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Abstract. Automated neural circuit reconstruction through electron
microscopy (EM) images is a challenging problem. In this paper, we
present a novel method that exploits multi-scale contextual information
together with Radon-like features (RLF) to learn a series of discrimi-
native models. The main idea is to build a framework which is capable
of extracting information about cell membranes from a large contextual
area of an EM image in a computationally efficient way. Toward this goal,
we extract RLF that can be computed efficiently from the input image
and generate a scale-space representation of the context images that are
obtained at the output of each discriminative model in the series. Com-
pared to a single-scale model, the use of a multi-scale representation of
the context image gives the subsequent classifiers access to a larger con-
textual area in an effective way. Our strategy is general and independent
of the classifier and has the potential to be used in any context based
framework. We demonstrate that our method outperforms the state-of-
the-art algorithms in detection of neuron membranes in EM images.

Keywords: Machine learning, Membrane detection, Neural circuit re-
construction, Multi-scale context, Radon-like features (RLF)

1 Introduction

Electron microscopy (EM) is an imaging technique that can generate nanoscale
images that contain enough details for reconstruction of the connectome, i.e.,
the wiring diagram of neural processes in the mammalian nervous system [4, 11].
Because of the large number and size of images, their manual analysis is infeasible
and in some cases may take more than a decade [3]. Hence, automated image
analysis is required. However, fully automatic reconstruction of the connectome
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is challenging because of the complex intracellular structures, noisy texture, and
the large variation in the physical topologies of cells [5]. Therefore, a successful
automated method must overcome these issues in order to reconstruct the neural
circuit with high accuracy.

Many supervised and unsupervised techniques have been proposed to solve
the connectome reconstruction problem. Macke et al. [9] proposed a contour
propagation model that minimizes an energy function to find the cell mem-
branes. However, this active contour model can get stuck in local minima due
to the complex intracellular structures and may find false boundaries [10]. Vu
and Manjunath [12] proposed a graph-cut framework that minimizes an energy
defined over the image intensity and the intensity gradient field. But, the graph-
cut method might be misled by the complex intracellular structure of the EM
images and requires the user to correct segmentation errors. Kumar et al. [7]
introduced a set of so-called Radon-like features (RLF), which take into account
both texture and geometric information and overcome the problem of complex
intracellular structures but only achieve modest accuracy levels due to the lack
of a supervised classification scheme.

Supervised methods that use contextual information [2] have been proven
successful to solve the reconstruction problem. Jain et al. [5] proposed a convo-
lutional neural network for restoring membranes in EM images. Convolutional
networks take advantage of context information from increasingly large regions
as one progresses through the layers. To capture context from a large region,
however, convolutional networks need many hidden layers, adding significant
complexity to training. Jurrus et al. [6] proposed a framework to detect neuron
membranes that integrates information from the original image together with
contextual information by learning a series of artificial neural networks (ANN).
This makes the network much easier to train because the classifiers in the series
are trained one at a time and in sequential order.

Even though these approaches improve the accuracy of the segmentation
over unsupervised methods, they don’t utilize the context information in an
effective way. In [6], Jurrus et al. utilize context locations that are selected by
a stencil and use them as input to a neural network. The performance of the
classifier can be improved by using context from a large neighborhood; however,
it is not practical to sample every pixel in a very large context area because of
computational complexity and the overfitting problem. To address this problem,
we develop a multi-scale strategy to take advantage of context from a larger area
while keeping the computational complexity tractable and avoiding overfitting.
We apply a series of linear averaging filters to the context image consecutively
to generate a scale-space representation [1] of the context. Thus the classifier
can have as input a small neighborhood, i.e., a 5 × 5 patch, at the original
scale as well as the coarser scales. While scale-space methods are well known,
to our knowledge their use for modelling context in classification problems is
novel. Combining scale-space representation and contextual information leads
to a novel segmentation framework that provides more information from the
context for the classifiers in the series. This extra information from the context
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helps the later classifiers to correct the mistakes of the early stages and thus
improves the overall performance.

In addition to the above problem with existing context based methods that
we address in this paper, we also note that none of the existing methods make
use of textural and geometric features specifically designed for connectome im-
ages. We also address this by incorporating the recently proposed Radon-like
features [7] in our method. RLF, which can be efficiently computed, provide our
classifier discriminative information in addition to that present in the grayscale
micrograph. It must be emphasized that [7] proposes that RLF be used only at
a single scale with certain set of parameters. We sidestep this parameter tuning
problem by computing RLF at various scales and using them all in our classifier.

2 Sequential Training with Context

Given a set of training images and corresponding groundtruth labels for each
pixel, we learn a set of classifiers in sequential order as in [6]. The first classifier
is trained only on the input image features. The output of this classifier, the
probability image map, is used together with the input image features to train
the next stage classifier. The algorithm iterates until the improvement in the
performance of the current stage is small compared to the previous stage.

Let X = (x(i, j)) be the input image that comes with a ground truth Y =
(y(i, j)) where y(i, j) ∈ {−1, 1} is the class label for pixel (i, j). The training
set is T = {(Xk, Yk); k = 1, . . . ,M} where M denotes the number of training
images. A typical approximation of the MAP estimator for Y givenX is obtained
by using the Markov assumption that decreases the computational complexity:

ŷMAP (i, j) = argmax p(y(i, j)|XN(i,j)), (1)

where N(i, j) denotes all the pixels in the neighborhood of pixel (i, j). Instead
of using the entire input image the classifier has access to a limited number of
neighborhood pixels at each input pixel (i, j).

In the series-ANN [6], a classifier is trained based on the neighborhood fea-
tures at each pixel. We call the output image of this classifier C = (c(i, j)). The
next classifier is trained not only on the neighborhood features of X but also on
the neighborhood features of C. The MAP estimation for this classifier is:

ŷMAP (i, j) = argmax p(y(i, j)|XN(i,j), CN
′ (i,j)), (2)

where N
′

(i, j) is the set of all neighborhood pixels of pixel (i, j) in the context
image. Note that N and N ′ can be different neighborhoods. The same procedure
is repeated through the different stages of the series classifier until convergence. It
is worth mentioning that Eq. 2 is closely related to the CRF model [8]; however
in our approach multiple models in series are learned, which is an important
difference from standard CRF approaches.

According to Eq. 2, context provides prior information to solve the MAP
problem. Even though the Markov assumption is reasonable and makes the
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Fig. 1. Illustration of the multi-scale contextual model. Each feature map is sampled
at different scales (green rectangles). The blue rectangles represent the center pixel and
the yellow rectangles show the selected context locations at original scale.

problem tractable, it still results in a significant loss of information from global
context. However, it is not practical to sample every pixel in a very large neigh-
borhood area of the context due to the computational complexity problem and
overfitting. Previous approaches [6] have used a sparse sampling approach to
cover large context areas as shown in Fig. 2(a). However, single pixel contex-
tual information at the finest scale conveys only partial information about its
neighborhood in a sparse sampling strategy while each pixel at the coarser scales
conveys more information about its surrounding area due to the use of averag-
ing filters. Furthermore, single pixel context is noise prone whereas context at
coarser scales is more robust due to the averaging. In other words, while it is
reasonable to sample context at the finest level at a distance of a few pixels, sam-
pling context at the finest scale tens to hundreds of pixels away is error prone
and presents a non-optimal summary of its local area. We argue that more infor-
mation can be obtained by creating a scale-space representation of the context
and allowing the classifier access to samples of small patches at each scale. Con-
ceptually, sampling from scale-space representation increases the effective size of
the neighborhood while keeping the number of samples small.

3 Multi-scale Contextual Model

Multi-scale contextual model is shown in Fig. 1. Each stage is composed of two
layers: a classifier layer and a feature pooling layer. Classifier: Different types
of classifiers can be used in series architecture such as AdaBoost and neural net-
works. The first classifier operates only on the input image while the later stages
are trained on both the input image and the context from the previous stage.
Feature Pooling: In the conventional series structure, the feature pooling layer
simply takes sparsely sampled context as in Fig. 2(a) and combines them with
input image features. In the proposed method, the feature pooling layer treats
each feature map as an image and creates a scale-space representation by apply-
ing a series of Gaussian filters. This results in a feature map with lower resolution
that is robust against the small variations in the location of features and noise.
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(a) (b)

Fig. 2. Sampling strategy of context: Sam-
pling at (a) single-scale (b) multi-scale.
Green circles illustrate the summary of pix-
els in dashed circles.

Fig. 2 shows our sampling strategy
versus single space sampling strategy.
In Fig. 2(b) the classifier can have as
an input the center 3× 3 patch at the
original scale and a summary of 8 sur-
rounding 3 × 3 patches at a coarser
scale. The green circles in Fig. 2(b)
are more informative and less noisy
compared to their equivalent red cir-
cles in Fig. 2(a). The summaries be-
come more informative as the number
of scales increases. For example, in the
first scale the summary is computed
over 9 pixels (3 × 3 neighborhood) while it is computed over 25 pixels (5 × 5
neighborhood) in the second scale. In practice, we use Gaussian averaging filters
to create the summary (green circles in Fig. 2(b)). Other methods like max-
pooling can be used instead of Gaussian averaging. The number of scales and
the Gaussian filter size are set according to the application characteristics.

Taking multiple scales into account, Eq. 2 can be rewritten as:

ŷMAP (i, j) = argmax p(y(i, j)|XN(i,j), CN
′

0
(i,j)(0), . . . , CN

′

l
(i,j)(l)), (3)

where C(0), . . . , C(l) denote the scale-space representation of the context and
N

′

0(i, j), . . . , N
′

l (i, j) are corresponding sampling structures. Unlike Eq. 2 that
uses the context in a single scale, Eq. 3 takes advantage of multi-scale contextual
information. Although in Eq. 3 we still use the Markov assumption, the size of
the neighborhood is larger, and thus we lose less information compared to Eq. 2.

4 Radon-like Features

As mentioned earlier, the overall performance of our method can be improved
by extracting RLF from the input image in addition to pixel intensities. It has
been shown empirically that trying to segment the structures in connectome im-
ages using only geometric or textural features is not very effective [7]. RLF were
proposed as a remedy to this problem as they are designed to leverage both
the texture and the geometric information present in the connectome images
to segment structures of interest. As a first step, RLF use the edge map of a
connectome image as a means to divide it into regions that are defined by the
geometry of the constituent structures. Next, for each pixel, line segments with
their end points on the closest edges are computed in all directions. Finally, for
each pixel, a scalar value is computed along each direction using the informa-
tion in the original image along these line segments using a so-called extraction
function. Extraction functions tuned to extract cell boundaries, mitochondria,
vesicles, and cell background have been defined in [7].

In this paper, we are interested in obtaining the cell boundaries from the
connectome images. Moreover, we intend to define a supervised scheme to au-
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tomatically segment the cell boundaries while [7] presented an unsupervised,
and consequently less accurate, framework. Both of these objectives allow us to
use the RLF in a more targeted manner towards cell boundary segmentation.
Foremost, we use not just the cell boundary extraction function but also the
mitochondria extraction function since we train our classifier to not select mito-
chondria boundaries as cell boundaries. Secondly, we use what we call multi-scale

RLF by computing RLF at multiple scales and for different edge threshold set-
tings. This richer set of features allow for correct detection of cell boundaries in
the regions that cannot be detected by the original RLF as proposed in [7] and
avoids the need for extensive parameter tuning.

Combining these set of features and the multi-scale contextual model, the
update equation for the framework can be written as:

ŷk+1
MAP (i, j) = argmax p(y(i, j)|XN(i,j), f(XN(i,j)),

Ck

N
′

0
(i,j)

(0), . . . , Ck

N
′

l
(i,j)

(l)), (4)

where Ck(0), . . . , Ck(l) are the scale-space representation of the output of clas-
sifier stage k, k = 1, . . . ,K − 1, ŷk+1

MAP (i, j) is the output of the stage k + 1 and
f(.) is the RLF function. In turn, the k+1’st classifier output as defined in Eq. 4
creates the context for the k+2’nd classifier. The model repeats Eq. 4 until the
performance improvement between two consecutive stages becomes small.

5 Experimental Results

We test the performance of our proposed method on a set of 70 EM images
of a mouse cerebellum with corresponding groundtruth maps. The groundtruth
images were annotated by an expert who marked neuron membranes with a one-
pixel wide contour. 14 of these images were used for training and the remaining
images were used for testing. In this experiment, we employed MLP-ANNs as
the classifier in a series structure, as in [6]. Each MLP-ANN in the series had
one hidden layer with 10 nodes.

To optimize the network performance, 5.5 million pixels were randomly se-
lected from the training images such that there are twice the number of negative
examples, than positive as in [6]. Input image feature vectors were computed on
a 11 × 11 stencil centered on each pixel. The same stencil was used to sample
the RLF for cell boundaries (at two scales) and mitochondria. The context fea-
tures were computed using 5×5 patches at four scales (one at original resolution
and three at coarser scales). The classifier then gets as input the 5 × 5 patch
at the original resolution (C

N
′

0
(i,j)(0)) and 5 × 5 patches at three coarser scales

(CN
′

l
(i,j)(l)). The ROC curves for pixel-wise membrane detection are shown in

Fig. 3(a). It can be noted that our method outperforms the state-of-the-art meth-
ods proposed in [6] and [7]. The average F − value = 2×Precision×Recall

Precision+Recall
at zero

threshold for different stages and different methods is shown in Fig. 3(b). The
performance of the multi-scale contextual model without RLF is 2.65% better
than using a single-scale context [6]. This improvement increases to 3.76% when
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Fig. 3. (a) The ROC curves for test images and for different methods. (b) The F-value
at different stages for different methods. The F-value for RLF method [7] is 59.40%.

we use RLF in addition to multi-scale contextual information. Fig. 4 shows some
examples of our test images and corresponding membrane detection results for
different methods. As shown in our results, the approach presented here per-
forms better in membrane detection compared to [6], and it is more successful
in removing undesired parts (green rectangles) from inside cells.

(a) (b) (c) (d) (e) (f)

Fig. 4. Test results for the membrane detection for two different input images: (a)
Input image, the remaining columns show the output results (probability maps) for (b)
RLF [7] (c) single-scale context [6] (d) multi-scale context (e) multi-scale context+RLF,
and (f) shows the manually marked groundtruth.

6 Conclusion

This paper introduced an image segmentation algorithm using a multi-scale con-
textual model. The main idea of our method is to take advantage of context
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images at different scales instead of a single scale, thereby providing the classi-
fier with a richer set of information. We also modified the RLF to extract more
information from different structures of the input image. The proposed method
is very general and does not depend on any particular classifier or any specific
scale-space method.

We applied our method to membrane detection in EM images. Results in-
dicate that the proposed method outperforms state-of-the-art algorithms while
maintaining nearly identical computational complexity. We used linear averaging
filters to generate the scale-space representation of the context. In future work,
we will conduct a full study of the effect of scale-space depth and the advantage
of using other linear or nonlinear scale-space methods.
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