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Abstract

We propose a model for demand estimation in multi-agent, differentiated prod-
uct settings and present an estimation algorithm that uses reversible jump MCMC
techniques to classify agents’ types. Our model extends the popular setup in Berry,
Levinsohn and Pakes (1995) to allow for the data-driven classification of agents’
types using agent-level data. We focus on applications involving data on agents’
ranking over alternatives, and present theoretical conditions that establish the iden-
tifiability of the model and uni-modality of the likelihood/posterior. Results on
both real and simulated data provide support for the scalability of our approach.

1 Introduction

Random utility models (RUM), which presume agent utility to be composed of a deterministic com-
ponent and a stochastic unobserved error component, are frequently used to model choices by in-
dividuals over alternatives. In this paper, we focus on applications where the data is rankings by
individuals over alternatives. Examples from economics include the popular random coefficients
logit model [7] where the data may involve a (partial) consumer ranking of products [9]. In a RUM,
each agent receives an intrinsic utility that is common across all agents for a given choice of alter-
native, a pairwise-specific utility that varies with the interaction between agent characteristics and
the characteristics of the agent’s chosen alternative, as well as an agent-specific taste shock (noise)
for his chosen alternative. These ingredients are used to construct a posterior/likelihood function of
specific data moments, such as the fraction of agents of each type that choose each alternative.

To estimate preferences across heterogenous agents, one approach as allowed by prior work [20, 24]
is to assume a mixture of agents with a finite number of types. We build upon this work by develop-
ing an algorithm to endogenously learn the classification of agent types within this mixture. Empir-
ical researchers are increasingly being presented with rich data on the choices made by individuals,
and asked to classify these agents into different types [28, 29] and to estimate the preferences of each
type [10, 23]. Examples of individual-level data used in economics include household purchases
from supermarket-scanner data [1, 21], and patients’ hospital or treatment choices from healthcare
data [22].

The partitioning of agents into latent, discrete sets (or “types”) allows for the study of the underlying
distribution of preferences across a population of heterogeneous agents. For example, preferences
may be correlated with an agent characteristic, such as income, and the true classification of each
agent’s type, such as his income bracket, may be unobserved. By using a model of demand to esti-
mate the elasticity in behavioral response of each type of agent and by aggregating these responses
over the different types of agents, it is possible to simulate the impact of a social or public policy [8],
or simulate the counterfactual outcome of changing the options available to agents [19].
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1.1 Our Contributions

This paper focuses on estimating generalized random utility models (GRUM1) when the observed
data is partial orders of agents’ rankings over alternatives and when latent types are present.

We build on recent work [3, 4] on estimating GRUMs by allowing for an interaction between agent
characteristics and the characteristics of the agent’s chosen alternative.The interaction term helps us
to avoid unrealistic substitution patterns due to the independence of irrelevant alternatives [26] by
allowing agent utilities to be correlated across alternatives with similar characteristics. For example,
this prevents a situation where removing the top choices of both a rich household and a poor house-
hold lead them to become equally likely to substitute to the same alternative choice. Our model also
allows the marginal utilities associated with the characteristics of alternatives to vary across agent
types.
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Figure 1: A GRUM with multiple types of agents

To classify agents’ types and
estimate the parameters associ-
ated with each type, we pro-
pose an algorithm involving a
novel application of reversible
jump Markov Chain Monte Carlo
(RJMCMC) techniques. RJM-
CMC can be used for model se-
lection and learning a posterior
on the number of types in a mix-
ture model [31]. Here, we use
RJMCMC to cluster agents into
different types, where each type
exhibits demand for alternatives
based on different preferences;
i.e., different interaction terms be-
tween agent and alternative char-
acteristics.

We apply the approach to a real-world dataset involving consumers’ preference rankings and also
conduct experiments on synthetic data to perform coverage analysis of RJMCMC. The results show
that our method is scalable, and that the clustering of types provides a better fit to real world data.
The proposed learning algorithm is based on Bayesian methods to find posteriors on the parameters.
This differentiates us from previous estimation approaches in econometrics rely on techniques based
on the generalized method of moments.2

The main theoretical contribution establishes identifiability of mixture models over data consisting
of partial orders. Previous theoretical results have established identifiability for data consisting of
vectors of real numbers [2, 18], but not for data consisting of partial orders. We establish conditions
under which the GRUM likelihood function is uni-modal for the case of observable types. We do
not provide results on the log concavity of the general likelihood problem with unknown types and
leave it for future studies.

1.2 Related work

Prior work in econometrics has focused on developing models that use data aggregated across types
of agents, such as at the level of a geographic market, and that allow heterogeneity by using random
coefficients on either agents’ preference parameters [7, 9] or on a set of dummy variables that define
types of agents [6, 27], or by imposing additional structure on the covariance matrix of idiosyncratic
taste shocks [16]. In practice, this approach typically relies on restrictive functional assumptions
about the distribution of consumer taste shocks that enter the RUM in order to reduce computational

1Defined in [4] as a RUM with a generalized linear model for the regression of the mean parameters on the
interaction of characteristics data as in Figure 1

2There are alternative methods to RJMCMC, such as the saturation method [13]. However, the memory
required to keep track of former sampled memberships in the saturation method quickly becomes infeasible
given the combinatorial nature of our problem.
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burden. For example, the logit model [26] assumes i.i.d. draws from a Type I extreme value dis-
tribution. This may lead to biased estimates, in particular when the number of alternatives grow
large [5].

Previous work on clustering ranking data for variations of the Placket-Luce (PL) model [28, 29]
has been restricted to settings without agent and alternative characteristics. Morover, Gormley et
al. [28] and Chu et al. [14] performed clustering for RUMs with normal distributions, but this was
limited to pairwise comparisons. Inference of GRUMs for partial ranks involved the computational
hardness addressed in [3]. In mixture models, assuming an arbitrary number of types can lead to
biased results, and reduces the statistical efficiency of the estimators [15].

To the best of our knowledge, we are the first to study the identifiability and inference of GRUMs
with multiple types. Inference for GRUMs has been generalized in [4], However, Azari et al. [4]
do not consider existence of multiple types. Our method applies to data involving individual-level
observations, and partial orders with more than two alternatives. The inference method establishes
a posterior on the number of types, resolving the common issue of how the researcher should select
the number of types.

2 Model
Suppose we have N agents and M alternatives {c1, .., cM}, and there are S types (subgroups) of
agents and s(n) is agent n’s type.

Agent characteristics are observed and defined as anN×K matrixX , and alternative characteristics
are observed and defined as an L × M matrix Z, where K and L are the number of agent and
alternative characteristics respectively.

Let unm be agent n’s perceived utility for alternative m, and let W s(n) be a K × L real matrix that
models the linear relation between the attributes of alternatives and the attributes of agents. We have,

unm = δm + ~xnW
s(n)(~zm)T + εnm, (1)

where ~xn is the nth row of the matrix X and ~zm is the mth column of the matrix Z. In words, agent
n’s utility for alternative m consists of the following three parts:

1. δm:gs The intrinsic utility of alternative m, which is the same across all agents;

2. ~xnW s(n)(~zm)T : The agent-specific utility, which is unique to all agents of type s(n), and
where W s(n) has at least one nonzero element;

3. εnm: The random noise (agent-specific taste shock), which is generated independently
across agents and alternatives.

The number of parameters for each type is P = KL+M .

See Figure 2 for an illustration of the model. In order to write the model as a linear regression, we
define matrix A(n)

M×P , such that A(n)
KL+m,m = 1 for 1 ≤ m ≤M and A

(n)
KL+m,m′ = 0 for m 6=

m′ and A(n)
(k−1)L+l,m = ~xn(k)~zm(l) for 1 ≤ l ≤ L and 1 ≤ k ≤ K. We also need to shuffle

the parameters for all types into a P × S matrix Ψ, such that ΨKL+m,s = δ and Ψ(k−1)L+l,s =

W s
kl for 1 ≤ k ≤ K and 1 ≤ l ≤ L. We adopt B(n)

S×1 to indicate the type of agent n, with

B
(n)
s(n),1 = 1 and B(n)

s,1 = 0 for all s 6= s(n). We also define an M ×1 matrix, U (n), as U (n)
m,1 = unm.

We can now rewrite (1) as:

U (n) = A(n)ΨB(n) + ε (2)

Suppose that an agent has type s with probability γs. Given this, the random utility model can
be written as, Pr(U (n)|X(n), Z,Ψ,Γ) =

∑S
s=1 γs Pr(U (n)|X(n), Z,Ψs), where Ψs is the sth

column of the matrix Ψ. An agent ranks the alternatives according to her perceived utilities for
the alternatives. Define rank order πn as a permutation (πn(1), . . . , πn(m)) of {1, . . . ,M}. πn
represents the full ranking [cπi(1) �i cπi(2) �i · · · �i cπi(m)] of the alternatives {c1, .., cM}.
That is, for agent n, cm1

�n cm2
if and only if unm1

> unm2
(In this model, situations with tied

perceived utilities have zero probability measure).
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The model for observed data π(n), can be written as:

Pr(π(n)|X(n), Z,Γ,Ψ) =

∫
π(n)=order(U(n))

Pr(U (n)|X(n), Z,Ψ,Γ) =

S∑
s=1

γs Pr(π(n)|X(n), Z,Ψs)

Note that X(n) and Z are observed characteristics, while Γ and Ψ are unknown parameters. π =
order(U) is the ranking implied by U, and π(i) is the ith largest utility in U . D = {π1, .., πN}
denotes the collection of all data for different agents. We have that

Pr(D|X,Z,Ψ,Γ) =

N∏
n=1

Pr(π(n)|X(n), Z,Ψ,Γ)

3 Strict Log-concavity and Identifiability

In this section, we establish conditions for identifiability of the types and parameters for the model.
Identifiability is a necessary property in order for researchers to be able to infer economically-
relevant parameters from an econometric model. Establishing identifiability in a model with multiple
types and ranking data requires a different approach from classical identifiability results for mixture
models [2, 18, e.g.].

X Zδ W γ

Aψ B

u

π N

(n)

(n)(n)

(n)

(n)

(n)

Figure 2: Graphical representation of
the multiple type GRUM generative
process.

Moreover, we establish conditions for uni-modality of the
likelihood for the parameters Γ and Ψ, when the types
are observed. Although our main focus is on data with
unobservable types, establishing the conditions for uni-
modality conditioned on known types remains an essen-
tial step because of the sampling and optimization aspects
of RJMCMC. We sample from the parameters conditional
on the algorithm’s specification of types.

The uni-modality result establishes that the sampling ap-
proach is exploring a uni-modal distribution conditional
on its specified types. Despite adopting a Bayesian point
of view in presenting the model, we adopt a uniform prior
on the parameter set, and only impose nontrivial priors on
the number of types in order to obtain some regulariza-
tion. Given this, we present the theory with regards to the
likelihood function from the data rather than the posterior
on parameters.

3.1 Strict Log-concavity of the Likelihood Function

For agent n, we define a set Gn of function gn’s whose positivity is equivalent to giving an order
πn. More precisely, we define gnm(~ψ,~ε) = [µnπn(m) + εnπn(m)] − [µnπn(m+1) + εnπn(m+1)] for
m = 1, ..,M − 1 where µnj = δj +

∑
k,l xn(k)W

s(n)
kl zj(l) for 1 ≤ j ≤ M . Here, ~ψ is a

vector of KL + M variables consisting of all δj’s and Wkl’s. We have, L(~ψ, πn) = L(~ψ,Gn) =

Pr(gn1 (~ψ,~ε) ≥ 0, ..., gnM−1(~ψ,~ε) ≥ 0). This is because gnm(~ψ,~ε) ≥ 0 is equivalent to saying
alternative πn(m) is preferred to alternative πn(m+ 1) in the RUM sense.

Then using the result in [3] and [30], L(~ψ) = L(~ψ, π) is logarithmic concave in the sense that
L(λ~ψ + (1 − λ) ~ψ′) ≥ L(ψ)λL(ψ′)1−λ for any 0 < λ < 1 and any two vectors ~ψ, ~ψ′ ∈ RLK+M .
The detailed statement and proof of this result are contained in the Appendix. Let’s consider all
n agents together. We study the function, l(Ψ, D) =

∑N
n=1 logPr(πn|~ψs(n)). By log-concavity

of L(~ψ, π) and using the fact that sum of concave functions is concave, we know that l(Ψ, D) is
concave in Ψ, viewed as a vector in RSKL+M . To show uni-modality, we need to prove that this
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concave function has a unique maximum. Namely, we need to be able to establish the conditions for
when the equality holds. If our data is subject to some mild condition, which implies boundedness
of the parameter set that maximizes l(Ψ, D), Theorem 1 bellow tells us when the equality holds.
This condition has been explained in [3] as condition (1).

Before stating the main result, we define the following auxiliary (M − 1)N ′ × (SKL + M − 1)

matrix Ã = ÃN
′

(Here, let N ′ ≤ N be a positive number that we will specify later.) such that,
Ã(M−1)(n−1)+m,(s−1)KL+(K−1)l+k is equal to xn(k)(zm(l) − zM (l))if s = s(n) and is equal
to 0 if s 6= s(n), for all 1 ≤ n ≤ N ′, 1 ≤ m ≤ M − 1, 1 ≤ s ≤ S, 1 ≤ k ≤ K, and
1 ≤ l ≤ L. Also, Ã(M−1)(n−1)+m,SKL+m′ is equal to 1 if m = m′ and is equal to 0 if m 6= m′,
for all 1 ≤ m,m′ ≤M − 1 and 1 ≤ n ≤ N ′.
Theorem 1. Suppose there is an N ′ ≤ N such that rank ÃN

′
= SKL + M − 1. Then l(Ψ) =

l(Ψ, D) is strictly concave up to δ-shift, in the sense that,

l(λΨ + (1− λ)Ψ′) ≥ λl(Ψ) + (1− λ)l(Ψ′), (3)

for any 0 < λ < 1 and any Ψ,Ψ′ ∈ RSKL+M , and the equality holds if and only if there exists
c ∈ R, such that: {

δm = δ′m + c for all 1 ≤ m ≤M
W s
kl = W ′skl for all s, k, l

The proof of this theorem is in the appendix.
Remark 1. We remark that the strictness “up to δ-shift” is natural. A δ-shift results in a shift in the
intrinsic utilities of all the products, which does not change the utility difference between products.
So such a shift does not affect our outcome. In practice, we may set one of the δ’s to be 0 and then
our algorithm will converge to a single maximum.
Remark 2. It’s easy to see that N ′ must be larger than or equal to 1 + SKL

M−1 . The reason we
introduce N ′ is to avoid cumbersome calculations involving N .

3.2 Identifiability of the Model

In this section, we show that, for the case of unobserved types, our model is identifiable for a certain
class of cdfs for the noise in random utility models. Let’s first specify this class of “nice” cdfs:
Definition 1. Let φ(x) be a smooth pdf defined on R or [0,∞), and let Φ(x) be the associated cdf.

For each i ≥ 1, we write φ(i)(x) for the i-th derivative of φ(x). Let gi(x) = φ(i+1)(x)
φ(i)(x)

. The function
Φ is called nice if it satisfies one of the following two mutually exclusive conditions:

(a) φ(x) is defined on R. For any x1, x2 ∈ R, the sequence gi(x1)
gi(x2)

converges to some value in

R (as i→∞) only if either x1 = x2; or x1 = −x2 and gi(x1)
gi(x2)

→ −1 as i→∞.

(b) φ(x) is defined on [0,∞). For any x1, x2 ≥ 0, the ratio φ(i)(x1)
φ(i)(x2)

is independent of i for i
sufficiently large. Moreover, we require that φ(x1) = φ(x2) if and only if x1 = x2.

This class of nice functions contains normal distributions and exponential distributions. A proof of
this fact is included in the appendix.

Identifiability is formalized as follows: Let C = {{γs}Ss=1 |S ∈ Z>0, γi ∈ R>0,
∑S
s=1 γs = 1}.

Suppose, for two sequences {γs}Ss=1 and {γ′s}S
′

s=1, we have:

S∑
s=1

γs Pr(π|X(n), Z,Ψ) =

S′∑
s=1

γ′s Pr(π|X(n), Z,Ψ′) (4)

for all possible orders π of M products, and for all agents n. Then, we must have S = S′ and (up to
a permutation of indices {1, · · · , S}) γs = γ′s and Ψ = Ψ′ (up to δ-shift).
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For now, let’s fix the number of agent characteristics, K. One observation is that the number xn(k),
for any characteristic k, reflects certain characteristics of agent n. Varying the agent n, this amount
xn(k) is in a bounded interval in R. Suppose the collection of data D is sufficiently large. Based
on this, assuming that N can be be arbitrarily large, we can assume that the xn(k)’s form a dense
subset in a closed interval Ik ⊂ R. Hence, (4) should hold for any X ∈ Ik, leading to the following
theorem:
Theorem 2. Define an (M−1)×L matrix Z̃ by setting Z̃m,l = zm(l)−zM (l). Suppose the matrix
Z̃ has rank L, and suppose,

S∑
s=1

γs Pr(π|X,Z,Ψ) =

S′∑
s=1

γ′s Pr(π|X,Z,Ψ′), (5)

for all x(k) ∈ Ik and all possible orders π of M products. Here, the probability measure is associ-
ated with a nice cdf. Then we must have S = S′ and (up to a permutation of indices {1, · · · , S}),
γs = γ′s and Ψ = Ψ′ (up to δ-shift).

The proof of this theorem is provided in the appendix. Here, we illustrate the idea for the simple
case, with two alternatives (m = 2) and no agent or alternative characteristics (K = L = 1).
Equation (5) is merely a single identity. Unwrapping the definition, we obtain:

S∑
s=1

γs Pr(ε1−ε2 > δ1−δ2+xW s(z1−z2)) =

S′∑
s=1

γ′s Pr(ε1−ε2 > δ′1−δ′2+xW ′s(z1−z2)). (6)

Without loss of generality, we may assume z1 = 1, z2 = 0, and δ2 = 0. We may further assume
that the interval I = I1 contains 0. (Otherwise, we just need to shift I and δ accordingly.) Given
this, the problem reduces to the following lemma:
Lemma 1. Let Φ(x) be a nice cdf. Suppose,

S∑
s=1

γsΦ(δ + xW s) =

S′∑
s=1

γ′sΦ(δ′ + xW ′s), (7)

for all x in a closed interval I containing 0. Then we must have S = S′, δ = δ′ and (up to a
permutation of {1, · · · , S}) γs = γs, W s = W ′s.

The proof of this lemma is in the appendix. By applying this to (6), we can show identifiablity for
the simple case of m = 2 and K = L = 1.

Theorem 2 guarantees identifiability in the limit case that we observe agents with characteristics
that are dense in an interval. Beyond the theoretical guarantee, we would in practice expect (6) to
have a unique solution with a enough agents with different characteristics. Lemma 1 itself is a new
identifiability result for scalar observations from a set of truncated distributions.

4 RJMCMC for Parameter Estimation

We are using a uniform prior for the parameter space and regularize the number of types with a
geometric prior. We use a Gibbs sampler, as detailed in the appendix (supplementary material
Algorithm (1)) to sample from the posterior. In each of T iterations, we sample utilities un for
each agent, matrix ψs for each type, and set of assignments of agents to alternatives Sn. The utility
of each agent for each alternative conditioned on the data and other parameters is sampled from
a truncated Exponential Family (e.g. Normal) distribution. In order to sample agent i’s utility
for alternative j (uij), we set thresholds for lower and upper truncation based on agent i’s former
samples of utility for the two alternatives that are ranked one below and one above alternative j,
respectively.

We use reversible-jump MCMC [17] for sampling from conditional distributions of the assignment
function (see Algorithm 1). We consider three possible moves for sampling from the assignment
function S(n):
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(1) Increasing the number of types by one, through moving a random agent
to a new type of its own. The acceptance ratio for this move is: Prsplit =

min{1, Pr(S+1)Pr(M(t+1)|D)
Pr(S) Pr(M(t)|D)

.
1

S+1
1
S

. p+1

p−1
. 1
p(α) .J(t)→(t+1)}, where M(t) = {u, ψ,B, S, π}(t),

and J(t)→(t+1) = 2P is the Jacobian of the transformation from the previous state to the proposed
state and Pr(S) is the prior (regularizer) for the number of types.

(2) Decrease the number of types by one, through merging two random types. The acceptance ratio

for the merge move is: Prmerge = min{1, Pr(S−1) Pr(M(t+1)|D)
Pr(S) Pr(M(t)|D)

.
1

S−1
1
S

.p−1

p+1
.J(t)→(t+1)}.

(3) We do not change the number of types, and consider moving one random agent from one type to
another. This case reduces to a standard Metropolis-Hastings, where because of the normal symmet-
ric proposal distribution, the proposal is accepted with probability: Prmh = min{1, Pr(M(t+1)|D)

Pr(M(t)|D)
}.

Algorithm 1 RJMCMC to update S(t+1)(n) from
S(t)(n)

Set p−1, p0, p+1, Find S: number of distinct
types in S(t)(n)
Propose move ν from {−1, 0,+1} with proba-
bilities p−1, p0, p+1, respectively.
case ν = +1:

Select random type Ms and agent n ∈ Ms

uniformly and Assign n to module Ms1 and
remainder to Ms2 and Draw vector α ∼
N (0, 1) and Propose ψs1 = ψs − α and
ψs2 = ψs + α and Compute proposal
{un, πn}(t+1)

Accept S(t+1)(Ms1) = S + 1,
S(t+1)(Ms2) = s with Prsplit from up-
date S = S + 1

case ν = −1:
Select two random types Ms1 and Ms2
and Merge into one type Ms and Propose
ψs = (ψs1 + ψs1)/2 and Compute proposed
{un, πn}(i+1)

Accept S(t+1)(n) = s1 for ∀n s.t. S(t)(n) =
s2 with Prmerge update S = S − 1

case ν = 0:
Select two random types Ms1 and Ms2 and
Move a random agent n from Ms1 to Ms2

and Compute proposed {u(n), π(n)}(t+1)

Accept S(t+1)(n) = s2 with probability
Prmh

end switch

5 Experimental Study

We evaluate the performance of the algorithm
on synthetic data, and for a real world data
set in which we observe agents’ characteris-
tics and their orderings on alternatives. For the
synthetic data, we generate data with different
numbers of types and perform RJMCMC in or-
der to estimate the parameters and number of
types. The algorithm is implemented in MAT-
LAB and scales linearly in the number of sam-
ples and agents. It takes on average 60 ± 5
seconds to generate 50 samples for N = 200,
M = 10, K = 4 and L = 3 on an i5 2.70GHz
Intel(R).

Coverage Analysis for the number of types S
for Synthetic Data: In this experiment, the
data is generated from a randomly chosen num-
ber of clusters S for N = 200, K = 3, L = 3
and M = 10 and the posterior on S is es-
timated using RJMCMC. The prior is chosen
to be Pr(S) ∝ exp(−3SKL). We consider
a noisy regime by generating data from noise
level of σ = 1, where all the characteristics
(X ,Z) are generated from N (0, 1). We repeat
the experiment 100 times. Given this, we esti-
mate 60%, 90% and 95% confidence intervals
for the number of types from the posterior sam-
ples. We also estimate the coverage percentage,
which is defined to be the percentage of samples which include the true number of types in the
interval. The simulations show 61%, 73%, 88%, 93% for the intervals 60%, 75%, 90%, 95%
respectively, which indicates that the method is providing reliable intervals for the number of types.

Performance for Synthetic Data: We generate data randomly from a model with between 1 and
4 types. N is set to 200, and M is set to 10 for K = 4 and L = 3. We draw 10, 000 samples from
the stationary posterior distribution. The prior for S has chosen to be exp(−αSKL) where α is
uniformly chosen in (0, 10). We repeat the experiment 5 times. Table 1 shows that the algorithm
successfully provides larger log posterior when the number of types is the number of true types.

Clustering Performance for Real World Data: We have tested our algorithm on a sushi dataset,
where 5, 000 users provide rankings on M = 10 different kinds of sushi [25]. We fit the multi-type
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GRUM for different number of types, on 100 randomly chosen subsets of the sushi data with size
N = 200 , using the same prior we used in synthetic case and provide the performance on the Sushi
data in Table 1. It can be seen that GRUM with 3 types has significantly better performance in terms
of log posterior (with the prior that we chose, log posterior can be seen as log likelihood penalized
for number of parameters) than GRUM with one, two or four types. We have taken non-categorical
features as K = 4 feature for agents (age, time for filling the questionnaire, region ID, prefecture
ID) and L = 3 features for sushi ( price,heaviness, sales volume).

6 Conclusions
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Figure 3: Left Panel: 10000 samples for S in Syn-
thetic data, where the true S is 5. Right Panel:
Histogram of the samples for S with max at 5 and
mean at 4.56.

Synthetic True types Sushi
Type One two Three Four sushi

one type -2069 -2631 -2780 -2907 -2880
two types -2755 -2522 -2545 -2692 -2849

three types -2796 -2642 -2582 -2790 -2819
four types -2778 -2807 -2803 -2593 -2850

Table 1: Performance of the method for different
number of true types and number of types in algorithm
in terms of log posterior. All the standard deviations
are between 15 and 20. Bold numbers indicate the
best performance in their column with statistical sig-
nificance of 95%.

In this paper, we have proposed an extension of
GRUMs in which we allow agents to adopt het-
erogeneous types. We develop a theory estab-
lishing the identifiability of the mixture model
when we observe ranking data. Our theoreti-
cal results for identifiability show that the num-
ber of types and the parameters associated with
them can be identified. Moreover, we prove
uni-modality of the likelihood (or posterior)
function when types are observable. We pro-
pose a scalable algorithm for inference, which
can be parallelized for use on very large data
sets. Our experimental results show that models
with multiple types provide a significantly bet-
ter fit, in real-world data. By clustering agents
into multiple types, our estimation algorithm
allows choices to be correlated across agents
of the same type, without making any a priori
assumptions on how types of agents are to be
partitioned. This use of machine learning tech-
niques complements various approaches in economics [11, 7, 8] by allowing the researcher to have
additional flexibility in dealing with missing data or unobserved agent characteristics. We expect
the development of these techniques to grow in importance as large, individual-level datasets be-
come increasingly available. In future research we intend to pursue applications of this method to
problems of economic interest.
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