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Time-dependent density functional theory (TDDFT) is rapidly emerging as a premier method for
solving dynamical many-body problems in physics and chemistry. The mathematical foundations of
TDDFT are established through the formal existence of a fictitious non-interacting system (known
as the Kohn-Sham system), which can reproduce the one-electron reduced probability density of
the actual system. We build upon these works and show that on the interior of the domain of
existence, the Kohn-Sham system can be efficiently obtained given the time-dependent density.
Since a quantum computer can efficiently produce such time-dependent densities, we present a
polynomial time quantum algorithm to generate the time-dependent Kohn-Sham potential with
controllable error bounds. As a consequence, in contrast to the known intractability result for
ground state density functional theory (DFT), the computation of the necessary time-dependent
potentials given the initial state is in the complexity class described by bounded error quantum
computation in polynomial time (BQP).

I. INTRODUCTION

Despite the many successes achieved so far, the ma-
jor challenge of time-dependent density functional theory
(TDDFT) is to find good approximations to the Kohn-

Sham potential, V̂ KS , for a non-interacting system. This
is a notoriously difficult problem and leads to failures
of TDDFT in situations involving charge-transfer excita-
tions [1], conical intersections [2] or photoionization [3].
Naturally, this raises the following question: how hard is
the generation of the necessary potentials? We answer
this question and show that access to a universal quan-
tum computer is sufficient.

The present work, in addition to contributing to on-
going research about the foundations of TDDFT, is the
latest application of quantum computational complexity
theory to a growing list of problems in the physics and
chemistry community [4]. Our result emphasizes that
the foundations of TDDFT are not devoid of compu-
tational considerations, even theoretically. Further, our
work highlights the utility of reasoning using hypothet-
ical quantum computers to classify the computational
complexity of problems. The practical implications are
that, within the interior of the domain of existence, it is
efficient to compute the necessary potentials using a com-
puter with access to an oracle capable of polynomial-time
quantum computation.

Quantum computers are devices which use quantum
systems themselves to store and process data. On the
one hand, one of the selling points of quantum compu-
tation is to have efficient algorithms for calculations in

∗ email: james.whitfield@univie.ac.at

quantum chemistry and quantum physics [5–7]. On the
other hand, in the worst case, quantum computers are
not expected to solve all NP (non-deterministic polyno-
mial time) problems efficiently [8]. Therefore, it is an on-
going investigation into when a quantum computer would
be more useful than a classical computer. Our current re-
sult points towards evidence of computational differences
between quantum computers and classical computers. In
this way, we provide additional insights to one of the driv-
ing questions of information and communication process-
ing in the past decades concerning practical application
areas of quantum computing.

Our findings are in contrast to a previous result by
Schuch and Verstraete [9], which showed that, in the
worst-case, polynomial approximation to the univer-
sal functional of ground state density functional theory
(DFT) is likely to be impossible even with a quantum
computer. Remarkably, this discrepancy between the
computational difficulty of TDDFT and ground state
DFT is often reversed in practice where for common place
systems encountered by physicists and chemists, TDDFT
calculations are often more challenging than DFT cal-
culations. Therefore, our findings provide more reasons
why quantum computers should be built.

II. BACKGROUND

A. Time-dependent Kohn-Sham systems

To introduce TDDFT and its Kohn-Sham formalism,
it is instructive to view the Schrödinger equation as a
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map [10]

{V̂ (t),Ψ(t0)} 7→ {n(t),Ψ(t)}. (1)

The inputs to the map are an initial state of N electrons,
Ψ(t = t0), and a Hamiltonian, Ĥ(t) = T̂ + Ŵ + V̂ (t)

that contains a kinetic-energy term, T̂ , a two-body in-
teraction term such as the Coulomb potential, Ŵ , and
a scalar time-dependent potential, V̂ (t). The outputs of
the map are the state at later time, Ψ(t) and the one-
particle probability density normalized to N (referred to
as the density),

〈n̂(x)〉Ψ(t) = 〈Ψ(t)|n̂(x)|Ψ(t)〉

= N

∫
|Ψ(x, x2, ..., xN ; t)|2dx2...dxN . (2)

TDDFT is predicated on the use of the time-dependent
density as the fundamental variable and all observables
and properties are functionals of the density. The crux of
the theoretical foundations of TDDFT is an inverse map
which has as inputs the density at all times and the initial
state. It outputs the potential and the wave function at
later times t,

{〈n̂〉Ψ(t),Ψ(t0)} 7→ {V̂ (t),Ψ(t)}. (3)

This mapping exists via the Runge-Gross theorem [11]
which shows that, apart from a gauge degree of freedom
represented by spatially homogeneous variations, the po-
tential is bijectively related to the density. However, the
problem of time-dependent simulation has not been sim-
plified; the dimension of the Hilbert space scales expo-
nentially with the number of electrons due to the two-
body interaction Ŵ . As a result, the time-dependent
Schrödinger equation quickly becomes intractable to
solve with controlled precision on a classical computer.

Practical computational approaches to TDDFT rely on
constructing the non-interacting time-dependent Kohn-
Sham potential. If at time t the density of a system
described by potential and wave function, {V̂ (t),Ψ(t)},
is 〈n̂〉Ψ(t), then the non-interacting Kohn-Sham system

(Ŵ = 0) reproduces the same density but using a differ-

ent potential, V̂ KS . The key difficulty of TDDFT is ob-
taining the time-dependent Kohn-Sham potential. One
route to obtaining such potentials is the evaluation of the
map,

{〈n̂〉Ψ(t),Φ(t0)} 7→ {V̂ KS(t),Φ(t)}. (4)

Here, the wave function of the Kohn-Sham system,
Φ(t) = A[φ1(t)φ2(t)...φN (t)], is an anti-symmetric com-
bination of single particle wave functions, φi(t), such
that for all times t, the Kohn-Sham density, nKS(t) =

〈n̂〉Φ(t) =
∑N
i=1 |φi(t)|2, matches the interacting density

〈n̂〉Ψ(t). If such a map exists, we call the system V -
representable while implicitly referring to non-interacting
V KS-representablity.

As the map in Eq. (4) is foundational for TDDFT im-
plementations based on the Kohn-Sham system, there are
many articles [12–15] examining the existence of such a
map. Instead of attempting to merely prove the existence
of the Kohn-Sham potential, we will explore the limits on
the efficient computation of this map and go beyond the
scope of the previous works by addressing questions from
the vantage of computational complexity.

The first approach to the Kohn-Sham inverse map
found in Eq. (4), was due to van Leeuwen [12] who con-
structed a Taylor expansion in t of the Kohn-Sham po-
tential to prove its existence. The construction relied on
the continuity equation, −∇·ĵ = ∂tn̂, and the Heisenberg
equation of motion for the density operator to derive the
local force balance equation at a given time t:

∂2
t n̂− i[Ŵ , ∂tn̂] = −∇ · (n̂∇V̂ ) + Q̂ (5)

where Q̂ = i[T̂ , ∂tn̂] is the momentum-stress tensor. In
the past few years, several results have appeared extend-
ing van Leeuwen’s construction [13–15] to avoid technical
problems (related to convergence and analyticity require-
ments). Here previous rigorous results by Farzanehpour
and Tokatly [15] on lattice TDDFT are directly applica-
ble to our quantum computational setting.

B. The discrete force balance equation

We summarize the details of the discretized local force-
balance equation from [15]. More detailed derivations
are provided in Appendix A. We consider a system dis-
cretized on a lattice of M points. In second quantiza-

tion, the creation âi and annihilation â†j operators for
arbitrary sites i and j must satisfy âiâj = −âj âi and

âiâ
†
j = δij− â†j âi. We define a discretized one-body oper-

ator as Â =
∑M
n

∑M
m Amnâ

†
mân and designate A as the

coefficient matrix of the operator. The matrix elements
are Amn = 〈m|Â|n〉 where |m〉 and |n〉 are the single elec-
tron sites corresponding to operators âm and ân. Similar
notation and definitions hold for the two-body operators.

The Hamiltonian, the density at site j, and the conti-
nuity equation are then given respectively by

Ĥ(t) =
∑
ij

[Tij + δijV
KS
i (t)]â†i âj +

∑
ijkl

Wijklâ
†
i â
†
j âkâl, (6)

n̂j = â†j âj , (7)

∂tn̂j = −
∑
k

Ĵjk = −i
∑
k

Tkj(â
†
j âk − â†kâj). (8)

For the density of the Kohn-Sham system, nKS(t) =
〈n̂〉Φ(t), to match the density of the interacting system,
n(t) = 〈n̂〉Ψ(t), the discretized local force balance equa-
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tion [15] must be satisfied,

Saimj =
∑
k

(V KSk − V KSj )Tkj〈â†j âk + â†kâj〉Φ(t) (9)

=
∑
k

〈
TkjΓ̂jk − δjk

∑
m

TmjΓ̂jm

〉
Φ(t)

V KSk (10)

=
∑
k

KjkV
KS
k . (11)

Here Γ̂ij = â†i âj + â†j âi is twice the real part of the one-
body reduced density operator. A derivation of this equa-
tion is found in Appendix A. The vector Saim is defined
as Saimj (Ψ,Φ) = ∂2

t 〈n̂j〉Ψ(t) − 〈Q̂KSj 〉Φ(t). The force bal-

ance coefficient matrix, K = 〈K̂〉Φ(t), is defined through
Eq. (10) and Eq. (11). Since the target density enters
only through the second derivative appearing in Saim,
the initial state Φ(t0) must reproduce the initial density,
〈n̂〉Ψ(t0), and the initial time-derivative of the density,
∂t〈n̂〉Ψ(t0).

The system is non-interacting V -representable so long
as K is invertible on the domain of spatial inhomoge-
neous potentials. Moreover, the Kohn-Sham potential is
unique [15]. Hence, the domain of V -representability is
Ω = {Φ | kern K(Φ) = {Vconst}}. To ensure efficiency,
we must further restrict attention to the interior of this
domain where K is sufficiently well-condition with re-
spect to matrix inversion. The cost of the algorithm
grows exponentially as one approaches this boundary but
can in some cases be mitigated by increasing the number
of lattice points.

III. RESULTS

A. Quantum algorithm for Kohn-Sham potentials

We consider an algorithm to compute the density with
error ε in the 1-norm to be efficient when the temporal
computational cost grows no more than polynomially in
1/ε, polynomially in (max0<s<t ‖H(s)‖)t, polynomially
in M , the number of sites, and polynomially in, N , the
number of electrons. We will describe such an algorithm
within the interior of the domain of V -representability.

To ensure that the algorithm is efficient, we must as-
sume that the local kinetic energy and the local po-
tential energy are both bounded by constant EL and
that there is a fixed number, κ such that ‖K−1‖∞ =
maxi

∑
j |(K−1)ij | ≤ κ. In Appendix C, we show that as

long as EL ≤
√

logN , the algorithm remains efficient for
fixed κ. As is typical in numerical matrix analysis [16],
the inversion of a matrix become extremely sensitive to
errors as the condition number, C = ‖K‖ ‖K−1‖, grows.
The Lipschitz constant of the Kohn-Sham potential must
also scale polynomially with the number of electrons.

The Lipschitz constant of the Kohn-Sham system could
be different than that of the interacting system [10, 17]

and understanding of the relationship between these
timescales requires a better understanding of the initial
state Φ(t0) dependence. What can be done, in practice,
is to begin with an estimate of the maximum Lipschitz
constant and if any two consecutive Kohn-Sham poten-
tials violate this bound, restart with a larger Lipschitz
constant.

Our efficient algorithm for computing the time-
dependent potential, is depicted in Figure 1. There are
two stages. The first stage involves a quantum computer
and its inputs are the initial many-body state Ψ(t0) and
the external potential V (t) on a given interval [t0, t1].
The quantum computer then evolves the initial state with
the given external potential and obtains the time-evolved
wave function at a series of discrete time-steps. The de-
tailed analysis of the expectation estimation algorithm
found in Ref. [18] is used to bound errors in the mea-
surement of the density and to estimate its second time
derivative. In order to rigorously bound the error term,
we assume that the fourth time derivative of the density
is bounded by a constant, c4.

The total cost of both stages of the algorithm is dom-
inated by the cost of obtaining the wave function as this
is the only step that depends directly on the number of
electrons. Fortunately, quantum computers can perform
time-dependent simulation efficiently [19, 20]. The cost
depends on the requested error δψ and depends on the
length of time propagated when time is measured relative
to the norm of the Hamiltonian being simulated. The es-
sential idea is to leverage the evolution of a controllable
system (the quantum computer) with an imposed (sim-
ulation) Hamiltonian [6]. It should be highlighted that
obtaining the density through experimental spectroscopic
means is equivalent to the quantum computation pro-
vided the necessary criteria for efficiency and accuracy
are satisfied.

The second stage involves only a classical computer,
with the inputs being a consistent initial Kohn-Sham
state Φ(t0) and the interacting ∂2

t 〈n̂〉Ψ(t) on the given
interval [t0, t1]. The output is the Kohn-Sham potential
at sufficiently many time steps to ensure the target accu-
racy is achieved. The classical algorithm performs matrix
inversion of a M by M matrix. The cost for the matrix
inversion is O(M3) regardless of the other problem pa-
rameters (such as the number of electrons).

In our analysis, detailed in Appendix B, we only con-
sider errors from the quantum and classical aspects of
our algorithm but we avoided some unnecessary com-
plications omitting any detailed analysis of the classical
problem of propagating the non-interacting Kohn-Sham
system. Kohn-Sham propagation in the classical com-
puter is well studied and can be done efficiently using
various methods [21]. Further, we have also assumed
that errors in the measured data are large enough that
issues of machine precision do not enter. Thus, we have
ignored the device dependent issue of machine precision
in our analysis and refer to standard treatments [16] for
the proper handling of this issue.
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FIG. 1. In part a, the quantum computer takes as inputs the initial state and the time-dependent Hamiltonian and outputs
the density at sufficiently many times. The output allows the numerical computation of the second derivative of the density
at each time step which is then utilized by the classical computer to solve the discrete force balance equation Eq. (11). A
consistent initial state at time t = 0 must also be given which reproduces n(0) and ∂tn(0). The classical algorithm is then used
to obtain the Kohn-Sham potential at each subsequent time step through an iterated marching process as depicted in part b.

B. Error bounds

We demonstrate that our algorithm has the desired
scaling by bounding the final error in the density. We
follow an explicit-type marching process to obtain the
solution at time q∆t from the solution at (q− 1)∆t. The
full details are given in Appendix B.

As the classical matrix inversion algorithm at each
time step is independent of the number of electrons and
the quantum algorithm requires poly(N, tf , δ

−1
ψ , ε−1) per

time step, we can utilize error analysis for matrix inver-
sion and an explicit marching process to get a final esti-
mate of the classical and quantum costs for the desired
precision ε

cost Classical= poly(L, tf , ε
−1,M)e64κE2

L (12)

cost Quantum= poly(L, tf , ε
−1, r,M,N) e16κE2

L (13)

The parameter r is the number of repetitions of the quan-
tum measurement required to obtain a suitably large con-
fidence interval.

The intractability of the algorithm as the small-
est eigenvalue vanishes reflects the breakdown of V -
representability. Despite the exponential dependence of
the algorithm on the condition number of the force bal-
ance matrix, Eq. (11), the domain of V -representability
is known to encompass all time-analytic Kohn-Sham po-
tentials in the continuum limit [13, 14]. Examining the
exponential dependence, it is clear that increases in κ can
be offset by decreases in the local energy.

C. Quantum computation and the computational
complexity of TDDFT

Since the cost of both the quantum and classical al-
gorithms scale as a polynomial of the input parameters,
we can say that this is an efficient quantum algorithm
for computing the time-dependent Kohn-Sham potential.
Therefore, the computation of the Kohn-Sham potential
is in the complexity class described by bounded error
quantum computers running in polynomial time (BQP).
This is the class of problems that can be solved efficiently
on a quantum computer.

Quantum computers have long been considered as a
tool for simulating quantum physics [5–7, 22, 23]. The
applications of quantum simulation fall into two broad
categories: (1) dynamics [24] and (2) ground state prop-
erties [25]. The first problem is in the spirit of the original
proposal by Feynman [22] and is the focus of the current
work.

Unfortunately, unlike classical simulations, the com-
plete final state of a quantum simulation is not readily
available due to the exponentially large size of the simu-
lated Hilbert space. The retrieval of the full state would
require quantum state tomography, which in the worst
case, requires an exponential number of copies of the
state. If, instead, the simulation results can be encoded
into a minimal set of information and the simulation al-
gorithm can be efficiently executed on a quantum com-
puter, then the problem is in the complexity class BQP.
Extraction of the density [18] is the relevant example of
such a quantity that can be obtained. BQP is analogous
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to the polynomial-time (P) class of problems for classical
computers however, in BQP the output is probabilistic
with error bounded away from 1/2. While BQP is the
class of problems that quantum computers solve, there is
no definitive proof that the class of problems BQP con-
tains is strictly larger than P. However, there is evidence
(e.g. factoring [26]) that suggests quantum computers
are more powerful.

In summary, what we have proven is that computing
the Kohn-Sham potential at bounded κE2

L is in the com-
plexity class BQP. To be precise, two technical comments
are in order. First, we point out that we are really fo-
cused on promise problems since we require constraints
on the inputs to be satisfied (i.e. κE2

L <constant). Sec-
ond, computing the map Eq. (4) is not a decision prob-
lem and cannot technically be in the complexity class
BQP. However, we can define the map to b bits of preci-
sion by solving M log b accept-reject instances from the
corresponding decision problem, which is in BQP. These
concepts are further elaborated in [4, 27].

IV. CONCLUSION

In this article, we have rigorously demonstrated two
fundamental results concerning the computational com-
plexity of time dependent density functional theory.
First, we showed that with a quantum computer, one
need only provide the initial state and external poten-
tial on the interval [t0, t1] in order to generate the time-
dependent Kohn-Sham potentials. Second, we show that
if one provides the density on the interval [t0, t1], the
Kohn-Sham potential can be obtained efficiently with a
classical computer.

We point out that an alternative to our lattice ap-
proach may exist using tools from partial differential
equations. Early results in this direction have been pi-
oneered using an iterated map whose domain of conver-

gence defines V -representability [14]. The convergence
properties of the map have been studied in several one-
dimensional numerical examples [14, 28]. Analytical un-
derstanding of the rate of convergence to the fixed point
would complement the present work with an alternate
formulation directly in real space.

While this paper focuses on the simulation of quantum
dynamics, the complexity of the ground state problem is
interesting in its own right [4, 9, 27]. In this context,
ground state DFT was formally shown [9] to be difficult
even with polynomial time quantum computation. In-
terestingly, in that work, the Levy-minimization proce-
dure [29] was utilized for the interacting system to avoid
discussing the non-interacting ground state Kohn-Sham
system and its existence. We have used a different ap-
proach and worked within the Kohn-Sham picture, but it
might be interesting to construct a functional approach
directly.

Future research involves improving the scaling with
the condition number or showing that our observed ex-
ponential dependence on κE2

L is optimal. Additionally,
pre-conditioning the matrix K can also help increase the
domain of computationally feasible V -representability.

Our findings provide further illustration of how the
fields of quantum computing and quantum information
can contribute to our understanding of physical systems
through the examination of quantum complexity theory.
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Appendix A: Derivation of discrete local-force balance equation

The results found in Farzanehpour and Tokatly [15], are directly applicable to the quantum computational case
since a quantum simulation would ultimately require a discretized space [6]. In [15], they utilized a discrete space but
derive all equations in first quantization. For this reason we think the derivation in second quantization may be useful
for future inquiry into discretized Kohn-Sham systems. Throughout this section, we consider the non-interacting
Kohn-Sham system without an interaction term, i.e. Ŵ = 0.

First note, [â†pâq, â
†
j ] = â†pδjq and [â†pâq, âi] = −âqδip to get the first derivative of the density

∂tn̂j = −
∑
k

Ĵjk = i[Ĥ, n̂j ] (A1)

= i
∑
pq

Tpq[â
†
pâq, â

†
j âj ] (A2)

= −i
∑
k

Tkj(â
†
j âk − â†kâj) (A3)

Here and throughout, we assume that there is no magnetic field present and consequently Tij = Tji.

To get to the discrete force balance equation, consider ∂2
t n̂j = i[Ĥ, ∂tn̂j ] = i[V̂ , ∂tn̂j ] + Q̂j + i[Ŵ , ∂tn̂j ] with

Q̂j = i[T̂ , ∂tn̂j ], a term that does not depend on the local potential. This is analogous to Eq. (5) first derived in van
Leeuwen’s paper [12].

In the case that the non-interacting Kohn-Sham potential is desired, only the momentum-stress tensor is needed
since Ŵ = 0 in the non-interacting system. We will need the expression for Q̂j so let us compute it now for the KS
system,

Q̂j = i[T̂ , ∂tn̂j ] =
∑
pq

∑
k

TpqTjk[â†pâq, â
†
j âk − â†kâj ] (A4)

=
∑
pq

∑
k

TpqTjk(â†pâk + â†kâp)δjq −
∑
pq

∑
k

TpqTjk(â†j âp + â†pâj)δqk (A5)

=
∑
pq

∑
k

TpqTjk

{
Γ̂kpδjq − Γ̂jpδqk

}
(A6)

=
∑
pq

Tpqδjq

(∑
k

TjkΓ̂kp

)
−
∑
qk

Tjkδqk

(∑
p

Γ̂jpTpq

)
(A7)

=
∑
p

(∑
k

TjkΓ̂kp

)
Tpj −

∑
q

(∑
p

Γ̂jpTpq

)
Tqj (A8)

=
( [

T, Γ̂
]
T

)
jj

(A9)

Here we have defined the real part of the 1-RDM as Γ̂ij = â†i âj + â†j âi following the notation in the main text and T
is the coefficient matrix of the kinetic energy operator.

Next, we obtain more convenient representations for the local force balance equation. Beginning with ∂2
t n̂ =

i[Ĥ, ∂tn̂] = i[T̂ , ∂tn̂] + i[V̂ , ∂tn̂] = Q̂+ i[V̂ , ∂tn̂]. Defining Ŝ = ∂2
t n̂− Q̂, we have the following,

Ŝj = i[V̂ , ∂tn̂j ] = i

[(∑
m

Vmâ
†
mâm

)
,

(
−i
∑
k

Tkj(â
†
j âk − â†kâj)

)]
=
∑
k

VkTkj â
†
j âk −

∑
k

VjTkj â
†
j âk −

∑
k

VjTkj â
†
kâj +

∑
k

VkTkj â
†
kâj

=
∑
k

(Vk − Vj)Tkj(â†j âk + â†kâj) (A10)

=
∑
k

Tkj(â
†
j âk + â†kâj)Vk −

∑
m

Tmj(â
†
j âm + â†mâj)

(∑
k

δjkVk

)

=
∑
k

{
TkjΓ̂jk − δjk

∑
m

TmjΓ̂jm

}
Vk (A11)



8

So now consider the LHS as vector Ŝ with components Ŝj = ∂2
t n̂j− Q̂j . Similarly consider the potential V as a vector

with components Vi, then we can write Eq. (A11) as Ŝ = K̂V . Examining Eq. (A10), if Vk = Vk′ for all k, k′ then the
RHS of Eq. (A10) vanishes. Hence, K always has at least one vector in the null space, namely the spatially constant
potential.

Farzanehpour and Tokatly [15] study the existence of a unique solution for the non-linear Schrödinger equation
which follows from Eq. (A11):

∂tΦ = −i(Ĥ0 + V̂ KS) = −i(Ĥ0 − K̂(Φ)−1Ŝ)Φ = F̂ (Φ) . (A12)

In the space where K̂ has only one zero eigenvalue, the Picard-Lindelöf theorem [M. E. Lindelöf, C. R. Hebd. Sances
Acad. Sci. 116, 454 (1894)] guarantees the existence of a unique solution.

The Picard-Lindelöf theorem concerns the differential equation ∂t y(t) = f(t, y(t)) with initial value y(t0) on t ∈
[t0−ε, t0 +ε]. If f is bounded above by a constant and is continuous in t and Lipschitz continuous in y then, according
to the theorem, for ε > 0, there exists a unique solution y(t) on [t0 − ε, t0 + ε]. This solution can be extended until

either y becomes unbounded or y is no longer a solution. The conditions of the theorem are satisfied because K̂(Φ)

and Ŝ are quadratic in Φ, the RHS is Lipschitz continuous in Φ in the domain where K̂ has only one zero eigenvalue,
and the continuity of K̂ and Ŝ in time follows immediately from the continuity of Φ.

A nice connection of Eq. (A11) to master equations in probabilistic processes can be drawn. In Eq. (A11), K̂ has
the form of a master equation for a probability distribution P ,

∂tPn(t) =
∑
n′

wnn′Pn′(t)− wn′nPn(t) (A13)

=
∑
n′

(
wnn′ − δnn′

∑
m

wmn

)
Pn′ (A14)

with

wnn′ = Tnn′〈Φ(t)|(â†nân′ + â†n′ ân)|Φ(t)〉. (A15)

The key difference is that the entries of K are not strictly positive (〈Φ(t)|â†i âj |Φ(t)〉 can be positive or negative).
Since K is Hermitian and its null space contains the uniform state, if all transition coefficients were positive, then K
would satisfy detailed balance.

Appendix B: Detail analysis of the error bounds

In this appendix, we provide the full error analysis alluded to in the main text. Before diving into the details, let
us give an overview. In the first subsection, we look at the error in the wave function at time t. In each time step the
error is bounded from the errors in the previous steps. This leads to a recursion relation which we solve to get a bound
for the total error at any time step. This error is propagated forward because we must solve KV = S = Q + ∂2

t n
for V based on the data from the previous time step. The error in ∂2

t n is due to the finite precision of the quantum
computation and is independent of previous times. In the second subsection, the error in the density is then derived
followed by a cost analysis in the final subsection.

We rescale time by factor c = 1/T such t1 − t0 = 1 to get the final time step z = 1/∆t. This rescaling is possible
because there is no preferred units of time. That said the rescaling of time cannot be done indefinitely for two
reasons. First, the Lipschitz constant of both the real and the KS system must be rescaled by same factor of c.
Since the cost of the algorithm depends on the Lipschitz constant, increasingly long times will require more resources.
Second, the quantum simulation algorithm does have an intrinsic time scale set by the norm of the H and its time
derivatives [19, 20]. Rescaling time by c increases the norm of H by the same factor; consequently, the difficulty of
the quantum simulation is invariant to trivial rescaling of the dynamics.

It is important to get estimates which do not directly depend on the number of sites. To do this we assume that
the lattice is locally connected under the hopping term such that there are at most d elements per row of T (since T
is symmetric, it is also d-col-sparse). This is equivalent to a bound for the local kinetic energy.

Throughout, we work with the matrix representations of the operators and the states. The Lp vector norms [16] with

p = 1, 2, and ∞ is defined by |x|p = (
∑ |xi|p)1/p

. The induced matrix norms are defined by ‖A‖p = max|x|p=1 |Ax|p.
Induced norm are important because they are compatible with the vector norm such that |Mx|p = ‖M‖p|x|p. The
vector 1-norm is appropriate for probability distributions and the vector 2-norm is appropriate for wave functions.
The matrix 2-norm is also called the spectral norm and is equal to the absolute value of the maximum eigenvalue.
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For a diagonal matrix, D, the matrix 2-norm is the vector ∞-norm of diag(D). Note that |x|p ≥ |x|p′ for p < p′.
Important, non-trivial characterizations of the infinity norms are |x|∞ = maxi |xi| and ‖A‖∞ = maxi

∑
j |Aij |.

1. Error in the wave function via recursion relations

We bound the error of the evolution operator from time k∆t to (k−1)∆t, denoted ‖∆U(k, k − 1)‖2, in terms of the
previous time step in order to obtain a recursion relation. We first bound the errors in the potential due to the time
discretization and then those due to the computation errors using Lemma 1. The computation errors will depend on
the error at the previous time step which will lead to the recursion relation sought after.

To bound the error in ‖∆U‖2 we must bound the error in the potential |∆V |∞ ≤ |∆V ∆t|∞ + |∆V comp|∞. We
define V ∆t(t) = V (tk) with k such that |t − tk| ≤ |t − tm| for all m. Here, {V (tk)} is the discretized potential with
time step |tj − tj+1| = ∆t. The error due to temporal discretization can be controlled assuming a Lipschitz constant
L for the potential such that for all t and t′, |V (t)− V (t′)|∞/|t− t′| ≤ L. Thus, for all t,

|∆V ∆t|∞ = |V (t)− V ∆t(t)|∞ ≤ L∆t. (B1)

The computational error |∆V comp|∞ is bounded using Lemma 2 with ‖K−1‖∞ ≤ κ and the assumption |V |∞ ≤ EL,

|∆V comp|∞ ≤ κ
(
|∆Q|∞ + |∆∂2

t n|∞ + ‖∆K‖∞EL
)

(B2)

Now we need to bound the errors in |∆Q|∞ and ‖∆K‖∞ in terms of the error δΓ
k = maxij |∆Γij(k − 1)| at time step

k − 1.
The error bound for |∆Q|∞ is obtained as

|∆Q|∞ ≤ max
i
|([T,∆Γ]T )i| ≤ max

i

∣∣∣∣∣∑
pq

Tip∆ΓpqTqi −
∑
mn

∆ΓimTmnTni

∣∣∣∣∣
≤ 2δΓ

k−1d
2

(
max
ij
|Tij |

)2

|∆Q|∞ ≤ 2δΓ
k−1E

2
L (B3)

The product dmax |Tij | is the maximum local kinetic energy and is, by assumption, bounded by EL. Similarly,

‖∆K‖∞ = max
i

∑
j

|Kij − K̃ij | = max
i

∑
j

|Tij∆Γij − δij
∑
m

Tmj∆Γmj |

≤ max
i

∑
j

|Tij∆Γij |+ max
i

∣∣∣∣∣∑
m

Tmi∆Γmi

∣∣∣∣∣
≤ δΓ

k−1 max
i

∑
j

|Tij |+ δΓ
k max

i

∣∣∣∣∣∑
m

Tmi

∣∣∣∣∣
≤ 2dδΓ

k−1

(
max
ij
|Tij |

)
‖∆K‖∞ ≤ 2δΓ

k−1EL (B4)

We convert from errors in the real part of the 1-RDM to errors in the wave function via

δΓij = |∆Γij |
≤ |〈Φ|Γij |Φ〉 − 〈Φ|Γij |Φ̃〉+ 〈Φ|Γij |Φ̃〉 − 〈Φ̃|Γij |Φ̃〉| (B5)

≤ |(〈Φ|Γij)|∆Φ〉|+ |〈∆Φ|(Γij |Φ〉)|
≤ 2|∆Φ|2 |Γij |Φ〉|2 ≤ 2|∆Φ|2 ‖Γij‖2 ≤ 4|∆Φ|2 (B6)

The inequality Eq. (B6) follows because the maximum eigenvalue of 〈a†iaj〉ψ for all ψ is bounded by 1 and Γij =

2 real〈a†iaj〉ψ. Taking the maximum over all i, j we have

δΓ
k−1 = max

ij
(δ

Γij

k−1) ≤ 4δΦ
k−1 (B7)
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Here δΦ
k−1 bounds the error in the two-norm |∆Φ|2 at time step k − 1.

Putting together Eq. (B2), Eq. (B3), Eq. (B4), and Eq. (B7) gives

|∆V comp|∞ ≤ 16κE2
Lδ

Φ
k−1 + κ|∆∂2

t n|∞ (B8)

To obtain the desired recursion relation, we note that at time step k the error can be bounded via

|Φ(k)− Φ̃(k)|2 ≤ ‖∆U(k, k − 1)‖2 + δΦ
k−1 (B9)

obtained using an expansion similar to the one found in Eq. (B5). Utilizing Lemma 1 and bound Eq. (B8), we arrive
at

|Φ(k)− Φ̃(k)|2 ≤ δΦ
k−1 + ∆t|∆k,k−1V |∞ (B10)

≤ δΦ
k−1 + ∆t(|∆V ∆t|∞ + |∆V comp|∞) (B11)

≤ δΦ
k−1 + ∆t(L∆t+ 16κE2

Lδ
Φ
k−1 + κ|∆∂2

t n|∞) (B12)

≤ (16κE2
L∆t+ 1)δΦ

k−1 + ∆t(L∆t+ κ|∆∂2
t n|∞) (B13)

To obtain a recursion relation we let the LHS of Eq. (B13) define the new upper bound at time step k.
Recursion relations of the form fk = afk−1 + b have closed solution fk = b(ak − 1)(a− 1)−1. Thus, we have for the

bound at time step k

δΦ
k =

L∆t+ κ|∆∂2
t n|∞

16κE2
L

{
(16κE2

L∆t+ 1)k − 1
}

(B14)

Now consider the final time step at z = 1/∆t, and ex ≥ (xz−1 + 1)z for z <∞,

δΦ
z =

L∆t+ κ|∆∂2
t n|∞

16κE2
L

{(
16κE2

L

z
+ 1

)z
− 1

}
(B15)

≤
(

1

z

L

16κE2
L

+
|∆∂2

t n|∞
16E2

L

){
e16κE2

L − 1
}

(B16)

≤
(

1

z

L

16κE2
L

+

√
2c4δn

16E2
L

){
e16κE2

L − 1
}

(B17)

We applied Lemma 3 to obtain the last line. This bound is similar to the Euler formula for the global error but
arises from the iterative dependence of the potential on the previous error; not from any approximate solution to an
ordinary differential equation.

To ensure that the cost is polynomial in M and N for fixed κ, we must insist that EL ≤
√

logN . Consider the
exponential factor and assume that EL > 1. Then exp(16κE2

L) ≤ exp(16κ logN) = N16κ is a polynomial for fixed κ.

2. Error bound on the density

To finish the derivation, we utilize our bound for the wave function at the final time to get a bound on the error
of the density at the final time. This will translate into conditions for the number of steps needed and the precision
required for the density. The error in the density is bounded by the error in the wave function through the following,

|∆n|1 = |〈Φ|n|Φ〉 − 〈Φ̃|n|Φ̃〉|1
= |〈Φ|n|Φ〉 − 〈Φ|n|Φ̃〉+ 〈Φ|n|Φ̃〉 − 〈Φ̃|n|Φ̃〉|1
≤ |〈Φ|n|∆Φ〉|1 + |〈∆Φ|n|Φ〉|1

Now consider the i-th element, ni = a†iai, and the Cauchy-Schwarz |〈x|y〉| ≤ |x|2 |y|2,∣∣∣(〈Φ|a†iai) |∆Φ〉
∣∣∣ ≤ ∣∣∣〈Φ|a†iai∣∣∣

2
|∆Φ|2 ≤ ‖a

†
iai‖2 |∆Φ|2

|〈Φ|ni|∆Φ〉|1 ≤ |∆Φ|2
Finally, from the definition of the 1-norm,

|∆n(z)|1 ≤
∑
i

(
|〈∆Φ(z)|ni|Φ̃(z)〉|+ |〈Φ(z)|ni|∆Φ(z)〉|

)
≤ 2M |∆Φ(z)|2 ≤ 2MδΦ

z (B18)
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For final error ε in the 1-norm of the density, we allow error ε/2 due to the time step error and ε/2 error due to the
density measurement. Following Eq. (B17) and Eq. (B18), we have for the number of time steps,(

ML

4εκE2
L

){
e16κE2

L − 1
}
≤ z. (B19)

The bound for the measurement precision also follows as,(√
2Mc

1/2
4

4εE2
L

)2 {
e16κE2

L − 1
}2

≤ δ−1
n (B20)

3. Cost analysis

To obtain the cost for the quantum simulation and the subsequent measurement, we leverage detailed analysis of
the expectation estimation algorithm [18]. To measure the density at time t ∈ [t0, t1], a quantum simulation [19, 20]
of ψ(t0) 7→ ψ(t) is performed at cost q ≤ poly(N, tf , δ

−1
ψ ) following an assumption that H(t) is simulatable on a

quantum computer which is usually the case for physical systems. In order to simplify the analysis, we assume that
δψ is such that δn + δψ ≈ δn is a reasonable approximation. Given the recent algorithm for logarithmically small
errors [20], this assumption is reasonable.

The expectation estimation algorithm (EEA) was analyzed in [18]. The algorithm EEA(ψ,A, δ, c) measures 〈ψ|A|ψ〉
with precision δ and confidence c such that Prob(ã − δ ≤ 〈ψ|A|ψ〉 ≤ ã + δ) > c , that is, the probability that the
measured value ã is within δ of 〈ψ|A|ψ〉 is bounded from below by c. The idea is to use an approximate Taylor
expansion:

〈ψ|A|ψ〉 ≈ i
(
〈ψ|e−iAs|ψ〉 − 1

)
/s

The confidence interval is improved by repeating the protocol r = | log(1− c)| times. If the spectrum of A is bounded

by 1, then the algorithm requires on the order O(r/δ3/2) copies of ψ and O(r/δ3/2) uses of exp(−iAs) with s =
√

3δ/2.

To perform the measurement of the density, we assume that the wave function is represented in first quantization [6]

such that the necessary evolution operator is: exp(−in̂js) =
∏N
k exp(−i|j〉〈j|(k)t). Here each Hamiltonian |j〉〈j|(k)

acts on site j of the kth electron simulation grid. Hence, each operation is local with disjoint support. Since there
are NM sites, this can be done efficiently. Comparing the costs, we will assume that the generation of the state
dominates the cost.

Combining these facts, we arrive at the conclusion that the cost to measure the density to within δn precision is

cost Quantum = cost StateGen+ cost EEA ≈ cost StateGen

= O
(
rqδ−3/2

n

)
(B21)

Pairing this with Eq. (B19) and Eq. (B20), we have an estimate for the number of quantum operations

cost Quantum = O
(
rqzδ−3/2

n

)
(B22)

= O

(
rqM4Lε−4E−8

L 2−9/2c4κ
−1
{
e16κE2

L − 1
}4
)

(B23)

= poly(L, ε−1, r,M,N) e64κE2
L (B24)

The classical computational algorithm is an [M ×M ] matrix inversion at each time step costing

cost Classical = O(zM3) (B25)

= O

(
M3

(
ML

4εκE2
L

){
e16κE2

L − 1
})

(B26)

= poly(L, ε−1,M)e16κE2
L (B27)
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Appendix C: Lemmas

Lemma 1. For two time dependent Hamiltonians H(t) = H0 + V (t) and H̃t = H0 + Ṽ (t), the error in the evolution
from t′ to t is bounded as

‖∆U(t, t′)‖2 ≤ (t− t′)|∆tt′V |∞ (C1)

Proof.

U(t1, t0)− Ũ(t1, t0) = Ũ(t1, t0)
(
Ũ†(t1, t0)U(t1, t0)− 1

)
= Ũ(t1, t0)

(∫ t1

t0

d

ds
(Ũ†(s, t0)U(s, t0))ds

)
= −iŨ(t1, t0)

(∫ t1

t0

Ũ†(s, t0)(H(s)− H̃(s))U(s, t0)ds

)
= −i

∫ t1

t0

Ũ(t1, t0)Ũ(t0, s)(V (s)− Ṽ (s))U(s, t0)ds

= −i
∫ t1

t0

Ũ(t1, s)(V (s)− Ṽ (s))U(s, t0)ds

Using sub-additivity and the unitary invariance of the operator norm

‖∆U(t1, t0)‖2 ≤ (t1 − t0) max
t0≤s≤t1

‖V (s)− Ṽ (s)‖2 = (t1 − t0)‖∆t1,t0V ‖2
‖∆U(t1, t0)‖2 ≤ (t1 − t0)|∆t1,t0V |∞

Lemma 2. When we approximate the solution x of Ax = b from the solution of Ãx = b̃ the error in x is bounded by

|∆x| ≤ α(|∆b|+ ‖∆A‖ |x|) (C2)

where the vector and matrix norms are compatible (i.e. |Mb| ≤ ‖M‖|b|)

Proof.

Ax = b

(A−∆A)x̃ = Ãx̃ = b̃ = (b−∆b), det(Ã) 6= 0

|x− x̃| = |A−1b−A−1b̃+A−1b̃− Ã−1b̃|
≤ |A−1∆b|+ |(A−1 − Ã−1)b̃|
= |A−1∆b|+ |(A−1Ã− 1)Ã−1b̃|
= |A−1∆b|+ |A−1(Ã−A)x̃|
≤ ‖A−1‖ |∆b|+ ‖Ã−1‖‖Ã−A‖ |x|

|∆x| ≤ α (|∆b|+ ‖∆A‖ |x|)

Here, α = max{‖A−1‖, ‖Ã−1‖}. We arrive at the claimed inequality:

|∆x|∞ ≤ α(|∆b|∞ + ‖∆A‖∞ |x|∞)

Lemma 3. Suppose density is measured with maximum error |∆n|∞ < δn and the fourth derivative in time is bounded
as max |δ4

t∆n|∞ < c4, we have that

|∆∂2
t n|∞ ≤

√
2c4δn (C3)



13

Proof. We utilize the three point stencil to estimate the second derivative by Taylor expanding to third order

f(t± h) = f(t)± ∂tf(t)h+
1

2
∂2
t f(t)h2 +±1

6
∂3
t f(t)h3 +R3(t± h)

R3(t± h) =
f (4)(ξ)

4!
h4, for some ξ ∈ [t, t± h]

∂2
t f(t) =

f(t+ h)− 2f(t) + f(t− h)

h2
+
R3(t− h) +R3(t+ h)

h2∣∣∂2
t f(t)− ∂2

t f
3pt
∣∣ ≤ f (4)(ξ1) + f (4)(ξ2)

4!
h2 ≤ c4h

2

12

where c4 is a bound for the fourth derivative of the function f .

If δn is the maximum absolute difference between any component of the given density and the true density (∞-norm
of the difference) then from the triangle inequality,

|∂2
t n(t)− ∂2

t ñ(t)|∞ ≤ |∂2
t n(t)− ∂2

t n(t)3pt|∞ + |∂2
t n(t)3pt − ∂2

t ñ(t)|∞

≤ c4
12
h2 +

∣∣∣∣ [n(t− h)− ñ(t− h)]− 2[n(t)− ñ(t)] + [n(t+ h)− ñ(t+ h)]

h2

∣∣∣∣
∞

|∆∂2
t n|∞ ≤

c4h
2

12
+

4δn
h2

To get the best bound, select h2 =
√

48δN/c4. Substituting this into the previous equation gives,

|∆∂2
t n|∞ ≤

(√
48

12
+

4√
48

)√
δnc4 <

√
2
√
δnc4
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