Matsuda, R. Shimizu, Y. Mitsumori, H. Kosaka, and K.

Edamatsu, Nat. Photonics 3, 95 (2009).
[6] H. Mabuchi, Phys. Rev. A 85, 015806 (2012).
[7] S. Ferretti and D. Gerace, Phys. Rev. B 85, 033303 (2012).
[8] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth,

A. V. Gorshkov, T. Pohl, M.D. Lukin, and V. Vuletić,
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