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Abstract. We present a novel semi-automatic method for segmenting
neural processes in large, highly anisotropic EM (electron microscopy)
image stacks. Our method takes advantage of sparse scribble annota-
tions provided by the user to guide a 3D variational segmentation model,
thereby allowing our method to globally optimally enforce 3D geometric
constraints on the segmentation. Moreover, we leverage a novel algorithm
for propagating segmentation constraints through the image stack via
optimal volumetric pathways, thereby allowing our method to compute
highly accurate 3D segmentations from very sparse user input. We evalu-
ate our method by reconstructing 16 neural processes in a 1024×1024×50
nanometer-scale EM image stack of a mouse hippocampus. We demon-
strate that, on average, our method is 68% more accurate than previous
state-of-the-art semi-automatic methods.

1 Introduction

Mapping neural circuitry is an important ongoing challenge in neurobiology. Cur-
rent approaches to this task involve tracing neural processes through segmented
nanometer-scale EM (electron microscopy) image stacks of brain tissue. Since our
understanding of neural circuitry is often limited by our ability to reconstruct
neural processes from EM image stacks, accurately segmenting neural processes
is an important open problem in the medical image analysis community.

Dense reconstruction algorithms [1, 7, 11–13, 15, 20] generally rely on super-
vised learning methods to automatically classify every pixel in an image stack
according to the type of cellular structure to which it belongs. However, no dense
reconstruction algorithm can reliably produce segmentations that are completely
free of topological errors. In practice, these methods often require significant user
effort to correct errors in the automatically generated segmentations.

On the other hand, sparse reconstruction algorithms rely on the user to in-
teractively guide the segmentation of individual neural processes. Most existing
sparse algorithms compute 3D reconstructions as sequences of locally optimal 2D
segmentations after the user provides an initial 2D contour [4, 8, 10, 14, 19]. How-
ever, these approaches do not optimally enforce 3D geometric consistency con-
straints on the resulting segmentation, and therefore often require frequent user
intervention. The recent Markov Surfaces algorithm [16] requires user-defined
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Fig. 1. Overview of our method. We assume that we are given scribble annotations
indicating a neural process of interest on the first and last slices of an image stack (top
left). We compute 2D segmentations that contain the scribble annotations and align
with strong image edges; these 2D segmentations define hard constraints on our 3D
segmentation (top right). We propagate the 2D segmentations through the image stack
according to an implicitly represented volumetric pathway, which we compute based
on the dense optical flow between image slices; the interior level sets of this volumetric
pathway define soft constraints on our 3D segmentation (bottom left). We compute
the final 3D segmentation by globally refining the volumetric pathway according to
an anisotropic variational segmentation model that aligns with strong in-plane image
edges and enforces 3D smoothness (bottom right).

2D contours on the first and last slices of an image stack. This algorithm au-
tomatically tessellates a set of globally optimal paths between these contours,
relying on 2D Bézier interpolation to produce smooth surfaces. However, since
Bézier interpolation does not take into account the underlying image data, the
resulting segmentations may ignore important image features.

In this paper, we introduce a novel method for neural process reconstruction
that only requires very sparse scribble annotations as input (Fig. 1). We eval-
uate our method by reconstructing 16 neural processes in a 1024 × 1024 × 50
nanometer-scale EM image stack of a mouse hippocampus. We demonstrate
that, on average, our method is 68% more accurate than Markov Surfaces [16],
91% more accurate than Geo-Cuts [2], and 263% more accurate than Marker-
Controlled Watersheds [6].

2 Our Method

We observe that the problem of reconstructing neural processes through highly
anisotropic EM image stacks is conceptually similar to the problem of tracking
moving objects in video sequences. Based on this observation, our work is in-
spired by the recent Anisotropic Total Variation model proposed by Unger et
al. [17], which tracks objects through video sequences based on sparse constraints
provided by the user. However, the absence of color information in EM image
data and poor spatial continuity across EM image slices prevent the direct ap-
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Fig. 2. Key observations motivating our method. Anisotropic Total Variation [17] fails
to segment this neural process from sparse scribble annotations (a), but succeeds if
scribble annotations are given on every slice (b). Our method only requires scribble
annotations on the first and last slices because we automatically propagate segmenta-
tion constraints through the image stack. However, propagating scribble annotations
as segmentation constraints results in a significant under-segmentation of this neural
process (c). Instead, we compute 2D segmentations from the scribble annotations and
propagate the 2D segmentations, resulting in an accurate segmentation of this neural
process (d). Scribble annotations are shown in light blue, segmentations are shown in
dark blue, and automatically propagated segmentation constraints are shown in green.

plication of this method to neural process reconstruction (Fig. 2a). We observe
that this model can robustly track the neural process of interest if the user pro-
vides constraints on each slice of the image stack (Fig. 2b). This observation
motivates our method for automatically propagating segmentation constraints
through the image stack based on the dense optical flow between slices.

If we propagate the user-provided scribble annotations through the image
stack as soft segmentation constraints, we observe an uneven distribution of
propagated constraints. This can result in a significant under-segmentation of
the neural process of interest (Fig. 2c). In contrast, if we propagate accurate
2D segmentations (instead of scribble annotations) through the image stack,
we observe more evenly distributed segmentation constraints. This results in an
accurate 3D segmentation of the neural process of interest (Fig. 2d). These obser-
vations motivate our method for computing 2D segmentations and subsequently
propagating them through the image stack as soft segmentation constraints.
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Input. We assume that the user marks the neural process of interest with a
few foreground and background scribbles on the first and last image slices. For
the sake of notational clarity, we assume that the neural process of interest is
roughly orthogonal to the image stack. In practice, we allow the user to seg-
ment neural processes that run in any direction by projecting the segmentation
problem along any 1D path through the image volume.

Computing 2D segmentations. We compute 2D segmentations of the
neural process of interest by globally minimizing the following variational seg-
mentation energy [18]:

argmin
ui

∫
x∈Ωi

(gi|∇ui|+ fiui) dx, (1)

where i refers to the indices of the first and last slices, Ωi is the 2D image do-
main. The function ui : Ωi → [0, 1] encodes the resulting 2D segmentation for
each slice, where ui >

1
2 is foreground and ui ≤ 1

2 is background. The function
gi : Ωi → [0, 1] encodes strong image edges as small values, and the function
fi : Ωi → (−∞,∞) is defined according to the user-provided scribble annota-
tions, where we set fi := −∞ for foreground scribbles, fi := ∞ for background
scribbles, and fi := 0 otherwise. Minimizing (1) results in 2D segmentations
that respect the user-provided scribbles annotations and align with strong im-
age edges.

The foreground and background regions of these 2D segmentations define
hard foreground and background constraints on our 3D segmentation, respec-
tively.

Computing an Optimal Volumetric Pathway. Once we have obtained
hard constraints on the first and last slices of our image stack, we generate soft
constraints on all the other slices by automatically propagating the previously
computed 2D segmentations through the stack. One way to accomplish this
would be to advect each foreground pixel in each 2D segmentation through the
image stack according to the dense optical flow between image slices. However,
this approach is unreliable since small errors in the pairwise optical flow between
images accumulate quickly, as noted previously by Pan et al. [16].

Instead, we define an optimal volumetric pathway through the image stack
that connects the previously computed 2D segmentations and encloses the pixels
that are most likely to belong to the neural process of interest. In this formula-
tion, the optimal volumetric pathway is given by the interior level sets of a cost
volume that encodes the probability of each pixel in the image stack belonging
to the neural process of interest.

We define the cost of each pixel p in the cost volume as the length of the
shortest path that connects the previously computed 2D segmentations via p,
as described in Fig. 3. We compute the length of each path through the image
stack as a function of the dense optical flow between image slices as follows. For
the pixels p ∈ Ωi, q ∈ Ωi+1, and the optical flow vector v(p), we define the
length from p to q as d(p,q) = |p + v(p)− q|.
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Fig. 3. Computing the cost volume. There are many possible paths through the image
stack (shown in red) that connect the 2D segmentations on the first and last slices
(shown in dark blue) via p, but there is only one shortest path (shown in black); we
set the cost of each pixel in the cost volume to be the length of this path (a). For
example, p2 will be assigned a higher cost than p1, since the length of its shortest path
is longer; this means p2 is less likely to belong to the neural process of interest than p1

(b). When computing the length of each path, we model the distance (shown in green)
between pixels on adjacent slices as a function of the dense optical flow vectors (shown
in orange) between the pixels; in this formulation, paths that agree strongly with the
dense optical flow field have very short lengths (c).

To compute our cost volume, we find the minimum distances from each pixel
to the 2D segmentations on the first and and last image slices in two distinct
passes, using the dynamic programming algorithm proposed by Pan et al. [16].
We set the cost of each pixel to be the sum of both distances, as proposed
by Jeong et al. [9]. We compute dense optical flow using use the open-source
implementation of Farnebäck’s algorithm [5] in The OpenCV Library [3].

The interior level sets of our cost volume define soft foreground constraints
on our 3D segmentation.

Computing the 3D Segmentation. Once we have obtained hard con-
straints on the first and last slices of the image stack, and soft constraints on
all other slices, we obtain the final 3D segmentation by globally minimizing the
following variational segmentation energy [17]:

argmin
u

∫
x∈Ω

(g|∇xyu|+ |∇zu|+ fu) dx, (2)

where Ω is the 3D image domain corresponding to the entire image stack, and
∇xyu and ∇zu are the in-plane and out-of-plane gradients of u, respectively. As
in (1), the function u encodes the resulting segmentation, the function g encodes
strong in-plane image edges as small values, and the function f encodes con-
straints on the segmentation. Using the hard and soft constraints computed in
the previous sections, we set f := −∞ for hard foreground constraints, f :=∞
for hard background constraints, f := c for some scalar value c ∈ R− for soft
foreground constraints, f := c for some scalar value c ∈ R+ for soft background
constraints, and f := 0 otherwise. Minimizing (2) results in a smooth 3D seg-
mentation that respects the previously computed constraints, follows the neural
process of interest, and aligns with strong in-plane image edges.

Minimizing the 2D and 3D Segmentation Energies. We compute the
global minimum of (1) and (2) using the iterative parallel algorithm proposed by
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Fig. 4. Accuracy of our method, Markov Surfaces [16], Geo-Cuts [2], and Marker-
Controlled Watersheds [6] while segmenting 16 neural processes in an annotated 1024×
1024 × 50 mouse hippocampus EM image stack.

Unger et al. [17, 18]. We begin by reformulating these equations as optimization
problems of two variables to preserve their differentiability. In this two-variable
formulation, (1) and (2) become strictly convex, so we use a projected gradi-
ent descent strategy to obtain a globally optimal solution for the segmentation
variable u.

3 Results and Discussion

We evaluated our method, Markov Surfaces [16], Geo-Cuts [2], and Marker-
Controlled Watersheds [6] by segmenting 16 neural processes in a 1024×1024×50
mouse hippocampus image stack for which the ground truth classification of each
neural process was known.

We implemented our method in CUDA and C++ on a PC with an Intel Xeon
3 GHz CPU (12GB of memory), and an NVIDIA GTX 480 graphics processor
(1.5GB of memory). In all cases, computing each 2D segmentation took at most
3 seconds, computing the cost volume took at most 5 seconds, and computing
the final 3D segmentation took at most 10 seconds. Total segmentation times,
including all user interaction and computation time, varied between 45 and 70
seconds, with an average of 50 seconds per neural process.

Fig. 4 shows the Dice Scores1 of all the methods used and neural processes
segmented in our evaluation. On average, our method is 68% more accurate than
Markov Surfaces [16], 91% more accurate than Geo-Cuts [2], and 263% more
accurate than Marker-Controlled Watersheds [6]. Fig. 5 shows the segmentation
results for one neural process from Fig. 4 across several 2D image slices.

As indicated in Fig. 5, Marker-Controlled Watersheds tended to under-segment
neural processes, since it places segmentation boundaries at local intensity max-
ima. Geo-Cuts performed reasonably well on slices containing scribble annota-
tions, but generally tended to miss the correct segmentation on other slices, since
it does not propagate segmentation constraints through the image stack. Markov
Surfaces performed well in regions with well-delineated boundaries, but tended

1 2|G∩S|
|G|+|S| for a ground truth set of pixels G and a set of segmented pixels S



Neural Process Reconstruction from Sparse User Scribbles 7

Fig. 5. Segmentation results from our method, Markov Surfaces [16], Geo-Cuts [2],
and Marker-Controlled Watersheds [6] on various slices of a 1024 × 1024 × 50 mouse
hippocampus EM image stack. Bright blue regions indicate user-provided annotations
used to initialize the algorithm, dark blue regions indicate the resulting segmentations.

to diverge heavily from image features, since it relies on Bézier interpolation
to produce smooth surfaces and does not enforce 3D geometric constraints on
the segmentation. Our method outperformed these methods, due to its ability
to robustly propagate segmentation constraints through the image stack and
optimally enforce 3D smoothness on the segmentation.
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1. Andres, B., Köthe, U., Helmstaedter, M., Denk, W., Hamprecht, F.A.: Segmen-
tation of SBFSEM volume data of neural tissue by hierarchical classification. In:
DAGM Symposium on Pattern Recognition. pp. 1609–1612 (2008)

2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int.
J. Comp. Vis. 70 (2006)



8 Roberts, Jeong, Vázquez-Reina, Unger, Bischof, Lichtman, Pfister

3. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)
4. Chklovskii, D.B., Vitaladevuni, S., Scheffer, L.K.: Semi-Automated reconstruction

of neural circuits using electron microscopy. Curr. Opin. Neurobiol. 20(5), 667–675
(2010)
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