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Abstract—This paper describes an adaptation of cognitive
radio technology for tactical wireless networking. We introduce
Competing Cognitive Radio Network (CCRN) featuring both
communicator and jamming cognitive radio nodes that strategize
in taking actions on an open spectrum under the presence of
adversarial threats. We present the problem in the Multi-armed
Bandit (MAB) framework and develop the optimal media access
strategy consisting of mixed communicator and jammer actions
in a Bayesian setting for Thompson sampling based on extreme
value theory. Empirical results are promising that the proposed
strategy seems to outperform Lai & Robbins and UCB, some of
the most important MAB algorithms known to date.

I. INTRODUCTION

Cognitive radios enable a new means to utilize spectrum, the
scarcest resource in building wireless services. The fundamen-
tal premise of cognitive radio is an intelligent mechanism that
identifies a vacancy in the spectral usage through sensing and
learning, which can be implemented flexibly on programmable
hardware. The majority of cognitive radio research has focused
on dynamic spectrum access (DSA) [1], a compelling com-
mercial model to improve the utility of a licensed spectrum
and provide coexistence between the primary and secondary
users of the spectrum. The secondary users are granted an
opportunistic access as long as they can detect the primary
users and relinquish the spectrum.

In this paper, we envision the use of cognitive radio technol-
ogy for tactical wireless networking whose adverse operating
environment includes malicious jammers and other security
threats. We introduce the notion of Competing Cognitive Radio
Network (CCRN), where a network of communicator (comm)
nodes and jammers attempts to dominate the access to an
open spectrum against a hostile opponent (another CCRN). In
particular, we examine Multi-armed Bandit (MAB) problems
[2], [3] to develop optimal CCRN channel accessing schemes.

The main contributions of this paper are two-fold. First, we
provide an analytical framework for competing networks that
can leverage the capability to jam their opponent by jointly co-
ordinating with comm activities of own. The past approaches
have been limited to an antijamming defense strategy for
minimizing the adversarial attacks. Secondly, we have devised
an optimal Bayesian setting for Thompson sampling, an old
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heuristic, to address the exploration-exploitation dilemma for
the CCRN nodes taking actions (comm or jam) on a block of
multi-channel spectrum and empirically validated its superior
performance. The conjugate prior under an extreme-valued
likelihood leads to superior performance over some of the most
important MAB algorithms applied to our CCRN problem.
The proposed method is also simple to implement.

The rest of this paper is organized as follows. In Section
II, we explain our system model and underlying assumptions.
Section III provides a brief background on MAB and presents
mathematical formulation for CCRN. In Section IV, we ex-
amine three classes of algorithms for the stochastic MAB
problems. We propose a new algorithm based on extreme
value theory, conjugate prior, and Thompson sampling. Section
V comparatively evaluates the existing and proposed MAB
algorithms in a CCRN scenario featuring two tactical mobile
networks. In Section VI, we provide the historical context of
MAB, and Section VII concludes the paper.

II. MODELS AND ASSUMPTIONS

A. Competing Cognitive Radio Networks

For clarity of discussion, we assume two cognitive radio net-
works, namely Ally and Enemy CCRNs. Each CCRN consists
of two types of cognitive radio nodes, communicator (comm)
and jammer. The competitions are: 1) CCRNs try to achieve
higher data throughput by adapting their comm transmissions
to the opponent’s jamming actions; and 2) CCRNs try to
decrease the opponent’s data throughput by jamming each
other’s comm activities. To devise a winning media access
strategy, we need to jointly optimize antijamming and jamming
schemes.

B. Networking Model

Mobile ad hoc network (MANET) best describes the net-
working model discussed in this paper. The primary-secondary
user dichotomy used in DSA is no longer valid, and limited
or no fixed infrastructural support for the nodes is assumed. A
CCRN can adopt a centralized control model where the node
actions—i.e., which channels should a comm node transmit
data or should a jammer jam—are computed by a singular
decision maker to assure the coherent, network-wide strategy.
On the other hand, a distributed control model allows each
node to compute its own action. We consider both control
models in this paper.



C. Communication Model

Fig. 1 depicts a time-slotted, multi-channel spectrum for
open access. There are N non-overlapping channels located
at the center frequency fi (MHz) with bandwidth Bi (Hz)
for i = 1, . . . , N . Each time-frequency slot, represented by
a tuple 〈fi, Bi, t〉, gives a transmission (Tx) opportunity and
has a duration of T msec. We assume that a node can sense
other nodes’ transmissions in range. Such sensing capability,
however, is not coupled to specifics of any conventional media
access control mechanisms such as CSMA.

Time 
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t 

fi N  
channels 

Bi 

Fig. 1. Tx opportunities in slotted multi-channel spectrum for open access

D. Reward Model

The reward metric evaluates the performance of a CCRN.
A comm node receives a reward of B (bits) upon a successful
transmission, which requires only one comm node transmitting
in the given slot without being jammed. If there were two or
more simultaneous comm transmissions (from either the same
or different network), a collision occurs, and no comm node
gets a reward. A successful jamming results in the same reward
value for the opposing comm node’s transmission attempt
that would have been successful otherwise. For example, an
Ally jammer receives B when it jams an Enemy comm node
transmitting B-bit worth of data. If there were no jamming,
the Enemy comm would have earned B. Also, it is possible for
an Ally jammer to jam an Ally comm mistakenly (e.g., due to
faulty intra-network coordination), which we call misjamming.

III. MULTI-ARMED BANDIT FORMULATION FOR
COMPETING COGNITIVE RADIO NETWORKS

Thompson [2] introduced Multi-armed Bandit (MAB) to
address the problem in the clinical trial of a medical treatment
causing different effects to patients. This section presents the
MAB formulation for CCRNs with the goal of accumulating
optimal rewards from unknown parameters of the channel-
node interactions that need to be learned sequentially.

A. Notation and Preliminaries

We make a simplifying assumption that each CCRN has C
comm nodes and J jammers (typically, C + J < N ). We use
superscripted t for ‘at time t,’ not the ‘power of.’ The Ally and
Enemy node actions at time t are atA = {atA,comm, atA,jam}
and atE = {atE,comm, atE,jam} containing both comm and jam-
ming actions, the size-C vectors atA,comm, atE,comm and the
size-J atA,jam, atE,jam. An ith element in atA,comm designates
the channel number that the ith Ally comm node tries to access
at t. Similarly, a jth element in atA,jam is the channel that the
jth Ally jammer tries to jam at t.

Ωt, whose element designates each channel’s state (an
integer value), is a size-N vector that describes the outcome
of the Ally and Enemy node actions used to determine the
reward at time t:

atA × atE −→ Ωt

It is more convenient to compute a reward from each channel
(than node), and we use rtA,k to designate the instantaneous
reward for Ally resulted from channel k at time t. The total
reward at t is the sum over all N channels: RtA =

∑N
k=1 r

t
A,k.

For illustrative purposes, let C = 2, J = 2, N = 10. If
atA,comm = [7 3], Ally comm node 1 transmits in channel
7, and Ally comm node 2 in channel 3 at time t. atA,jam =
[1 5] means that Ally jammers jam channels 1 and 5 at t. Let
atE,comm = [3 5] and atE,jam = [10 9]. Fig. 2 depicts the
resulting channel-action bitmap where 1 indicates transmit or
jam and 0 otherwise. Ally jammer 2 on channel 5 is successful
whereas jammer 1 is not. The comm transmissions collide in
channel 3, but Ally has a successful comm transmission in
channel 7. Thus, the Ally comm 1 and jammer 2 receive a
reward of B each. Enemy has no success in comm or jamming.
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0   0   0   0   0   0   0   0   1   1  

Ally  and  Enemy  
comms  collide  

Ally  jamming  success  
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Ally  jamming  
unsuccessful  

Fig. 2. Channel-action bitmap example

The Ally network strategy σtA is a function over time. It
takes necessary information such as sensing results and past
action-outcome/reward statistics as input and determines Ally
node actions. Under the centralized decision making, we write:

{xjA}
t
j=1, {a

j
A,Ω

j}t−1
j=1

σtA−→ atA

where xtA is the Ally sensing results at t.
Under the distributed decision making, each node in the

network computes its own action. For node i in Ally (whether
it is a comm node or jammer):

xtA,i, {x
j
A, a

j
A,Ω

j}t−1
j=1

σtA,i−→ atA,i

where xtA,i is the sensing information only available to node
i at time t, and σtA,i the strategy of node i’s own. At time
t, node i does not yet have all sensing results except its own
xtA,i. For the distributed case, node strategies can differ, and
there is no guarantee that conflicting actions of the nodes in the
same network such as collision and misjamming are resolved.

B. Multi-armed Bandit (MAB)

MAB is best explained with a gambler facing N slot
machines (arms). The gambler’s objective is to find a strategy
that maximizes Rt =

∑t
j=1 r

j for some t, the cumulative



reward over a finite horizon. Lai & Robbins [3] introduced
the concept of regret for a strategy σ measuring the distance
from optimality

Γt = tµ∗ − E
[
Rtσ
]

where µ∗ is the hypothetical, maximum average reward if
gambler’s action were resulting the best possible outcome
each round, and Rtσ the actual reward achieved with σ. Γt

is mathematically convenient, and maximizing the expectation
of Rt turns out to be equivalent to minimizing Γt.

Lai & Robbins [3] further derived the mathematical quali-
fication for an optimal strategy:

lim
t→∞

supE[T ti ] ≤ log t

DKL(pi ‖ p∗)
(1)

where sup means supremum, T ti is the total number for arm
i being played, and DKL(. ‖ .) is the Kullback-Leibler diver-
gence [4] measuring the dissimilarity between the probability
distributions pi and p∗ for the i-th arm’s reward and the
maximum reward resulted by choosing only the best possible
arm each time. Eq. (1) provides the least upper bound for
the number of times should an optimal arm—which could be
different each time—be played asymptotically. Lai & Robbins
also provided an algorithm that satisfies the condition of Eq.
(1), which will be discussed in Section IV.

C. MAB Model for Competing Cognitive Radio Network

We can now explain the MAB model for CCRN. An arm
corresponds to a channel in the spectrum under competition.
Comm nodes and jammers are the players that the networks
allocate to play (i.e., transmit or jam) the channels. Since each
network has multiple nodes, our problem is classified as multi-
player MAB [5], which is different from the classic single-
player MAB formulated by Lai & Robbins [3]. In addition, we
have two system variations depending on whether a centralized
control entity or each player makes the play decisions.

Fig. 3 illustrates the CCRN with a central decision maker
(e.g., base station, super node) computing the network-wide
strategy and disseminating all node actions. It is assumed
for the centralized multi-player MAB that the decision maker
should be able to collect sensing results from each player
and the exact outcome of every play in order to make sound
decisions over time.
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Fig. 3. Centralized multi-player MAB for CCRN

Fig. 4 illustrates the case for distributed decision making.
Here, each node makes its own play decision based on the
information collected in best effort compared to the centralized
multi-player MAB that requires the tight intra-network com-
munication to collect information and disseminate the strategy.
After each play, the node observes the outcome, computes its
reward, and maintains its play statistics that can be shared with
others in the network.
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Fig. 4. Distributed multi-player MAB for CCRN

D. Problem Statement

The MAB formulation for CCRN makes us consider the
problem of sequentially sampling the total network reward
from the N channel reward populations rt1, r

t
2, . . . , r

t
N over

time. The rewards are manifested by the mixed player actions
from the same and opposing networks that dynamically affect
the outcome each time. Differentiated from the classic MAB
problems, the player action in CCRN comprises an action
(transmit) and its anti-action (jam). The anti-action does not
draw the reward directly from a channel but can deprive that
generated by a comm node. Formally, we search for an optimal
strategy σtopt that minimizes the growth of regret Γt:

σtopt = arg min
σ

Γt = min
σ
{E[

M∑
i=1

t∑
j=1

rj(i)]− E
[
Rtσ
]
} (2)

To express the regret in Eq. (2), we use rt(i) an ordered
sequence of the N instantaneous channel rewards at time t
such that rt(1) ≥ rt(2) ≥ . . . ≥ rt(N). There are M = C + J
total number of nodes in a network, thus summing M highest
rewarding channels reflect the optimal allocation of players.

IV. FORMULATION OF OPTIMAL STRATEGIES

This section examines three different classes of MAB
algorithms and proposes a new algorithm that outperforms
the existing algorithms empirically. We present pseudo-code,
assuming there is only one (M = 1) node in the network
for simplicity of explanation. This simplification reduces the
problem into correctly guessing the most rewarding channel
over time.



A. Asymptotically Optimal Algorithm
Described in Algorithm 1, Lai & Robbins [3] keeps track

of cumulative reward Rti and total number of accesses T ti
for channel i, and draws two candidate channels cMPE and
cRR, based on the maximum point estimate (MPE) criterion
(e.g., channel with highest sample mean) and round robin
(RR) selection, respectively. The Kullback-Leibler divergence
between the two serves a test statistic to finalize the choice.

Algorithm 1 (Lai & Robbins)
1: while t < 1 . initialized offline
2: Access each channel at least once
3: Record Rti =

∑t
j=1 r

j
i and T ti for every channel i

4: end
5: while t ≥ 1 . online
6: Compute µi = Rti/T

t
i ∀i

7: Find MPE candidate cMPE = i∗ s.t. µi∗ = maxµi
8: Find RR candidate cRR = (t mod N) + 1
9: if DKL(pRR ‖ pMPE) > log(t− 1)/T tcRR

10: Access cMPE and observe rtcMPE
11: Update RtcMPE and T tcMPE
12: else
13: Access cRR and observe rtcRR
14: Update RtcRR and T tcRR
15: end
16: end

The essence of Lai & Robbins is to consider exploitation
(choosing the MPE candidate) vs. exploration (choosing the
arbitrary RR candidate). The condition DKL(pRR ‖ pMPE) >
log(t − 1)/T tcRR assures that choosing the MPE candidate is
optimal after a sufficient number of exploratory trials.

B. Indexing
Despite its algorithmic simplicity, Lai & Robbins comes

down to estimating DKL accurately, which is computationally
difficult from sampling. The second class of MAB algorithms
uses indexing that is computable substitute for DKL. Auer et
al. [6] formulated an indexing scheme called Upper Confi-
dence Bound (UCB) presented in Algorithm 2.

Algorithm 2 (UCB)
1: while t < 1 . initialized offline
2: Same as that of Algorithm 1
3: end
4: while t ≥ 1 . online
5: Compute point estimate µi = Rti/T

t
i ∀i

6: Compute index gi = µi +
√
α log t

T ti
∀i

7: Access channel i∗ = arg maxi gi
8: Update Rti∗ and T ti∗
9: end

C. Thompson Sampling
The last class of algorithms uses a probability matching

technique known as Thompson sampling [2] that selects

actions according to their probability of being optimal. It is
largely a heuristic and has reemerged in the recent machine
learning literature such as Agrawal & Goyal [7], which pro-
vides the most rigorous mathematical treatment available to
date. The full proof of Thompson sampling on its convergence,
however, remains to be an open problem. It is best understood
under a Bayesian setup as in Algorithm 3.

Algorithm 3 (Thompson Sampling)
Require: d = {x, a, r} for context x, action a, reward r,

estimator p(θ|d) ∝ p(r|x, a, θ)p(θ) parameterized by θ
1: while t ≥ 1 . online
2: Acquire xt

3: Draw θt ∼ p(θ)
4: Choose at to access i∗ = arg maxi E[rti |xt, θt]
5: Observe actual rt

6: Update d = d ∪ {xt, at, rt}
7: Update p(θ) = p(θ|d)
8: end

D. Our Algorithm

We propose a new MAB algorithm based on extreme value
theory [8], conjugate priors, and Thompson sampling.

1) Distribution of maximum reward sequence: Let Y t =
max{rt1, . . . , rtN} where rti represents the reward from channel
i at t. Since the sequence Y 1, Y 2, . . . , Y t consists only of the
maximum channel reward each time, it must have achieved the
distribution p∗ in Eq. (1). Furthermore, the sequence should
result in an upper bound of the optimal mean reward µ∗.
Therefore, all we need is our strategy σ to empirically follow
the distribution of Y t. But how is it distributed?

Fisher & Tippet [9] and Gnedenko [10] proved the existence
of limiting distributions for block maxima (or minima) of
random variables. Their findings became the foundation of
extreme value theory used widely in financial economics.

Theorem 1: (Fisher & Tippett, Gnedenko) Let X1, . . . , Xn

be a sequence of i.i.d. random variables and Mn =
max {X1, . . . , Xn}. If real number pairs (an, bn) exist such
that an > 0 and limn→∞ P (Mn−bn

an
≤ x) = F (x), where

F (.) is a non-degenerate distribution function, then the lim-
iting distribution F (.) belongs to only Fréchet, Gumbel, or
Weibull family of probability distribution functions.

Proof: See Fisher & Tippet [9] and Gnedenko [10].
2) Conjugate priors: In Bayesian inference, the posterior is

updated by the observed likelihood given the prior distribution:

p(θ|r)︸ ︷︷ ︸
posterior

∝ p(r|θ)︸ ︷︷ ︸
likelihood

× p(θ)︸︷︷︸
prior

When the probabilistic model for the likelihood is known, we
can set the prior and posterior distributions conveniently of the
same family of functions. This is known as conjugate prior.
Since the reward distribution under our search is extreme-
valued, our likelihood choices are left to Fréchet, Gumbel, or
Weibull distributions. Table I summarizes the conjugate priors
having an extreme valued likelihood distribution [11].



TABLE I
BAYESIAN CONJUGACY UNDER EXTREME-VALUED LIKELIHOOD

Distribution family Likelihood model Conjugate priors
Fréchet Pareto Gamma

Lognormal Gamma or normal
Gumbel Exponential Gamma

Normal Normal
Gamma Gamma

Weibull Weibull Inverse gamma
Beta Unknown

3) The algorithm: In summary, our algorithm presented in
Algorithm 4 performs Thompson sampling that follows an
extreme-valued likelihood and updates the posterior distribu-
tion based on its conjugate prior. However, we need to decide
on which extreme value distribution is suitable for CCRN.

Since both Fréchet and Gumbel distributions model un-
bounded random variables, we adopt a Weibull likelihood with
the inverse gamma conjugate prior (see Table I), reasoning that
the maximum reward value for competing mobile networks
should be finite. The lack of theoretical analysis on Thompson
sampling makes it difficult to justify our design choice. In
Section V, we show an empirical evidence that backs up our
choice. However, the search for the best choice remains open
at least until we explore all possibilities listed in Table I.

A Weibull distribution has finite endpoints. Its conjugate
prior, the inverse gamma distribution, has two hyperparameters
a, b > 0. Our algorithm draws the scale parameter θ from the
inverse gamma prior p(θ|a, b) = ba−1e−b/θ

Γ(a−1)θa for θ > 0 where
a and b are the sample mean and variance of the reward of a
channel. The Weibull random variable generated by θ drawn
from the prior estimates the expected reward for the channel.
After observing the actual reward, the posterior update follows.

Algorithm 4 (Proposed Algorithm)
Require: ai, bi = 0 ∀i

1: while t < 1 . initialized offline
2: Access each channel until ai, bi 6= 0 ∀i, where ai and

bi are sample reward mean and variance
3: end
4: while t ≥ 1 . online
5: Draw θi ∼ inv-gamma(ai,bi)
6: Estimate r̂i = weibull(θi,βi) ∀i for given 0.5 ≤ βi ≤ 1
7: Access channel i∗ = arg maxi r̂i
8: Observe actual rti∗ to update {Rti∗ , T ti∗}
9: Update ai∗ = ai∗ + T ti∗ , bi∗ = bi∗ +

∑
t(r

t
i∗)βi∗

10: end

V. EMPIRICAL EVALUATION

A. Evaluation Scenarios and Metric

We evaluated the centralized and distributed multi-player
MAB scenarios for the two CCRNs, Ally and Enemy, in
a custom MATLAB simulator. Ally network ran the MAB
algorithms explained in Section IV while Enemy network
was configured with the baseline static and uniformly random

strategies. We assumed that the central decision maker had
perfect knowledge (i.e., all nodes’ sensing results) in the
decision making for the centralized scenario. On the contrary,
every node in the distributed scenario was a decision maker,
using its own sensing results only (no information sharing).

We adopted the average reward per channel as the perfor-
mance evaluation metric for a CCRN:

R̄t =
1

N·t

t∑
j=1

N∑
i=1

rji

where ri is the ith channel reward, and there are N channels
in the spectrum. We used the following channel reward model:
• rti = 1 if only one comm node transmits and no jamming

in channel i at time t;
• rti = 1 if a jammer jams the opposing comm node’s

transmission;
• rti = 0 otherwise (e.g., collision, jamming).

B. Tested Algorithms

We tested a multi-player version of Lai & Robbins (L&R-
M) [5], multi-player UCB (UCB-M) [6], and our algorithm
against the baseline static and random strategies. In static
strategy, nodes initially choose to access some channels and
continue to access the same channels throughout. Random
strategy chooses a uniformly random channel for each play.
Additionally, we tested Z-heuristic from Rivest and Yin (Z)
[12]. Like our algorithm, Z-heuristic is based on Thompson
sampling but uses a Gaussian likelihood. Conjugate prior for
the Gaussian likelihood is also Gaussian.

For our algorithm and Z-heuristic, we use the following
multi-player technique. Select the best channel from estimating
r̂i. Remove the selected channel and regenerate r̂i for the re-
maining N−1 channels. Select the best among the remaining.
We repeat the process until we allocate all M nodes to play.

C. Results and Discussion

The simulated spectrum has N = 10 channels. For each
CCRN, we vary the number of comm nodes C = 2, 4, 8,
but fix the number of jammers to J = 2. Comm nodes have
a transmit probability ptx = 0.5 whereas jammers jam with
probability 1. We run t = 1, 000 iterations and measure steady-
state, cumulative average rewards for comparison.
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Fig. 5. Performance of tested algorithms in centralized scenario



Fig. 5 compares the performance of tested algorithms in the
centralized scenario. We plot the reward performance of our
algorithm (Algorithm 4), L&R-M, UCB-M, and Z-heuristic
tested against the baseline strategies (static and random). The
baseline performances plotted are against our algorithm. We
can clearly observe performance advantage of our algorithm
over L&R-M, UCB-M, and Z-heuristic. The proposed al-
gorithm can learn static transmission and jamming patterns
effectively. Static strategy yields near-zero reward at C = 2.
Since we have fixed J = 2, static strategy can realize nonzero
rewards when C > 2. Learning is harder against random
strategy because randomization gives an effective exploration
mechanism. Random strategy, however, can only explore. This
lack of exploitation explains its poor performance overall.
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Fig. 6. Performance comparison in distributed scenario

In Fig. 6, we compare the performance in the distributed
scenario. Again, the proposed algorithm achieves the best
performance. The lack of explicit intra-network cooperation
among the nodes seems to be critical, costing more than 15%
degradation in the performance. This loss is the result of more
collisions and misjamming in the Ally CCRN. Consequently,
we observe a slight performance gain for the Enemy CCRN.

VI. RELATED HISTORY OF MAB PROBLEMS

In 1933, Thompson [2] introduced a stochastic MAB prob-
lem and proposed an optimal heuristic known as Thompson
sampling, which remains to be an effective action selection
strategy that often outperforms modern proposals. Robbins
1952 [13] presented the first sequential analysis of the single-
player MAB problem. In Bellman 1954 [14], MAB problems
were formulated as a class of Markov decision process (MDP).
Gittins 1979 [15] proved the existence of a Bayes optimal in-
dexing scheme for MAB problems if they can be modeled as a
stationary MDP. Lai & Robbins 1985 [3] introduced the notion
of regret, derived its lower bound using the Kullback-Leibler
divergence, and constructed asymptotically optimal allocation
rules. Anantharam et al. 1987 [5] extended Lai & Robbins
for multi-player. Whittle 1988 [16] introduced PSPACE-hard
restless MAB problems and showed that suboptimal indexing
schemes are possible. Rivest & Yin 1994 [12] proposed Z-
heuristic that achieved a better empirical performance than Lai
& Robbins. Auer et al. 2002 [6] proposed Upper Confidence
Bound (UCB), an optimistic indexing scheme.

VII. CONCLUSIONS AND FUTURE WORK

We have described competing cognitive radio networks
(CCRNs) that operate under hostile assumptions to strive for
dominating access to an open spectrum. Our notion of CCRN
advocates both communications and jamming capabilities. We
have adopted the MAB framework and thoroughly examined
classical solutions known to date to develop a novel, optimal
media access strategy for CCRN.

An optimal CCRN strategy should embrace randomized al-
gorithms although doing randomization only will lead to poor
performance because a strategy needs to exploit its learning.
Our results indicate that Thompson sampling proves to be most
effective in addressing the exploration-exploitation tradeoff,
which is fundamental to construct a MAB-optimal strategy for
CCRN. Our proposed algorithm is only slightly more complex
than Thompson sampling, but could consistently outperform
the existing MAB algorithms. For our next step, we plan
to study application scenarios with the outcome of actions
depending on unknown geographic environments that govern
radio propagation behavior, more complex reward models, and
parameter optimization. In addition, we want to address the
issues in sensing errors and failover. Protocol specification and
implementation on software radios are also on the way.

REFERENCES

[1] Q. Zhao and B. Sadler, “A Survey of Dynamic Spectrum Access,” IEEE
Signal Processing Magazine, May 2007.

[2] W. R. Thompson, “On the Likelihood That One Unknown Probability
Exceeds Another in View of the Evidence of Two Samples,” Biometrika,
vol. 25, no. 3-4, pp. 285–294, 1933.

[3] T. L. Lai and H. Robbins, “Asymptotically Efficient Adaptive Allocation
Rules,” Advances in Applied Mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[4] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 1991.

[5] V. Anantharam, P. Varaiya, and J. Walrand, “Asymptotically Efficient
Allocation Rules for Multiarmed Bandit Problem with Multiple Plays–
Part I: I.I.D. Rewards,” IEEE Trans. on Automatic Control, vol. 32,
no. 11, pp. 968–976, Nov 1987.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time Analysis of the
Multiarmed Bandit Problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, May 2002.

[7] S. Agrawal and N. Goyal, “Analysis of Thompson Sampling for the
Multi-armed Bandit Problem,” in Proc. of 25th Annual Conference on
Learning Theory (COLT), 2012.

[8] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction.
Springer, 2006.

[9] R. A. Fisher and L. H. C. Tippett, “Limiting Forms of the Frequency
Distribution of the Largest and Smallest Member of a Sample,” Proc.
Cambridge Phil. Soc., pp. 180–190, 1928.

[10] B. V. Gnedenko, “Sur la distribution limite du terme maximum d’une
serie aleatoire,” Annals of Mathematics, pp. 423–453, 1943.

[11] E. George, U. Makov, and A. Smith, “Conjugate Likelihood Distribu-
tions,” Scandinavian Journal of Statistics, pp. 147–156, 1993.

[12] R. L. Rivest and Y. Yin, “Simulation Results for a New Two-armed
Bandit Heuristic,” in Workshop on Computational Learning Theory and
Natural Learning Systems, 1994.

[13] H. Robbins, “Some Aspects of the Sequential Design of Experiments,”
Bulletin of American Mathematics Society, vol. 58, pp. 527–535, 1952.

[14] R. Bellman, A Problem in the Sequential Design of Experiments.
Defense Technical Information Center, 1954.

[15] J. C. Gittins, “Bandit Processes and Dynamic Allocation Indices,”
Journal of the Royal Statistical Society, vol. 41, no. 2, pp. 148–177,
1979.

[16] P. Whittle, “Restless Bandits: activity allocation in a changing world,”
Journal of Applied Probability, vol. 25A, pp. 287–298, 1988.


