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Abstract

We address the problem of automatic 3D segmentation
of a stack of electron microscopy sections of brain tissue.
Unlike previous efforts, where the reconstruction is usually
done on a section-to-section basis, or by the agglomerative
clustering of 2D segments, we leverage information from
the entire volume to obtain a globally optimal 3D segmen-
tation. To do this, we formulate the segmentation as the so-
lution to a fusion problem. We first enumerate multiple pos-
sible 2D segmentations for each section in the stack, and
a set of 3D links that may connect segments across con-
secutive sections. We then identify the fusion of segments
and links that provide the most globally consistent segmen-
tation of the stack. We show that this two-step approach
of pre-enumeration and posterior fusion yields significant
advantages and provides state-of-the-art reconstruction re-
sults. Finally, as part of this method, we also introduce a
robust rotationally-invariant set of features that we use to
learn and enumerate the above 2D segmentations. Our fea-
tures outperform previous connectomic-specific descriptors
without relying on a large set of heuristics or manually de-
signed filter banks.

1. Introduction
Connectomics is an emerging branch of neuroscience

that aims to physically map and resolve the neural circuitry
of the nervous system [11]. With the help of recent ad-
vances in the preparation, sectioning, and imaging of brain
tissue, biologists can now study neural connectivity and
physiology from the visual inspection of image stacks at
scales of only a few nanometers [7]. It is believed that
the automatic, high-throughput analysis of such images can
lead to a better understanding of the mammalian brain, as
well as provide new insight into other important areas of

Figure 1: Automatic labeling (right) of cellular structures
of a 2D section of a volume of brain tissue (left) using our
features. Each pixel is labeled by a random forest classifier
trained with the features we introduce in Section 4. Mito-
chondria are shown in yellow, vesicles in red and cellular
boundaries in green. The rest of pixels are labeled as cellu-
lar background (shown with a transparent label).

neuroscience, such as the study of the biological basis of
learning or memory [7]. Besides its scientific applications,
connectomics also provides great opportunities for the com-
puter vision community, as is evident in the fast growing vi-
sion literature addressing problems such as neuron segmen-
tation [8, 9, 20, 5], sparse tomographic reconstruction [19],
and the design of features for connectomics [12].

In this paper, we focus on the problem of 3D segmenta-
tion of spatially irregular volumes of brain tissue. Such vol-
umes are often obtained in neurobiology from serial-section
electron microscopy (ssEM) of brain tissue, and their seg-
mentation poses important challenges from a computer vi-
sion perspective. The 2D physical resolution of each stack
section is usually one order of magnitude finer than the av-
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erage distance between sections. This anisotropic sampling
results in irregular spatial discontinuities when moving be-
tween sections, even after image registration, thereby sig-
nificantly complicating the problem of tracking continuous
structures across sections [11]. Neurons can also branch,
merge, originate or terminate anywhere within the volume,
and some neural processes such as spines can be as thin
as the distance between sections or even move parallel be-
tween them. Finally, inconsistencies in the staining and cut-
ting of the tissue, along with imaging artifacts, can make it
challenging for even a neurobiologist to distinguish neural
organelles or membranes without comparing images from
several sections.

The problem of automatic segmentation of ssEM
datasets has been addressed recently by several authors.
These efforts have been devoted to a variety of problems,
such as the labeling of cellular cross-sections [9, 5], the de-
tection of specific cellular structures [12] such as mitochon-
dria [13] or cell membranes [8, 9, 5], or the co-segmentation
of pairs of adjacent sections of brain tissue [20].

A growing number of efforts have been dedicated re-
cently to the problem of 3D labeling individual neurons
from full stacks [8, 9, 20, 14]. Some of these solutions are
based on Markov Random Fields (MRFs) at the pixel level.
Given the anisotropic nature of ssEM volumes, they tend
to be quite sensitive to the alignment between sections and
cannot fully exploit the redundancy between the images in
the stack [8].

A common approach in addressing this problem is to first
obtain a 2D segmentation of each section, and then to match
or agglomeratively cluster these 2D segments across sec-
tions in the stack [9, 20, 14]. However, such methods rely
on the assumption that the initial 2D segmentation of each
section is good enough for the posterior grouping, or that
every neuron has been oversegmented [20, 9]. In addition,
some of these methods need indirect penalties to prevent
trivial yet incorrect clusterings [20], or require setting stop-
ping conditions or manually-designed rules to converge to
the right solution [9, 14]. Finally, a number of methods rely
on greedy segment-merging strategies [9, 14] and cannot
guarantee global clustering optimality.

It is also worth noting that there have been a number
of efforts addressing semi-automatic 3D segmentation and
tracing of individual neurons [18, 6]. However, in this pa-
per, we restrict ourselves to fully automatic solutions.

Contributions. We introduce the notion of segmenta-
tion fusion, the global fusion of 2D segments and 3D links
for the problem of 3D neuron segmentation. Our method
compares multiple possible 2D segmentations and linking
choices across sections to find the best fusion of segments
and links that together form each neuron. Our fusion frame-
work is flexible and does not require full over-segmentation
of each section a priori, or the use of indirect penalties or

stopping conditions to handle both small and large struc-
tures.

We also present a novel set of features for the clas-
sification of cellular structures that provide an accurate,
rotationally-invariant summary of connectomic patches. We
use this classifier to obtain 2D segmentations for the fusion.
An example highlighting the discriminative power of our
features is shown in Fig. 1. In contrast to previous work, our
features do not require hand-tuning of a large set of heuris-
tics or filter banks and efficiently identify cellular structures
of different scales and morphologies.

2. Segmentation Fusion for Neural
Reconstruction

We provide a high-level picture of our fusion framework
in Fig. 2. We model each neuron as a group of 2D seg-
ments (neuron cross-sections) connected by a sequence of
3D links. We then formulate the problem of identifying the
neurons in the stack as the problem of finding the fusion of
segments and links that form each neuron.

We start by training a pixel classifier to label individual
cellular structures including mitochondria, neurotransmit-
ters, and cellular boundaries in each 2D section. The clas-
sifier takes a patch centered around each pixel, computes a
compact feature descriptor, and outputs the probability of
the center pixel belonging to each class (an example of the
labeling is shown in Fig. 1). We provide details about the
feature descriptor we use for classification in Section 4.

Once the pixel classifier has assigned a probability per
class to each pixel, we enumerate a set of possible 2D cross-
sections of neurons in each section. To do this, we apply
multiple watershed transforms on the probability map for
the boundary class obtained on each section (one watershed
for each height in the map). Each watershed outputs a 2D
partitioning of the section into several possible cell cross-
sections. Together, all the watersheds provide a large set of
2D segments that may be used to identify cross-sections of
neurons in each section.

We then enumerate a set of 3D links that connect pairs of
the 2D segments obtained from the watersheds across con-
secutive sections. We enumerate those links that connect
pairs that spatially overlap in XY (the image plane), but
that belong to two different, consecutive sections in Z (see
Fig. 3).

Once we have a set of candidate segments and links be-
tween them, we formulate our fusion problem. As men-
tioned earlier, we consider each neuron to consist of a se-
quence of segments (cross-sections) and links, and our goal
is to find the fusion that forms each neuron. We formulate
the solution to the fusion problem as the maximum a pos-
teriori (MAP) labeling of an MRF, subject to a set of pre-
defined clustering constraints. The MRF provides a conve-
nient factorization of the variables in the problem, while the
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Figure 2: Each section from an input stack of electron microscopy images is represented by each row in the figure, from
the original image (column (a)), we compute the probability of each pixel belonging to the cell boundary (column (b)). We
obtain this probability from the output of a random forest classifier applied to our rotationally-invariant features (described
in Section 4) that was previously trained on a set of manually annotated images. We then apply a sequence of watershed
transformations at different heights to the probability maps in each section. The outputs of the watershed transformations
provide a set of possible 2D segmentations for each section (column (c)). We then enumerate a set of possible 3D links that
may be used to connect segments in 3D (represented by the arrows in red). Finally, we determine the segmentation fusion of
segments and links that identifies each neuron in the stack (column (d)).

constraints help us to add prior knowledge about the rela-
tionship between segments and links. As we explain later,
we use constraints to prevent, among other things, the se-
lection of two segments for the final fusion that overlap in
the same section (because we know that one pixel can only
belong to one cell), and to make sure that, if a 3D link con-
necting two 2D segments from two consecutive sections is
selected, the 2D segments are also selected. We formalize
this in the next section.

3. Modeling Fusion with MAP-MRF

We start by associating indicator variables (binary vari-
ables) si and lj with each 2D segment and 3D link enumer-
ated before. A segment is assumed selected for the final seg-
mentation if its indicator variable is activated (e.g. si = 1),
and similarly for a 3D link (e.g., lj = 1). This way, a 3D
segmentation of the data is simply specified by a labeling of
the indicator variables.

With these definition, we model the solution to the 3D
segmentation problem as the MAP selection of segments
and links given the image data subject to the fusion con-
straints. For simplicity, we formulate the posterior proba-

bility with the following factorization:

P (s, l|data) = 1

Z
ψSAT (s, l)

S,L∏
i,j=1

ψs(si)ψl(lj), (1)

where Z is the partition function [21], s and l represent
the vectors of indicator variables, S and L are the num-
ber of 2D segments and 3D links in the enumeration, and
ψs (si) = exp (θsisi) and ψl (lj) = exp

(
θlj lj

)
, and ψSAT

are compatibility functions of an MRF defined over the in-
dicator variables [21].

The parameters θsi and θlj measure the relative strength
of a 2D segment si and a 3D link lj in the posterior prob-
ability, respectively. Dropping the indices i and j for the
moment, in our experiments we set each θs from the out-
put of our 2D pixel classifier by measuring the strength of
the membrane probability on the boundary. As for θl, we
measure the cross-correlation and displacement between the
pair of segments that are connected by the link in question.
The more similar the segments are, and the closer they are
to each other, the more likely they are presumed to be con-
nected. However, other choices for θs and θl are possible.

Both θs and θl should take into account the relative size
of the segments being considered. Specifically they should
guarantee that, any large segment, aside from the image
data, can compete equally against a set of much smaller



Figure 3: We enumerate links between every pair of seg-
ments that belong to two consecutive sections and that over-
lap in XY. Above, the yellow segment overlaps in XY with the
blue and red segments, and not with the green segment.

segments that may be eligible to cover the same 2D area.
In our experiments, we choose to achieve this calibration
by setting θs and θl as follows: θs = θs size (s) and
θl = θl size (l), where size (s) measures the size of a seg-
ment (e.g. in pixels), and size (l) = size (sa) + size (sb)
measures the size of a link connecting two segments sa and
sb. The parameters θs, θl ∈ [0, 1] measure the normalized
weight of a segment s and a link l, respectively, as described
before.

As mentioned earlier, some fusions of segments and
links are physically unrealistic or undesirable given our
knowledge about the nature of the problem. We use a spe-
cial compatibility function, ψSAT, to give such configura-
tions zero-mass in the MRF (effectively assigning them zero
probability of being chosen as a MAP solution), i.e.:

ψSAT (s, l) =

{
1 : if s and l satisfy fusion conditions
0 : else

(2)
We next enumerate our fusion conditions. The first one pre-
vents undesired solutions, while the second one helps obtain
an overall better 3D segmentation. We provide an illustra-
tion explaining them in Fig. 4.

1. Preventing overlaps between segments:
As indicated earlier, we model each neuron as a group of 2D
segments connected by a sequence of 3D links, with each
segment representing the cross-section of a neuron. We also
know that each pixel can only belong to one neuron at a
time. These two facts imply that, for our modeling to be
consistent, we cannot tolerate segment overlaps.

One possible way of avoiding overlaps is to require the
segmentation to provide a tessellation of the stack (a parti-
tioning without gaps nor overlaps), effectively forcing ev-
ery region to be covered by exactly one segment. We
can achieve this by defining a constraint that requires that∑
i∈ok si = 1 for every set of overlapping segments ok.

However, in our experiments, we noticed that such con-

Figure 4: Left: Three possible neural cross-sections over-
lapping on the same section. Each of them comes from a dif-
ferent 2D segmentation of the section. Our first fusion con-
dition (see text) requires the MRF to avoid overlaps when
deciding on a segmentation for the section. This is enforced
by requiring that the indicator variables satisfy s1+s2 ≤ 1,
and s2+ s3 ≤ 1. Right: Our fusion framework requires the
MRF to choose those segments that provide the best con-
tinuity in 3D (those that are connected by the best links).
The selection of segments depends on the selection of links
via our second fusion condition. In this case, s4 must be
activated if either l1, l2 or l3 are activated (see Eq. 3).

straint can be too restrictive. Depending on the quality of
the data, it is sometimes the case that a small 2D region in
the stack can only choose from a set of segments that may
not correspond to anything meaningful in the data. This
can cause neighboring regions that may otherwise be able
to choose a good segment, be covered by the same wrong
choice. To avoid this problem, we choose to relax the pre-
vious constraint by simply letting some regions not be cov-
ered by any segment, i.e.,

∑
i∈ok si ≤ 1, which still pre-

vents overlaps between segments.
2. Rewarding good 3D continuity across the stack:
One way of leveraging information from other sections

when choosing a segment for a section is to encourage the
selection of segments that yield good 3D continuity in the
stack. The idea is to make decisions in each section depend
on decisions made in the rest of the stack. We achieve this
by making the selection of segments and links dependent
on each other, and rewarding the selection of segments that
are connected by strong links. To do this, we set up the
following constraints for every candidate segment si:∑

j∈TOPi

lj ≤ si,
∑

j∈BOTi

lj ≤ si (3)

where TOPi specifies the set of links connecting the seg-
ment si from the top and BOTi the ones connecting it from
the bottom (in Fig 4, BOT4 for segment s4 would include
the links l2 and l4, and TOP4 the link l1). To see how this
condition works, notice that a link necessarily connects one
segment from the top, and one segment from the bottom,
so from Eq. 3, its activation requires the activation of the
corresponding segments.



Figure 5: Top: Exemplar circular patches of brain tissue.
Bottom: Inverse discrete Zernike transfrom [15] applied to
the rotation normalization of the patches provided by our
features. Given a patch, the correct classification of its cen-
ter pixel is invariant to orientation (but not necessarily to
changes in scale or translation). Our features automati-
cally normalize each patch to a referential orientation (in
the examples, the disks are automatically rotated to move
lower intensities towards the top of the disk). This rotation
normalization can help reduce the sample complexity and
the size of the training set for the classification of the center
pixel of the patch.

Solving the segmentation fusion. As stated earlier,
we determine the solution to our fusion problem as the
MAP assignment to our vectors of the indicator vari-
ables s and l. Such an assignment is obtained by solv-
ing argmaxs,l P (s, l|data), with the posterior probability
given by Eq. 1, which yields the following binary linear
programming problem:

argmax
s,l

∑S
i=1 θsisi +

∑L
j=1 θlj lj

s.t. si, lj ∈ {0, 1} ,
ψSAT (s, l) = 1

(4)

We solve Eq. 4 using a general-purpose binary linear pro-
gramming solver. We discuss implementation details and
running times in Section 5.

4. Adapted Zernike Features
In this section, we introduce an orthogonal set of

rotationally-invariant features for labeling cellular struc-
tures in stacks of brain tissue based on the recently intro-
duced Discrete Zernike Transform (DZT) [15]. We use
these features to first label each pixel as belonging to ei-
ther mitochondria, cellular boundary, neurotransmitter, or
cellular space (inside and outside) based on a surrounding
patch; and second, to enumerate the possible 2D segments
(neural cross-sections) that are needed for the fusion.

Rotational invariance is a desired quality when labeling
or classifying image patches in connectomics. The 2D ori-
entation of a patch of brain tissue is presumed irrelevant for
its classification, and should not condition the labeling or

segmentation of the patch, or the labeling of its center pixel
(see Fig. 5).

The design of rotationally invariant patch descriptors for
applications such as texture classification or image catego-
rization is well discussed in the literature [16, 1]. However,
most of these descriptors also provide invariance to general
affine transformations such as scale or translation, which is
not necessarily desired in connectomics. For example, the
correct label of the center pixel of a patch may depend on
which cellular structure the center pixel lies on within the
patch (i.e., a translation of the patch).

Recently, several authors have addressed the design of
features that target specific cellular structures such as mi-
tochondria [13, 12], cell boundaries [4], or synapses [10].
Most of these descriptors require the adjustment of a set of
parameters depending on the morphology or geometry of
the object of interest. Moreover, they often rely on a set of
heuristics and filter banks chosen by hand, and are not guar-
anteed to provide an orthogonal (non-redundant) basis for
encoding the original patch.

Our features build upon the DZT [15] to provide a
rotationally-invariant and orthogonal descriptor of circular
patches. Zernike polynomials have long been used to build
image moments with affine invariance [3], but a common
problem in their application has been that they do not form
a complete basis on the sampled disk [15]. As a conse-
quence, the computation of moments usually requires re-
dundant disk sampling and least-squares fitting, which leads
to numerical difficulties [15].

The DZT avoids these problems, providing an orthonor-
mal basis via non-redundant sampling of the unit disk and
an orthogonal factorization of sampled Zernike polynomi-
als [15]. This new disk decomposition offers other impor-
tant benefits, such as a finite spectrum that allows the design
of compact representations of input patches.

In what follows, we show how to build an orthogonal
rotationally-invariant feature set from the DZT of an input
patch. We refer the reader to the paper by Rafael et al. [15]
for specific details about the DZT.

We define the DZT decomposition of a patch I as:

I (ρ, θ) =
∑
m,n

cm,nZm,n (ρ, θ) , (5)

where cm,n are the coefficients of the DZT, (ρ, θ) are polar
coordinates indexing the image patch within the unit disk,
and Z is the set of Zernike polynomials. The integers m
and n index the radial and angular frequencies on the unit
disk, with n ∈ [0, 1, 2, ...], m ∈ [−n, n], (n−m) even, and
the total number of harmonics determined by the number of
samples on the input disk [15].

The forward and inverse DZT can then be computed as
c = QTi and i = Qc, respectively, where c represents
the vector of DZT coefficients, i the vector of input sam-



Figure 6: Disk reconstructions from the inverse discrete
Zernike transform to DZTk for different values of k. First
row: Original disks. Second row: Reconstructions for
k = 10. Third row: Reconstructions for k = 15. Our
Adapted Zernike Features retain the large visual cues from
the original patch within only a few bands. The highest pos-
sible value of k in all these images is 73.

ples, and Q the orthogonal basis that results from the QR
decomposition of Z.

Grouping each radial band (i.e., grouping the harmon-
ics by their corresponding radial frequencies m), we define
DZTk as the low-pass filtering of the DZT spectrum that
keeps only the first k radial bands of the discrete Zernike
spectrum. Such filtering builds on the assumption that the
low-frequency bands of the DZT spectrum are usually suf-
ficient for classification [3] (see Fig. 6 for some reconstruc-
tion examples). Finally, since the phase of the DZT harmon-
ics is linear with respect to rotations of the input patch [3],
we can compute the rotation-normalized spectrum DZTk

of DZTk by shifting the phase of all of its harmonics by the
phase of a low-frequency strong harmonic [3]. This allows
us to obtain the same descriptor for rotated instances of the
same patch by normalizing with respect to the orientation
of large visual cues, which tend to be robust to noise and
small differences between patches of the same class. We
search for this harmonic by first starting with low-radial and
low-angular frequencies and then moving into higher fre-
quencies. There are several search strategies for identifying
such harmonics [3], but choosing the first harmonic above
a small threshold (50%) worked well in practice. Assuming
that |Am̂,n̂|e−jφm̂,n̂ is a strong normalizing harmonic (in
polar form) we normalize each harmonic Am,n in DZTk as
Am,n = Am,ne

−jφm̂,n̂ .
Note that the QR decomposition is only computed once

for all patches (i.e., not for every patch). This way, we only
need to compute c = QTi, prune the harmonics beyond a
radial band k defined a priori, and apply the rotation nor-
malization to obtain our descriptor for a given patch i. In
Section 5, we comment on the selection of the radial band
k that we used for our experiments.

5. Experimental Results

In this section, we provide experimental evaluation of
our fusion framework and our feature descriptor. We first
evaluate our fusion method against previous solutions for
neuron segmentation and general segment clustering. We
then compare separately our Adapted Zernike Features
against other connectomic-specific features and more gen-
eral rotationally-invariant patch descriptors.

For all our tests we used four ssEM stacks of brain tissue
from the somatosensory cortex of an adult mouse. Each
stack is 1K x 1K pixels x 9 sections deep. The sections
have an estimated thickness of 20 nm, and each pixel has an
estimated physical dimension of 4 nm x 4 nm.

Evaluation of our fusion framework. We use IBM’s
CPLEX 1 for solving the binary integer programming prob-
lem of Eq. 4. In our experiments, we had an average of 20K
variables per volume evaluated, and the solver took barely
5 seconds to determine the solution on a desktop PC.

We compare our fusion framework with two recently de-
veloped segment-clustering methods for connectomics: LP-
R, a method for image co-clustering based on linear pro-
gramming relaxation [20], and the agglomerative clustering
approach employed in [9], which we refer to as AC. We also
test against MHVS, a method that was developed recently
to combine multiple pre-segmentations for video segmenta-
tion [17]. Finally, as a baseline and to evaluate the benefit
of working with multiple segmentations, we include the re-
sults from running our fusion framework when only one 2D
segmentation per section is provided (which we refer to as
Fusion-1). For this last comparison, we obtain the 2D seg-
mentation for each section by labeling each pixel with our
pixel classifier.

In order to give all the methods the same initial advan-
tage, we used the same pixel classifier (ours) to provide the
initial 2D pre-segmentations. For those methods that re-
quired an initial 2D over-segmentation (e.g. LP-R and AC),
we run our pixel classifier at higher boundary detection rates
until every cell was initially over-segmented.

Fig. 7 shows the average percentage of split and merge
errors made by each method with respect to a set of ground
truth skeletons provided by an expert neuroscientist. Our
fusion framework achieved the lowest error rate in our tests,
with errors resulting mostly from false splits (i.e., loss of
continuity) along the Z axis and the creation of spurious
small segments in areas between cells. The majority of
neural cross-sections were reconstructured correctly, as we
show in the examples in Fig. 9.

Evaluation of our features. We compare our Adapted
Zernike Features with two connectomics-specific descrip-
tors, the Ray features [13] and the Radon-like features [12].
In contrast to our features, these descriptors were designed

1ibm.com/software/integration/optimization/cplex-optimizer/

ibm.com/software/integration/optimization/cplex-optimizer/
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Figure 7: Average percentage of merge and split errors in
four ssSEM stacks with respect to the ground truth provided
by an expert neuroscientist. Fusion outperforms other state-
of-the-art methods demonstrating the benefit of explicitly
enumerating possible segments and links for the final seg-
mentation over solutions based on region clustering.

to classify specific types of cellular structures such as mito-
chondria [13] and require adjusting several parameters de-
pending on the structure of interest [12]. Since our fea-
tures were designed with the goal of providing a robust
rotation-invariant descriptor, we also test against more gen-
eral rotation-invariant descriptors and filter banks such as
MR8 [16], and the feature set LBP-HF [1].

We provide the precision-recall curves from the pixel la-
beling of mitochondria, cellular boundaries, vesicles, and
cellular space in Fig. 8. In all comparisons, we used a ran-
dom forest classifier with 300 trees [2]. For training, we
used expert pixel annotations on the first four images of
each stack. We tested on the rest of images in the stack.
For our adapted Zernike features, we used the first 18 radial
bands of the DZT spectrum and an input disk of 60 pix-
els in diameter after downsampling each section by a factor
of two. In our tests, computing the feature descriptor and
classifying every pixel of each testing stack takes less than
3 hours if run on a modern PC, and less than 10 min. if
run on a grid with 25 machines. For MR8 and LBP-HF, we
used the image patch that encloses such disk. For the other
features, we used the parameters originally reported by the
corresponding authors. In all our tests, our adapted Zernike
features outperformed the competing descriptors.

6. Conclusions

We addressed the problem of automatic 3D segmenta-
tion of ssEM image stacks. We presented a framework that
leverages information from multiple sections and considers
several segmentation choices in each section to determine
the final global partitioning. Unlike previous efforts that
perform segmentation by clustering regions from an initial
oversegmentation, our method is able to directly evaluate
candidate segments that may be used for the final partition-
ing of each section.

Currently our framework does not handle neural mergers
and splits, but are exploring several strategies to cope with

them and hope to include them in future work.
Finally, we have also presented a highly discriminative

set of rotationally-invariant features for connectomics. Our
features can target cellular structures of different scales and
morphologies and only require adjusting two parameters;
the size of the input disk, and the number of radial bands
in the DZT. Together, and individually, our features and fu-
sion method gave the best segmentation and reconstruction
results in our comparisons.
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Figure 8: Precision and recall curves for our Adapted Zernike Features and other competing features when labeling cellular
structures. Our features are highly discriminative even when dealing with structures of different scales and morphologies,
outperforming all the other descriptors on every class evaluated.
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