

Making a Science of Model Search: Hyperparameter Optimization
in Hundreds of Dimensions for Vision Architectures

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Bergstra, J., D. Yamins, and D. D. Cox. 2013. Making a Science
of Model Search: Hyperparameter Optimizationin Hundreds of
Dimensions for Vision Architectures. Presented at the 30th
International Conference on Machine Learning (ICML 2013),
Atlanta, Gerorgia, June 16 – 21, 2013. In JMLR Workshop and
Conference Proceedings 28 (1) : 115–123.

Published Version http://jmlr.org/proceedings/papers/v28/bergstra13.html

Accessed February 19, 2015 5:15:46 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12561000

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28949226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/12561000&title=Making+a+Science+of+Model+Search%3A+Hyperparameter+Optimization+in+Hundreds+of+Dimensions+for+Vision+Architectures
http://jmlr.org/proceedings/papers/v28/bergstra13.html
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12561000
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Making a Science of Model Search: Hyperparameter Optimization
in Hundreds of Dimensions for Vision Architectures

J. Bergstra bergstra@rowland.harvard.edu

Rowland Institute at Harvard
100 Edwin H. Land Boulevard
Cambridge, MA 02142, USA

D. Yamins yamins@mit.edu

Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

D. D. Cox davidcox@fas.harvard.edu

Rowland Institute at Harvard
100 Edwin H. Land Boulevard
Cambridge, MA 02142, USA

Abstract

Many computer vision algorithms depend
on configuration settings that are typically
hand-tuned in the course of evaluating the
algorithm for a particular data set. While
such parameter tuning is often presented as
being incidental to the algorithm, correctly
setting these parameter choices is frequently
critical to realizing a method’s full potential.
Compounding matters, these parameters of-
ten must be re-tuned when the algorithm is
applied to a new problem domain, and the
tuning process itself often depends on per-
sonal experience and intuition in ways that
are hard to quantify or describe. Since the
performance of a given technique depends
on both the fundamental quality of the al-
gorithm and the details of its tuning, it is
sometimes difficult to know whether a given
technique is genuinely better, or simply bet-
ter tuned.

In this work, we propose a meta-modeling ap-
proach to support automated hyperparam-
eter optimization, with the goal of provid-
ing practical tools that replace hand-tuning
with a reproducible and unbiased optimiza-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

tion process. Our approach is to expose the
underlying expression graph of how a perfor-
mance metric (e.g. classification accuracy on
validation examples) is computed from hy-
perparameters that govern not only how indi-
vidual processing steps are applied, but even
which processing steps are included. A hy-
perparameter optimization algorithm trans-
forms this graph into a program for opti-
mizing that performance metric. Our ap-
proach yields state of the art results on three
disparate computer vision problems: a face-
matching verification task (LFW), a face
identification task (PubFig83) and an object
recognition task (CIFAR-10), using a single
broad class of feed-forward vision architec-
tures.

1. Introduction

Many computer vision algorithms depend on hyper-
parameter choices such as the size of filter bank, the
strength of classifier regularization, and positions of
quantization levels. These choices can have enormous
impact on system performance: e.g. in (Pinto &
Cox, 2011), the authors extensively explored a single
richly-parameterized model family, yielding classifica-
tion performance that ranged from chance to state-of-
the-art performance, depending solely on hyperparam-
eter choices. This and other recent work show that the

Making a Science of Model Search

question of “how good is this model on that dataset?”
is ill-posed. Rather, it makes sense to speak of the
quality of the best configuration that can typically
be discovered by a particular search procedure in a
given amount of time, for a task at hand. From this
perspective, the tuning of hyperparameters is an im-
portant part of understanding algorithm performance,
and should be a formal and quantified part of model
evaluation.

On the other hand, ad hoc manual tuning by the al-
gorithm inventor, while generally hard to reproduce
or compare with fairly, can be efficient. A system’s
designer has expectations for how his or her system
should work, and he or she can quickly diagnose un-
expected deviations.

In this work we explore the possibility that manual op-
timization is no longer efficient enough to justify the
lack of formalization that it entails. Recent develop-
ments in algorithm configuration raise the efficiency
of automatic search, even in mathematically awkward
search spaces, to a level where the result of hand-
tuning can be matched and exceeded in a matter of
hours on a small cluster of computers. Using these
ideas, we implemented a broad class of feed-forward
image feature extraction and classification models in
order to formalize the steps of selecting the param-
eters of a model, and evaluating that model on a
task. We compared random search in that model class
with a more sophisticated algorithm for hyperparam-
eter optimization, and found that the optimization-
based search strategy recovered or improved on the
best known configurations for all three image classifi-
cation tasks in our study. This success motivates us to
suggest that questions regarding the utility of mod-
eling ideas should generally be tested in this style.
Automatic search is reproducible, and thus supports
analysis that is impossible for human researchers to
perform fairly (e.g. “How would you have tuned ap-
proach Y if you had not already learned to optimize
approach X?”) To support research in hyperparam-
eter optimization, we provide our optimization algo-
rithms and specification language for download as free
open source software. This software replicates the re-
sults presented in this work, and provides a foundation
for general algorithm configuration in future work.

2. Previous Work

Our work extends two veins of research with little his-
torical overlap: feed-forward model architectures for
computer vision, and techniques for algorithm config-
uration.

Feed-forward models in computer vision. There
is a long tradition of basing computer vision systems
on models of biological vision (Fukushima, 1980; Le-
Cun et al., 1989; Riesenhuber & Poggio, 1999; Lowe,
1999; Hinton et al., 2006; DiCarlo et al., 2012). Such
efforts have arrived at a rough consensus model in
which nonlinear image features are computed by a
feed-forward neural network. Each layer of the net-
work comprises a relatively standard set of transfor-
mations, including: (i) dimensionality expansion (e.g.
by convolution with a filter bank), (ii) dynamic-range
reduction (e.g. by thresholding), (iii) spatial smooth-
ing (e.g. pooling or soft-max), (iv) local competition
(e.g. divisive normalization), and (v) dimensionality
reduction (e.g. sub-sampling or PCA). Feature extrac-
tion is usually followed by a simple classifier read-out
trained on labeled data.

Beyond this high-level consensus, however, many de-
tails remain unresolved: which specific operations
should be involved, in what order should they be ap-
plied, how many layers should be used, what kinds
of classifier(s) should be used, and how (if at all)
should the filter values be learned from statistics of
input data. Many competing modeling approaches
can roughly be thought of as having made different
design choices within a larger unformalized space of
feed-forward algorithm configurations.

Algorithm configuration. Algorithm configuration
is a branch of optimization dealing with mathemati-
cally difficult search spaces, comprising both discrete
and continuous variables as well as conditional vari-
ables that are only meaningful for some combinations
of other variables. Bayesian optimization approaches
have proved useful in these difficult domains (Mockus
et al., 1978). A Bayesian optimization approach cen-
ters on a probability model for P (score|configuration)
that is obtained by updating a prior from a history
H of (configuration, score) pairs. This model can
be queried more quickly than the original system in
order to find promising candidates. Search efficiency
comes from only evaluating these most promising can-
didates on the original system. Gaussian processes
(Rasmussen & Williams, 2006) have often been used
as the probability model, but other regression models
such as decision trees have also proved successful (Hut-
ter, 2009; Brochu, 2010; Bardenet & Kégl, 2010; Hutter
et al., 2011; Bergstra et al., 2012). In these approaches,
the criterion of Expected Improvement (EI) beyond a
threshold µ is a popular heuristic for making propos-
als (Jones, 2001). In that approach, the optimization
algorithm repeatedly suggests a configuration c that
optimizes EI(c) =

∫
y<µ

yP (y|c,H) while the experi-

mental history of (score, configuration) pairs, H, ac-

Making a Science of Model Search

cumulates and changes the model. Recently Bergstra
et al. (2011) suggested an approach to Bayesian opti-
mization based on a model of P (c|y) instead. Under
some assumptions this approach can also be seen to
optimize EI.

Hyperparameter optimization in computer vision is
typically carried out by hand, by grid search, or by ran-
dom search. We conjecture that Bayesian optimization
is not typically used because it is relatively new tech-
nology, and because it requires a layer of abstraction
between the researcher toying with settings at a com-
mand prompt and the system being optimized. We
show that although algorithm configuration is a young
discipline, it already provides useful techniques for for-
malizing the difficult task of simultaneous optimiza-
tion of many hyperparameters. One of the contribu-
tions of our work is to show how useful Bayesian op-
timization can be, even when optimizing hundreds of
hyper-parameters.

3. Automatic Hyperparameter
Optimization

Our approach to hyperparameter optimization has
four conceptual components:

1. Null distribution specification language. We
propose an expression language for specifying the hy-
perparameters of a search space. This language de-
scribes the distributions that would be used for ran-
dom, unoptimized search of the configuration space,
and encodes the bounds and legal values for any other
search procedure. A null prior distribution for a search
problem is an expression G written in this specifica-
tion language, from which sample configurations can
be drawn.

For example:

G = {a = normal(0, 1),

b = choice(0, log(uniform(2, 10)), a)}

specifies a joint distribution in which a is distributed
normally with mean 0 and variance 1, and b takes ei-
ther value 0, or a, or a value drawn uniformly between
2 and 10. There are three hyperparameters at play
here, shown in bold: the value of a, the value of the
choice, and the value of the uniform.

More generally, the expressions that make up the null
distribution specification can be arbitrarily nested,
composed into sequences, passed as arguments to de-
terministic functions, and referenced internally, to
form an directed acyclic expression graph (DAG).

2. Loss Function. The loss function is the criterion
we desire to minimize. It maps legal configurations
sampled from G to a real value. For example, the
loss functions could extract features from a particular
image dataset using configuration parameters speci-
fied by the random sample from G, and then report
mis-classification accuracy for those features. Typi-
cally the loss function will be intractable analytically
and slow enough to compute that doing so imposes a
meaningful cost on the experimenter’s time.

3. Hyperparameter Optimization algorithm
(HOA). The HOA is an algorithm which takes as in-
puts the null prior expression G and an experimen-
tal history H of values of the loss function, and re-
turns suggestions for which configuration to try next.
Random sampling from the prior distribution specifi-
cation G is a perfectly valid HOA. More sophisticated
HOAs will generally commandeer the random nodes
within the null prior expression graph, replacing them
with expressions that use the experimental history in
a nontrivial way (e.g. by replacing a uniform node
with a Gaussian mixture whose number of compo-
nents, means, and variances are refined over the course
of the experiment).

4. Database. Our approach relies on a database to
store the experimental history H of configurations that
have been tried, and the value of the loss function at
each one. As a search progresses, the database grows,
and the HOA explores different areas of the search
space.

The stochastic choice node, which randomly chooses
an argument from a list of possibilities, is an impor-
tant aspect of our approach. Choice nodes make it
possible to encode conditional parameters in a search
space (Hutter, 2009). To continue the example above,
if the choice node is evaluated such that b takes the
value of a, then our parameterization of G allows the
optimizer to infer that whatever score we obtain has
nothing to do with the hyperparameter associated with
uniform(2, 10). Visual system models have many
configurable components, and entire components can
be omitted from a particular pipeline configuration,
so it is natural to describe the parameters of an op-
tional component using conditional parameters. The
use of conditional parameters makes credit assignment
among a set of hyperparameters more efficient.

Our implementation of these four components is avail-
able for download as both a general purpose tool
for program optimization and a specific visual system
model for new image classification data sets (Bergstra,
2013; Bergstra et al., 2013).

Making a Science of Model Search

4. Object Recognition Model Family

We evaluate the viability of automatic parameter
search by encoding a broad class of feed-forward classi-
fication models in terms of the null distribution spec-
ification language described in the previous section.
This space is a combination of the work of Coates &
Ng (2011) and Pinto et al. (2009), and is known to con-
tain parameter settings that achieve the state of the
art performance on three data sets (i.e, loss functions):
LFW, Pubfig83, and CIFAR-10.

The full model family that we explore is illustrated
in Figure 1. Like Coates & Ng (2011), we include
ZCA-based filter-generation algorithms (Hyvärinen &
Oja, 2000) and coarse histogram features (described
in their work as the R-T and RP-T algorithms). Like
Pinto et al. (2009), we allow for 2-layer and 3-layer
sequences of filtering and non-linear spatial pooling.
Our search space is configured by a total of 238 hyper-
parameters – far too large for brute force search, and
an order of magnitude larger in dimensionality than
the 32-dimensional space searched by Bergstra et al.
(2011). The remainder of this section describes the
components of our model family. An implementation
of the model is available for download (Bergstra et al.,
2013).

The inter-layers (Figure 1a) perform a filter bank nor-
malized cross-correlation, spatial pooling, and possi-
bly sub-sampling. These layers are very much in the
spirit of the elements of the Pinto & Cox (2011) model,
except that we have combined the normalization and
filter bank cross-correlation into a single mathematical
operation (fbncc, Equations 1-2).

y = fbncc(x, f) (1)

yijk =
f̌k ∗ ǔij√

ρmax(||ǔij ||2, β) + (1− ρ)(||ǔij ||2 + β)
(2)

The fbncc operation is a filter bank convolution of each
filter fk with a multi-channel image or feature map x,
in which each patch x̌ij of x is first shifted by its mean
εm̌ (motivating ǔij

.
= x̌ij−εm̌) then scaled to have ap-

proximately unit norm. Whereas Pinto & Cox (2011)
employed only random uniform filters fk, we include
also some of the filter-generation strategies employed
in Coates & Ng (2011): namely random projections of
ZCA components, and randomly chosen ZCA-filtered
image patches. Filter-generation is parametrized by a
filter count K ∈ [16, 256]), a filter size Sf ∈ [2, 10], a
random seed, and a band-pass parameter in the case
of ZCA. The pair-indexed hat-notation x̌ij refers to
a patch volume from x at row i and column j that
includes Sf rows and columns as well as all channels
of x; Our fbncc implementation is controlled by log-

normally distributed hyperparameter β which defines
a low-variance cutoff, a binary-valued hyperparame-
ter ρ that determines whether that cutoff is soft or
hard, and a binary-valued parameter ε that determines
whether the empirically-defined patch mean m̌ should
be subtracted off or not.

Local spatial pooling (lpool, Equation 3) was imple-
mented as in Pinto & Cox (2011).

y = lpool(x) ⇔ yijk = xi′j′k/||x̌i′j′k||p (3)

The operation is parameterized by a patch size Sp ∈
[2, 8], a sub-sampling stride i′/i = j′/j ∈ {1, 2}, and
a log-normally distributed norm parameter p. The
triple-indexed x̌ijk refers to a single-channel patch sur-
face from x at row i, column j, and channel k that
extends spatially to include Sp rows and columns.

The outer-layers (Figure 1b) combine the fbncc op-
eration of inter-layers with different pooling options.
Rather than sampling or optimizing the filter count,
the filter count is determined analytically so that the
number of image features approaches but does not ex-
ceed sixteen thousand (16,000). Pooling is done either
(1) with lpool and lnorm (Equation 4) as in Pinto &
Cox (2011), or (2) with spatial summation of posi-
tive and negative half-rectified filter bank responses
(dihist, Equation 5). Within pooling strategy (2) we
used two strategies to define the spatial patches used
in the summation: either (2a) grid cell summation as
in Coates & Ng (2011), or (2b) box filtering. The dif-
ference between (2a) and (2b) is a trade-off between
spatial resolution and depth of filter bank in making
up the output feature set.

y = lnorm(x) ⇔ yij =

{
xijk

x̌ij
if ||x̌ij ||2 > τ

xijk otherwise
(4)

y = dihist(x) ⇔ yijk =

[
||max(x̌ijk − α, 0)||1
||max(−x̌ijk − α, 0)||1

]
(5)

Hyperparameter τ of the lnorm operation was log-
normally distributed, as was the α hyperparameter of
dihist. In approach (2a) we allowed 2x2 or 3x3 grids.
In approach (2b) we allowed for sub-sampling by 1, 2,
or 3 and square summation regions of side-length 2 to
8.

The last step in our image-processing pipeline is a clas-
sifier, for which we used an `2-regularized, linear, L2-
SVM. For the smaller training sets we used liblinear
via sklearn as the solver(Fan et al., 2008; Pedregosa
et al., 2011), for larger ones we used a generic L-BFGS
algorithm in the primal domain (Bergstra et al., 2010).
Training data were column-normalized. The classi-
fier components had just two hyperparameters: the

Making a Science of Model Search

lnorm grid boxconv

choose
dihist

lnorm grid boxconv

choose
dihist

L’

INPUT

Candidate Model Scores

choose

SVM

stack inter-layer

SVM SVM

L’’

choose

SVM SVM SVM

lnorm grid boxconv

choose

SVM

stack inter-layer

SVM SVM

Inter-Layer

{

{

{

Outer-Layer
choose

(a)

(c)

(b)

choose
dihist

Figure 1. Our experiments search a class of image classification pipelines (c) that include 0, 1, or 2 inter-layers (a), an
outer-layer (b) that extracts features, and a support vector machine (SVM) classifier. Inter-layers perform filter-bank
normalized cross-correlation (fbncc) and local spatial pooling (lpool). Outer-layers are similar, but may additionally
perform quadrant pooling and local normalization (lnorm). Hyperparameters govern the number of inter-layers, the type
of outer-layer, and a host of configuration options within each layer. Although many of the hyperparameters are mutually
exclusive (e.g. only one outer-layer is active per pipeline) there are 238 hyperparameters in the full search space.

Making a Science of Model Search

strength of regularization and a cutoff for low-variance
feature columns. Code for these experiments was writ-
ten in Python, with the feature extraction carried out
by Theano (Bergstra et al., 2010) and hyperparam-
eter optimization carried out by the hyperopt pack-
age (Bergstra, 2013).

5. Results

We evaluate the technique of automatic hyperparam-
eter configuration by comparing two hyperparameter
optimization algorithms: random search versus a Tree
of Parzen Estimators (TPE) (Bergstra et al., 2011).
The TPE algorithm is an HOA that acts by replac-
ing stochastic nodes in the null description language
with ratios of Gaussian Mixture Models (GMM). On
each iteration, for each hyperparameter, TPE fits one
GMM `(x) to the set of hyperparameter values associ-
ated with the smallest (best) loss function values, and
another GMM g(x) to the remaining hyperparameter
values. It chooses the hyperparameter value x that
maximizes the ratio `(x)/g(x). Relative to Bergstra
et al. (2011) we made two minor modifications to the
search algorithm. The first modification was to down-
weight trials as they age so that old results do not
count for as much as more recent ones. We gave full
weight to the most recent 25 trials and applied a lin-
ear ramp from 0 to 1.0 to older trials. This is a heuris-
tic concession to TPE’s assumption of hyperparameter
independence: as our search moves through space, we
use temporal distance within the experiment as a sur-
rogate for distance in the search space. The second
modification was to vary the fraction of trials used to
estimate `(x) and g(x) with time. Out of T observa-
tions of any given variable, we used the top-performing√
T/4 trials to estimate the density of `. We initialized

TPE with 50 trials drawn from the null configuration
description. These hyper-hyperparameters were cho-
sen manually by observing the shape of optimization
trajectories on LFW view 1. We did not reconfigure
TPE for the other data sets. The TPE algorithm took
up to one or two seconds to suggest new points, so it
contributed a negligible computational cost to these
experiments.

5.1. TPE vs. Random Search: LFW and
PubFig83

Random search in a large space of biologically-inspired
models has been shown to be an effective approach to
face verification (Pinto & Cox, 2011) and identification
(Pinto et al., 2011). Our search space is similar to the
one used in those works, so LFW (Huang et al., 2007)
and PubFig83 (Pinto et al., 2011) provide fair playing

fields for comparing TPE with random search.

For experiments on LFW, we follow Pinto & Cox
(2011) in using the aligned image set, and resizing the
gray scale images to 200 × 200. We followed the offi-
cial evaluation protocol – performing model selection
on the basis of one thousand images from “view 1”
and testing by re-training the classifier on 10 “view
2” splits of six thousand pairs. We transformed im-
age features into features of image pairs by apply-
ing an element-by-element comparison function to the
left-image and right-image feature vectors. Following
Pinto & Cox (2011) we used one comparison function
for model selection (square root of absolute difference)
and we concatenated four comparison functions for the
final “view 2” model evaluation (product, absolute dif-
ference, squared difference, square root of absolute dif-
ference).

The PubFig83 data set contains 8300 color images of
size 100× 100, with 100 pictures of each of 83 celebri-
ties (Pinto et al., 2011). For our PubFig83 exper-
iments we converted the un-aligned images to gray
scale and screened models on the 83-way identification
task using 3 splits of 20 train/20 validation examples
per class, running two simultaneous TPE optimization
processes for a total of 1200 model evaluations. Top-
scoring configurations on the screening task were then
tested in a second phase, consisting of five training
splits of 90 train/10 test images per class. Each of the
five second phase training sets of 90 images per class
consisted of the 40 images from the first phase and 50
of the 60 remaining images.

The results of our model search on LFW are shown in
Figure 2. The TPE algorithm exceeded the best ran-
dom search view 1 performance within 200 trials, for
both our random search and that carried out in Pinto
& Cox (2011). TPE converged within 1000 trials to an
error rate of 16.2%, significantly lower than the best
configuration found by random search (21.9%). On
LFW’s test data (view 2) the optimal TPE configu-
ration also beats those found by our random search
(84.5% vs. 79.2% accurate). The best configuration
found by random search in Pinto & Cox (2011) does
well on View 2 relative to View 1 (84.1% vs. approx-
imately 79.5%) and is approximately as accurate as
TPE’s best configuration on the test set. On Pub-
Fig83, the optimal TPE configuration outperforms the
best random configuration found by our random search
(86.5% vs 81.0% accurate) and the previous state of
the art result (85.2%) Pinto et al. (2011).

5.2. Matching Hand-Tuning: CIFAR-10

Coates & Ng (2011) showed that single-layer ap-

Making a Science of Model Search

(Pinto and Cox, 2011)

Method (# configurations) LFW View 2 Error (%) PubFig83 View 2 Error (%)

TPE-optimized (750) 15.5± .7 13.50± .7
High-throughput (15K) 15.9± .7 (Pinto & Cox, 2011) 14.78± .45 (Pinto et al., 2011)
Random search (2K) 20.8± .8 19.0± .8
Chance 50.0 98.8

Figure 2. Optimization of validation set performance on data sets LFW (top left) and PubFig83 (top right). The TPE
algorithm finds configurations with significantly better validation set error than a 2000-trial random search or the 15,000-
trial random searches carried out in Pinto & Cox (2011) and Pinto et al. (2011). Grey dots in the top panels within a
column represent the lowest error among T random trials (as T increases to the right); green dots denote the lowest error
observed within the first T suggestions by the TPE algorithm. On test data (“view 2”, bottom), TPE has discovered
the best known model configuration in the search space within 750 trials, but our 2000-trial random search has not come
close. View 2 error rates are given with a 95% confidence interval assuming Bernoulli-distributed errors.

proaches are competitive with the best multi-layer al-
ternatives for 10-way object classification using the
CIFAR-10 data set (Krizhevsky, 2009). The success
of their single-layer approaches depends critically on
correct settings for several hyperparameters governing
pre-processing and feature extraction. CIFAR-10 im-
ages are low-resolution color images (32×32) but there
are fifty thousand labeled images for training and ten
thousand for testing. We performed model selection
on the basis of a single random, stratified subset of
ten thousand training examples.

The results of TPE and random search are reported
in Figure 3. TPE, starting from broad priors over a
wide variety of processing pipelines, was able to match
the performance of a skilled and motivated domain
expert. With regards to the wall time of the auto-
matic approach, our implementation of the pipeline
was designed for GPU execution and the loss function
required from 0 to 30 minutes. TPE found a config-
uration very similar to the one found by in Coates &
Ng (2011) within roughly 24 hours of processing on 6
GPUs. Random search was not able to approach the
same level of performance.

6. Discussion

In this work, we have described a conceptual frame-
work to support automated hyperparameter optimiza-

tion, and demonstrated that it can be used to quickly
recover state-of-the-art results on several unrelated im-
age classification tasks from a large family of computer
vision models, with no manual intervention. On each
of three datasets used in our study we compared ran-
dom search to a more sophisticated alternative: TPE.
A priori, random search confers some advantages: it
is trivially parallel, it is simpler to implement, and
the independence of trials supports more interesting
analysis (Bergstra & Bengio, 2012). However, our ex-
periments found that TPE clearly outstrips random
search in terms of optimization efficiency. TPE found
best known configurations for each data set, and did
so in only a small fraction of the time we allocated
to random search. TPE, but not random search, was
found to match the performance of manual tuning on
the CIFAR-10 data set. With regards to the compu-
tational overhead of search, TPE took no more than a
second or two to suggest new hyperparameter assign-
ments, so it added a negligible computational cost to
the experiments overall.

This work opens many avenues for future work. One
direction is to enlarge the model class to include
a greater variety of components, and configuration
strategies for those components. Many filter-learning
and feature extraction techniques have been proposed
in the literature beyond the core implemented in our
experiment code base. Another direction is to improve

Making a Science of Model Search

Hand-tuned (Coates and Ng, 2011)

Method (# configs) Test Acc. (%)

Hand-tuned 20.9± .8
TPE (800) 21.2± .8
Random (2K) 23.4± .8
Chance 90.0

Figure 3. On the CIFAR-10 object classification data set, TPE minimizes validation set error (left) better than manual
tuning and a 2000-point random search. On test data (right) the best model found by TPE matches the performance of
hand-tuning within the model class. Test errors are given with a 95% confidence interval assuming Bernoulli-distributed
errors. The best configurations from the TPE and random searches are both better on validation than test; this overfitting
is expected when the validation set is not perfectly representative of the test set.

the search algorithms. The TPE algorithm is conspic-
uously deficient in optimizing each hyperparameter in-
dependently of the others. It is almost certainly the
case that the optimal values of some hyperparame-
ters depend on settings of others. Algorithms such as
SMAC (Hutter et al., 2011) that can represent such
interactions might be significantly more effective op-
timizers than TPE. It might be possible to extend
TPE to profitably employ non-factorial joint densi-
ties P (config|score). Relatedly, such optimization al-
gorithms might permit the model description language
to include constraints in the form of distributional pa-
rameters that are themselves optimizable quantities
(e.g. uniform(0, lognormal(0, 1))). Another impor-
tant direction for research in algorithm configuration
is a recognition that not all loss function evaluations
are equally expensive in terms of various limited re-
sources, most notably in terms of computation time.
All else being equal, configurations that are cheaper to
evaluate should be favored (Snoek et al., 2012).

Our experiments dealt with the optimization of clas-
sification accuracy, but our approach extends quite
naturally to the optimization (and constrained opti-
mization via barrier techniques) of any real-valued cri-
terion. We could search instead for the smallest or
fastest model that meets a certain level of classifica-
tion performance, or the best-performing model that
meets the resource constraints imposed by a particular
mobile platform. Having to perform such searches by
hand may be daunting, but when the search space is
encoded as a searchable model class, automatic opti-
mization methods can be brought to bear.

7. Acknowledgements

This work was funded by the Rowland Institute of
Harvard, and the National Science Foundation (IIS
0963668).

References

Bardenet, R. and Kégl, B. Surrogating the surro-
gate: accelerating Gaussian Process optimization
with mixtures. In ICML, 2010.

Bergstra, J. Hyperopt: Distributed asyn-
chronous hyperparameter optimization in Python.
http://jaberg.github.com/hyperopt, 2013.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learn-
ing Research, 13:281–305, 2012.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P.,
Pascanu, R., Desjardins, G., Turian, J., and Ben-
gio, Y. Theano: a CPU and GPU math expression
compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy), June 2010.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B.
Algorithms for hyper-parameter optimization. In
NIPS*24, pp. 2546–2554, 2011.

Bergstra, J., Pinto, N., and Cox, D. D. Machine learn-
ing for predictive auto-tuning with boosted regres-
sion trees. In INPAR, 2012.

Making a Science of Model Search

Bergstra, J., Yamins, D., and Pinto, N. Hyperpa-
rameter optimization for convolutional vision ar-
chitectures. https://github.com/jaberg/hyperopt-
convnet, 2013.

Brochu, E. Interactive Bayesian Optimization: Learn-
ing Parameters for Graphics and Animation. PhD
thesis, University of British Columbia, December
2010.

Coates, A. and Ng, A. Y. The importance of encod-
ing versus training with sparse coding and vector
quantization. In Proc. ICML-28, 2011.

DiCarlo, J. J., Zoccolan, D., and Rust, N. C. How does
the brain solve visual object recognition? Neuron,
73:415–34, 2012 Feb 9 2012. ISSN 1097-4199.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-
R., , and Lin, C.-J. Liblinear: A library for large
linear classification. Journal of Machine Learning
Research, 9:1871–1874, 2008.

Fukushima, K. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recogni-
tion unaffected by shift in position. Biological Cy-
bernetics, 36(4):193–202, 1980.

Hinton, G. E., Osindero, S., and Teh, Y. A fast learn-
ing algorithm for deep belief nets. Neural Computa-
tion, 18:1527–1554, 2006.

Huang, G. B., Ramesh, M., Berg, T., and Learned-
Miller, E. Labeled faces in the wild: A database
for studying face recognition in unconstrained en-
vironments. Technical Report 07-49, University of
Massachusetts, Amherst, October 2007.

Hutter, F. Automated Configuration of Algorithms for
Solving Hard Computational Problems. PhD thesis,
University of British Columbia, 2009.

Hutter, F., Hoos, H., and Leyton-Brown, K. Sequen-
tial model-based optimization for general algorithm
configuration. In LION-5, 2011. Extended version
as UBC Tech report TR-2010-10.

Hyvärinen, A. and Oja, E. Independent component
analysis: Algorithms and applications. Neural Net-
works, 13(4–5):411–430, 2000.

Jones, D.R. A taxonomy of global optimization meth-
ods based on response surfaces. Journal of Global
Optimization, 21:345–383, 2001.

Krizhevsky, A. Learning multiple layers of features
from tiny images. Technical report, University of
Toronto, 2009.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D.
Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551,
1989.

Lowe, D. G. Object recognition from lo-
cal scale-invariant features. In Proceedings of
the International Conference on Computer Vi-
sion 2 (ICCV), pp. 1150–1157, 1999. doi:
10.1109/ICCV.1999.790410.

Mockus, J., Tiesis, V., and Zilinskas, A. The applica-
tion of Bayesian methods for seeking the extremum.
In Dixon, L.C.W. and Szego, G.P. (eds.), Towards
Global Optimization, volume 2, pp. 117–129. North
Holland, New York, 1978.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., and Duchesnay, E. Scikit-learn: Machine Learn-
ing in Python. Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

Pinto, N. and Cox, D. D. Beyond simple features: A
large-scale feature search approach to unconstrained
face recognition. In Proc. Face and Gesture Recog-
nition, 2011.

Pinto, N., Doukhan, D., DiCarlo, J. J., and Cox, D. D.
A high-throughput screening approach to discover-
ing good forms of biologically inspired visual repre-
sentation. PLoS Comput Biol, 5(11):e1000579, 11
2009.

Pinto, N., Stone, Z., Zickler, T., and Cox, D. D.
Scaling-up Biologically-Inspired Computer Vision:
A Case-Study on Facebook. In IEEE Computer Vi-
sion and Pattern Recognition, Workshop on Biolog-
ically Consistent Vision, 2011.

Rasmussen, C. E. and Williams, C. K. I. Gaussian
Processes for Machine Learning. MIT Press, 2006.

Riesenhuber, M. and Poggio, T. Hierarchical models of
object recognition in cortex. Nature Neuroscience,
2:1019–1025, 1999.

Snoek, J., Larochelle, H., and Adams, R. P. Practi-
cal bayesian optimization of machine learning algo-
rithms. In Neural Information Processing Systems,
2012.

