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ABSTRACT 

Nodular and bedded cherts of the upper Mesoproterozoic Angmaat (formerly Society 

Cliffs) Formation, Baffin and Bylot islands, preserve microfossils and primary petrofabrics 

that record microbial mat deposition and lithification across a range of peritidal carbonate 

environments. Five distinct microfossil assemblages document the distribution of mat-

building and mat-dwelling populations across a gradient from restricted, frequently 

exposed flats to more persistently subaqueous environments. Mats built primarily by thin 

filamentous or coccoidal cyanobacteria give way to a series of more robust forms that show 

increasing assemblage diversity with decreasing evidence of subaerial exposure. Distinct 

fabric elements are associated with each microbial assemblage, and aspects of these 

petrofabrics are recognizably preserved within unsilicified carbonates. These include some 

features that are distinctly geologic in nature (e.g., seafloor cements) and others that reflect 

microbial growth and decomposition (e.g., tufted microbialites). A particularly distinctive, 

micro-nodular fabric is here interpreted as carbonate infilling of primary voids within 

microbial mat structures. Such structures mark the confluence of cyanobacterial 

photosynthesis that produced oxygen gas, filamentous mat builders that imparted the 

coherence necessary to trap gas bubbles, elevated carbonate saturation required to 

preserve void fabrics via penecontemporaneous cementation, and a relative paucity of 

detrital sediment that would have inhibited mat growth. Petrofabrics preserved in 

Angmaat samples are widespread in late Paleoproterozoic and Mesoproterozoic carbonate 

successions but are rare thereafter, perhaps recording, at least in part, the declining 

carbonate saturation state of seawater. Covariation of microfossil assemblages with 

petrofabrics in both silicified and unsilicified carbonates supports hypotheses that link 

stromatolite microstructure to the composition and diversity of mat communities. 
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INTRODUCTION

  

 Stromatolites constitute the most conspicuous record of life in Proterozoic sedimentary 

rocks. Stromatolites vary in morphology and fabric across individual basins and through time, 

but despite a century of research, there is little consensus on how this variation relates to 

microbial diversity (Grotzinger and Knoll, 1999). Aspects of stromatolite macrostructure clearly 

reflect sedimentary environment (Cloud and Semikhatov, 1969; Serebryakov, 1976; Semikhatov 

et al., 1979; Andres and Reid, 2006), but petrologic fabric may additionally preserve a record of 

distinct microbial communities and metabolic activities active during stromatolite accretion 

(Monty, 1976; Walter, 1992; Dupraz et al., 2006, 2009; Bosak et al., 2013). Testing biological 

hypotheses, however, is complicated by diagenesis, which can result in both the alteration of 

original petrofabrics and obliteration of the mat building populations in stromatolites. An 

exception occurs in the upper Mesoproterozoic Angmaat Formation, Bylot Supergroup, Nunavut, 

where early diagenetic chert nodules preserve both microbial mat populations and distinctive mat 

petrofabrics. Silicified fabrics, in turn, can be compared directly to textures preserved in 

associated unsilicified carbonates, allowing us to address specifically the question of how 

microbial community composition relates to mat fabric in selected Proterozoic carbonates. 

 

GEOLOGIC SETTING AND AGE 

 The Bylot Supergroup comprises a >6 km-thick succession of nearly undeformed, late 

Mesoproterozoic to earliest Neoproterozoic sedimentary rocks exposed within the fault-bounded 

Borden Basin of northernmost Baffin and Bylot islands (Fig. 1., Jackson and Ianelli, 1981; 

Turner, 2009). Timing of sedimentation within the Bylot Supergroup is broadly constrained by 

U-Pb baddeleyite ages on basalts that both pre- and post-date sediment deposition. Basalts near 



4 
 

the base of the Bylot succession have yielded an age of 1270±4 Ga (Le Cheminant and Heaman, 

1989), and Franklinian dykes that crosscut the supergroup as a whole record a maximum age of 

~723 Ma (Heaman et al., 1992; Pehrsson and Buchan, 1999). Consistent with these constraints 

are a Pb-Pb age for Angmaat carbonates of 1199+/-24 Ma (unpublished data, in Kah et al., 2001) 

and a U-Th-Pb whole rock age of 1092+/-59 Ma for black shale of the underlying Arctic Bay 

Formation (Turner and Kamber, 2012). Carbon isotope stratigraphy independently suggests an 

age younger than ca. 1250 Ma and older than ca. 850 Ma (Kah et al., 1999, 2012), and 

microfossils suggest that the depositional age of Angmaat Formation strata lies closer to the 

lower than to the upper boundary established by regional basalts (Hofmann and Jackson, 1991, 

1994). Micropaleontological data on correlative successions in northwestern Greenland (Strother 

et al., 1983; Samuelsson et al, 1999) and Somerset Island (Butterfield, 2001) further support a 

late Mesoproterozoic age for Angmaat deposition. 

 Sedimentary rocks of the Bylot Supergroup crop out extensively within the fault-bounded 

Borden Basin of northern Baffin and Bylot islands (Fig. 1; Jackson and Ianelli, 1981; Kah et al., 

1999; Turner, 2009). Traditionally, deposition of a laterally extensive package of carbonate-

dominated strata—originally distinguished as the Society Cliffs Formation—was considered to 

represent a period of relative tectonic quiescence within the basin, during which sea level rise 

promoted an extensive, northwestward deepening carbonate ramp (Blackadar, 1956; Lemon and 

Blackadar, 1963; Geldsetzer, 1973). Building on the work of Jackson and Ianelli (1981), who 

recognized a pronounced dimimution of siliciclastic material upward in the Society Cliffs 

Formation, and Kah (1997, 2000) and Kah et al. (1999, 2001), who recognized a distinct shift to 

deeper-water facies west of a persistent oolitic shoal in the region of Tremblay Sound, Turner 

(2009) divided the these strata into four formations (Iqqittuq, Angmaat, Nanisivik, and Ikpiarjuk) 



5 
 

that better reflect regional lithologic trends. Here we focus on the southeastern successions of the 

former Society Cliffs Formation, now considered the Angmaat Formation. 

 The Angmaat Formation records predominantly intertidal to supratidal carbonate 

deposition, with auxiliary siliciclastic, evaporite, and chert lithologies (Kah and Knoll, 1996; 

Kah et al., 2001). The majority of the Angmaat Formation represents in situ deposition within an 

evaporative microbial flat that was frequently restricted from open marine waters by subaerial 

exposure of a mid-ramp oolitic/intraclastic shoal complex (Kah, 1997; Kah, 2000; Kah et al., 

2001). Inner ramp carbonate facies are dominated by microbialite facies, with subordinate 

precipitate facies, and rare detrital lithologies.   

 Microbialites comprise a variety of low relief stratiform, domal, columnar, and coniform 

structures. Coniform stromatolites with distinct concave upward laminae form interlinked 

features up to 20 cm in synoptic relief, and are restricted to deepest-water portions of the 

Angmaat platform, where they are interbedded with columnar stromatolites and 

oolitic/intraclastic shoal facies. In the inner ramp, coniform microbialites are restricted to mm- to 

cm- scale tufted mats (see below) that interfinger laterally with the more abundant smooth and 

micro-nodular laminae that comprise the majority of stratiform mat facies. Tufted laminae, 

however, are more common in restricted portions of the ramp, where they are interlaminated 

with precipitated carbonate facies, often in the construction of broad, domal features.  

 Precipitate facies consist of smooth sub-millimeter laminae in which discrete laminations 

can often be traced 10’s to 100’s of meters of outcrop exposure and reflect a continuum of 

nucleation patterns. Continuous nucleation along the substrate, results in laterally extensive 

isopachous crusts; isolated nucleation sites result in the formation of small (generally <5 mm) 

cement botryoids on bedding surfaces. Successive lamina growth atop these smooth to bumpy 
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surfaces resulted in formation of a range of precipitate forms from hemispherical domes to 

microdigitate, or asperiform, structures (c.f., Hofmann & Jackson, 1986).  

 Detrital carbonate facies are rare within the Angmaat Formation, and consist primarily of 

thin micritic drapes, local arenites, and a variety of intraclastic conglomerates deposited under 

higher-energy, less restricted conditions.  Evaporite lithologies—predominantly gypsum—are 

broadly distributed within the Angmaat Formation (Kah et al., 2001), but are relatively rare in 

the Milne Inlet Trough, where they occur only as cm-scale nodules within stratiform mats and 

within a few discrete beds (up to 1.45 meters thick; Kah et al., 2001). Within the Milne Inlet 

trough, bedded gypsum occurs primarily in the southeast, where it is intimately associated with 

precipitate facies and thin beds of terrigenous red to green shale.  

 Finally, the Angmaat Formation (and correlative strata in adjacent grabens in 

northwestern Greenland and on Somerset Island; Kah et al., 1999) contains abundant nodular to 

bedded chert (Jackson and Ianelli, 1981). Cherts display a wide range of colors, from white to 

grey, yellow to orange, green to purple, and brown to black, and occur in variously shaped 

bodies that are commonly discordant to bedding (Jackson and Ianelli, 1981; Hofmann and 

Jackson, 2001). Black chert is most abundant, especially in the region between Milne Inlet and 

Tay Sound (Fig. 1), forming beds and nodules oriented parallel to bedding and up to 10 cm in 

thickness. Black cherts typically preserve microfossils (Hoffman and Jackson, 2001; Kah and 

Knoll, 1996; see also Strother et al., 1983,and Butterfield, 2001, for fossiliferous cherts from 

coeval strata in adjacent grabens), although more poorly preserved microfossils have been found 

in a wide variety of colored chert (Hoffman and Jackson, 2001).  

 

MICROFOSSILS IN ANGMAAT MICROBIALITES 
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 Attempts to evaluate the relationship between microbial community and microbialite 

petrofabric begin with the elucidation of preserved microfossil assemblages. Hofmann and 

Jackson (1991) described silicified microfossils from throughout the (then) Society Cliffs and 

overlying Arctic Bay formations. Their most diverse fossil localities occur in the Arctic Bay 

succession and there was no attempt to relate fossils to petrofabric. Nonetheless, most of the taxa 

found in our Angmaat chert samples were noted by Hofmann and Jackson (1991).  

 Most mat building populations in Angmaat microbialites are preserved as hollow 

filamentous tubes—the preserved extracellular polysaccharide sheaths of Lyngbya- or 

Phormidium-type cyanobacteria (Figs. 2-4). By convention, single sheaths are assigned to the 

genus Siphonophycus Schopf (1968) and divided into species based on cross-sectional diameter. 

Remarkably, most Proterozoic Siphonophycus populations fit comfortably within one of these 

operationally defined species (e.g., Knoll et al., 1991). Hofmann and Jackson (1991) recognized 

the three species-level Siphonophycus taxa noted in our study, although the population here 

assigned to S. capitaneum on the basis of size was placed into the smaller S. kestron by these 

authors. They also named several small and poorly preserved taxa, which we view as 

degradational variants of the principal mat-building filaments.  

 Distinctly larger (up to 70 μm in cross-sectional diameter) filamentous sheaths (Fig. 3D) 

that originally enclosed multiple cellular trichomes (see cross-section in Fig. 3E) are assigned to 

Eomicrocoleus crassus Horodyski and Donaldson (1980) and interpreted in terms of the extant 

mat-building cyanobacterium Microcoleus chthonoplastes. (Note that when the microscope is 

ratcheted up and down through E. crassus specimens, the internal reflections of trichomes—seen 
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as lineations in Fig. 3D—can be shown to form a rope-like coiling that, in the modern, is a 

diagnostic feature of M. chthonoplastes; Desikachary, 1958). 

 Microfossils in Angmaat cherts also include abundant and diverse coccoidal populations, 

many, if not most of them, cyanobacterial (Figs. 4-6). Early in the modern era of Proterozoic 

paleontology, spheroid-rich assemblages were discovered on several continents and assigned to a 

large number of narrowly diagnosed taxa; Butterfield (2001) summarized the resulting 

challenges for taxonomy. Whereas some of the complications simply reflect synonomy, others 

stem from aspects of life cycle and taphonomy (e.g., Knoll and Golubic, 1979), offering a 

principled path toward resolution. Sorting out all issues of Proterozoic microfossils taxonomy is 

beyond the scope of this paper, but we can propose distinctions among the main mat-forming 

populations present in Angmaat cherts.   

 Populations of small, mat-building coccoidal colonies are assigned to Eoentophysalis

belcherensis Hofmann (1976) and interpreted in terms of the extant mat-building genus 

Entophysalis. Small (2-5 μm) cell-like units are bound into colonies by extracellular envelopes 

secreted with each new cell division; resulting clusters contain 2-32 cells within up to five nested 

envelopes. Colonies are palmelloid to cumulate (Fig. 4B), but also include isolated unicells, 

dyads and smaller clusters, many of which were described as separate species in early papers 

(e.g., Muir, 1976). A principal problem with the taxonomic circumscription of Eoentophysalis is 

that new colonies begin with individual cells, so colonizing eoentophysalids may be difficult or 

impossible to differentiate from similarly small, non-colonial taxa such as Sphaerophycus

parvum Schopf (1968).  Sphaerophycus populations are not always eoentophysalid colonists, as 

many S. parvum (Fig. 4D,E; ca. 2 μm cell-like units) and (slightly larger; 4-5 μm units) S.

medium Hofmann and Donaldson (1980; Fig. 5C,D) populations occur in facies where 
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eoentophysalid colonies are absent, both in the Angmaat and in other formations. Populations of 

small coccoids could include heterotrophic bacteria. Erring on the side of caution, we recognize 

Sphaerophycus populations only when isolated unicells, dyads and tetrads are distributed through 

mats in the absence of reasonably well-formed Eoentophysalis colonies. 

 Like Hofmann and Jackson (1991), we also recognize two species of the cyanobacterial 

form genus Gloeodiniopsis Schopf (1968) emend. Knoll and Golubic (1979).  Gloeodiniopsis 

lamellosa is applied to populations of multilamellate (or single envelope, by differential decay) 

unicells, dyads, tetrads, and rare octads, distributed as isolated individuals in eoentophysalid and 

filamentous mats but never found in dense colonies (Fig. 4I-L). The simple life cycle and 

taphonomic pattern inferred for these populations compares closely with those of the extant 

cyanobacterium Chroococcus turgidus (Knoll and Golubic, 1979). A second Gloeodiniopsis 

species, G. magna Nyberg and Schopf (1984), is spatially distinct and much larger, but shares 

the basic life cycle inferred for G. lamellosa (Fig. 4G,5E). 

 Eogloeocapsa bella Golovenok and Belova (1984) can be difficult to differentiate, given 

its high degree of taphonomic variation, but well-preserved populations document a life cycle 

comparable to that observed in extant species of Gloeocapsa (Geitler, 1930-1932). Eogloeocapsa 

thus differs from Gloeodiniopsis in three principal ways: internal envelopes formed around a 

single cell fill a smaller percentage of the volume formed by enclosing envelopes (that is, cell-

like internal envelopes are not close-packed but rather appear to “float”); there is a single 

external envelope, unlike the multilamellate exterior of Gloeodiniopsis; and colonies can be 

closely packed to form mono-specific surfaces in peritidal environments (Fig. 6A-C).  As 

discussed by Sergeev (1994), there is some potential for confusion in terms of another 

Proterozoic taxon Clonophycus elegans Oehler (1977), but the type of C. elegans is an outer 
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envelope filled by a large number of closely packed cells, with no evidence of intermediate 

envelopes.  This differs substantially from both the type of E. bella and the Angmaat material. 

 Polybessurus bipartitus Fairchild ex Green et al. (1988) is a coccoidal cyanobacterium 

distinguished by its prominent stalk formed by downwardly elongated envelopes (Fig. 5A,B). In 

terms of morphology, life cycle and environmental preference, these fossils find a close 

counterpart in Cyanostylon-like cyanobacteria from peritidal carbonate environments in the 

present day Bahamas (Green et al., 1987).   

 At least two additional populations of simple spheroids occur in filamentous mats, one 8-

10 μm (Fig. 5F) and the other 25-30 μm in diameter (Fig. 3F). These populations are readily 

placed within the form genus Myxococcoides Schopf (1968), and might be assigned to M. minor 

Schopf (1968) and M. grandis Horodyski and Donaldson (1980) on the basis of size, but the 

Angmaat populations are sufficiently different from the types of these species to urge caution.  

For this reason, we refer to them simply as Myxococcoides sp. 1 and sp. 2. Two more unnamed 

populations consist of poorly preserved, Hyella-like endolithic cyanobacteria, interpreted on the 

basis of overall morphology and orientation – which clearly indicates downward growth into the 

substrate (Fig. 4A), and clustered unicells ca. 25 μm in diameter from which 10-12 μm tubes 

extend outward for up to 50 μm (Fig. 4H). The latter fossils appear to be germinating cysts, like 

the Neoproterozoic Germinosphaera (see Butterfield et al., 1994, for interpretation) but at a 

much smaller size scale.  Multilamellate unicells that appear to open on one end (Fig. 4F; also 

documented by Butterfield, 2000, from the correlative Hunting Formation on Somerset Island) 

may be an incipient excystment stage of the same population. 

 The final constituents of our Angmaat samples are isolated cellular filaments found 

within E. robustum mats. These fossils can be assigned to the early red alga Bangiomorpha
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pubsecens Butterfield (2000), described from potentially correlative strata (Kah et al., 1999) on 

Somerset Island and, possibly, northwestern Greenland (Enzien, 1990). Angmaat specimens 

(Fig. 6D,E) observed to date do little to augment the paleobiological interpretation of this taxon, 

adding only that the envelopes surrounding cellular filaments can form septa that separate 

packets of a dozen or more cells. When preserved in the absence of cells, these would be closely 

comparable to the unnamed septate tubes described by Butterfeld (2000, his Fig. 3E) from 

Bangiomorpha-bearing beds on Somerset Island. 

   

CORRELATING MICROFOSSILS AND PETROFABRIC  

 

Crystal fan-dominated precipitates 

 Flat laminated and domal carbonates, interpreted as originally aragonitic seafloor 

precipitates, are conspicuous features of Angmaat outcrops (Kah et al., 2001; Turner, 2009). 

Where preserved as dolomite, precipitated laminae consist of mm-scale laminations with mm- to 

cm-scale, convex-upward microdomal surfaces (Fig. 7A).  Laminae consist, for the most part, of 

interlocking dolomite anhedra up to ca. 80 μm in maximum dimension capped by thin drapes of 

dolomitic microspar that commonly preserve ghosts of upward-directed crystal terminations. 

Even in these relatively coarse-grained dolostones, UV fluorescence highlights organic 

inclusions that define acicular needles and sprays of crystalline carbonate that grew 

perpendicular to the substrate. Minute pyrite crystals (or iron oxides formed by diagenetic pyrite 

oxidation) are common within microspar laminae (black minerals in Figs. 7B,C,F). Dolospar 

laminae also have irregular clear patches that impart a clotted microtexture to the carbonates. 
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Early diagenetic chert further clarifies the origin of textures observed in encompassing 

carbonates. The principal fabric elements are mm-scale crystal fans, originally deposited as 

seafloor carbonate precipitates.  The majority of precipitate textures consist of acicular crystals 

up to 2 mm long but no more than a few μm thick (Fig. 7B, C). In some places, however, thicker 

(ca. 30 μm) crystals show square terminations indicative of original aragonite (Fig. 7E). 

Discontinuous mm-scale lamination, visible to the naked eye, is resolved in thin section as zoned 

precipitates, pigmented more or less strongly by included organic matter (Fig. 7A, F). Similar 

precipitates form today in local environments of extreme oversaturation, for example, calcitic 

precipitates formed in leachate pipe systems in Florida (Maliva et al., 2000). More continuous 

surfaces show a granular texture, with relatively abundant 1-5 μm pyrite crystals; these are 

interpreted as exposure surfaces that underwent micritization prior to silica emplacement. Light 

patches in the chert are largely irregular dissolution features, now filled by silica and dolomite 

euhedra, and often surfaced by tiny pyrite crystals (Figs. 7B,C). 

 Fabric elements preserved in chert map fairly straightforwardly onto textures apparent in 

unsilicified carbonates of this facies. The mm-scale laminations so prominent in unsilicified 

carbonates correspond to the micritized exposure surfaces observed in the chert (Fig. 7A). 

Crystal fans, well preserved in chert, have been recrystallized completely to dolospar in 

carbonate phases, with dissolution features preserved as clear irregular patches within dolospar 

layers. Microfossils are rare in this facies—the only possible candidate fossils are isolated, 

hollow organic filamentous structures oriented parallel to the long axes of crystals that could be 

the remains of endolithic cyanobacteria (Fig. 7D).  

 

Thin-Filament Tufted Mat 
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 In outcrop, vertically-striped black and white chert is commonly associated with cm-scale 

tufted microbialites (Fig. 8), and interbedded with precipitate textures. Tufts are interpreted to 

reflect synsedimentary cementation that conferred structural rigidity onto vertical tufts of 

cyanobacterial filaments; and cherts similarly reflect interaction of microbial behavior elements 

and synsedimentary cement. In thin section, the black regions of variegated chert nodules are 

resolved as dense populations of thin filaments and associated biofilm; the white regions are 

cemented-filled voids (Fig. 9). 

 Microfossils in this facies comprise a single population of thin cylindrical filaments (Fig. 

9B,C). Most filaments show evidence of partial decay and collapse, yielding micron-thick, 

commonly fragmented individuals. In well-preserved regions, filaments are preserved as 2-3 μm 

hollow, filamentous tubes ascribed to Siphonophycus robustum (Schopf) Knoll et al. (1991) and 

interpreted as the extracellular sheaths of Phormidium-like cyanobacteria. The spatial orientation 

of S. robustum populations is distinctive: vertical bundles of filaments form tent-pole structures 

from which sheets of filaments extend outward and attach to adjacent vertical elements, forming 

convex downward laminae that isolated primary void space (Fig 9B,C). Voids are generally 

subrounded and commonly contain silicified splays of acicular carbonate that formed prior to 

silicification (arrow in Fig. 9C). The voids closely resemble gas bubbles trapped in modern mats 

(Bosak et al., 2010; Mata et al., 2012). Some samples also contain mm- to cm-scale voids that 

crosscut mat fabrics and are interpreted as dissolution features. Void structures within tufted 

thin-filament mats were filled during diagenesis by an isopachous lining of chalcedony and, in 

their centers, by large twinned dolomite crystals. Within Angmaat cherts, gas bubbles and 

dissolution features are readily distinguished, but in associated carbonates, differentiation of 

these structures is more difficult. 
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   The fabric of the thin-filament tufted mats resembles that described by Sumner (1997) 

from cuspate stromatolites in the 2.52 Ga Gamohaan and Frisco formations, South Africa. 

Microfossils are not preserved in the Archean examples, but preserved petrofabrics suggest that 

filamentous microorganisms formed vertical supports that were cemented 

penecontemporaneously with mat growth. Perhaps slightly flocculent mats draped across the 

vertical supports, forming highly porous constructions filled by synsedimentary cement. The 

spatial scale of the Archean structures is much larger—cm- to m-scale cusps as opposed to the 

mm-scale features observed in Angmaat cherts—although similar but larger coniform structures 

are preserved in deeper-water facies of the Angmaat Formation. Archean coniform structures 

similarly formed at depth during the drowning of an extensive carbonate platform—a setting far 

different from the peritidal environments discussed here. Nonetheless, the two examples appear 

to reflect common processes of population growth and penecontemporaneous cementation.  

 The thin section illustrated in Fig. 9A shows that where these mats were not silicified, 

compaction commonly resulted in an irregular fabric whose origin would be difficult to interpret 

in the absence of chert preservation: the fabric is dominated by dark stringers interpreted as 

compacted mats and lighter clots interpreted as void-filling precipitates. A thin layer at the base 

of the thin section composed of uniform, isopachous cements indicates that seafloor precipitates 

and thin filament tufted mats formed in close environmental proximity. 

 

Laminated Precipitates and Coccoid-Rich Mats 

 Stratiform laminites occur in carbonate successions through the Proterozoic record and 

are usually interpreted as flat mats that trapped and bound or precipitated carbonate sediments.  

Consistent with this larger record, stratiform laminites are common in the Angmaat succession.  
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In carbonates, these consist of subtly undulating mm-scale microspar laminae, with finer-

grained, and hence darker, microspar defining lamina surfaces (Fig. 10A). Silicified samples 

present a more nuanced picture of this facies, with mat layers (Fig. 10B) interlaminated with a 

combination of finely laminated precipitate structures (Fig. 10C) and fine intraclastic 

microbreccias. The mat layers commonly contain undulating to billowy organic matter; with 

denser organic accumulations corresponding to the dark microspar surfaces observed in 

associated carbonates. Early diagenetic pyrite is common, especially in organic rich laminae, but 

microfossil preservation is typically poor. Precipitate layers up to about 300 μm thick consist of 

5-10 μm layers defined by slight organic pigmentation along their surfaces. In carbonate, it is 

impossible to tell which laminae formed as mats and which originated as precipitate horizons.  

Intraclastic microbreccias are locally common in this facies, and are associated with cement-

filled voids formed by dissolution. These features are recorded in non-silicified facies as detrital 

layers and sparry patches, both visible in thin section (Fig. 10A).  

 Where microfossils are preserved, microbial populations are almost exclusively 

coccoidal, with Eoentophysalis belcherensis Hofmann (1976) as the dominant builder (Fig. 4B) 

and Gloeodiniopsis species locally abundant as mat dwellers (Fig. 4I-L). The association 

between laminated precipitates and entophysalid cyanobacteria has been noted previously, both 

in the Angmaat Formation and elsewhere (Knoll and Sergeev, 1995; Sergeev et al. 1995; Kah 

and Knoll, 1996). Either coccoid populations were favored on the substrate provided by seafloor 

precipitates, or filamentous populations were inhibited. Locally, this facies also contains rare 

isolated individuals of the stalked cyanobacterium Polybessurus (Fig. 5A,B) and endolithic 

cyanobacteria (Fig. 4A). Within a single thin section, stratiform precipitates and coccoid mats 

can be interbedded with mats formed by fine filamentous cyanobacteria that trapped gas bubbles 
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preserved as cement-filled primary void space (Fig. 11). Thus, these two biofacies/microfabrics 

must have been contiguous on the Angmaat platform. 

 

Filament-Dominated Mats 

 Two distinct filamentous mat assemblages can be differentiated within Angmaat cherts.  

The first, interlaminated with the stratiform precipitates and Eoentophysalis mats described in 

the previous section (Fig. 11A), consists of thin (2-3 μm cross-sectional diameter) filamentous 

sheaths assigned to Siphonophycus robustum (Figs. 4C). The filaments are commonly oriented 

vertically and are associated with abundant extracellular polymeric substances, or EPS; coccoidal 

cyanobacteria occur among filaments in the mat assemblage as do the stalk-forming 

cyanobacterium Polybessurus and the filamentous red alga Bangiomorpha Butterfield (2000). 

Filaments commonly line primary, mm-scale globular voids filled by early diagenetic cement; 

most of the voids appear to have formed as gas bubbles preserved by penecontemporaneous 

calcification of entrapping filaments. In some cases, voids remain wholly or partially filled by 

early microspar cement (Fig. 11A); evidently these cements occluded porosity, limiting the 

subsequent incursion of silicifying fluids. Microspar fill is also conspicuous in surrounding 

carbonates, forming irregular clots lined by highly compacted, commonly organic-darkened mat 

dolomicrite (lower part of Fig. 11A).  

 A much different filament assemblage occurs in thicker (mm-scale lamination) 

undulating (and less frequently tufted) mats that only occasionally preserve primary void spaces 

(Fig. 12). The primary mat builder in these mats is Siphonophycus inornatum Zhang (1981), ca. 

6 μm filaments that form densely interwoven populations (Fig. 3A). A subset of these mats also 

contains thicker (up to 25 μm cross-sectional diameter) and more deeply pigmented sheaths 
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assigned to Siphonophycus capitaneum Nyberg and Schopf (1984) (Figs. 2,3C), and a smaller 

subset also contains much larger sheaths that contained multiple trichomes, assigned to 

Eomicrocoleus crassus Horodyski and Donaldson (1980) (Fig. 3D,E). On the scale of individual 

thin sections, assemblage composition (1, 2 or 3 filamentous taxa) appears to be consistent 

within individual laminae, but varies vertically from one layer to the next. Filament orientation 

also varies from one lamina to another; populations can be oriented horizontally or vertically, 

and commonly alternate repeatedly within a single thin section. Vertically-oriented filaments 

occasionally result in cm-scale tufts with substantial void space (Fig. 12B). Thick silicified mats 

without trapped bubbles or dissolution features invariably contain predominantly horizontally-

oriented laminae of these three mat-building filaments. 

 Co-occurring, but numerically subordinate coccoidal populations include Gloeodiniopsis, 

Polybessurus, Sphaerophycus medium Horodyski and Donaldson (1981), the simple spheroids 

assigned to two species of Myxococcoides, and unnamed coccoidal microfossils from which 

elongate tubes emerge (Figs. 3F,4H,5F). Less commonly, S. inornatum mats also contain isolated 

clusters of Eogloeocapsa . Fossil preservation is variable through these mats; laminated EPS 

with few or no discrete microfossils intergrades with expanded mats containing exceptionally 

well preserved microfossils. In all cases, the dark S. capitaneum sheaths preserve differentially 

well. This differential preservation can be observed, as well, in associated unsilicified 

carbonates, where mat fabrics comprised of vertically oriented filaments of S. capitaneum are 

occasionally preserved via in situ mineralization of filament sheaths (Fig. 2E; see also Kah and 

Riding, 2007). 

 Modern microbial mats at Laguna Mormona, in Baja California (Horodyski et al., 1977), 

provide a useful framework for interpreting filamentous microbialites in the Angmaat 
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succession. Microbial mats within peritidal environments at Laguna Mormona have undulating 

1-3 mm laminae similar to those in Angmaat cherts (Fig. 5 in Horodyski et al., 1977) built by a 

community of filamentous cyanobacteria that includes large Microcoleus chthonoplastes, 

Lyngbya aestuarii (with 20-25 μm sheaths), and smaller filamentous populations. Similar to the 

Angmaat assemblage, the sheaths of L. aestuarii preserve differentially well at Laguna Mormona 

and become the most apparent taxon at depth within the mats, regardless of their proportional 

abundance in surface communities. And, as in the Angmaat Formation, filamentous mats at 

Laguna Mormona occur in close spatial proximity to Entophysalis mats that (1) are associated 

with local seafloor aragonite precipitation and (2) have a relatively low preservation potential 

(Horodyski and vonder Haar, 1975). 

 

Eogloeocapsa-rich Laminae 

 Within thin sections of flat- laminated filamentous mats, a few laminae are texturally and 

paleobiologically distinct. These layers commonly contain poorly preserved Eoentophysalis 

populations, but they are dominated by large colonial coccoids assigned to Eogloeocapsa bella 

Golovenok and Belova (1984) (Fig. 6A-C,13) and interpreted in terms of the extant 

cyanobacterial genus Gloeocapsa.  Eogloeocapsa-rich laminae differ from filamentous mat 

layers in the same thin section by their cumulate texture and an absence of internal lamination 

(Fig. 13). Although clearly distinguished in chert nodules, filamentous and Eogloeocapsa-rich 

layers are difficult to tell apart in associated carbonates. 

 

DISCUSSION 

Microbes and Microbialites along the Angmaat Platform 
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Petrographic variations suggest that the principal petrofabrics identified in Angmaat cherts can 

be ordered along a gradient of decreasing environmental restriction and subaerial exposure, 

identified on the basis of variations in seafloor carbonate precipitates and evidence for post-

depositional dissolution (Fig. 14). This ordering may be simplistic, as petrofabric generation 

might easily vary along axes other than water depth, but it finds support in the distribution of 

microfossil populations within the formation. Restricted facies with abundant evidence for 

subaerial exposure also have the lowest diversity of microfossils, whereas petrofabrics 

interpreted as less frequently exposed (or, more persistently wet) harbor a larger number of taxa.  

Many taxa occur in more than one petrofabric, and when placed in the spatial order suggested by 

petrofabric, all but one show contiguous distributions (Fig. 14). Kah and Knoll (1996) also noted 

that the number of chert samples represented by the main fabric types varied spatially within the 

basin, again indicating a broad-scale covariance between microfossil assemblages and 

depositional texture in the Angmaat cherts. To a first approximation, then, microfossil 

assemblages map one-to-one onto preserved depositional textures, supporting the hypothesis that 

microbialite petrofabric reflects, at least in part, microbial community composition. 

 Microbial populations influence petrofabric development in a number of ways. Mat-

building populations can trap and bind fine particulate carbonate, leading to stromatolite 

accretion when accompanied by cementation. Microbially-induced precipitation can also govern 

carbonate accumulation in the absence of trapping and binding, and this appears to be the case in 

our Angmaat samples (Kah and Knoll, 1996). More specific features of microbial populations 

can also influence petrofabric: did the organisms produce extracellular sheaths or envelopes that 

resist decay and act as nucleation sites for carbonate precipitation? Were filament populations 

oriented vertically or horizontally, a reflection of microbial behavior that influences the spatial 
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pattern of precipitation? Did mats have sufficient cohesion to trap gas bubbles and retain them 

until precipitation occurred? 

 Of course, physical setting will also influence petrofabric by governing the degree of 

carbonate oversaturation, imposing shear stress on mat communities, and introducing traction or 

suspension-load sediment particles. In most stromatolites, observed petrofabric will reflect both 

both biological and physical processes, as well as later diagenesis. The Angmaat microbialites 

are exceptional in that early diagenetic chert allows us to distinguish primary fabrics formed by 

interacting biological and physical processes from the more common petrofabrics that 

additionally reflect carbonate diagenesis. 

 The principal fabric elements in the Angmaat samples include tabular to acicular seafloor 

precipitates, fine-grained precipitated carbonates that preserve filament orientation, cement-filled 

primary void space generated by gas bubbles, and cement-filled secondary void space produced 

by dissolution. Clastic microbreccias occur in association with precipitate-rich laminae, and thin 

sandstones occur locally beneath some of the most diverse mats (Fig. 12A); detrital carbonate, 

however, appears to have played little role in Angmaat microbialite accretion.  

 

The Stratigraphic Distribution of Angmaat Petrofrabrics 

 Primary voids preserved in Angmaat samples are particularly interesting because 

comparable petrofabrics are relatively abundant in Mesoproterozoic carbonate rocks (Fig. 15A-

C). The formation and preservation of these voids require a source of biogenic gas (Bosak et al., 

2010), a mat sufficiently cohesive to trap gas bubbles (Mata et al., 2012), carbonate precipitation 

on a time scale sufficiently rapid to frame the voids before elimination by compaction or 
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diffusion, and an absence of traction- or suspended-load sedimentation that would compromise 

mat development, bubble formation and retention, and rapid cementation.   

 As pointed out by Bosak et al. (2010), oxygenic photosynthesis is the only form of 

photoautotrophy that produces gas (O2) as a by-product. The presence of at least moderately 

oxidizing surface environments in the Mesoproterozoic Era (Kah and Bartley, 2011) makes it 

likely that cyanobacteria dominated primary production in Angmaat mat communities, and 

beautifully preserved cyanobacterial fossils corroborate the view that gas bubbles likely 

originated via oxygenic photosynthesis. Within the Angmaat setting, only filament-dominated 

mats (and mixed filamentous-coccoid mats) contain primary void fabrics, suggesting that mat 

communities lacking filamentous populations populations may not have had the structural 

coherence required to trap and retain gas bubbles.  

 Microbial mats dominated by filamentous cyanobacteria occur commonly in 

Neoproterozoic successions that lack preserved bubble textures (e.g., Knoll et al., 1991; Cao and 

Yin, 2011). Thus, the additional key to primary void preservation must lie in 

penecontemporaneous mineral precipitation. As found in other Paleo- and Mesoproterozoic 

carbonate successions (Knoll and Semikhatov, 1988; Bartley et al., 2000; Grotzinger and James, 

2000; Kah et al., 2012), (originally) aragonitic crystal fans indicate that the Angmaat basin was 

at least episodically restricted to the point at which carbonate readily nucleated in or on the 

shallow seafloor.  

 Preservation of primary void textures requires that thin mats buoyed by oxygen bubbles 

also acted as nucleation sites for carbonate precipitation. Local carbonate nucleation could reflect 

high abundances of Ca2+ absorbed onto cyanobacterial sheaths and biofilm polymers (e.g., 

Pentecost and Riding, 1986; Dupraz et al., 2009). OH– generated by carbon dioxide 



22 
 

concentrating mechanisms in cyanobacteria might also have facilitated carbonate precipitation, 

as it does in some modern freshwater environments (Merz, 1992; Kah and Riding, 2007). 

Microbial sulfate reduction has also been linked empirically to carbonate precipitation within 

mats; whether dissimilatory sulfate reduction increases or decreases the probability of carbonate 

precipitation depends on substrate being metabolized (Gallagher et al., 2012) and the fate of H2S 

generated by this process (Canfield and Farquhar, 2009). Under favorable circumstances, the net 

result is an increase in pH, facilitating carbonate precipitation (Aloisi, 2008). Microbial iron 

reduction provides another heterotrophic metabolism that would increase carbonate 

oversaturation within mats (Fischer and Knoll, 2009). Thus, within Proterozoic mat 

communities, a variety of microbial processes could have contributed to penecontemporaneous 

carbonate cementation (Aloisi, 2008). 

 That seafloor carbonate precipitates and preserved gas bubble textures are widespread in 

peritidal microbialites of late Paleoproterozoic and Mesoproterozoic age (Fig. 15), but 

uncommon in younger Neoproterozoic successions (e.g., Knoll and Swett, 1990) prompts the 

question of what was different in younger coastal environments. Filamentous cyanobacteria and 

anaerobic bacterial metabolisms didn’t go away, suggesting that the most likely shift was in the 

carbonate saturation state of seawater. This has previously been proposed as a principal driver of 

secular change in Proterozoic stromatolite morphology (Grotzinger and Knoll, 1999) and 

changes in the distribution of abiotic carbonate fabrics, such as seafloor precipitates (Kah and 

Knoll, 1996) and ‘molar-tooth’ microspar (Pollock et al., 2006), and it has also been used to 

explain fundamental shifts in the marine C-isotope record (Bartley and Kah, 2004). What 

governed such changes, however, has proven elusive. Declining [CO3
2-] is consistent with a 

Neoproterozoic expansion in gypsum and anhydrite deposition (Kah et al., 2001), and might 
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reflect a general decrease in DIC associated with high rates of organic carbon burial, inferred 

from carbonate C isotopic abundances (Knoll et al., 1986; Bartley and Kah, 2004; Halverson et 

al., 2005). Whatever the causation, the sedimentary record indicates that carbonate fabrics like 

those in the Angmaat succession, which record precipitation mostly on and within benthic mats 

and the shallow substrate, were replaced in part by carbonate fabrics that refect a greater 

abundance of material precipitated as whitings from the water column (Kah and Knoll, 1996), 

largely restricting the petrofabrics described here to older successions.  

 

Microbialite Fabric Preservation in Angmaat Carbonates 

As described earlier in this paper, microbialite fabrics in Angmaat carbonates can be interpreted 

in light of biological and physical processes inferred from early diagenetic cherts. With the 

exception of filament cast and molds, direct fossil evidence of mat-building communities is not 

preserved in unsilicified Angmaat carbonates. Nonetheless, digenesis has not obliterated fabrics 

associated with seafloor precipitates, tufts formed by locally vertical filament growth, trapping of 

gas bubbles by filamentous mat populations, and undulating mats built by filamentous 

cyanobacteria. That is, diagenesis has operated on a template provided by depositional fabrics, 

and so microbialite textures preserved in carbonate facies do reflect microbial mat composition, 

at least in part.  As noted above, biological inferences drawn from Angmaat petrology owe much 

to the physical circumstances of their formation, namely, penecontemporaneous carbonate 

precipitation from highly oversaturated waters. More generally, however, under favorable 

circumstances, petrographic textures imparted by trapping and binding, coccoidal vs. filamentous 

mat construction, filament orientation, and mat builder diversity may all leave a petrographic 
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signature in Proterozoic stromatolites (see also Walter et al., 1988; Knoll and Semikhatov, 1998; 

and references therein).    

 

CONCLUSION 

 

Silicified carbonates in the late Mesoproterozoic Angmaat Formation preserve 

depositional fabrics that are widespread in Paleoproterozoic and Mesoproterozoic carbonate 

rocks but uncommon in Neoproterozoic successions. Abundant microfossil populations 

preserved in these same cherts indicate that the biological composition of mat communities 

covaried in space with the preserved petrofabrics. Later diagenesis in unsilicified carbonate rocks 

altered but did not erase mat-specific petrofabrics. Thus, despite the obfuscating influence of 

carbonate diagenesis, the Angmaat samples support the hypothesis that microstructural fabrics in 

Proterozoic stromatolites can provide a tractable record of community diversity in ancient mat 

ecosystems.  
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FIGURE CAPTIONS 

FIGURE 1 – Geologic map of the Milne Inlet region, Baffin Island, showing location and 

distribution of stratigraphic units within the Bylot Supergroup. Samples (black circles) tied to 

measured sections at Mala River (MR), Tremblay Sound (TS), Milne Inlet (MI), and White Bay 

(WB). 

 

FIGURE 2 – Populations of Siphonophycus inornatum and S. capitaneum in filament-dominated 

mat facies. A-D show variously oriented silicified populations (A: G4, G53/0; B: G4, J53/0, C: 

G4, L51/2; D: DAC-10, J38/4). E) Molds of S. capitaneum sheaths preserved in carbonate 

(DAC-10, S62/4). Bar in E = 250 μm for A, D and E, = 800 μm for B, and  = 500 μm for C. 

 

FIGURE 3 – Microfossils and fabrics in filament-dominated mat facies. A) Siphonophycus

inornatum (G23, N49/1). B) Mat fabric of laminated EPS, with no well preserved microfossils. 

C) Mat building assemblage of Siphonophycus inornatum and larger S. capitaneum (DAC-5, 

N70/3). D Eomicrocoleus crassus (G4, B54/3). E) Cross section of E. crassus, showing evidence 

of multiple trichomes (DAC-5, E53/0). F) Mycoccoides sp. 2 (DAC-28, M50/0). Bar in F = 30 

μm for A, = 1 mm for B, = 100 μm for C, = 30 μm for D, = 70 μm for E, and = 60 μm for F. 

 

FIGURE 4 – Microfossils in Angmaat cherts. A) Endolithic cyanobacteria penetrating lamina in 

laminated precipitate-coccoidal mat facies (34, N48/4).  B) Eoentphysalis belcherensis colony in 

coccoidal mat layer (DAS 26, N65/4). C) Siphonophycus robustum in thin filament mat (34, 



36 
 

F55/2). D and E) Sphaerophycus parvum dyads within the filament-dominated mat community 

(D: G25, M43/1; E: G25, L41/4). F) Unnamed multilamellate spheroid with opening, possibly 

related to Polybessurus, in filament-dominated mat (thin section G4, Efc G57/2). G) 

Gloeodiniopsis magna (thin section 35, Efc V41/2). H) Unnamed spheroids with tubular 

extensions (G25, Efc). I-L) Gloeodiniopsis lamellose (I: G25, M43/4; J: 35, T48/1; K: G4, 

E59/0, L: DAC-5, H53/0). Bar in G = 100 μm for A, = 150 μm for B, = 30 μm for C, = 10 μm 

for D, E, and L, = 15 μm for F, I, J, and K, = 20 μm for G, and = 25 μm for H. 

 

FIGURE 5 – Mat dwelling populations in filament-dominated mats. A and B) Polybessurus

bipartitus (A: G4, P57/0; B: G4, K61/1). C and D) Sphaerophycus medium (C: G25, M43/0; D: 

G25, M43/2)  E. Gloeocapsa magna (34, 46/2). F. Myxococcoides sp. 1 (G4, O56/0). Bar in F = 

60 μm for A and B, = 10 μm for C and D, and = 20 μm for E and F. 

 

FIGURE 6 – Additional Angmaat fossils. A-C) Eogloeocapsa bella (A: DAC-5, O67/3; B: 

DAC-5, V68/0; C: DAC-5, W63/2). D and E) Bangiomorpha pubescens (35, F54/3).  Bar in E = 

50 μm for A, B and D, = 20 μm for C, and = 70 μm for E. 

 

FIGURE 7 – Crystal fan-dominated precipitate facies (all illustrated specimens are reposited in 

Harvard University Paleobotanical Collection 64840; thin section – G12 in this case – and, for 

microfossils, England finder coordinates are given in parentheses). A) Overview showing 

silicified region (brown) above diagenetically altered carbonates. B, C, and F) Fine acicular 

microfabrics reflecting original carbonate precipitates, preserved by early diagenetic 

silicification; note dissolution voids in B and zonation in B, C and F, reflecting variations in the 
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incorporation of organic matter during crystal growth. D) Possible microfossils (endolithic 

cyanobacteria?) oriented parallel to crystal growth axes. E) Originally aragonitic crystals, with 

square terminations. Scale bar in D = 0.75 mm in A; = 250 μm in B, C, and F; = 2 μm in D; and 

= 200 μm in E.   

 

FIGURE 8 – Field views of thin filament-tufted mat facies. A) Tufted mats draped by white 

micrite in lower part and partially silicified tufts in upper part of image; black zone of pole = 10 

cm. B) Silicified tufts – black chert marks organic–rich tufts of filaments, whereas white chert is 

predominantly original void space preserved by early mineralization; note pen for scale. 

 

FIGURE 9 – Thin filament-tufted mats in thin section (G11).  A) Silicified (above) and 

unsilicified fabrics. B and C, Higher resolution views of silificied mat fabric, showing oriented 

thin filamentous microfossils and primary void spaces, some originally filled with fans of 

precipitated carbonate (arrow in C). Bar in A = 4.5 mm for A, and = 400 μm in B and C. 

 

FIGURE 10 – Laminated precipitates and coccoid-rich mat facies (G13). A) Interspersed 

silicified and unsilicified lithologies, showing characteristic fabric development. B) Higher 

resolution image showing stacked, organic-rich mat layers preserved in chert. C) Higher 

resolution image showing layered precipitates preserved in chert. Bar in C = 5 mm in A, = 400 

μm in B, and 175 μm in C. 

 

FIGURE 11 – A) Interlaminated thin filament mats (TFM) with abundant primary void space 

and laminated precipitate/coccoidal mats (LP/CM) that display few if any primary voids. 
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Carbonate microspar preserved within many voids in black cherts (34). B) Vertical tuft of 

filamentous microfossils, outlining void space (noted by arrow in A; 34, K53/2). Bar in B = 3.5 

mm in A, and = 15 μm in B. 

 

FIGURE 12 – Filament-dominated mat facies (A: DAC-10 and B: G4). Note arenitic carbonate 

beneath mat accumulation in A.  

 

FIGURE 13 – Thin section DAC-5, showing interlayering of filamentous mats built by 

Siphonophycus inornatum, thin filament-mats, an Eogloeocapsa accumulation, and a thin 

grainstone; note position of Bangiomorpha within the S. inornatum mat interval. Bar = 5 mm. 

 

FIGURE 14 – Diagram showing the distribution of microfossil taxa, seafloor precipitates, 

preserved gas bubbles, and dissolution features among the five microfacies recognized in 

Angmaat samples. Thicker lines indicate principal mat builders, as inferred from the density and 

orientation of microfossils within these populations.  Thinner lines indicate populations that lived 

in mats but did not play a major role in their construction. 

 

FIGURE 15 --  Distinctive mat petrofabrics comparable to those of the Angmaat Formation 

preserved in cherts within mid-Proterozoic carbonate accumulations from northwestern 

Greenland (A), Siberia (B,D, and F), China (C) and Australia (E).  Bar in A = 5 mm for A and C, 

= 1 cm for B, and = 100 μm for D-F. 

 





A

CB

D E



A B

C DE

F



A B

C D

EG

F

H

I J
K L



A

C

E

A B C

D

E

F



A B

D

C

E



A B

C D

FE



A

B



A

B

C



A

B C



LP/CM

LP/CM

TFM

TFM

A B



A

B





Myxococcoides sp. 1
Myxococcoides sp. 2

Eomicrocoleus crassus
Siphonophycus capitaneum

Gloeodiniopsis lamellosa
Gloeodiniopsis magna

Sphaerophycus parvum

Eogloeocpasa bella

Siphonophycus robustum

Siphonophycus inornatum
Polybessurus bipartitus

Eoentophysalis

Taxonomic richness

Preserved gas bubbles

Dissolution Features

Crysta
l F

an-D
ominated Precip

ita
tes

Laminated Precip
ita

te
-C

occ
oid

Mats

Thin-Fila
ment Tufte

d Mat

Robust
Fila

ment Mats

Bangiomorpha pubescens

Thin
Fila

ment Mat (N
ot Tufte

d)

Unnamed Population
Sphaerophycus medium



A B

C D

E

F


