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In the past two decades, the widespread application of genetic and
genomic approaches has revealed a bacterial world astonishing in
its ubiquity and diversity. This review examines how a growing
knowledge of the vast range of animal-bacterial interactions,
whether in shared ecosystems or intimate symbioses, is fundamen-
tally altering our understanding of animal biology. Specifically, we
highlight recent technological and intellectual advances that have
changed our thinking about five questions: how have bacteria
facilitated the origin and evolution of animals; how do animals
and bacteria affect each other’s genomes; how does normal animal
development depend on bacterial partners; how is homeostasis
maintained between animals and their symbionts; and how can
ecological approaches deepen our understanding of the multiple
levels of animal-bacterial interaction? As answers to these fun-
damental questions emerge, all biologists will be challenged to
broaden their appreciation of these interactions and to include
investigations of the relationships between and among bacteria
and their animal partners as we seek a better understanding of
the natural world.

inflammation | Bcell | Tcell | type 2 diabetes | obesity

Biologists have long appreciated the roles that microbes play
in the two distinct disciplines of pathogenesis and ecosystem
cycling. However, it wasn’t until the late 1970s that Carl Woese
and George Fox opened a new research frontier by producing
sequence-based measures of phylogenic relationships, revealing
the deep evolutionary history shared by all living organisms (7).
This game-changing advance catalyzed a rapid development and
application of molecular sequencing technologies, which allowed
biologists for the first time to recognize the true diversity, ubiq-
uity, and functional capacity of microorganisms (2). This recogni-
tion, in turn, has led to a new understanding of the biology of
plants and animals, one that reflects strong interdependencies
that exist between these complex multicellular organisms and
their associated microbes (3).

While the biosphere comprises many diverse taxonomic
groups, our focus here is principally on the interactions between
one group of microorganisms, the domain Bacteria, and one
group of complex multicellular organisms, the animals. Although
we chose to focus on animal-bacterial interactions, we expect the
application of new technology to reveal similar trends among
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and between Archaea, fungi, plants, and animals. We begin by
describing what we know about the evolution of animals and
their interactions with bacteria, and about the influence that these
relationships have had on the present-day genomic makeup of the
partners. We review the wealth of new data on the roles of bac-
teria in animal development and physiology, and conclude with a
discussion of the nesting of animal-bacterial relationships within
their larger ecological frameworks. We argue that interactions
between animals and microbes are not specialized occurrences,
but rather are fundamentally important aspects of animal biology,
from development to systems ecology.

In addition to the references of the main text of this article,
we include a list of useful citations to provide the reader a
broad opening to the subtopics covered in this contribution (SI
References).

Bacteria and the Origin of Animals

Understanding how associations among bacteria and animals
first evolved may reveal the foundations of ecological rules that
govern such interactions today. Animals diverged from their
protistan ancestors 700-800 million years ago, some three billion
years after bacterial life originated and as much as a billion
years after the first appearance of eukaryotic cells (4) (Fig. 1).
Thus, the current-day relationships of protists with bacteria, from
predation to obligate and beneficial symbiosis (5, 6), were likely
already operating when animals first appeared. Attention to this
ancient repertoire of eukaryote-bacterial interactions can provide
important insights into larger questions in metazoan evolution,
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The ancestry of humans reflected in the genomic signature. A

Fig. 2.
phylogenetic analysis of the human genes reveals the relative percentage
of the genome that arose at a series of stages in biological evolution.

from the origins of complex multicellularity to the drivers of
morphological complexity itself.

Based on molecular and cellular data, animals and
choanoflagellate protists are now considered sister groups,
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Fig. 3. Signaling within and between the animal and its microbiota.
Members of the microbiota, such as those in and on the gut, oral cavity,
and skin, communicate amongst themselves, and exchange signals with the
animal’s organ systems, participating in the body’s homeostasis. Some of
the signals promoting this balance are mentioned in the text (green), while
other representatives are not (black; Table S1). The microbiota also influence
animal behavior, creating a direct interface with other organisms. AMP,
antimicrobial peptides; LPS, lipopolysaccharide; PGN, peptidoglycan; PSA,
polysaccharide A; SCFA, short-chain fatty acids; TMA, trimethylamine oxide.
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Fig. 4. Nested ecological interactions of animals and bacteria and their

underlying metabolicbases. A. A forest canopy insect illustrates the cascading
effects of animal-bacterial interactions across multiple spatial scales. Bac-
terial symbionts (left), residing in the gut (middle, left), are essential to
nutritional success of insect species (middle, right) in tropical forest canopies
(right), where they often make up a majority of animal biomass. B. Diversity
of energy metabolism in bacteria and animals. Animals can ferment and
aerobically respire, but are unable to perform the vast diversity of other,
ecologically vital, energy-harvesting processes. Beyond phototrophy, which
they share with plants, bacteria can also contribute to primary production
by using inorganic energy sources (lithotrophy) to fix CO,. Animals are
directly or indirectly dependent on bacteria for extracting energy and cycling
biomolecules, while animals actively contribute to bacterial productivity
through bioturbation, nutrient provisioning, and as habitats for colonization
and shelter.

descended from a common choanoflagellate-like ancestor (Fig.
1) (7). The major underpinnings of animal-bacterial interactions
— nutrition, recognition, cell adhesion, and signaling — guide two
types of choanoflagellate behavior that may have been key to
the origin of animals: predation (8) and colony formation (9).
Extant choanoflagellates have homologs of animal signaling and
adhesion proteins (e.g., cadherins and C-type lectins) that may
have arisen as critical facilitators of bactivory (8). Diverse animals
respond to bacterial signals as triggers for morphogenesis or
behavior (e.g., larval settlement). Thus, the discovery that at least
one choanoflagellate, Salpingoeca rosetta, responds to signals
from specific bacteria to initiate colony formation through
cell division hints at an ancient involvement of bacteria in the
initiation of multicellularity (9). It will be important to learn
whether intercellular cohesion in sponges, which are known to
harbor hundreds of bacterial species (10-12), similarly depends
on the presence of bacteria. The origin of multicellularity has
been a topic of intense debate in biology, and many hypotheses
have been developed about how this evolutionary milestone was
achieved (13). A microbial role in animal origins does not obviate
other perspectives on the evolution of -complex multicellularity,
but adds a necessary functional and ecological dimension to
these considerations.

As early animals diversified, animal-bacterial interactions
continued to shape evolution in new ways (Fig. 1C). Bacteria took

Footline Author

on a new role in animal nutrition, serving not only as prey, but also
as producers of digestible molecules in the animal gut. This role
may have become more diverse with the evolution of a tubular
gut, with one-way passage of food from mouth to anus. Bacterial
influence on gut evolution certainly intensified with the subse-
quent origin of the coelom, a body cavity in which the organs are
suspended. The advent of the coelom made gut elongation and
regional specialization possible, facilitating both massive inges-
tion and storage for later digestion. Although the degree to which
microbes have driven gut evolution is unknown, the radiation of
several animal groups (e.g., ruminants) was undoubtedly enabled
by alliances with their gut-associated microbiota. The evolution
of form and function in other organ systems (e.g., respiratory,
urogenital) may have also been influenced by interactions with
bacterial partners (14). Furthermore, it is likely that the evolution
of these organ-system niches drove radiation of particular clades
of animal-associated bacteria (15), such as the genus Helicobacter
in vertebrate guts (16).

Evolution with animals, whether in symbiosis or via shared
habitats, has also influenced the distribution and diversification of
bacteria. For example, 90% of the bacterial species in termite guts
are not found elsewhere (7). Such specialization, while increas-
ing efficiency, comes with a cost: for every animal species that
goes extinct, an unknown number of unique bacterial lineages
that have evolved to depend on this animal niche disappear as
well (18). On a broader scale, the evolution of animals provided
novel physical environments for bacterial colonization, such as
aerated deep sediments resulting from animal burrowing. Finally,
human activities, which make a range of molecules not previously
found in nature, such as halogenated hydrocarbons, have driven
selection on bacterial catabolic pathways (19), leaving a signature
of our presence in microbial metabolism.

Intertwining Genomes

The long history of shared ancestry and alliances between
animals and microbes is reflected in their genomes. Analysis of
the large number of full genome sequences presently available
reveals that most life forms share approximately one third of their
genes, including those encoding central metabolic pathways (20).
Not surprisingly, many animal genes are homologs of bacterial
genes, mostly derived by descent, but occasionally by gene trans-
fer from bacteria (21). For example, 37% of the ~23,000 human
genes have homologs in the Bacteria and Archaea, and another
28% originated in unicellular eukaryotes (20) (Fig. 2). Among
these homologous genes are some whose products provide the
foundation for signaling between extant animals and bacteria
(22).

The intertwining of animal and bacterial genomes is not just
historical: by co-opting the vastly more diverse genetic repertoire
present in its bacterial partners (23), a host can rapidly expand
its metabolic potential, thereby extending both its ecological
versatility and responsiveness to environmental change. For in-
stance, many invertebrates have intracellular bacterial symbionts
whose genes encode metabolic capabilities lacking in animals,
such as the synthesis of essential amino acids (24), photosynthesis
(25), or chemosynthesis (26). Certain marine invertebrates that
feed on algae maintain algal plastids as photosynthetically active
‘symbionts,” a behavior that allows the host to use photosynthate
as a food source for extended periods (27). These metabolic ‘add-
ons’ allow the animal to thrive by adapting to otherwise non-
competitive lifestyles (e.g., feeding on nutrient-poor diets such
as plant sap) (28) or environments (e.g., oligotrophic habitats)
(26). Further, such phenomena fit the definition of epigenetic fea-
tures. Recent studies have revealed that bacterial pathogens (29)
and other environmental factors (30) can alter the activities of
epigenetic machinery. It is to be anticipated that such influences
will extend to all types of animal-bacterial interactions, including
those described above.
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Microbial communities in the vertebrate gut respond to the
host diet over both daily and evolutionary time scales, endowing
animals with the flexibility to digest a wide variety of biomolecules
and cope with and even flourish under conditions of diet change
(15, 31). For example, the gut microbiome of most people in
the United States is adapted to digest a high fat, high protein
diet, while populations in rural Malawi and the Amazonas of
Venezuela have distinct microbial consortia and functional gene
repertoires optimized for breaking down complex carbohydrates
(32). The gut microbiome adapts to changing diets and conditions
not only by shifting community membership, but also by changing
gene content via horizontal gene transfer. For instance, the gut
bacterium Bacteroides plebeius, found in some Japanese people,
bears a gene transferred horizontally from the marine bacterium
Zobellia galactanivorans, giving the gut symbiont the capacity to
degrade seaweed polysaccharides (33). More generally, human-
associated bacteria have a 25-fold higher rate of gene transfer
than do bacteria in other environments, highlighting the impor-
tant role of gene transfer in host-associated bacterial communi-
ties (34).

Bioinformatic analyses have revealed that interactions with
animals also influence the size and content of the genomes of their
bacterial partners. Although not all genome-size reduction occurs
in symbiosis, a long history of intimate association with insects
has resulted in highly reduced genomes in their intracellular
symbionts; for example, the endosymbiont Candidatus Hodgkinia
cicadicola of the Arizona cicada has a genome size <144 kilobase
pairs, smaller than that of some organelles (35). Recent studies
have shown that genome reduction also occurs in segmented
filamentous bacteria (Candidatus Savagella), members of the
mammalian microbiota that are critical for the maturation of the
immune system (36). Conversely, in Bacteroides thetaiotaomicron,
another member of the mammalian intestinal microbiota, adapta-
tion to a gut habitat rich in complex carbohydrates has driven the
expansion of at least two gene families: glycan-utilization genes,
which constitute 18% of this species’ genome (37); and diverse
sulfatases that allow B. thetaiotaomicron to digest host mucin
(38). The genomic basis for other microbial adaptations among
gut microbes is less clear. One possible selection pressure is host
temperature. In aquatic environments such as the deep sea, host
fishes and invertebrates conform to the temperature of the en-
vironment, so temperature-driven coevolution would be unlikely
in these habitats. In contrast, terrestrial environments often have
broad, short-term (daily) and long-term (seasonal) fluctuations in
temperatures. It is in these habitats that endothermy (maintaining
a constant body temperature by metabolic means) evolved as a
shared character in birds and mammals. Most enteric bacteria of
birds and mammals have growth optima at ~40 °C, suggesting
the unexplored possibility that this trait resulted from coevolution
of these bacteria with their endothermic hosts. The reciprocal
may also be true, i.e., an animal’s microbial partners may have
played a role in selecting for the trait of endothermy. Constant
high temperature speeds up bacterial fermentation, providing
rapid and sustained energy input for the host. These benefits are
apparent when comparing conventional to germ-free mammals,
which require 1/3 more food to maintain the same body mass
(39). Keeping their microbes working at optimum efficiency likely
offered a strongly positive selection pressure for the evolution
of genes associated with the trait of endothermy in birds and
mammals.

Partners in Animal Development

Animal development has traditionally been viewed as an
autonomous process directed by the genome. Because it both
originated and evolved in a microbe-rich environment, animal
development deserves a re-examination, at least in part, as an or-
chestration of animal-encoded ontogeny and inter-domain com-
munication (40, 41). Although relatively few studies have been
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reported until recently, these early data lead us to anticipate that
microbes play a role in providing signals for multiple developmen-
tal steps.

From their earliest stages of development, animals employ
sophisticated mechanisms to manage their microbial environ-
ment. Physical barriers, such as capsules, chorions, and mucus
protect eggs by excluding microbes, and chemical barriers, in-
cluding antimicrobial peptides (AMPs), shape the composition
of the associated microbiota (42). Conversely, several animals
recruit specific bacteria to their embryonic surfaces to provide
protection against potential pathogens (43). For example, the
shrimp Palaemon macrodactylus is protected from the fungus
Lagenidium callinectes by 2,3-indolinedione that is produced by
an Alteromonas sp. on the embryo’s surface (44). Although many
animals, including a wide variety of insects, have transovarial (i.e.,
via the egg to the embryo) transmission of bacterial partners (28,
45), we have no persuasive evidence to date that these microbes
or their metabolites influence embryogenesis. While develop-
mentally important symbioses have been documented throughout
the postembryonic (larval and juvenile) stages of vertebrate and
arthropod life cycles, the roles of symbiotic microbes during
normal embryonic development are just beginning to be stud-
ied. Unlike vertebrates whose embryos develop inside enclosures
that physically block bacterial associations, many invertebrates
acquire their symbionts through the female germ line. Here, we
may expect to find regulatory signals being generated by microbes
and interactions between host and symbiont development (46). It
is apparent that evolution has selected for anatomical, cellular,
and molecular determinants that act during this period to prepare
newborn animals for interactions with the microbial world.

Ample evidence shows that microbes act directly as agents of
post-embryonic development. For example, fucosyltransferases
decorate the surface of the embryonic mammalian intestine with
fucose residues that provide a nutrient source for gut microbes,
including B. thetaiotaomicron, as they colonize the newborn (47).
In the squid-vibrio system, a complex organ forms during embryo-
genesis that facilitates subsequent colonization by the symbiotic
bacterium Vibrio fischeri (48). The products of horizontally ac-
quired microbes can be essential for a range of developmental
functions, including influences on larval growth rate and body size
in invertebrates (49), postembryonic maturation and renewal of
epithelia in invertebrates and vertebrates (50-53), development
and specification of the gut-associated lymphoid tissues in ver-
tebrates (54), activation of the immune system in tsetse flies (55)
and normal brain development in mammals (56, 57). Intriguingly,
the host regulatory pathways that control immune responses to
microbes appear also to have central roles in animal development,
underscoring the intimate relationships between development
and host-microbe interactions (58, 59).

Perhaps the most pervasive example of microbial signaling in
animal development is the induction of settlement and metamor-
phosis of many marine invertebrate larvae (60). This transition
is an absolute requirement for completion of the animal’s life
cycle and is contingent upon induction by exogenous morpho-
genetic cues, many of which are produced by bacteria associated
with a particular environmental surface (60). Marine invertebrate
metamorphoses offer valuable models for exploring the basis of
bacterial signaling in animal development in a setting where the
very persistence of marine ecosystems depends upon it.

Coming full circle, the influence of microbes on animal repro-
duction can be observed with particular clarity in invertebrates
(61). Most insect orders carry vertically transmitted parasites
that can affect the processes of sexual determination, matura-
tion, and reproductive success. For example, various Wolbachia
strains feminize crustacean genetic males, kill males, or induce
clonal production of females in some insects (62). However, in
one case, the association with a Wolbachia strain has become
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essential for reproduction; the wasp Asobara tabida requires
this microbe for egg formation (63). Recent studies have shown
that, in both invertebrates and vertebrates, the microbiota can
even influence reproductive behavior (64). Changes in cuticular-
hydrocarbon profiles linked to specific bacterial symbionts in
the gut of Drosophila melanogaster correlate with mate choice
(65), and several lines of evidence suggest that olfactory cues
associated with mate choice in vertebrates are produced by their
resident microbiota (66).

Inter-Domain Communication

Although animals and bacteria have different forms and
lifestyles, they recognize one another and communicate in part
because, as described above, their genomic ‘dictionaries’ share a
common and deep evolutionary ancestry. One modality of inter-
domain communication, that occurring during bacterial patho-
genesis, has been extensively explored for over a century. But how
might bacterial signaling structure the biology of the healthy host?

Biologists now know that bacteria have social behaviors,
communicating with each other through chemical signaling, such
as quorum sensing (67, 68); more recently, inter-domain quo-
rum signaling between bacteria and their eukaryotic partners
has become evident (22, 69-71). In addition to quorum signals,
bacteria use cell surface-derived molecules to.communicate with
their hosts, affecting host processes both at the cellular level [e.g.,
apoptosis, toll-like receptor (TLR) signaling (52, 72)],-as well
as at the organ-system level (Fig. 3). Conversely, host-derived
signal molecules like nitric oxide (NO) can be sensed directly by
microbes (73). It is intriguing to consider that these kinds of com-
munication evolved to maintain an association’s balance with its
hundreds of beneficial species, and that pathogens have ‘hijacked’
these conversations to enhance their fitness through disease.
For example, Salmonella typhimurium has adapted the quorum-
sensing regulator QseC to act as a receptor for the host hormone
norepinephrine and, thereby, tie the regulation of virulence genes
to the hormone’s presence in the tissue (74). Some hosts, such
as the marine macroalga Delisea pulchra, respond to quorum-
signaling pathogens by producing halogenated furanones that act
as signal mimics, blocking the microbes’ communication (75).

The gut is likely the site of the most dynamic and conse-
quential bacteria signaling that benefits animal hosts, because
of the sheer numbers and diversity of its microbes and the in-
herent permeability and sensitivity of the gut epithelium. For
example, acetate, a short-chain fatty acid (SCFA) produced by
the gut bacterium Acefobacter, stimulates insulin signaling in
Drosophila melanogaster, thereby promoting host growth rates
and reducing sugar and lipid levels (49). In mammals, SCFAs
affect fat deposition, appetite-related hormone titers, and food
consumption, which in turn can modulate the composition of the
microbiota, and have major consequences for health and behavior
(76, 77). Not surprisingly, the composition of the gut microbiota,
and its SCFA production, are influenced by diet. The resultant
interplay among diet, the microbiota and their metabolites is, in
turn, implicated in the development of major metabolic disorders
including obesity and diabetes (78). As much as a third of an
animal’s metabolome — e.g., the diversity of molecules carried in
its blood — has a microbial origin; thus, the circulatory system
extends the chemical impact of the microbiota throughout the
human body (79), transporting metabolites that influence the
physiology and metabolism of distant organs and, perhaps, other
bacterial communities (80, 81). Some dietary constituents can
be modified by gut microbiota into deleterious compounds; for
example, the conversion of dietary phosphatidylcholine into the
pro-atherosclerotic metabolite, trimethylamine, can jeopardize
cardiovascular health (82). Furthermore, recent studies link the
gut microbiota to brain physiology and animal behavior (83).
For instance, germ-free mice have defects in brain regions that
control anxiety (57), and feeding probiotic bacteria to normal

Footline Author

mice reduces depression-like behaviors (84, 85). The finding that
toll-like receptors, which transduce bacterial signals to host cells,
are present on enteric neurons reveals one mechanism by which
microbiota can communicate with the central nervous system
through the brain-gut axis (72). Thus, maintaining homeostasis
with the normal microbiota is essential to a healthy nervous
system.

As the guardian of an animal’s internal environment, its
immune system coordinates cellular and biochemical responses to
alterations in the molecular landscape (86, 87), creating a robust
equilibrium between the healthy host and its normal microbiota.
The complexity of components that comprise this system re-
flects the great chemical diversity present in the microbial world.
Pattern-recognition receptors (PRRs) of the innate immune sys-
tem can have enormous repertoires, particularly in the inverte-
brates. PRRs recognize microbe-associated molecular patterns
(MAMPs), such as bacteria-specific cell surface molecules (88).
For example, peptidoglycan (PGN), a cell-wall constituent of
bacteria, interacts with PRRs to induce developmental processes
in vertebrates and invertebrates (52, 54). The gut-associated
lymphoid tissues of mammals mature with the presentation of
peptidoglycan monomer by the gut microbiota during their early
establishment, and the same molecule induces the regression of
a juvenile-specific epithelium that facilitates colonization by the
symbiont in the squid-vibrio system. Similarly, a polysaccharide
produced and exported by Bacteroides fragilis, a constituent of the
normal microbiota, signals the PRRs of immune cells to suppress
gut inflammation (89). Disturbance of equilibria maintained by
MAMP-PRR interactions can lead to a wide variety of pathologic
states, including inflammatory bowel disease and diabetes (90,
91). Further, SCFAs produced by gut bacteria help the host de-
fend against enteric infections (92), revealing molecular symbiosis
between the microbiota and the immune system. Finally, immu-
nologists are beginning to examine the possibility that, in addition
to a role in pathogenesis, a principal selection pressure acting on
the form and function of the adaptive immune system is the need
to maintain balance among the complex, coevolved consortia that
form persistent symbioses with the mucosal surfaces of several
organ systems in the vertebrate host (86, 93-95).

Nested Ecosystems

Since the dawn of metazoan evolution, the ecology of animals
has depended on bacterial communities. The fossil record pro-
vides evidence that some animal forms in the Ediacaran grazed
on dense assemblages of bacteria on hard substrates (96) and that
burrowing animals originated in association with microbial mats
(97). Biologists increasingly recognize that, in extant animals,
developmental and physiological signaling are processes whose
understanding benefits from an ecological perspective (98).

Viewing animals as host-microbe ecosystems has given us new
insights into the maintenance of human health. The application of
ecological approaches, including successional assembly and diver-
sity analysis, has proven valuable in understanding how animal-
microbial alliances function (99-101). For example, human in-
fants born vaginally have a very different succession during the
early phases of gut colonization and, possibly, long-term com-
position of their microbiota than those delivered by Caesarean
section (102). The effects of this difference in infant delivery on
adult health remain to be discovered. We know that imbalances
in the mature human microbiome have been correlated with a
spectrum of diseases, including obesity and diabetes (77). A re-
cent metacommunity analysis of the gut microbiota of obese and
lean twins revealed that obesity is associated with a significantly
less stable and more variable microbial community (103). While
most research on consortia is currently focused on humans and
vertebrate model systems, such as mice and zebrafish, similarly
complex interactions occur in all animal species. Viewing bacte-
rial colonization of animals as an ecological phenomenon adds
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clarity to an understanding of the mechanisms and routes by
which phylogenetically rich and functionally diverse microbial
communities become established and evolve on and within animal
hosts.

An ecological perspective influences not only our understand-
ing of animal-microbiome interactions, but also their greater role
in biology. The ecosystem that is an individual animal and its
many microbial communities [i.e., the ‘holobiont’, (104)] does not
occur in isolation, but is nested within communities of other or-
ganisms that, in turn, co-exist in and influence successively larger
neighborhoods comprising ever more complex assemblages of
microbes, fungi, plants and animals (Fig. 4). Hydrothermal vent
communities illustrate the role of animal-microbe associations
in such nested ecosystems. At vents and other reducing habi-
tats, chemoautotrophic symbionts provide organic nutrients for
animal hosts in at least seven different phyla. The activities of
these individual symbioses contribute to larger communities that
include non-symbiotic animal and microbial species that are able
to exist through the symbiotic primary production that is not
driven by solar energy but rather by sulfide, hydrogen, methane
and other reduced energy sources (26, 105). Similarly, nested
within broader terrestrial ecosystems, bacterial communities in
floral nectar can influence the way animals such as ‘pollinators
interact with plants. In these instances, the bacteria change ‘the
chemical properties of the nectar making it more or less attractive
to the pollinator, which changes the pollinator-plant dynamic
(106).

Bacteria are critical determinants of animal population and
community structures, even in ecosystems where intimate sym-
bioses are not the driving force. Recent studies demonstrate
that the larvae of many benthic marine invertebrates require
specific microbial cues for their recruitment from the plankton,
and these larval responses to bacteria influence the structuring of
many marine benthic communities (60, 107). For example, cer-
tain strains of the biofilm-forming bacterium Pseudoalteromonas
luteoviolacea produce chemical cues that stimulate settlement
and metamorphosis by Hydroides elegans, a polychaete worm that
fouls docks and the hulls of ships worldwide (60, 108), as well
as a sea urchin (/09) and a coral (107). Surface biofilms on
many marine animals serve important functions in determining
the very nature of the animals’ ecological interactions with other
organisms (/10). Similarly, the acquisition of an appropriate
microbiome at critical life-history stages of many animals affects
their subsequent behavioral patterns and thus the stability of their
ecological roles in their communities (64). Bacteria feeding on
dead animals in the sea, and likely on land, repel animal scav-
engers by producing noxious metabolites; these products allow
the bacteria to effectively out-compete organisms 10,000 times
their size (111).

Conversely, invasive animals can alter the activities of indige-
nous bacteria, with significant effects on their shared habitat. For
example, rats introduced onto small Pacific islands decimated
seabird populations, resulting in decreased sea-to-land transport
of nutrients (guano) and altered decomposition and nutrient
cycling by soil microbes (/12). In another study, European earth-
worm species introduced to North American hardwood forests
led to significant changes in soil microbial biomass and the
metabolic quotient of the soil ecosystem (Z13). In each of these
situations, an introduction led to a substantial reduction in ecosys-
tem productivity. Applying metacommunity and network analyses
(114) to such animal-bacterial interactions will be essential for the
design of effective strategies for managing ecosystems in the face
of the environmental perturbations, such as pollution, invasive
species, and global climate change, that challenge the biosphere.

The Challenges

For much of her professional career, Lynn Margulis (1938-
2011), a controversial visionary in biology, predicted that we
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would come to recognize the impact of the microbial world on
the form and function of the entire biosphere, from its molecular
structure to its ecosystems. The weight of evidence supporting
this view has finally reached a tipping point. The examples come
from animal-bacterial interactions, as described here, and also
from relationships between and among viruses, Archaea, protists,
plants, and fungi. These new data are demanding a reexamination
of the very concepts of what constitutes a genome, a population,
an environment, and an organism. Similarly, features once consid-
ered exceptional, such as symbiosis, are now recognized as likely
the ‘rule’, and novel models for research are emerging across
biology. As a consequence, the New Synthesis of the 1930s and
beyond must be reconsidered in terms of three areas in which
it has proven weakest: symbiosis, development and microbiology
(115). One of these areas, microbiology, presents particular chal-
lenges both to the species concept, as formulated by Ernst Mayr
in 1942, and to the concept that vertical transmission of genetic
information is the only motor of selectable evolutionary change.

It is imperative that human societies recognize the centrality
of the relationships between microbes and other organisms for
the health of both individuals and the environments in which they
live. The current focus on studies of humans and their microbiota
has provided compelling evidence that the composition and activ-
ity of resident microbes play crucial roles in shaping the metabolic
and regulatory networks that define good health, as well as a
spectrum of disease states. Nonetheless, the underlying ecological
mechanisms are still poorly defined, and the development of tools
to translate this understanding into novel therapies presents an
ongoing challenge.

In broader scale ecosystems, evidence is mounting that seem-
ingly minor environmental perturbations have major, long-term
impacts. A full understanding of the consequences will require us
to expand our investigations of the associated changes in micro-
bial communities in soil, freshwater and marine habitats. How are
such microbial assemblages affected by the introduction of non-
native species of plants and animals, the increases in temperature
due to global climate change, and the acidification of the oceans?
While a few studies (e.g., (116, 117)) have revealed its impor-
tance, the impact of acidification has thus far focused largely on
eukaryotic calcification processes (118). This emphasis leaves us
still ignorant of how marine ecosystems may be changed if small
shifts in seawater pH or temperature alter the compositions of
bacterial communities that are crucial for recruitment of the next
generations of plants and animals into their native habitats. The
maintenance and restoration of ecosystems that support sustain-
able agriculture and carbon-neutral energy production depend on
recognition of the interactions between microorganisms and ani-
mals, plants and fungi, and the robustness of these relationships in
response to anthropogenic and other perturbations. Whether an
ecosystem is defined as a single animal or the planet’s biosphere,
the goal must be to apply an understanding of the relationships
between microbes and other organisms to predict and manipulate
microbial community structure and activity so as to promote
ecosystem health.

These challenges present a vast and exciting frontier for the
field of biology, and call on life scientists to alter significantly
their view of the fundamental nature of the biosphere. Ambitious
large-scale, interdisciplinary research efforts, such as the Human
Microbiome Project and the Earth Microbiome Project, aim to
provide a basic understanding of microbial variation across a wide
range of body and environmental habitats in both the normal and
perturbed states. Effective project design and the resulting large
data sets are driving advances in quantitative methods, such as the
creation and refinement of techniques to improve approximation
algorithms, dimensionality reduction, and visualization of the
results (119). These efforts have highlighted the need for ge-
nomic standards, open-source integrated analysis pipelines, and

Footline Author

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816



817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

increased low-cost computational power. A compelling goal for
the future is to apply these technologies, the resultant data, and
the emerging intellectual framework to a wide array of biological
questions. Such a synthesis promises to generate a more accurate
vision of life on earth.

Successful development of research on our microbial world
will result only with the breakdown of existing intellectual barri-
ers, not only between the subdisciplines of biology, but also across
the natural sciences, mathematics, computer science and engi-
neering. Such integration will be fostered by the active promotion
of cross-disciplinary units at universities, collaboration among
professional societies, and novel approaches by the funding agen-
cies to support the development of this new frontier (120). The
progress of change across the field will also require reformulation
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of educational goals, including development of ways of teaching
biology that are as revolutionary as those that occurred in the
1950s in the wake of both the New Synthesis and the launch of
Sputnik. Because of advances described here, we foresee a day
when microbiology will be a centerpiece not only of biological
research, but also of high school, undergraduate and graduate
biology education.
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