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Abstract

One of the goals of the ICML workshop on
representation and learning is to establish
benchmark scores for a new data set of la-
beled facial expressions. This paper presents
the performance of a “Null model” consisting
of convolutions with random weights, PCA,
pooling, normalization, and a linear readout.
Our approach focused on hyperparameter op-
timization rather than novel model compo-
nents. On the Facial Expression Recogni-
tion Challenge held by the Kaggle website,
our hyperparameter optimization approach
achieved a score of 60% accuracy on the test
data. This paper also introduces a new en-
semble construction variant that combines
hyperparameter optimization with the con-
struction of ensembles. This algorithm con-
structed an ensemble of four models that
scored 65.5% accuracy. These scores rank
12th and 5th respectively among the 56 chal-
lenge participants. It is worth noting that our
approach was developed prior to the release
of the data set, and applied without modifi-
cation; our strong competition performance
suggests that the TPE hyperparameter opti-
mization algorithm and domain expertise en-
coded in our Null model can generalize to new
image classification data sets.

1. Introduction

The design of an effective machine learning system typ-
ically involves making many design choices that reflect
the nature of data at hand and the inferences we wish
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to make. The techniques at our disposal, as designers
of machine learning systems, are intuition: repeating
what worked in other settings that seem to be sim-
ilar (appealing to our expertise and intuition), and
search: model selection by trial and error search us-
ing e.g. cross-validation.

In common practice, both intuition and search are typ-
ically carried out informally. A practitioner may de-
sign a complete system by a semi-automated search
process in which small-scale searches (e.g. grid search)
update the practitioner’s own implicit beliefs regarding
what constitutes a good model for the task at hand.
Those beliefs inform the choice of future small-scale
searches in an iterative process that makes progres-
sive improvements to the system. (We may see many
empirical results published in machine learning con-
ferences as evidence of this process unfolding on an
international scale over a course of years.)

One practical problem that arises from this common
practice is that algorithms which have been demon-
strated to work on particular data sets are notoriously
difficult to adapt to new data sets. The trouble is that
the implicit beliefs of the practitioner play a crucial
role in the process of model selection. This difficulty
has been widely recognized by domain experts, but the
status quo remains because so many experts feel that
their search is sufficiently efficient, and the insights
gained from the model selection process are valuable.
We hope that our results, taken together with other
recent work on hyperparameter optimization such as
Bergstra et al. (2011); Snoek et al. (2012); Thornton
et al. (2012), challenge these beliefs and induce more
researchers to recognize automatic hyperparameter op-
timization as an important technique for model evalu-
ation.
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1.1. Hyperparameter Optimization and
Ensemble Construction

While hyperparameter optimization is important, it
is not the only standard performance-enhancing tech-
nique used to improve the scores of a model family on
a given benchmark task. Ensemble methods such as
Bagging (Breiman, 1996a), Boosting (Demiriz et al.,
2002), Stacking (Wolpert, 1992; Breiman, 1996b; Sill
et al., 2009), and Bayesian Model Averaging (Hoet-
ing et al., 1999) are also commonly employed to exact
every last drop of accuracy from a given set of algo-
rithmic technology. One of the goals of automating
hyperparameter optimization is to assess, in an ob-
jective way, how good a set of classification system
components can be. In pursuit of that goal, the au-
tomation of ensemble creation is also critical.

This paper presents a first attempt to provide a fully
automated algorithm for model selection and ensem-
ble construction. It starts from a palette of con-
figurable pre-processing strategies, and classification
algorithms, and proceeds to creates the most accu-
rate ensemble of optimized components that it can.
Our algorithm uses a Boosting approach to ensemble
construction, in which hyper-parameter optimization
plays the role of a base learner. This setting creates
unique challenges that motivate a new Boosting algo-
rithm, which we call SVM HyperBoost.

2. Null Model for Image Classification

Our basic approach is described in Bergstra et al.
(2013a). We use Hyperopt (Bergstra et al., 2013b)
to describe a configuration space that includes one-
layer, two-layer, and three-layer convolutional net-
works. The elements of our image classification model
are standard scaling (image resolution), affine warp
(rigid image deformation), filterbank normalized cross-
correlation, local spatial pooling, di-histogram spatial
pooling, and an L2-SVM classifier. For each layer in
each architecture, hyperparameters govern the size of
filters, the volume of pooling regions, constants that
modulate local normalization, and so on. The fil-
ters themselves are either chosen randomly from a
centered Gaussian distribution, or are random pro-
jections of PCA components of training data (as it
appears as input to each layer), or are random pro-
jections of input patches (again, as input arrives to
each layer). Features for classification are derived
from the output layer by either signed (di-histogram)
or unsigned pooling over some topographically local
partitioning of output features. This configuration
space was chosen to span the model space investi-
gated by Pinto & Cox (2011) and the random-filter

models of Coates & Ng (2011). Relative to Bergstra
et al. (2013a) we add the possibility of affine warping
of input images and remove the input-cropping step.
In total, the configuration space includes 238 hyper-
parameters, although no configuration uses all 238 at
once. Many of the hyperparameters are conditional hy-
perparameters because they are only active in certain
conditions; for example, the hyperparameters govern-
ing the creation of a third layer are inactive for two-
layer models. The details of this meta-model are de-
scribed in Bergstra et al. (2013a) and implemented in
the hyperopt-convnet software available from http:

//github.com/jaberg/hyperopt-convnet.

Notable omissions from the model space include: back-
propagation (Rumelhart et al., 1986), unsupervised
learning for filters such as RBMs (Hinton, 2002;
Hinton et al., 2006), Sparse Coding (Coates & Ng,
2011), DAAs (Vincent et al., 2008), and recent high-
performance regularization strategies such as dropout
(Hinton et al., 2012) and maxout (Goodfellow et al.,
2013).

Hyperparameter optimization within this Null model
was carried out using the TPE algorithm (Bergstra &
Bengio, 2012), as implemented by the hyperopt soft-
ware (available from http://jaberg.github.com/

hyperopt).

3. SVM HyperBoosting

This section describes an ensemble construction
method (SVM HyperBoost, or just HyperBoost) that
is particularly well-suited to the use of a hyperparam-
eter optimization algorithm as an inner loop. This
algorithm is presented in the context of models which
have the form of a feature extractor and a linear clas-
sifier. In this context, the ensemble is simply a larger
linear function that can be seen as the concatenation
of ensemble members. The HyperBoost algorithm can
be understood as a piecewise training of this single
giant linear classifier.

To derive the HyperBoost algorithm, suppose that we
commit to using an ensemble of size J . (No such com-
mitment is necessary in practice, but it makes the de-
velopment clearer.) The ideal ensemble weights w(∗)

and hyperparameter configuration settings λ(∗) for a
binary classification task would optimize generaliza-
tion error:

w(∗), λ(∗) = argminw∈R∗,λ∈HJ Ex,y∼DI{0 > y(
∑
j

wj · f(x, λj)}

 . (1)

http://github.com/jaberg/hyperopt-convnet
http://github.com/jaberg/hyperopt-convnet
http://jaberg.github.com/hyperopt
http://jaberg.github.com/hyperopt
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Here D stands for a joint density over inputs and labels
(x ∈ RM , y ∈ {−1, 1}). We have used f(x, λj) to de-
note the feature vector associated to input x by hyper-
parameter configuration λj . The expression I{0 > a}
denotes the indicator function that is one for values of
a which are negative, but zero for values of a which are
not negative. We use H to stand for the set of possi-
ble hyperparameter configurations, so that the argmin
means “choose J optimal hyperparameter configura-
tions” (one for each ensemble member). We use the
notation w ∈ R∗ in the argmin to indicate that the
final set of weights w(∗) will be a vector, but it is
not known a-priori how many elements it will have.
Rather, w will be logically divided into J pieces corre-
sponding to ensemble elements and each piece wj will
have a dimensionality that matches f(x;λj).

The joint optimization of w and λ implied by Equa-
tion 1 is challenging because of

• the complicated effect of each λj on f ,

• the expectation over unknown D, and

• the non-differentiable indicator function.

Our strategy for dealing with the complicated relation-
ship between λj and f is to select the λj configurations
greedily, using the algorithm illustrated in Figure 1.
Our strategy for dealing with the expectation is to es-
timate it from what is typically called validation data,
so that each argmin for j < J is what previous work
has called hyperparameter optimization. Our strategy
for dealing with the non-differentiability of the indi-
cator function is to use a gradient-free optimization
method, namely TPE (Bergstra et al., 2011).

Normally, Boosting (functional gradient methods) on
a Hinge loss or Zero-One loss would quickly run into
trouble because once the training margins are pushed
past the decision boundary, subsequent rounds have
nothing to do (the training criterion is completely sat-
isfied). We avoid this nonsense using two techniques.
First, Boosting on sufficient validation data helps be-
cause models fit to training data are seldom perfect for
validation data by random chance (incidentally, we are
interested in collaborations that might shed light on
exactly how much validation data is necessary). Sec-
ond, each round of HyperBoost is free to scale the con-
tribution of previous ensemble components (see α in
Figure 1), so standard SVM regularization techniques
(i.e. C) allow us to meaningfully add features and
improve w even if the Hinge loss had been reduced
to 0 at a previous HyperBoosting iteration. The reg-
ularization parameter governing the entire SVM is a
hyperparameter that is re-optimized on every round

of HyperBoost. This technique makes HyperBoost a
partially corrective Boosting algorithm.
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Round #1

Round #2

Optimized

Fixed(*) Optimized

+ α
+ α
+ α

+ α
+ α
+ α
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Features 1 Features 2

Features 1
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Carry-forward

Figure 1. The SVM HyperBoost algorithm creates a large
linear SVM piece-wise. The first round of training is stan-
dard SVM training. At the end of the first round, the SVM
weights are fixed (*) up to multiplicative scaling. Subse-
quent rounds “carry forward” the total contribution of pre-
vious features and their corresponding fixed weights toward
label predictions. On Round 2, HyperBoost optimizes the
feature weights (shown in light red) for a candidate feature
set (bright red) and re-scales (via α) weights fit in previous
rounds. This approximate, greedy procedure makes it pos-
sible to fit very large SVMs to large numbers of examples,
when feature computation is also computationally costly.

3.1. Weak Learners vs. Strong Learners

HyperBoost is suitable for Boosting strong base learn-
ers. In fact, when Boosting and model fitting are
conducted on statistically independent example sets,
the distinction between distinction between “weak” vs.
“strong” learners is no longer important. Instead, any
learners (weak or strong) simply provide models, and
HyperBoosting chooses the model that most improves
the validation set performance of the ensemble. While
strong learners generally require additional regulariza-
tion compared with weak learners in order to general-
ize correctly from training data, strong and weak base
learners are equally useful for HyperBoosting.
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4. Results on Facial Expression

In support of the ICML2013 workshop on rep-
resentation learning, Pierre-Luc Carrier and
Aaron Courville released a data set for facial ex-
pression recognition as a Kaggle competition (
http://www.kaggle.com/c/challenges-in-

representation-learning-facial-expression-

recognition-challenge). The data consist of
48x48 pixel grayscale images of faces, and labels
for the expressions of those faces. The faces have
been automatically registered so that each face is
approximately centered and occupies about the same
amount of area within each image. The task is to
categorize each face as one of seven categories (anger,
disgust, fear, happy, sad, surprised, neutral). The
set distributed by Kaggle consists of 28,709 training
examples examples, and 7,178 test examples.

Our protocol for model selection was simple cross-
validation on the training examples. We partitioned
the training data into 20709 SVM-fitting examples and
8000 validation examples, and performed hyperparam-
eter optimization with regard to the performance on
this validation set. The test examples were not used
for model selection. The Kaggle website only provided
the images for test examples, to prevent cheating in the
contest. The test scores listed for the Facial Expression
Recognition Challenge were obtained by uploading our
predictions to Kaggle’s website, which computed the
test set accuracy on our behalf.

On each round of HyperBoosting, we evaluated 1000
non-degenerate hyperparameter proposals in search of
the best feature set to add to the ensemble. These
proposals ranged in accuracy from chance baseline of
20% up to a relatively strong 62%. Experiments were
done using a single computer with four NVidia Tesla
2050 GPUs and a slow file system so typically 2 or
3 jobs would run simultaneously. Many configura-
tions were invalid (e.g. downsampling so much that
0 features remain) but these are recognized relatively
quickly. Valid (non-degenerate) trials typically took 10
- 25 minutes to complete, so each round of HyperBoost
took two or three days using this one machine.

The accuracies of the models chosen by HyperBoost
are shown in Figure 2. HyperBoost creates a small
ensemble whose combined accuracy (65.5%) is signif-
icantly better than the best individual model (60%).
The ranking relative to other models in the Kaggle
competition is shown in Table 1. The ensemble of size
4 ranks among the top 5 competition entries.

It is worth noting that the model and training pro-
grams used for HyperBoosting in this model space

HyperBoost for Ensemble Construction

1 2 3 4
HyperBoost Round

0.58

0.59
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Figure 2. HyperBoost improves test set generalization with
successive rounds while the individual feature sets chosen
at each round hold steady just below 60% accuracy . Each
round selects the best of 1000 non-degenerate candidate
feature sets. Training set accuracy (not shown) ranges from
85% for the first round up to 97% on the fourth round.

were entirely designed prior to the release of the data
set. The model space was chosen to span the mod-
els of Pinto & Cox (2011) and Coates & Ng (2011).
Pinto & Cox (2011) reported excellent match verifi-
cation performance on the Labeled Faces in the Wild
(LFW) data set (Huang et al., 2007)), and Coates &
Ng (2011) advanced the state of the art at the time
on the CIFAR-10 object recognition data set. Our
approach was developed prior to the release of the Fa-
cial Expression Recognition data set, so the good per-
formance speaks directly to the ability of our meta-
modeling approach to generalize to new image classi-
fication tasks.

It is also worth noting that the training accuracy (not
shown) of all models in the ensemble is much higher
than the generalization accuracy (from 85% up to
97%). The size of individual feature sets was capped
at 9000 (to stay within the available memory on the
GPU cards), and all of the best models approached
this maximum number of features. Although these
large feature sets demonstrated significant over-fitting
of the training data (these feature sets represent strong
base learners for Boosting), HyperBoost selected en-
semble members that brought steady improvement on
the test set. This is a familiar story for Boosting algo-
rithms based on an exponential loss, but HyperBoost
produces the effect while operating on the more repre-
sentative hinge loss.
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Table 1. Performance relative to Kaggle submissions.

Rank Team Accuracy (%)

1 “RBM” 71.162
2 “Unsupervised” 69.267
3 “Maxim Milakov” 68.821
4 “Radu+Marius+Cristi” 67.484
- HyperBoost Round 4 65.450
5 “Lor.Voldy” 65.255
...
11 “jaberg” 61.967
- HyperBoost Round 1 61.466
12 “bulbugoglu” 59.654
...
56 “dstarerstor” 20.006

5. Conclusion

Hyperparameter optimization within large model
classes is difficult. We have shown that hyperparame-
ter optimization within a Null model achieves over 60%
accuracy in the workshop’s Facial Expression Recogni-
tion Challenge, which ranks 12th of 56 contest submis-
sions. Further use of an ensemble-construction mecha-
nism raises that accuracy to 65.5%, which would have
ranked 5th / 56 had it been ready by the contest clos-
ing date. These performances underscore the impor-
tance and difficulty of fully leveraging known algorith-
mic technology for image classification. We can only
conjecture that a future version of our model space
that includes a wider range of algorithms for feature
initialization and refinement (e.g. backpropagation,
dropout, maxout, sparse coding, sparsity regulariza-
tion, RBMs, DAAs) could perform better yet. By
the same token, until such a search is carried out, it
is difficult to make quantitative claims regarding the
value added by such algorithms over and above a well-
configured set of simpler components.

The software used in these experiments is publicly
available from github:

Hyperopt The TPE hyperparameter optimiza-
tion algorithm and distributed optimization
infrastructure. http://jaberg.github.com/

hyperopt

Hyperopt-ConvNet The HyperBoost algorithm
and hyperopt-searchable representation of the im-
age classification model. http://github.com/

jaberg/hyperopt-convnet
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