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Abstract

While structures and reactivities of many small molecules can be computed efficiently and

accurately using quantum chemical methods, heuristic approaches remain essential for mod-

eling complex structures and large-scale chemical systems. Here we present heuristics-aided

quantum chemical methodology applicable to complex chemical reaction networks such as

those arising in metabolism and prebiotic chemistry. Chemical heuristics offer an expedi-

ent way of traversing high-dimensional reactive potential energy surfaces and are combined

here with quantum chemical structure optimizations, which yield the structures and energies

of the reaction intermediates and products. Application of heuristics-aided quantum chemi-

cal methodology to the formose reaction of prebiotic evolution reproduces the experimentally

observed reaction products, major reaction pathways, and autocatalytic cycles.
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1 Introduction

Complex reaction mechanisms, in which many competing reaction steps combine to form a net-

work of chemical reactions, are increasingly recognized as a common pattern in chemistry.1,2 Char-

acteristic features of complex reactions include branching and interference of reaction pathways,

autocatalysis, and product inhibition and are observed in systems as varied as transition-metal

catalysis,3 cell metabolism,4,5 and polymerization.1,6,7 A better understanding of the network ef-

fects in these complex reactions offers means for influencing their dynamics and product composi-

tion. Useful contributions to this effort can be expected from theoretical works, which are capable

of providing accurate predictions of molecular structures and reactivities. Theory and computa-

tion of kinetics of elementary reactions from first principles have made enormous progress;8–10

nonetheless, complex reaction mechanisms continue to pose significant methodological and algo-

rithmic challenges.2,11,12

Encouragingly, heuristic approaches have proven useful for solving complex and large-scale

problems across diverse fields such as graph search,13 sequence alignment,14 and cheminformat-

ics.15 One does not have to look far to find heuristic methods: The classical force fields of molec-

ular mechanics16,17 may well be viewed as heuristic rules of classical chemical structure theory

enforced by penalty functions and thus made amenable to computation. In the field of chemical

reactivity of organic compounds, a similarly successful set of heuristic rules exists that regards

chemical transformations as flows of electrons and is known under the moniker “arrow pushing”

to students of organic chemistry.18 The existence of simple yet predictive “arrow pushing” heuris-

tics for polar organic reactions strongly indicates that a useful heuristic scheme may be developed

from these rules. Rule-based systems have been successfully used for development and optimiza-

tion of organic syntheses since the pioneering work of Corey and Wipke over 40 years ago11,19–25

and have been recently developed into a broad-spectrum synthetic tool by Grzybowski and co-

workers.26,27

Guided by the above expectation, we propose a computational framework of heuristics-aided

quantum chemistry (HAQC) suitable for exploring complex and large-scale reaction mechanisms.
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In the proposed methodology, chemical heuristics such as the “arrow pushing” rules serve to

quickly navigate across high-dimensional reactive potential energy surfaces and are complemented

by quantum chemical structure optimizations to locate stable reaction intermediates and products.

The utility of chemical heuristics lies in their capability to map the potential energy surface onto in-

dividual chemical species and reactive trajectories into stepwise transformations, facilitating large-

scale moves. Compared to generic heuristic optimization techniques such as simulated annealing

and evolutionary computation,28–30 chemical heuristics offer the advantage of having some empir-

ical chemical knowledge built in.

Furthermore, the discretization of the reactive potential energy surface into individual chemical

species gives rise to a network model of the complex reaction mechanism composed of chemical

species as network nodes and chemical transformations between them as network edges.31 Albeit a

stark simplification, the network representation is convenient for studying global reaction dynamics

and for exploring complex reaction properties such as reaction path interference and autocatalysis.

A rich body of work addresses abstract reaction network models or the best-studied, but in many

ways exceptional, reaction network of cell metabolism.4,5,32,33 With this work, we wish to provide

a methodology for constructing detailed models of arbitrary chemical reaction networks amenable

to study of their global structures and dynamics.

Simple and efficient methods for describing the thermodynamic and kinetic reaction parame-

ters are necessary to link the molecular-level description of reactive dynamics and the systems-level

view of reaction networks. While quantum chemistry has the tools for computing both thermody-

namic and kinetic parameters of elementary reaction steps, the associated computational cost and

algorithmic challenges differ substantially. Predictions of reaction thermodynamics depend only

on energy minimizations, while reaction kinetics calculations in addition require first-order saddle-

point (transition state) searches within the standard treatment of transition-state theory.8–10 We are

interested in computationally inexpensive methods applicable to large reaction networks and thus

replace kinetic reaction parameters by heuristic functions of the energies of the reactants, interme-

diates, and products along the reaction path. Our approach is motivated by Hammond’s postulate,
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which holds that transitions states of reactions involving unstable intermediates resemble the in-

termediates themselves34 or, alternatively, that the reaction energy and the height of the activation

barrier are correlated with each other.35 We show below that even simple heuristic kinetic param-

eters lead to useful predictions of reaction products and pathways.

We applied the HAQC methodology to the reaction network of the formose reaction, a well-

studied organic reaction occurring in alkaline solutions of formaldehyde and resulting in a complex

mixture of aldose and ketose sugars.36,37 More than 40 compounds were experimentally identi-

fied as products of the formose reaction38,39 and major pathways are known,37,40 however many

mechanistic details remain obscure. The formose reaction is one of the simplest organic reaction

exhibiting autocatalysis41 and was early conjectured as a potential route to sugars in the course

of prebiotic evolution.40,42–44 We present models of the formose reaction in different stoichiome-

tries obtained using a combination of chemical heuristics and semiempirical quantum chemistry

(Section 3). The formose reaction models contained formose sugars up to C5 known from experi-

ments38,39 and major reaction pathways postulated in the literature.37,41 Furthermore, the reaction

models obtained using heuristics-aided quantum chemistry permit analyses of chemical composi-

tion, energetics, and network structure, which are detailed in our companion publication.45

This paper is organized as follows. Section 2 develops the framework of the HAQC methodol-

ogy and heuristic thermodynamic and kinetic reaction feasibility criteria. Models of the formose

reaction network in different stoichiometries are constructed and their chemical compositions are

analyzed in Section 3. A discussion and outlook are given in Section 4.

2 Chemical Heuristics for Complex Reaction Mechanisms

Many, if not most, hard problems in chemical structure and reactivity may be traced back to the

high dimensionality of the quantum chemical models for electrons and nuclei. This is particularly

true for complex reaction networks, which are chracterized by having complicated potential energy

surfaces with numerous energy minima. While stable energy minima of medium-sized and large

4



molecules can be located in an efficient and robust way, enumerating first-order stationary points

(transition states) on reactive potential energy surfaces is still a challenging task, despite notable

progress.9,10 We wish to characterize both thermodynamic and kinetic properties of all reactions

of a complex reaction network, which requires us to develop simple and robust approximations.

In our approach to this problem, we draw inspiration from molecular mechanics that successfully

transformed heuristic rules of chemical bonding into efficient computational schemes.16,17,46 As

was the case with early classical force fields, we proceed by introducing a number of heuristic

but physically motivated propositions that allow us to tackle complex reaction networks with hun-

dreds or thousands of distinct chemical species and transformations. The heuristics-aided quantum

chemistry (HAQC) approach is based on the following assumptions.

1. Reaction products and pathways are obtained by a set of heuristic transformation rules,

which are recursively applied to structure formulas of molecules. We encode molecular

structures by their SMILES (simplified molecular-input line entry system) representations.47

The transformation rules used in this work are given in Scheme 1, where X, Y, and Z repre-

sent arbitrary atoms.

(a) X=Y + Z+→ X+−Y−Z Electrophilic addition
(b) X=Y + Z−→ X−−Y−Z Nucleophilic addition
(c) X+−Y−→ X=Y Double bond depolarization
(d) X−Y→ X+ + Y− Single bond breaking
(e) X+ + Y−→ X−Y Single bond formation
(f) X+ ^Y−→ X−

^
Y Ring closure

Scheme 1: Heuristic transformation rules for polar reactions used in this work.

We wish to stress that these primitive transformations are not required to describe genuine

elementary reactions. Rather, they provide a simple device for constructing elementary reac-

tions in an unbiased fashion and should capture the electron flow in polar organic reactions

in aqueous solutions. The primitive transformations (a), (b), (d)–(f) correspond to actual

elementary reactions, while depolarization of multiple bonds (c) does not have an equivalent

in quantum chemistry and is energy neutral.
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2. The SMILES representations of the reaction intermediates and products obtained by way of

heuristic transformations are mapped onto the corresponding three-dimensional structures

and are subject to quantum chemical structure optimizations. In order to obtain a consistent

description of the chemical structures that are part of the complex reaction network, a robust

equivalence should be enforced between the structure formulas (given by SMILES) and the

three-dimensional optimized structures from quantum chemistry. Therefore, we exclude all

molecules, for which structure optimization does not preserve heavy-atom connectivity.

3. The heuristic transformation rules operate on molecular collections, which we refer to as

flasks FK = {MK1, . . . ,MKmK} in the following. K is the flask index and MKk denotes the

constituent molecules of flask K. We consider the molecular collection as a closed system

and keep its stoichiometry constant across flasks. As a consequence, flask energies are di-

rectly comparable to each other. Further, we assume that interactions between the molecules

are negligible and thus flask energies are well approximated by sums of the energies of its

constituent molecules EK = ∑k εKk, which may be computed using any suitable quantum

chemical method.

4. We distinguish between neutral and charged constituent molecules and label the flasks con-

taining only neutral constituent molecules as product flasks. Assuming that the overall flask

stoichiometry is conserved and the total charge is zero, we can expect the neutral forms

of all constituent molecules to form in a sufficiently large number of transformation steps.

Therefore, we may represent all stable reaction products as constituent molecules of product

flasks without limiting the generality of the procedure. We utilize that polar reactions involve

movement of electric charges between reaction participants, producing charged compounds

as intermediates and, following Hammond’s postulate, we make the additional assumption

that the sequence of flasks containing one or more charged constituent molecules (interme-

diate flasks) may be considered as approximations to the instantaneous configurations along

the reaction trajectory.

6



5. The recursive application of heuristic rules produces an auxiliary network representation

containing both product flasks and intermediate flasks. (Fig. 1(a)) The root node of the net-

work is the initial flask F1, which is referred to as generation 0 of the network, and the

generation g > 0 is obtained by combinatorially applying heuristic rules of Scheme 1 to all

flasks of generation g− 1. Incidentally, the generation number g may serve as a coarse-

grained time variable indicating the progress of the reaction. Since multiple paths may lead

to the same flask, the auxiliary network representation is not a true tree graph. The reac-

tion network is obtained from the auxiliary network representation by retaining only product

flasks as network nodes and adding network edges based on the threshold criteria for ther-

modynamic and kinetic reaction parameters developed below. (Fig. 1(b))

6. We employ flask energies of product flasks and intermediate flasks to define thermodynamic

and kinetic reaction parameters for transformations between product flasks FK →FL. En-

ergy differences between initial and final product flasks, ∆EK→L = EL − EK , are natural

choices for thermodynamic parameters and are independent of possible multiple pathways

between FK and FL. In addition, we develop heuristic kinetic reaction parameters, which

take into account the flask energies of initial and final product flasks as well as the flask

energies of the intermediate flasks connecting them. The heuristic kinetic reaction parame-

ter WK→L of a N-step transformation FK →FL should be a function of the flask energies

{EKi, i = 0, . . . ,N} of the sequence of flasks {FK0 = FK,FK1, . . . ,FKN = FL}, which is

non-negative, additive for concatenated reaction sequences, and physically reasonable. We

suggest climb parameter Wc,K→L and arc parameter Wa,K→L as heuristic kinetic parameters

and assess their performance below. If multiple paths exist for the transformation FK→FL

are present, we choose the most feasible path among them, which is defined by having the

smallest heuristic kinetic reaction parameter.

7. Simple threshold criteria serve to determine thermodynamic and kinetic feasibility of trans-

formations between product flasks. Only transformations FK →FL with ∆EK→L ≤ ∆Emax
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and WK→L ≤W max are added as network edges to the reaction network, where ∆Emax and

W max are the thermodynamic and kinetic threshold constants, respectively.

HO
O

O

O
HO

HO O
O

OH
O

HO

OH

O

OH
OHO

O

O
HO

HO
OH

(a)
HO

OH

HO O
O

OH

O

OH
OHO

OH
O

HO

O
O

OH

O

O
HO

HO
O

(b)

Figure 1: (a) Auxiliary network and (b) reaction network T3 of formose reaction after 3 genera-
tions. Neutral flasks are indicated by black solid circles, intermediate flasks are shown by open
circles. Chemical formulas denote the largest constituent molecule of each flask. Line intensi-
ties signify kinetic arc parameters of individual reaction steps; smaller arc values (more feasible
reactions) are denoted by darker lines.

The heuristic kinetic reaction parameters are motivated by Hammond’s postulate and are de-

signed to approximate reaction activation barriers. In the framework of transition state theory,8

the activation barrier of a reaction is given by the energy of the highest point along the reaction

energy profile relative to the preceding energy minimum and may be approximated by the highest-

energy reaction intermediate. For multistep reactions, the elementary reaction with the highest

activation barrier determines the overall kinetics as the rate-limiting step. A convenient functional

form for heuristic kinetic parameters is suggested by the following analogy: In thermal equilib-

rium, the abundance of flask FK is given by the Boltzmann distribution, cK ∝ exp(−βEK), in

which β = 1/(kB T ) with Boltzmann constant kB and absolute temperature T . By analogy, we

define heuristic kinetic parameters WK→L for the reaction FK → FL in such a manner that the

corresponding reaction rate may be represented as kW→L ∝ exp(−βWK→L).

The simplest approximation for the kinetic reaction parameter follows if we assume that the

energy of the highest-energy intermediate flask approximates the activation barrier of the rate-
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limiting step. The corresponding kinetic climb parameter Wc,K→L for the N-step reaction FK →

FL is given by

Wc,K→L = ∑
i=0,...,N−1

max(EKi+1−EKi,0) , (1)

where we use the flask energies {EKi, i = 0, . . . ,N} as defined above. By definition, Wc,K→L yields

the highest activation barrier of a multistep reaction relative to the initial flask FK .

In complex reaction mechanisms, a further consideration are branching points in reactive tra-

jectories, which reduce the yield of each individual reaction product. Assuming that trajectory bi-

furcations occur with a constant rate at each intermediate flask, the probability of reaching a given

product flask decreases exponentially with the number of steps. Hence, it appears reasonable to

use an energetic parameter that increases roughly linearly with the number of transformation steps,

and we are led to define the kinetic arc parameter Wa,K→L for the reaction FK →FL as

Wa,K→L =
N−1

∑
i=0

(
(EKi+1−EKi)

2 +α
2) 1

2 (2)

where α is an empirical parameter and the flask energies {EKi, i = 0, . . . ,N} are defined as above.

We can consider α as a penalty factor for long paths and set α = 1 eV for the purposes of the

following discussion.

We can calibrate the kinetic climb and arc parameters and assess their performance using ex-

perimental knowledge of constituent processes of the formose reaction. We employ the heuris-

tic rule set of Scheme 1 and use the OpenBabel structure builder to convert SMILES strings to

three-dimensional models.48–50 The energies are determined throughout this work by structure op-

timizations using the PM7 semiempirical method within the MOPAC package.51 Solvation effects

in water are included using the conductor-like solvation model (COSMO)52 with an effective di-

electric constant of ε = 78.4. We consider reactions involving one molecule glycolaldehyde and

one formaldehyde molecule (F1 ={O−−CHCH2OH, CH2−−O}, Fig. 2). The predicted reaction

mechanisms include several well-established reaction routes: (i) enolization of glycolaldehyde

to ethene-1,2-diol (product indicated by blue circle in Fig. 2),53,54 (ii) aldol addition of glyco-
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laldehyde and formaldehyde to form glyceraldehyde55,56 (product in red), and (iii) hemiacetal

formation (product in green).57 As suggested by Hammond’s postulate, the intermediate flasks,

shown by empty circles in Fig. 2, trace the movement of charge in reactions (i)–(iii) in fairly good

approximation. The last step of the enolization describes a fictitious depolarization of the C=C

double bond and is energy neutral. The reaction paths (i) and (ii) share the enolate anion as the

highest-energy intermediate flask and thus have the same climb parameter Wc = 1.66 eV, while

their arc parameters are different: Wa = 4.70 eV (enolization) and Wa = 5.13 eV (aldol addition).

An additional reaction, (iv) a C−C coupling reaction via an aldehyde anion is predicted to occur

at larger values of kinetic parameters (Wc = 2.75 eV, Wa = 7.45 eV). While the reaction product

of (iv), dihydroxyacetone (shown in red in Fig. 2), is more stable than the products of reactions

(i)–(iii), the larger values of kinetic parameters reflect the experimental finding that deprotonation

of an aldehydic proton is unfavorable and requires umpolung techniques.58 In contrast, we expect

the enolate-based reactions (i) and (ii) as well as the hemiacetal formation (iii) (Wc = 1.81 eV, Wa

= 5.33 eV) to be feasible in aqueous solution.
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Figure 2: Selected energy profiles along 3-step chemical reactions between glycolaldehyde and
formaldehyde (F1 ={O−−CHCH2OH, CH2−−O}). Product flasks are represented by solid circles,
intermediate flasks by empty circles. Color coding and chemical formulas denote the largest con-
stituent molecule of each flask (see legend).

In order to investigate the performance of kinetic climb and arc parameters in more detail,

we consider the predicted formose reaction products after 3 and 6 generations starting from the
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flask F1 ={O−−CHCH2OH, CH2−−O, CH2−−O} (tetrose stoichiometry). We denote the resulting

reaction networks as T3 and T6, respectively. Using suitable threshold values for either kinetic

climb parameter (∆Emax = 0.75 eV, W max
c = 2.00 eV) or kinetic arc parameter (∆Emax = 0.75 eV,

W max
a = 5.50 eV), we are able to generate a classification of feasible / unfeasible reactions for the

T3 network that agrees with empirical expectations outlined above (Fig. 3).

The differences between the threshold criteria based on the kinetic climb and arc parameters are

noticeable in the T6 network (Fig. 4). A large number of compounds can be reached directly from

the initial flask via a comparatively low barrier (small values of Wc); however, for many of them

this is possible only by way of a long sequence of intermediate flasks. A simple threshold criterion

using kinetic climb parameter does treat this problem adequately and therefore does not permit

a simple feasible / unfeasible classification for multistep reactions. The kinetic arc parameter

exhibits a more desirable behavior: By penalizing long transformation sequences, it spreads the

parameter distribution such that a consistent set of threshold criteria (∆Emax = 0.75 eV, W max
a =

5.50 eV) remains useful over longer sequences of steps. These criteria are used throughout this

work. The detailed results are given in Section S1 of the Supporting Information.
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Figure 3: Thermodynamic and kinetic reaction parameters for formose reaction products in the T3
network using (a) kinetic climb parameter Wc, (b) kinetic arc parameter Wa. Filled circles represent
product flasks; color coding and chemical formulas denote the largest constituent molecule of
each flask (see legend). The dark shaded areas depict the range of feasible reactions given by the
threshold criteria for thermodynamic and kinetic reaction parameters.
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Figure 4: Thermodynamic and kinetic reaction parameters for formose reaction products in the T6
network using (a) kinetic climb parameter Wc, (b) kinetic arc parameter Wa. See Fig. 3 for details.

A potential weakness of the kinetic arc parameter is that it does not distinguish between the

forward and backward reactions. However, since we only apply simple threshold selection crite-

ria, this is unlikely to significantly affect our conclusions. Nevertheless, it is desirable to develop

kinetic parameters that are irreversible and show linear increase with number of steps. This effort

will require considering a wider range of chemical reactions and is reserved for future work. The

accuracy of our predictions are limited by the choice of the heuristic kinetic parameters as well as

systematic errors of quantum chemical calculations. Furthermore, we disregard the stereochem-

istry and conformation equilibria of the formose products in this work. We expect the effects of

the latter approximations to be small compared to the errors related to heuristic kinetic parameters

and simple threshold criteria. The deviation from experimental results due to these challenges will

be addressed in future work.

3 Probing the Chemistry of the Formose Reaction Network

The formose reaction is a self-condensation of formaldehyde in alkaline solutions36,37 and at sur-

faces of various minerals.40,59,60 The presence of autocatalytic cycles41 and the mechanistic paral-

lels to sugar metabolism led to conjectures that it played an important role in the prebiotic forma-
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tion of sugars.42–44 The product mixture of the formose reaction was analyzed by multiple groups

and more than 40 reaction products were identified to date.37–39

We investigated the structures and properties of formose reaction networks obtained after 9

generations starting from the initial flasks F1 ={O−−CHCH2OH, CH2−−O, CH2−−O} (tetrose stoi-

chiometry, denoted by T9) and F1 ={O−−CHCH2OH, CH2−−O, CH2−−O, CH2−−O} (pentose stoi-

chiometry, P9). Since the heuristic heuristic transformation rules used in the network construction

preserve flask stoichiometry (Scheme 1), the nodes of the the resulting network representation cor-

respond to the possible states of the reactive system with fixed stoichiometry. We refer to this

network representation as the finite-state representation, by analogy with finite-state machines,61

and contrast it with the commonly used representations of metabolic networks as interaction net-

works, in which individual metabolites are network nodes and network edges connect all reaction

participants with each other.5,32,62,63 The finite-state representation of the reaction network is a

directed network with edge weights given by thermodynamic and / or kinetic parameter values.

In the following, we only consider the out-component of the reaction network reachable from the

initial flask F1.

The T9 network contained a total of 149 nodes, including 146 distinct neutral molecules, and

445 edges. The chemical composition of the T9 network is shown in Table 1. The graphic rep-

resentation of the network was created by the open-source Cytoscape program64 using a force-

directed algorithm followed by minimal manual adjustments (Fig. 5). The product flasks were

characterized by the chemical class of the largest constituent molecule as sugars, enols / enediols,

acetals / hemiacetals, or other. (Table 1) The predicted formose products included 2 trioses (glycer-

aldehyde and dihydroxyacetone) and 3 tetroses (aldotetrose, ketotetrose, and the branched tetrose

2,3-dihydroxy-2-(hydroxymethyl)propanal), which were experimentally identified in the formose

reaction mixture.38,39

Major reaction pathways of sugar formation were determined by minimizing the sum of the

kinetic arc parameters along the path from F1 to the sugar-containing product flasks (Fig. 5).

Pathways predicted in this way included mechanisms previously postulated for the formose reac-
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Table 1: Chemical composition of T9 and P9 networks.

T9 P9
Sugars 6 11
Acetals 78 235
Enols 9 9
Other 53 99
Total 146 354

Other

Sugar

Acetal
Enol

Figure 5: Finite-state representation of the T9 network. Filled circles represent product flasks.
Color coding and chemical formulas denote the largest constituent molecule of the respective flask
(see legend). Black solid lines indicate major pathways of sugar formation.
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tion.37,40 The central pathway of carbon-chain elongation was found to involve sequences of aldol

additions55,56 and aldose–ketose isomerizations54 (Fig. 6). As discussed above, glyceraldehyde

was formed by aldol condensation of glycolaldehyde and formaldehyde, while subsequent aldol

condensation with another molecule of formaldehyde yielded the branched tetrose 2,3-dihydroxy-

2-(hydroxymethyl)propanal. Unbranched carbon-chain elongation involved an isomerization of

glyceraldehyde to dihydroxyacetone via an enediol intermediate (Lobry de Bruyn–van Ekenstein

isomerization),54 followed by another aldol condendation reaction, which produced ketotetrose.

The isomerization of ketotetrose via an enediol intermediate produced aldotetrose. Notably, the

aldose–ketose isomerizations involve endothermic steps and appear as the slow steps of sugar for-

mation. (Fig. 5)

In addition, several unexpected reaction pathways were obtained involving three-membered

and four-membered cyclic tetrose hemiacetals. (Fig. 6) These reaction pathways involve fewer

reactions and appear to provide a shortcut to tetrose sugars. However, the strained three-membered

and four-membered hemiacetal structures have not been experimentally characterized, and it is

undetermined if they occur as reaction intermediates in aqueous solutions. The favorable flask

energies associated with these structures are possibly an artifact of the semiempirical PM7 method

and may be corrected by more accurate quantum chemical methods. The full list of reaction

products of the T9 network is given in Section S2 of the Supporting Information. The details

of the sugar formation pathways can be found in Section S3 of the Supporting Information.

The T9 network contained the prominent autocatalysis feature of the formose reaction sug-

gested by Breslow.41 Breslow’s mechanism includes the formation of aldotetrose via a sequence

of aldol additions and isomerizations, followed by the retroaldol cleavage of aldotetrose into two

glycolaldehyde molecules.41 Note that in the finite-state representation of the reaction network,

the initial and the final flasks of autocatalytic processes are not identical and thus do not form

closed cycles. Instead, product flasks arising from autocatalytic processes can be recognized by

the doubling of the number of glycolaldehyde molecules per flask (Fig. 5). In addition, auto-

catalytic cycles involving strained three- and four-membered hemiacetals were found in the T9
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Figure 6: Major reaction pathways of sugar formation in the T9 network. See Fig. 5 for details.
Line intensities signify kinetic arc parameters of individual reaction steps; smaller arc values (more
feasible reactions) are denoted by darker lines.

network and were favored by shorter reaction sequences (Fig. 6). The key step of these pathways

involved an oxetane ring cleavage to glycolaldehyde and ethene-1,2-diol. Along with the four-

membered aldotetrose hemiacetal, this mechanism might be rejected on thermodynamic grounds

by more accurate quantum chemical methods.

The P9 network consisted of 371 neutral flasks (354 distinct molecules) connected by 1114

reactions (Fig. 7). The reaction mixture contained 11 sugars including 3 pentoses: 3-ketopentose,

2,3,4-trihydroxy-2-(hydroxymethyl)butanal and 1,3,4-trihydroxy-3-(hydroxymethyl)butan-2-one.

The formation of 2-ketopentose and aldopentose is expected after 12 and 15 generations, respec-

tively. The subgraph of the P9 network containing sugars, enols, and enediols was found to be

qualitatively similar to that of the T9 network but exhibited a larger set of concurrent reaction

pathways as well as several Breslow-type autocatalytic processes involving higher sugars, e. g.,

dihydroxyacetone, as catalysts for condensation of formaldehyde (Fig. 7). The full list of reaction

products of the P9 network is given in Section S2 of the Supporting Information.
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4 Discussion and Outlook

Studies of complex reaction networks, their properties, and dynamics are a central theme in cell

metabolism and chemical process modeling. A considerable amount of experimental data and

chemical experience are required to identify the relevant chemical species and reaction pathways.

An even more uncertain picture presents itself in the field of origins of life as both the chemical

composition of the primordial mixture and the external conditions are the subject of substantial

debate. This work presents the first step towards construction of global models of complex reaction

networks from quantum chemistry. We seek to overcome the main challenge of complex reaction

networks—the high dimensionality of the reactive potential energy surfaces—by using chemical

heuristics borrowed from organic chemistry. Quantum chemical methods can then employed to

explore the local structure of potential energy surfaces, relying on well-established and efficient

computational procedures.

The chemical heuristics used in this work (Scheme 1) were chosen to be generic representa-

tions of polar organic reactions and to introduce as little bias as possible. Using chemical heuristics

and semiempirical quantum chemistry, sugars up to C5 emerge naturally as formose reaction prod-

ucts, and aldol condensations and aldose–ketose isomerizations are predicted as favorable reaction

mechanisms, in line with expectations from experiment. However, the presence of strained three-

and four-membered cyclic hemiacetals (Fig. 6) indicates that a number of improvements can be

expected: (i) More accurate quantum chemical methods than the PM7 semiempirical method and

COSMO solvation model used in this work (Mean unsigned error of the PM7 method for reac-

tion energies of simple organic reactions is 4 kcal/mol51); (ii) Improvements in thermodynamic

and kinetic reaction parameters and more sophisticated classification approaches for feasible /

unfeasible reactions; (iii) Refinement and extension of rules of chemical transformation beyond

“arrow pushing” rules of polar organic reactions; and (iv) Combinations with existing methods of

global potential energy surface (PES) exploration.31 An important extension is the development

of heuristic rule sets for more challenging classes of chemical reactions such as radical reactions,

photochemical processes, and reactions involving organometallic compounds. Methods of statisti-
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cal inference may help in deriving new rule sets specific to these domains from the existing body

of experimental data or quantum chemical calculations.

The formose reaction is a convenient testbed for the HAQC approach since many formose prod-

ucts have been identified and mechanistic proposals for major reaction pathways exist. A host of

other complex reaction networks have been described but little is known about their product com-

positions and mechanisms. Complex chemical reactions of relevance to prebiotic chemistry in-

clude selective formose reactions catalyzed by phosphate,65 borate,40 or silicate;66 condensations

of hydrogen cyanide and formamide to nitrogen heterocycles;67 the triose–ammonia reaction;68,69

and the nucleoside synthesis recently suggested by Sutherland and co-workers.70,71 Detailed stud-

ies of these and other abiotic reaction networks may help to elucidate common properties of re-

action networks and differences from networks formed by evolution. Work along these lines is

described in our companion publication.45

Finally, the combination of heuristic rules and quantum chemical calculations might be viewed

as an expedient tool for exploring chemically accessible regions of chemical space.31,72–74 Coupled

with efficient quantum chemical methodology and high-throughput computation, it holds promise

for novel approaches for molecular design and optimization.
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