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Abstract. 

This paper describes a method to detect the presence of bacteria in aqueous samples, based 

on the capture of bacteria on a syringe filter, and the infection of targeted bacterial species with a 

bacteriophage (phage). The use of phage as a reagent provides two opportunities for signal 

amplification: i) the replication of phage inside a live bacterial host (1000-fold amplification for 

M13 phage in E. coli K12), and ii) the rapid conversion of a colorless substrate to a colored or 

fluorescent product by an enzyme that is co-expressed with the phage (in this demonstration β-

galactosidase, which has a turnover rate of ~ 600 molecules/second).  This method can detect a 

single colony-forming unit (CFU) of E. coli in one liter of water with an overnight culture-based 

assay, or 50 CFUs of E. coli in 1 liter of water (or 10 mL of orange juice, or 10 mL of skim milk) 

in less than four hours with a solution-based assay with visual readout. The solution-based assay 

does not require specialized equipment or access to a laboratory, and is more rapid than existing 

tests that are suitable for use at the point of access. This method could be applied to the detection 

of many different bacteria, in parallel, with bacteriophages that express enzymes not natively 

expressed in the target bacteria.  



 

 

Introduction. 

 The guidelines for monitoring bacterial contamination in a public supply of water, or in a 

supply of food, are stringent to mitigate threats to public health. Analytical methods approved by 

the Environmental Protection Agency (EPA) must ensure that a public water supply maintains 

fewer than one colony-forming unit (CFU) of coliform bacteria in 100 mL of water,1 and the 

Food and Drug Administration (FDA) has a “zero tolerance” policy for the presence of bacterial 

species such as E. coli O157:H7, Salmonella sp., and Listeria monocytogenes in foodstuffs.2,3  

 The detection of such small numbers of bacteria requires an amplification step: EPA-

approved methods rely on microbiological culture, affinity capture (based on antibodies),4,5 or 

the amplification of nucleic acids.3,6 Microbiological cultures determine the number of live 

bacteria in a sample, but require incubation periods ranging from several hours to several days at 

temperatures between 30 - 45 oC;7,8 the “rapid” test for coliform bacteria approved by the EPA 

requires a 16-hour incubation at 35 oC. Nucleic acid-based methods such as multiplexed PCR 

can determine the identity and number of bacteria present in a sample9,10 within a period of 2 - 8 

hours, but are more difficult and costly to run than cultures because they require access to 

laboratory equipment and reagents. There are a number of lab-on-chip11,12 and paper-based13,14 

prototypes, but none have yet provided a simple analytical method that meets the approval of the 

EPA. Several commercial products are also available to detect coliform bacteria in a sample of 

water, at the point of access, but these products are culture-based, and require incubation periods 

of 12 hours or longer. 

 Bacteriophages (phages) are viruses that selectively infect a bacterial host, and utilize the 

cellular machinery of the host to replicate in number. Phages are well-suited as a reagent for 

detecting the presence of bacteria in a sample, because they: i) amplify in number naturally, once 



 

 

they have infected the targeted host; ii) are species- or serotype-specific,15,16 and this specificity 

reduces the probability of a false-positive result; iii) require a single reagent, the phage of 

interest; iv) can be produced in large numbers at a low cost; v) can be stored for long periods in a 

dry state;17,18 vi) pose no threats to humans, and can be handled without fear of infection or 

illness;16,19 and, vii) can be engineered to co-express enzymes or peptide sequences that are not 

natively expressed in the targeted bacteria. 

 Existing phage-based assays for the detection of E. coli utilize a single amplification step and 

detection by microscopy or cell sorting.18,20,21 The phages are pre-labeled with a fluorophore, or 

engineered to display a specific peptide sequence (e.g., a biotinylated peptide,20 or a tetra-

cysteine peptide motif21) that is recognized by a peptide-specific fluorophore. 

 A point-of-access assay for bacteria that combines the simplicity of culture with the short 

time periods required for nucleic acid-based methods is not currently available. We describe a 

simple, portable, filter-based assay that can to detect fewer than 50 CFUs of E. coli in one liter of 

liquid in 4 hours by exploiting two different types of selective signal amplification: i) the 

replication of phage within live bacteria, and ii) the production of hundreds (or thousands) of 

colored or fluorescent molecules per second from an enzymatic reaction (Scheme 1). We use this 

bacteriophage-based method to identify E. coli present in samples of drinking water, milk, and 

orange juice. 

Experimental Design. 

Choice of bacterial species and liquid samples. We chose E. coli K12 (ER2378) as a model 

organism for the phage-based assay because: i) it is a coliform bacterium, which is a rod-shaped 

bacterium that is not necessarily pathogenic but may be indicative of pathogenic bacteria 

associated with fecal matter, and thus a target organism for EPA-approved methods; ii) it is 



 

 

engineered to not express β-galactosidase (βgal); and, iii) there is a commercially available, βgal-

expressing bacteriophage.  

We detected and quantified the number of CFUs of E. coli in drinking water, drinking water 

contaminated with particulates of soil (5 g / 100 mL; i.e., “dirty water”), skim milk, and pulp-

free orange juice. We chose to test samples of water because a significant number (15%) of 

Americans,22,23 and a larger proportion of people in the developing world, obtain drinking water 

from private sources (e.g., a well, cistern, or stream) that are not monitored unless an outbreak of 

water-borne disease has occurred. We selected milk and orange juice because they are 

commodity foodstuffs, and require constant monitoring; there is currently no diagnostic capable 

of detecting the presence of bacteria in a sample of milk at the site of milk collection and 

processing. The collection and pooling of milk samples in the developing world, or other locales 

where pasteurization is not feasible, may result in a single sample of bacteria-containing milk 

contaminating an entire pool.24 Milk and orange juice also pose analytical challenges because 

they are opaque, and not compatible with assays based on a visual readout. 

Choice of bacteriophage. We chose an M13 phage that co-expresses a single copy of βgal 

with each phage. A single bacterium infected by M13 phage produces an average burst size of 

1000 plaque-forming units (PFUs) of phage within an hour of infection.25,26 The choice of a βgal-

expressing phage is advantageous, because: i) the enzymatic turnover of βgal (e.g., 620 

molecules sec-1 at pH = 7.0 and 20 oC)27 provides a second stage of amplification, and ii) the 

products of the enzymatic assay can be detected visually, and eliminate the need for culture steps 

(or a plaque assay). 

Concentration and amplification of E. coli using a syringe filter. We began every assay by 

filtering the sample through a 0.2-µm syringe filter to capture the bacteria from the sample 



 

 

(Scheme 1). These filters are available in pre-packaged sterile units, and represent a self-

contained microbiology laboratory in which the captured bacteria can be incubated and handled 

without fear of contamination. The filters retain the bacteria throughout multiple washing steps, 

which are necessary to reduce colored contaminants or excess salts from samples such as milk or 

orange juice that may interfere with detection, but allow for the elution and collection of newly 

produced phage and βgal following incubation. 

Indirect detection of E. coli with phage- and βgal-based assays. The quantity of phage (or 

βgal) collected after incubation correlates with the number of viable bacteria captured on the 

syringe filter because bacteriophages can only replicate in a live bacterial host. To validate this 

correlation, we quantified the newly produced phages with a plaque assay,18 a standard 

microbiological assay in which the phage are introduced to solid agar containing E. coli, and 

plaques (regions of dead bacteria) are counted after incubation. The M13-phage-infected bacteria 

produce blue-colored plaques in the presence of a colorimetric substrate for βgal: 5-bromo-4-

chloro-3-indolyl β-D-galactopyranoside, Xgal.  

For the portable assay, we detected the captured E. coli with a solution-based assay that relies 

on the enzymatic activity of βgal to produce a colorimetric or fluorescent product. A readout 

based on the production of a fluorescent molecule is desirable because the limit of detection of a 

fluorescent signal is much lower than that of a colorimetric signal, and fluorescence readings are 

less susceptible to interferences from colored solutions. 

Results and Discussion. 

Filtration of liquids through the syringe filter improves the detection of colored products. 

The background absorption and/or scattering of light by opaque or colored samples make the 

detection of a colorimetric product difficult. We prepared samples of drinking water, orange 



 

 

juice, skim milk, and dirty water with increasing concentrations of chlorophenol red—one 

possible product of the βgal assay—ranging from 4 µM to 250 µM (Figure 1a). The red color of 

chlorophenol red can be observed at a concentration of 8 µM in drinking water, but is more 

difficult to detect in orange juice (125 µM), milk (63 µM), and dirty water (16 µM). 

Figure 1b shows samples of orange juice, milk, and dirty water before and after filtration. 

The increased transparency of the samples after filtration facilitates the detection of a colored or 

fluorescent molecule. Figure 1c compares the transmittance (λ = 570 nm, the maximum 

absorption of chlorophenol red) of the liquid samples in Figure 1b before and after filtration. 

Samples of orange juice and dirty water passed easily through the 0.2-µm filter, but less than 

1 mL of skim milk clogged the filter. We found that adding a sodium hydroxide (to a final 

concentration of 0.4% w/v) to the samples of milk greatly reduced their viscosity, and allowed 

them to pass through the filter. Basic solutions are known to be anti-bacterial, but short 

exposures are not lethal.28 

Filtration of liquids through the syringe filter captures and retains bacteria. To ensure the 

bacteria contained in a liquid sample were captured (and retained) during filtration and several 

washing steps, we filtered 5-mL samples of drinking water, orange juice, skim milk, and dirty 

water containing 5000 CFUs of a βgal-expressing E. coli (NCTC 9001) and rinsed each sample 

with 10 mL of 1X phosphate buffered saline (1X PBS). We then centrifuged the filtrates at 

14000 x g for 10 minutes, removed the supernatant, resuspended the pellet with 1 mL of 1X 

PBS, and plated it on an agar plate containing Xgal. We included several positive controls 

(containing 5, 50, and 500 CFUs of E. coli NCTC 9001), which we suspended in 10 mL of 1X 

PBS, centrifuged, and plated. The positive control samples each contained blue-colored plaques, 



 

 

while the filtrates contained no plaques (n = 3 samples of each liquid); these results show that the 

syringes effectively capture bacteria from the sample, and sterilize the filtrate.  

We performed a separate set of controls to determine if the viability of E. coli in a sample of 

milk decreased when exposed to sodium hydroxide (0.4 % w/v); we found that exposures within 

the time required to add sodium hydroxide to a sample of milk, filter the sample, and rinse it with 

1X PBS (~15 minutes) did not decrease the viability of 5 CFUs of E. coli in the sample (see 

Supporting Information). 

A culture-based readout has a limit of detection of one CFU of E. coli in one liter of 

drinking water. We determined the limit of detection of the phage-based assay with an overnight 

culture-based readout (i.e., a “plaque assay”) for samples containing between zero and 5000 

CFUs of E. coli K12. Because the plaque assay cannot distinguish between newly produced 

phage and excess phage remaining on the filter, we inactivated the excess phage by rinsing the 

filter with a solution of ferrous ammonium sulfate,29 followed by a solution of sodium citrate to 

chelate and remove excess ferrous ions (Scheme 1, see Supporting Information for experimental 

details). We incubated the syringe filters for an additional 60 minutes to allow the phages to 

complete their replication cycle prior passing one mL of 1X PBS through the filter, and applying 

the solutions to a plate of solid agar containing E. coli and Xgal (detailed procedure in 

Supporting Information). We counted the number of plaque-forming units (PFUs) after a 12-hour 

incubation, and plotted the number of PFUs as a function of CFUs of E. coli captured on the 

filter (Figure 2a). The number of PFUs detected in the plaque assay for large number of E. coli 

is less than expected, based on the average burst of an M13 phage of 1000.25,30 Early work on 

phage supports the relationship between phage concentration and plaque count that we 

observed.18,31 



 

 

Samples of drinking water containing a single CFU of E. coli produced 310 ± 30 PFUs; this 

value is well above the LOD, which we calculated from the background noise (20 ± 30 PFUs) of 

samples containing zero E. coli. Both the LOD of the culture-based readout and the average 

number of PFUs observed for samples containing 5 CFUs of E. coli were independent of the 

volume of the liquid sample (Figure 2b). For a given concentration of bacteria (expressed in 

CFU/mL), however, we expect that larger sample volumes will result in more sensitive detection, 

due to the concentration of bacteria on the filter.  

Dirty water, or the presence of other species of bacteria, does not affect the phage-based 

assay. Dirty water, which is often associated with sources of water that may be contaminated, 

does not interfere with the assay (Figure 3a), and the number of PFUs detected from samples of 

drinking water and dirty water containing 50 CFUs of E. coli are statistically indistinguishable. 

We also found that the number of plaques produced from samples of drinking water containing 

50 CFUs of bacteria not targeted by the M13 phage—E. coli BL21 (an F− E. coli), P. aeruginosa, 

and S. aureus—are statistically indistinguishable from samples containing zero bacteria (Figure 

3b). Samples of drinking water containing a mixture of bacteria (e.g., 50 CFUs of E. coli K12 

and 50 CFUs of E. coli BL21) produce the same number of PFUs as a sample containing only 50 

CFUs of E. coli K12.  

The species-specificity of a bacteriophage reduces the likelihood of false-positive readings; it 

is, however, important to note that a false positive is possible if the excess phage on the filter are 

not properly deactivated with a ferrous ion-containing solution. The need for a sterile laboratory 

environment (for plating and culturing the phage-containing samples) and numerous controls (to 

ensure that the excess phage are inactivated with ferrous ions, and excess ferrous ions are 

inactivated with citrate ions) makes a culture-based assay difficult to implement at the point of 



 

 

access. An ideal assay would require few experimental steps, no access to a laboratory, and 

produce a visual signal in less time than required for culture. 

A portable, visual readout-based assay has a limit of detection of 50 CFUs of E. coli in one 

liter in 4 hours. While the overlay-based assay surpasses the requirements set by the EPA for a 

coliform test—the ability to detect one CFU of E. coli in 100 mL of water in less than 24 h—a 

solution-based assay, with a visual-readout, would be attractive because there are no approved 

point-of-access assays for bacteria that do not rely on culture of the sample. 

This solution-based assay relies on the collection of the newly produced βgal molecules, 

rather than newly produced phage. A readout based on βgal eliminates the need for washing the 

filter with ferrous ammonium sulfate and sodium citrate because the presence of excess phage 

does not affect the result. Following the incubation of the sample with the phage, we treated the 

filter with a solution that contained lysozyme, which lysed any bacteria present on the filter and 

released their contents, and a substrate for βgal (see Supporting Information). We collected the 

filtrate and monitored the enzymatic reaction for changes in color. 

There are a number of substrates that are converted to a colored product in the presence of 

βgal.32 We compared three substrates that are listed in methods already approved by the EPA:1 2-

nitrophenyl β-D-galactopyranoside (ONPG), which yields 2-nitrophenol (ONP, yellow in color); 

chlorophenol red-β-D-galactopyranoside (CPRG), which yields chlorophenol red (CPR, red in 

color); and 4-methylumbelliferyl β-D-galactopyranoside (MUG), which yields 4-

methylumbelliferone (MU, fluorescent).  

Figure 4a shows the visual limits of detection for ONP, CPR, and MU, based on the 

measurement of a series of standard solutions; we also measured the absorbance and 

fluorescence of each solution with a spectrometer to ensure that the calibration trends were linear 



 

 

(see Supporting Information). The visual limit of detection of CPR (~0.01 mM) is approximately 

20-fold lower than that of ONP (0.2 mM), which is a more commonly used substrate for βgal. 

MU was the most sensitive of the three substrates, with a visual limit of detection of ~0.0003 

mM when excited with a handheld UV lamp or an LED emitting in the UV. LEDs are 

compatible with a portable assay, are easy to use, inexpensive (< $1 per flashlight), and require 

little power (~18 h of continuous light, or over 10,000 samples, on a single lithium battery). 

To determine the limit of detection of the solution-based assay we captured and infected 

between zero and 5000 CFUs of E. coli on the syringe filter, lysed the bacteria in the presence of 

MUG or CPRG, and collected the lysate in 1.5-mL centrifuge tubes. The fluorescent signal (of 

MU) in samples of water, milk, and orange juice containing 50 CFUs of E. coli was observed 

after 3 hours of incubation. To achieve a visible colorimetric result (using CPR) in the same 

period of time required ~1x106 CFUs of E. coli.  

Figure 4b shows a 0.2-µm syringe filter before (left) and after (right) it was used to filter 10 

mL of soil-contaminated water. The filtrate from the dirty water did not interfere with the visual 

detection of CPR or MU, whereas the visual detection of ONP was limited by the discoloration 

of the filtrate (Figure 4c). The presence of particulates of soil does not interfere with the 

visualization of MU (Figure 4d). 

Phage-infected E. coli produce a positive result more quickly than coliform E. coli that 

express βgal natively. Detection of natively expressed βgal forms the basis of the culture-based 

assays for coliform bacteria approved by the EPA. The lacZ gene, which encodes βgal, was 

removed from the genome of the E. coli strain (K12 ER2378) used in these proof-of-principle 

studies. To determine if the number (and activity) of βgal molecules present in a sample of 

coliform bacteria could produce a false-positive result in the visual readout-based assay we 



 

 

compared the activity of βgal in samples containing βgal-expressing E. coli (NCTC 9001, 

collected from urine) to our model organism, E. coli K12 ER2738. 

We repeated the solution-based assay with E. coli NCTC 9001, and monitored the production 

of MU with a fluorescence plate reader. The time required for 50,000 CFUs of NCTC 9001 to 

produce a visible signal of MU was approximately 8 hours, whereas a sample of 50 CFUs of E. 

coli K12 produced a visual signal from MU in less than 4 hours. We conclude that the presence 

of endogenous βgal will not interfere with phage-based amplification and detection. Engineering 

an enzymatic reporter into the phage that is not present in the target bacterium is also a plausible 

strategy to reduce this type of background. 

Conclusion. 

There is presently no convenient or cost-effective method to test samples of liquid for the 

presence of bacteria at a point of interest (e.g., a water source, an assembly line in a food 

processing plant, a container of pooled milk samples, etc). Commercially available kits rely, as 

do most laboratory-based assays, on the overnight culture of the sample. This paper describes an 

alternative assay, based on the species-specific infection of bacteria in a sample with a self-

amplifying system: a bacteriophage. We have detected 50 CFUs of E. coli in a 1-liter sample of 

drinking water in less than 4 hours with a visual-based readout. 

The selectivity of this assay is two-fold, and arises from the specific interactions of phage for 

bacteria, and of enzyme for substrate. Phages are an ideal reagent for diagnostics because, in 

addition to their selectivity, they can be stored dry, and can be engineered to co-express a variety 

of reporter enzymes that produce colored, fluorescent, or electrochemically-active species. There 

are a number of repositories of already sequenced phages,33 and the procedures for inserting a 

gene of interest into the phage genome are well-established.25 



 

 

The sensitivity of this assay arises from two steps of amplification: i) the replication of 

phage, which can amplify in number by a factor of up to 1000, and ii) the catalytic activity of a 

high-turnover-rate enzyme, which is co-expressed with each phage (which can produce an 

additional amplification of ~106 per hour for βgal). We can increase the sensitivity of the assay 

by introducing a second round of phage infection and amplification—similar to the approach 

used to prepare overlay plates—but note that this extra step limits the utility of this assay for 

onsite monitoring of liquid samples. There are a number of alternatives that could increase the 

sensitivity of this assay while not decreasing its utility: the use of βgal substrates with lower 

limits of visual detection; an electrochemical or polymerization-based assay whose product is 

more easily detected than a change in color; or phages engineered to co-express multiple copies 

of an enzyme with a high turnover rate. 

Supporting Information. 

A detailed procedure for the culture- and solution-based phage assays; materials and methods 

section; calibration curves of ONP, CPR, and MU. This material is available free of charge via 

the Internet at http://pubs.acs.org. 
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Scheme 1. Schematic of the assay based on bacteriophage amplification. Filtering an aqueous 

sample through a 0.2-µm filter captures bacteria on the surface of the filter. A bacteriophage of 

interest (e.g., M13 filamentous phage, which co-expresses βgal) is introduced to infect the 

bacteria. The phage replicate on the filter and co-express the enzyme of interest during an 

incubation period (generally 60 minutes). After incubation, the newly produced phage is 

quantified with a culture-based assay (an overlay plate), or the newly produced enzyme is 

quantified with a solution-based enzymatic assay. 



 

 

 

 

 

Figure 1. a) Samples of drinking water, orange juice, skim milk, and dirty water with increasing 

concentrations of CPR (0 µM left, 4 µM to 250 µM in 2-fold increases in concentration). b) 

Photographs of samples of orange juice, dirty water, and skim milk before filtration (i), after 

treatment with base (ii, milk only), and after filtration (iii - iv). c) Average transmittance (at 570 

nm) of the n = 4 samples, before and after filtration, as an indicator of opacity. 

 



 

 

 

Figure 2. a) Number of PFUs of M13 phage detected with a plaque assay from 10-mL samples 

of drinking water containing known CFUs of E. coli. b) Number of PFUs of M13 phage detected 

for 1, 10, 100 and 1000 mL samples of drinking water containing zero CFUs of E. coli (bottom 

row) and 5 CFUs of E. coli (top row). The gray regions demarcate an interval within one 

standard deviation from the mean obtained for a sample of 100 mL (the volume required for 

EPA-approved tests for coliform bacteria in drinking water). Each point is the average of n = 9 

experiments, and the error bars represent one standard deviation from the mean. 



 

 

 

 

Figure 3. a) Number of PFUs of M13 phage detected with the plaque assay from samples of 

drinking water and dirty water (containing 5g / 100 mL of soil) containing E. coli. b) Number of 

PFUs of M13 phage detected with a plaque assay from 10 mL samples of drinking water 

containing 50 CFUs of the indicated bacterium. Mixtures containing two species of bacteria 

contained 50 CFUs of each species. Each point is the average of n = 9 experiments, and the error 

bars represent one standard deviation from the mean. 

 

  



 

 

 

Figure 4. a) Visual detection of 2-nitrophenol (left) and chlorophenol red (middle) obtained with 

a flatbed scanner, or 4-methylumbelliferone (right) obtained from illuminating the samples with 



 

 

a handheld UV lamp. The concentrations of 2-nitrophenol and chlorophenol red in each row 

decrease by a factor of 2 (from top to bottom); the concentration of 4-methylumbelliferone in 

each row decreases by a factor or 10. b) Syringe filter before (left) and after (right) filtering 10 

mL of dirty water (containing 5 g of soil / 100 mL of water). c) Three samples of liquid passed 

through a 0.2-µm filter: (left) a sample of 1X PBS containing 1 mg/mL of ONPG and no 

bacteria; (middle) a sample of 1X PBS containing 1 mg/mL of ONPG and potting soil, but no 

bacteria; (right) a sample 1X PBS containing 1 mg/mL of ONPG, 5000 phage-infected E. coli, 

and potting soil. The coloration of the middle tube, which contained no bacteria, is due to small 

particulates that passed through the 0.2-µm filter and is not from cleaved ONPG molecules. d) 

Samples of 1X PBS containing 0.1 mg/mL of MUG and potting soil. The sample on the left 

contained 500 phage-infected E. coli, the sample on the right contained no E. coli. 


