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Abstract 
 
Though most behavioral traits are moderately to highly heritable, the genes that influence them 
are elusive: many published genetic associations fail to replicate. With physical traits like eye 
color and skin pigmentation, in contrast, several genes with large effects have been discovered 
and replicated. We draw on R.A. Fisher’s geometric model of adaptation to explain why traits of 
interest to behavioral scientists may have a genetic architecture featuring hundreds or thousands 
of alleles with tiny individual effects, rather than a few with large effects, and why such an 
architecture makes it difficult to find robust associations between traits and genes. In the absence 
of strong directional selection on a trait, alleles with large effect sizes will probably remain rare, 
and such a lack of strong directional selection is likely to characterize most traits currently of 
interest in social science. We evaluate these predictions via a genome-wide association study 
(GWAS) that carefully measured over 100 physical and behavioral traits with a sample size 
typical of candidate gene studies. While we replicated several known genetic associations with 
physical traits, we found only two associations with behavioral traits that met the nominal 
genome-wide significance threshold. We use the theory and findings to discuss (1) the challenges 
for social science genomics, particularly the likelihood that genes are connected to behavioral 
variation by lengthy, nonlinear, interactive causal chains; (2) the prospects for dealing with these 
challenges; and (3) the inherent tradeoff between two ways of meeting these challenges: 
increasing sample size and improving phenotype measurement.  
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Introduction 
 
People differ in their intelligence, personality, and behavior, and a century of research in 
behavioral genetics leaves little doubt that some of this variation is caused by differences in their 
genomes.1,2,3 Nonzero (and sometimes substantial) heritability of psychological traits has been 
consistently established in twin, adoption, and family studies that have often been massive in 
size. But beyond establishing that genes matter, such studies say little about the detailed genetic 
architecture of psychological traits, i.e., how many genetic polymorphisms affect a trait, how the 
polymorphisms interact, what they are, and what they do.  
 
The recent advent of affordable genome-wide association studies (GWAS) offers the exciting 
opportunity to understand the genetic factors that influence psychological trait variation with far 
greater precision. It has the potential to uncover some of a given trait’s genetic architecture, 
including the number, genomic locations, average effects, and allele frequencies of the DNA 
variants that affect the trait. Even an incomplete understanding of a trait’s genetic architecture 
could prove a boon to social scientists for at least four reasons.4 
 
First, the presence of genetic variants can be detected with high reliability. Thus, they may 
constitute direct measures of constructs that were previously regarded as only latent. For 
example, there is some evidence that a person’s genotype for the SNP in FTO associated with 
body mass index (BMI) may indicate a preference for certain kinds of high-calorie foods,5 and 
one might speculate that other genes may affect how much body weight is produced from a 
person’s caloric intake. These genetic variants could then be used as variables of interest, or as 
controls, in other models, testing models of the causation of obesity that formerly could only 
appeal loosely to “genetic factors.”  
 
Second, the discovery of genetic associations may identify or clarify the actual biological 
mechanisms that underlie social and health behaviors. For example, a mechanistic role for the 
hormone oxytocin in trust-related behavior has been suggested by findings that variants in the 
oxytocin receptor gene (OXTR) are associated with differences in performance in a behavioral-
economic trust game (albeit with mixed results so far).6,7 And just as in medicine, where genetic 
discoveries have suggested new pathways for understanding and treating disease (e.g., Crohn’s 
disease8), genetic discoveries may help social scientists decompose crude concepts like “risk 
aversion” and “time preference,” both of which play roles in health behaviors, into biologically 
meaningful subcomponents. 
 
Third, under very special circumstances, genetic variants could be used as instrumental variables 
that would identify causal relationships from non-experimental data. For such analysis to be 
valid, the allele must reliably and exclusively affect a specific biological trait (and no other 
biological traits). If these strong conditions are met, then one can use the random assignment 
(during meiosis) of each person’s genotype at that allele as a natural experiment to test the 
hypothesis that the biological trait, in turn, causes variation in some behavioral phenotype. For 
example, Chen and colleagues showed that SNPs in ALDH2 that are known to increase alcohol 
metabolism are associated with decreased blood pressure.9 This provides evidence that alcohol 
consumption in fact causes an increase in blood pressure—under the crucial, and perhaps 
implausible, condition that those SNPs are assumed not to also affect blood pressure through 
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some other channel. Other studies of this type have been published,10 but it seems likely that the 
circumstances in which the instrumental variable approach can work are rare. 
 
Fourth, knowledge of individuals’ genotypes could help in targeting social-science interventions 
to those who stand to benefit from them the most—an application of concepts from personalized 
medicine to public health and policy. Such a benefit is particularly likely to help children, since 
their abilities and preferences are less developed and harder to measure. For example, children 
with genotypes that confer a susceptibility to dyslexia might be offered personalized educational 
resources from a very early age. 
 
The leap in precision from GWAS, compared to twin studies, promises to help not just working 
social and behavioral scientists but anyone interested in the evolutionary history and adaptive 
pressures that shaped the human species and its variation. Not only does an individual’s genome 
provide a partial recipe for the development of his or her unique phenome (set of phenotypes) 
forward in time, but our species’ array of genomic data provides a trace of our collective 
evolutionary history backward in time. For example, once it was discovered that mutations in the 
gene FOXP2 could cause a severe developmental deficit in speech and language, comparative 
genomic analyses showed that this gene’s sequence had changed at least twice since the 
separation of humans and chimpanzees from their common ancestor, that it has been a target of 
natural selection rather than a legacy of random drift, and that it is shared with Neanderthals—all 
relevant to venerable and hitherto nearly unresolvable debates on the evolution of language. 
 
Despite the extraordinary promise of extending genetic research to behavioral traits, results so far 
of studies that have searched for genetic variants associated with these traits have been 
disappointing: No strong, replicable associations have been discovered. Most of the claims of   
genetic associations with such traits have turned out to be false positives, or at best vast 
overestimates of true effect sizes. Chabris et al. found that across three independent samples, 
only one of twelve published associations of particular genes with general intelligence replicated, 
and this one replicated in only one sample out of three. 11 Worse, the new samples were 
considerably larger than the originals, which suggests that all of these reports were probably 
false positives. Similarly, Benjamin, Cesarini, Chabris et al. found a SNP associated with 
educational attainment and cognitive function, but could not replicate it in three independent 
samples.4  Benjamin et al. likewise found no significant associations with any of a set of traits 
involving economic and political behavior.4 Finally, Beauchamp et al. conducted a GWAS of 
educational attainment (i.e., years of education completed) and found no hits that met 
conventional genome-wide significance levels; those that approached significance did not 
replicate in a second sample. 12 
 
Difficulty in finding specific genes that correlate with traits that are known to be heritable is not 
unique to the social sciences. It is also a problem in GWAS of medical traits such as psychiatric 
diagnoses and susceptibility to common diseases, and even with certain physical traits, such as 
height. Table 1 summarizes the heritabilities estimated from twin studies of medical, physical, 
and social science traits, based on three review articles and some recent publications in 
behavioral economics; it shows that the heritabilities of physical and psychological traits are 
similar and substantial.  
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The discrepancy between the high heritability of both physical and psychological traits, and the 
rarity of replicable discoveries of particular genes for those traits, has been dubbed the problem 
of “missing heritability”.13 One possible resolution of this paradox is that each of the genes 
associated with a trait explains only a minuscule fraction of the total genetic variance—and 
hence these genes are difficult to identify statistically—but there is a huge number of such genes, 
and the heritability estimate reflects their aggregated effects. 
 
Zuk et al. suggested that the discrepancy between heritability estimates from traditional 
biometrical studies of families and GWAS results thus far comes from the fact that biometrical 
studies will overestimate heritability if genes interact non-additively. 14 If this suggestion is 
correct, then it may be that GWAS approaches that do not grapple with the combinatorial 
explosion posed by the search for gene-gene interactions will fail to produce interesting results. 
This criticism of biometrical studies, however, only applies when such studies focus on only one 
type of kinship (e.g., twins reared together). Many human traits, including height and IQ, have 
been studied biometrically using many different kinds of kinships (twins reared together and 
apart, parents and offspring living together and apart, adoptive relatives who live together but are 
biologically unrelated). When these results are considered collectively, they converge on 
relatively large heritability values. 
 
The evidence base for claims about heritability has been strengthened by a recently developed 
way to estimate heritability that examines genetic variation directly. The genomic-relatedness-
matrix restricted maximum likelihood (GREML) technique15 uses all of the genotypic data from 
SNP arrays to estimate, for each pair of participants in a dataset, their degree of genetic similarity 
(relatedness), and then correlates genetic relatedness with phenotypic similarity across all of the 
pairs. Note that this technique does not require the participants to be related in the conventional 
genealogical sense of being siblings or cousins. It exploits the fact that all individuals within a 
population are distantly related, and that the level of relatedness varies considerably among pairs 
of people. For example, Davies et al. reported a GREML analysis with about 550,000 common 
SNPs and 3000 subjects in which about 45% of the variance in general cognitive ability could be 
directly explained by the SNP variation;16 Chabris et al. replicated this finding with a smaller 
sample.11 In the original application of GREML, Yang et al. showed that 45% of the variance in 
height across 4000 subjects could be explained by ~300,000 common SNPs.15 These estimates 
leave room for unmeasured genetic variation (e.g., uncommon SNPs, other non-SNP 
polymorphisms) to explain additional heritability. 
 
In this context, a “common” variant is a polymorphic site where the minor allele shows a 
frequency exceeding a certain threshold (say .05), whereas a “rare” variant is a site where the 
frequency of the minor allele falls below this threshold. The GREML results finding substantial 
heritability owed to common variants tend to discredit the hypothesis that missing heritability 
arises because common variants typically studied in GWAS are merely surrogates for rare 
variants of powerful effect that, if only they could be discovered, would account for much more 
heritability.17 Furthermore, Wray et al. provide a thorough analysis of the available GWAS 
results and show that a model relying exclusively on rare causal variants cannot account for the 
data.18 It is important to note that, under any reasonable evolutionary model, most genetic 
variants affecting a given phenotype may be rare. All else being equal, however, common 
variants contribute more variability than rare variants, and thus it is not at all inconsistent to 
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expect that common variants will be responsible for a substantial portion of heritability. 
 
Though medical and behavioral geneticists are becoming increasingly sympathetic to the many-
common-genes-of-small-effect answer to the missing heritability question, it is still not known 
why such a diffuse polygenic architecture should be typical of quantitative traits. Nor is it known 
what might account for the exceptions that have been found. 
 
A simple possible explanation invokes the length of the causal chain from genetic to phenotypic 
variation. For example, variation in pigmentation (e.g., of eyes, skin, and hair) arises from the 
number of melanosomes produced, as well as their size and shape, and the type of melanin 
synthesized.19 These biochemical differences follow directly from changes in the composition or 
regulation of gene products, which in turn are strongly influenced by differences in DNA 
sequence. Indeed, a single SNP in HERC2 is largely responsible for blue eye color.20 
 
In contrast, changes at the molecular and cellular level must be remote from their ultimate effects 
in most behavioral phenotypes, and even from many physical phenotypes such as body mass 
index (BMI). Consider that BMI may depend on what a person likes to eat, how often he eats, 
how much he exercises, details of his metabolism, and a host of other complex behaviors and 
physiological processes. Similarly, given that the physical basis of psychological attributes such 
as cognitive ability, conscientiousness, impulsivity, and risk aversion resides in intricate patterns 
of neural circuitry and interlocking biochemical feedback loops, we should perhaps expect any 
single genetic variant affecting such an attribute to contribute only a small fraction of the total 
variation in the phenotype. 
 
Here we offer a second explanation (which is not mutually exclusive with the first), which 
invokes the differential action of natural selection. More than 70 years ago, R.A. Fisher proposed 
a geometric model of adaptation21 that may be summarized in Figure 1, which depicts two 
quantitative traits as the vertical and horizontal dimensions on a two-dimensional space 
(representing a slice of the vast multidimensional space of possible phenotypes). Point A 
represents the current mean phenotype of the species (in this example, a low value of trait 1 and 
an intermediate value of trait 2). Point O represents the optimum favored by natural selection. 
Suppose that A was once optimal, because selection had pushed the population to its optimum 
value, but that O no longer coincides with A because an abrupt environmental change occurred 
that demands a different (in this case higher) value of trait 1. 
 
What would have to happen for selection to adapt the organism to the new optimum? One 
possibility is a new mutation arising in a single individual and, if beneficial, reaching fixation 
(100% allele frequency) in the population. In the model the fixation of a mutation corresponds to 
adding a vector of random direction to the population’s current trait-space position at A. This 
feature of the model captures two key observations: (1) mutations have no inherent tendency to 
increase the fitness of their bearers, and (2) any single mutation may affect several distinct traits, 
and therefore this mutation could change the population’s mean values of both traits 1 and 2. The 
subset of new phenotypes that would result in an increased level of adaptation is depicted in 
Figure 1 as the interior of the circle centered on O, representing all the combinations of trait 
values that are closer to the optimum (using the Euclidean distance metric).   
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The diagram also helps one understand the fates of mutations with different effect sizes. Note 
that any mutation whose effect on the traits exceeds the diameter of the circle would not be fixed, 
because it leaves the population farther from the optimum than when it started (point A).  
Selection would simply favor the status quo. In general, the smaller the mutation, the more likely 
it is to be beneficial, because there are many small moves that can be made from A that stay 
within the circle, but few very large ones—most large moves will overshoot the circle or move 
away from it. The fact that a smaller move is more likely to take the population into the circle 
should already be evident from Figure 1. As the number of traits/dimensions increases to larger 
values (which cannot be depicted in a two-dimensional figure), the greater ease with which 
smaller moves take the population into the “hypersphere” becomes quite dramatic.* 
 
Fisher argued that mutations of large effect are relatively unimportant in evolution, since they 
will rarely move a population closer to O. And the closer to the optimum the organism already 
is, the less likely large mutations are to be beneficial. Fisher draws an analogy to the process of 
focusing a microscope. When a microscope is already close to the correct focusing point, a small 
random perturbation of the knob is likelier than a larger perturbation to bring it closer to exact 
focus.  
 
We will now expand Fisher’s argument to explain the puzzling contrast between some physical 
phenotypes like skin or eye color on the one hand and social science and medical phenotypes on 
the other. Suppose that trait 1 was previously under strong stabilizing selection and thus has 
negligible genetic variation at the time of the environmental shift that makes O the new optimum 
(this state of affairs would correspond to a tight clustering of trait 1 values around point A). 
Since the rate of the approach to the optimum via existing genetic variation (i.e., variation that 
does not result from de novo mutations) is bounded above by trait 1’s heritability (per the 
breeder’s equation),22 a population with negligible genetic variability in that trait is unlikely to 
adapt quickly towards O unless a mutation of large effect arises and reaches fixation—e.g., a 
mutation that took the population to A’, where its new value for trait 1 is much closer to the 
optimum. 
 
Alternatively, suppose that stabilizing selection on trait 1 had been much weaker, permitting the 
buildup of substantial genetic variation (leading to a wide scatter of trait 1 values around A). In 
this case a mutation of large effect is far less likely to become common through positive 
selection. At the same time that this mutation is struggling to increase its frequency, the existing 
genetic variation is enabling the population to adapt toward O. If O lies within the current range 
of genetic variation (which is true for trait 1 under the assumption of the more variable 
population in Figure 1) and selection is even moderately strong, then the population mean shifts 
from A to O even without the arrival of a mutation of large effect. As the population evolves, the 
diameter of the circle bounding all points of higher adaptation continuously shrinks. Once the 
magnitude of the mutation that would have taken the population to A’ exceeds the diameter of 
the circle, the mutation is disfavored and is very likely to be eliminated from the population.† 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*!If the number of traits (n) is large, then the probability that a random mutation of length r takes 
the population into a hypersphere of radius z is 1 – Φ(x), where Φ is the cumulative distribution 
function of the standard normal distribution and x = r√n/(2z) [ref. 21]. 
†!A numerical example may help to illustrate our argument. Suppose that the fixation of a new 



“Why Is It Hard to Find Genes …” – p. 8 

 
 
To complete our explanation, we need to assume that the polymorphic sites contributing to 
existing genetic variation tend to be small in effect. Even under weak stabilizing selection, 
variants of large effect experience greater selection pressure and consequently are more likely to 
be found at a low minor allele frequency.25–27 This implies that any common (i.e., high-
frequency) variants contributing to standing genetic variation will typically be small in effect. 
Thus, we might expect many loci of small effect to explain most of the heritable variation 
underlying a quantitative trait—unless there was recent selection for the trait that was strong 
relative to the initial variability. If a trait turns out to be associated with many genetic loci of 
small effect and few or no loci with large effects, then we would have evidence that this trait has 
not experienced such selection. 
 
In the remainder of this paper, we will show how this evolutionary analysis can help 
epidemiologists and social scientists make sense of the genetics of behavior in the era of rapidly 
expanding genome scans. We report the results of our own GWAS of more than a hundred 
human phenotypes, both physical phenotypes such as body size and pigmentation, and 
behavioral phenotypes of great interest to social scientists, such as general intelligence, memory 
ability, verbal fluency, impulsivity, risk aversion, fairness, and utilitarianism. We measured a 
wide variety of cognitive, personality, and behavioral-economic traits so that we could generalize 
across types of traits and compare the behavioral to the physical phenotypes. In other words, 
without sampling freckles, eye color, and height in a single study, we could not make general 
claims about physical traits; without measuring religiosity, memory, and impulsiveness in a 
single study, we could not make general claims about behavioral traits; and without measuring 
both categories we could not compare them. To our knowledge this study is the first to examine 
associations between a genome-wide panel of single-nucleotide polymorphisms (SNPs) and such 
a broad spectrum of phenotypes; almost all previous association studies of behavioral traits have 
examined only one or a few candidate genes and phenotypes. In addition to including both 
physical and behavioral traits, the study examined traits that are expected to be both monogenic 
and polygenic. An additional innovation is that the behavioral phenotyping was intensive, relying 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
mutation is the only means for the population to increase its level of adaptation—that is, there is 
initially no genetic variation along the selected direction. Then if the selective advantage of the 
new mutation is 5%, it will take about 500 generations to increase from a frequency of .001 to 
.999 [ref. 23]. A selective advantage of roughly this magnitude seems reasonable for many of the 
mutations affecting pigmentation. Now suppose that the population contains substantial genetic 
variability in the trait. In particular, suppose that the trait has heritability 100% and follows a 
standard normal distribution. If we stipulate that the old and new optima are separated by 2 
phenotypic units (and that each unit continues to correspond to a 5% change in relative fitness; 
i.e., a 5% gain in offspring per generation), then standard quantitative-genetic results23,24 imply 
that the population will reach the new optimum in 40 generations. If the preexisting variants of 
small effect have pleiotropic effects, the adaptation time may be somewhat longer. Nevertheless, 
in a race between the fixation of a major mutation and polygenic adaptation, the latter will often 
have a profound advantage. Once polygenic adaptation has brought the population close to the 
new optimum, the major mutation will become disfavored while still at a low frequency. 
!
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not just on standardized paper-and-pencil tests but on individual computerized tasks, sometimes 
administering hundreds of trials to quantify a single trait. This step is essential because crude 
measurement of behavioral traits could lead to false negatives and thus would not help explain 
the puzzling failure to find associated genes. Thus, each of our 419 participants was tested 
individually in a laboratory session lasting an average of 3.5 hours.  
 
To preview the results: Despite an adequate sample size for detecting large effects and despite 
high-precision measurements, we found few associations between SNPs and traits at an 
appropriately stringent significance threshold. Since many of our measured phenotypes 
(including our behavioral phenotypes) are known to be heritable,28 the absence of strong 
associations in our data indicates that—aside from pigmentation—both physical and behavioral 
traits are mainly affected by numerous genes with small effects. 
 
After presenting the results, we discuss their implications for future genetic association studies of 
behavioral traits, which are likely to become ever more common as the cost of genotyping and 
sequencing declines. In addition to our analysis of the evolutionary genetics of heritable 
variation, we introduce two other key issues in designing and interpreting such studies: the 
effects of selection bias for participant inclusion in such studies, and the tradeoffs between 
measurement error and statistical power in selecting simple, fast, inexpensive assessments of a 
traits versus the sort of complex, time-consuming, and potentially expensive assessments that we 
conducted. 
 
 
Methods 
 
Participants were recruited, and data and samples were collected, at two sites: Harvard 
University in Cambridge, MA, and Union College in Schenectady, NY. Efforts were made to 
recruit from the surrounding communities a more representative sample than the typical college 
student population: Paper fliers were posted at various public locations, advertisements were 
placed in free newspapers and on Craigslist, and the study was made available to the Psychology 
Department Study Pool at Harvard. 
 
Participants first completed an online screening questionnaire that included items regarding age, 
medical history, and grandparental ethnicity. Participants who were younger than 18 or older 
than 45, or who reported a history of bipolar disorder, schizophrenia, or severe head trauma were 
excluded. To help control for ancestral confounding of genotypes and trait levels,29 we recruited 
a sample of predominantly Western European ancestry, which was ascertained at the screening 
process by asking potential participants to list the country of origin or ancestry for each of their 
biological grandparents. A total of 419 participants provided complete, usable genetic and 
phenotypic data.  
 
Eligible participants were invited to either the Harvard or Union lab for a data collection session 
lasting typically from three to four hours. Participants gave informed consent after the nature of 
the procedure had been fully explained to them. A diverse set of cognitive, personality, 
economic, attitude, demographic, and physical phenotypes were collected via computerized 
tasks, paper-and-pencil surveys, and face-to-face interaction. DNA was collected via two 
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mouthwash samples in the lab, and then extracted and genotyped elsewhere. Population 
stratification was investigated and controlled for in all genetic analyses reported here. We used 
the program PLINK for genotypic data cleaning and analyses.30 (See Supporting Online Material 
for a complete list of phenotypes, descriptions of select phenotypes, and details of DNA 
collection, extraction, genotyping, and analysis of population stratification.)  
 
Linear regression was performed to test for purely additive association between SNPs and all 
polytomous and continuous traits. Logistic regression was performed for dichotomous traits. We 
chose the standard genome-wide significance threshold of 5×10–8 for declaring a SNP-trait 
association to be statistically significant.31 Under a frequentist approach aiming to minimize the 
chance that even a single declared “hit” is a false positive, the large number of examined traits 
would require an even more stringent threshold. However, we follow the suggestion of the 
Wellcome Trust Case-Control Consortium,32 who adopt a quasi-Bayesian justification for 
retaining the standard genome-wide significance threshold; it maintains a constant ratio of true to 
false positives as the number of markers and traits increases (so long as statistical power and 
prior probabilities for any given association do not change). Moreover, since our primary goal is 
to compare results across phenotypes, what is most important is to have a common threshold 
across phenotypes, and adopting the standard threshold maximizes comparability of our results 
with other published results. 
 
For any SNP showing an association with a trait at the significance threshold 5×10–8, we re-ran 
PLINK with our cognitive ability composite and NEO Openness, Neuroticism, and 
Agreeableness factor scores as additional covariates in an effort to control for selection bias.33 

Selection bias may be an underappreciated contaminant in gene-trait association studies.34 To 
understand the bias, consider this analogy: Suppose that a driveway will be wet in the morning as 
the consequence of two possible causal mechanisms: whether it rained last night, and whether a 
sprinkler was activated (Figure 2A). Suppose also that the two causal variables are independent; 
that is, taking all days into account, there is no correlation between whether it rains and whether 
the sprinkler turns on. If we only consider mornings on which the pavement is wet, however, we 
will spuriously conclude that the two causes are negatively correlated. For instance, if we see 
that the pavement is wet and we know that it did not rain last night, we can be confident that the 
sprinkler was activated. We only see the true non-correlation when we consider all days. 
Suppose that the probability of rain and the probability of sprinkler activity are both 0.5 and are 
independent. If one checked the driveway every morning, wet or dry, then one would observe 
rain and no sprinkler a quarter of the mornings, sprinkler and no rain a quarter of the mornings, 
both a quarter of the mornings, and neither a quarter of the mornings—the lack of association is 
apparent. Now suppose one checked only the mornings with wet driveways. On a majority of the 
mornings (two-thirds), one would discover either rain with no sprinkler or a sprinkler with no 
rain. In other words, one would find a negative correlation, but only because those mornings that 
would have diluted the correlation to zero were excluded. The basic principle emerging from this 
example is that if one inadvertently conditions an observation on the common effect (is the 
driveway wet?) of multiple causes (rain or sprinkler), one can counterfactually create the illusion 
of a non-zero correlation among the causes.‡ 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
‡!An example using continuous variables may also help to illustrate the concept of selection bias, 
and its generality. Suppose that intelligence and athletic ability (both continuous traits) are 
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This same principle applies in GWAS. Suppose that high levels of either trait 1 or 2 are 
independent causes of a person ending up as a participant in our study, either because the trait 
affects whether the person decides to volunteer or it affects whether we decide to include his or 
her data (Figure 2B). Then we will spuriously find any gene that affects trait 2 to be associated 
with trait 1, even if trait 1 is not at all affected by genetic variation. That is because among 
people who participate in the study, traits 1 and 2 will appear to be (negatively) correlated, and 
therefore a cause of scoring high on trait 2 will appear to also be a cause of scoring low on trait 
1. Controlling for the other traits affecting participation may not fully solve the problem (even if 
we know what these traits are), because the trait of interest may itself be connected to the other 
participation-related traits in a complex causal graph, and therefore the decision to condition 
linearly on the other traits could in principle introduce further bias. In practice, however, 
conditioning on traits that may affect study participation is likely to be a conservative procedure. 
For example, if one trait mediates the genetic effect of another, then controlling for the mediating 
trait will suppress the genuine effect of the genetic variant on the downstream trait of interest, 
and therefore is unlikely to generate additional false positives. 
 
We performed a numerical simulation to illustrate the extent to which selection bias may distort 
GWAS results. We stipulated two initially independent traits affecting participation in the study; 
the sum of an individual’s z-scores on these traits needed to exceed 3 in order for the individual 
to be in the pool of participants. This corresponds to slightly less than two percent of the general 
population being available to participate. We believe that this simulated situation is not so 
farfetched as a model of some ongoing projects (e.g., the Personal Genome Project;36 
23andMe37). We stipulated that each trait has a heritability of 0.50 and is affected by loci all with 
allele frequency 0.50 and average effect (regression coefficient) 0.05; each causal locus thus 
account for 0.25% of the variance in its trait. The results were striking: The estimated effects of 
the true causal variants with respect to a given trait were centered at 0.03—off by 40%. 
Similarly, the “effects” of the variants on the wrong trait (of the two traits, the one that the 
variants did not affect) were centered at –0.02. In a situation where it is important to distinguish 
miniscule effects from zero, a spurious effect of 0.02 cannot be considered trivial. Although 
more thorough numerical and analytical investigations are certainly worthwhile, this example 
illustrates that researchers performing GWAS of behavioral traits should be aware of the 
consequences of selection bias. 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
uncorrelated in the population at large. However, if we limit our observations to the students 
attending a university that uses both of these attributes as admissions criteria, then we will find 
that intelligence and athleticism are negatively correlated. If we encounter a student at this 
university with low intelligence, then it becomes more probable that the student is a good athlete. 
Otherwise the student would likely not have been admitted. This negative correlation between 
intelligence and athleticism among admitted students holds even if admission is not a 
deterministic function of these two attributes; other attributes (e.g., musical talent) and “random 
noise” may play a role. Verma and Pearl provide a rigorous mathematical proof that conditioning 
on a common effect induces dependence among the causes.35 The apparent dependence does not 
have to be a negative correlation as in these examples; an apparent positive correlation would 
result if, say, students high in both athleticism and intelligence were especially likely to be 
admitted.!
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Table 2 includes the sample statistics for the Multidimensional Attribute Battery (MAB) and 
NEO personality inventory, two instruments used in our study that have detailed population 
norms. Compared to the norming samples for the MAB, our participants show much higher 
means and smaller standard deviations, suggesting that cognitively able individuals were more 
likely to participate in the study. The relationship between the NEO personality traits and study 
participation is more complex. Our study participants show conspicuously higher levels of 
Openness than the norming samples. The trait of Openness is defined by a willingness to 
examine new ideas and try new activities, and thus it is plausible that higher levels of this trait 
may be a cause of volunteering for scientific research. Our study participants also show 
consistently lower levels of Neuroticism and higher levels of Agreeableness. (Interestingly, our 
study participants are more variable than the norming samples, perhaps because people with 
higher cognitive ability are more variable in their responses to personality questionnaires.38) 
Furthermore, the fact that students were overrepresented among our participants indicates that 
the selection bias may have already operated extensively at an earlier point. That is, even if we 
could have taken a random sample of all students attending the top 200 colleges (say), the 
process of college admissions would still have exerted considerable selection bias distinguishing 
this special population from its larger age cohort. As a reasonable attempt to control for selection 
bias, then, we will use general cognitive ability, Openness, Neuroticism, and Agreeableness as 
additional covariates whenever a novel SNP-trait association shows a significant p-value. 
Without doing this, we might spuriously find, for example, that a gene associated with greater 
Openness was also negatively associated with all the traits that are correlated with Openness, 
such as political liberalism (see below). 
 
 
Results 
 
As can be seen in Table 3, we found at least a marginal signal for all SNPs previously found to 
be associated with eye color, hair color, freckling, and skin color 19,37,39-42 (with the exception of 
one study that digitally quantified eye color43) and that were either present in our cleaned set of 
genotyped SNPs or represented by a proxy SNP with an r2 > .60. Note that despite our relatively 
small sample size, the effects of the intronic SNP rs12913832 in HERC2 on eye and hair color 
were statistically significant at the stringent, standard GWAS threshold. 
 
A meta-analysis has identified over 180 genomic regions containing a variant affecting height.44 
Due to the weak effect of each individual variant, however, we did not replicate any of these loci 
with genome-wide significance. However, of the 94 loci either present in our set of SNPs or 
represented by a proxy, 65 loci had estimated effects with the correct sign and 29 did not 
(binomial test p < .0001). There is also an enrichment of low p-values; whereas only nine or ten 
p-values less than .10 were expected under the null distribution, we observed 16 (significantly 
more, according to a binomial test, p < .05). These trends are consistent with most of these loci 
being true positives despite our inability to extract a strong signal from them. A selection of the 
height variants showing marginal significance in our data is shown in Table 4A, along with the 
nonsynonymous SNP rs1815739 in ACTN3 that has been found to affect athletic performance.45 

 
Another recent meta-analysis has identified 32 genomic regions containing a variant affecting 
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body mass index (BMI).46 BMI, even more than height, seems to be affected by many loci of 
small effect. Consistent with this view, 11 of the 17 known BMI loci represented in our data had 
estimated effect sizes of the correct sign; however, the wrong-signed loci were the most 
statistically significant. 
 
Table 4B shows our results for a selection of SNPs previously reported to be associated with 
general cognitive ability,47–51 personality,52,53 working memory,54 and episodic memory,55 all of 
which we measured extensively. We observed little evidence for these associations in our own 
data. In concordance with a previous study,56 we failed to replicate a reported association 
between a common SNP in the gene KIBRA and episodic memory, despite a putative functional 
validation in the original study both by an analysis of gene expression and by fMRI.55 This 
suggests that most of the SNPs reported in earlier association studies of behavioral traits may 
either have been false positives or have overestimated effect sizes. Applying a threshold of 5×10–

8, we did not observe any loci significantly associated with the traits in Table 4B. 
 
We did find a significant association between political conservatism and rs10952668 (Table 5). 
This SNP lies in LOC642355, a pseudogene on chromosome 7. Not surprisingly, the SNP also 
showed an association with the highly correlated trait of Democrat vs. Republican (β = .260, p < 
.02). We also observed a significant association between rs1402494, which lies in a gene desert 
on chromosome 4, and gambling frequency. These are the only two novel associations that 
reached genome-wide significance, and besides these, only eye color and hair color also 
produced significant associations. 
 
Interestingly, the SNP associated with political conservatism, rs10952668, also showed marginal 
evidence for association with the personality traits Openness (β = .142, p < .06) and 
Agreeableness (β = .130, p < .08), which are correlated positively with political liberalism.57 
Since the correlation is positive, contrary to findings from political psychology that 
conservatives tend to be less Open and Agreeable (in the sense of compassionate58), these results 
raise the possibility that the association between rs10952668 and conservatism may be 
attributable to selection bias rather than the gene causing the personality traits typical of 
conservatives. (Since to our knowledge this potential selection artifact has not been discussed in 
the genetic epidemiology literature—although it has parallels in the effects of natural selection 
on linkage disequilibrium—we explore it at some length in the Discussion below.) After we 
added general cognitive ability, Openness, Neuroticism, and Agreeableness as covariates in an 
attempt to control for selection bias, the association of rs10952668 and conservatism diminished 
and fell short of significance. The association of rs1402494 and gambling frequency appears 
robust against our attempts to control for selection bias. We conclude that both of these 
associations must be replicated in much larger samples before they are accepted as true positives. 
 
 
Discussion 
 
The contrast between pigmentation and the other phenotypes examined in this study is striking 
(Tables 3–4). Given a significance threshold of 5×10–8, our study had statistical power 
approaching 0.80 to detect any locus accounting for more than 10% of the variance in any trait. 
We retained some power (0.12) for loci accounting for as little as 5% of the variance. The fact 
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that we measured so many phenotypes implies that we should have obtained several hits if a 
large proportion of the phenotypes were indeed affected by such loci. Because we only obtained 
at most two new hits, however, loci with effects of this magnitude on the non-pigmentation traits 
we studied (see Table S1) must be uncommon. In agreement with previous studies,11,53,59,60 we 
conclude that cognitive ability, personality dimensions, social attitudes, and most other traits of 
interest to behavioral scientists are affected by numerous loci of small effect. In this respect the 
behavioral traits we studied resemble height and BMI rather than pigmentation. 
 
How can we explain the differences in genetic architecture between the pigmentation traits and 
the other physical and behavioral traits? One possibility is that the architecture hinges on the 
length of the causal chain between gene and phenotype. Pigments, after all, are molecules, and 
you can change a molecule, thereby giving a person a different eye color, by changing a single 
gene. It’s not as easy to make a person more intelligent, utilitarian, altruistic, or impulsive by 
changing one gene, owing to the greater complexity in the mechanisms that lead a person to be 
intelligent or altruistic in the first place. With gross physical traits like BMI and height, the 
problem may be that there are too many ways that genes can directly affect the phenotype; 
indeed, it may be hard for a genetic change not to affect them, just as most changes to the 
features of (say) a car or laptop computer have consequences for its size and weight, which 
engineers have to trade off with many minute compensations.  
 
The other explanation invokes the evolutionary model of the causes of genetic architectures we 
outlined earlier, which relates the effect size of genetic polymorphisms to the magnitude and 
recency of changes in the adaptively optimal level of the trait. After the loss of body hair in our 
lineage, pigmentation probably came under strong stabilizing selection in our ancestors, who 
needed protection from the African sun. More recently, the out-of-Africa migrants ancestral to 
Europeans and East Asians experienced a sudden and drastic shift in the optimal level of 
pigmentation—perhaps because of the need to sustain cutaneous synthesis of vitamin D in 
northern climates,61 although others have implicated sexual selection or as-yet unidentified 
evolutionary pressures.62–64 In any event the result was that several depigmenting mutations of 
large effect increased rapidly in frequency.65–67 Table 4A lists those mutations that have not yet 
reached fixation and are thus still polymorphic in Europeans.  
 
No such recent environmental change—one with clear consequences for the direction and 
magnitude of the optimum—is apparent for other phenotypes such as height, BMI, and the 
behavioral traits we examined. Though differences in climate and food availability may select for 
different optima in body size and shapes, they fluctuate rapidly across space and time and may 
not show the consistent selection pressure that changes in latitude, altitude, and cloud cover 
apparently exerted on pigmentation. Intelligence is a highly general and universally adaptive 
trait, which can translate into fitness benefits (via successful problem-solving) in any 
environment. If human populations have long been at the optimum, then existing mutations are 
likely to be small in effect. Such variants are likely to be small in effect even if the optimum has 
changed over time—as may have happened in the cases of intelligence68,69 and religiosity70—so 
long as the change occurred very gradually. In particular, intelligence may be a highly general 
and universally adaptive trait, responding more to coevolutionary pressures exerted by language 
and sociality than to any sudden change in the physical environment. Personality traits, too, are 
far less predictably correlated with physical environments than are pigmentation traits. 
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Evolutionary game theory has established theoretical rationales for the persistence of multiple 
behavioral phenotypes (e.g., hawk and dove strategies) in the same population.71,72 Analogously, 
the selective environment for personality may consist of the local distributions of the 
personalities of other people,72 and the mixture is unlikely to have changed in a systematic way 
with recent shifts in the human population.  
 
Even if selection has acted on these traits since the dispersal of homo sapiens from Africa, the 
new optima could have been quickly reached by small shifts in allele frequency at many minor 
loci, leaving any major mutants at the low frequencies determined by the interaction of mutation, 
drift, and stabilizing selection.73 As discussed above, the result of such dynamics would be the 
observed absence of common variants with large effects. 
 
Our two proposals for explaining the pattern in Tables 3–5 lead to the following suggestions for 
future GWAS of behavioral traits. First, to understand the causal chain between genetic and 
phenotypic variation, we should try to narrow the chasm from both sides. Doing so requires 
seeking and validating endophenotypes that lie closer on the causal chain to genetic variation 
than the coarse and easily measured phenotypes we are used to. Second, researchers seeking 
variants of large effect should ideally study populations where directional selection may have 
recently produced a phenotypic change that is large relative to the initial standing variation. 
Recent studies of altitude adaptation in Tibetans exemplify both of these suggestions.74–76 The 
genes successfully associated with red blood cell count and hemoglobin concentration in these 
studies would have been more difficult to identify if the phenotype had been characterized at a 
level as abstract as “altitude tolerance.” Moreover, the recent and rapid divergence of Han 
Chinese and Tibetans in altitude tolerance after the latter began to occupy a highland 
environment was plausibly driven by a selection differential large enough to pull variants of 
large effect away from the boundary of frequency zero. It is, however, an open question how 
many social-science traits can be studied by looking for recent directional selection. 
 
As for traits with more typical evolutionary histories, the expectation of small effect sizes 
requires that much larger samples be ascertained than are common in social-science genetics 
research. We see two promising approaches. One is for researchers to take advantage of the 
potential for large sample sizes by allying with the burgeoning field of personal genomics, in 
which a large base of volunteers or consumers provide genotype and phenotype 
information.37,77,78 It is crucial, though, to check these samples for selection biases, because 
many phenotypes of interest are likely to be causes of participation in personal genomics itself. 
For example, an individual with a liability to a particular disease may be strongly motivated to 
participate in a personal genomics study by self-interest or altruism; participants also must be 
wealthy enough to afford the service. We conjecture that our findings of elevated cognitive 
ability and intellectual openness among research volunteers will generalize to future studies. If 
so, it is prudent to collect reliable measurements of these traits in all GWAS that are not based on 
population samples and to note any unusual sample distributions on these traits when reporting 
SNP-trait associations. 
 
The other approach is the traditional epidemiological study, which attempts to minimize the 
impact of personal characteristics on study participation by recruiting a population-based sample. 
This will remain an important complement to volunteer- and consumer-driven approaches. 
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Recall that Chabris et al. consulted three population-based studies and found that only one out of 
12 published genetic associations with general intelligence could be replicated within them, and 
that one only one out of three times.11 One explanation is that the original associations came 
from small convenience samples similar to the one we studied here. 
 
There is, however, a tradeoff inherent in using large population-based studies for gene discovery. 
Most of these projects are directed towards medical outcomes rather than social-science traits 
(with some notable exceptions, such as the Health and Retirement Study, the Wisconsin 
Longitudinal Study, and the English Longitudinal Study of Aging; the first of these now has 
GWAS data available, and the others may soon). Data collection in these surveys, although often 
face-to-face and longitudinal, distributes time and effort across many phenotypes that are 
measured with short questionnaires (or even single questions). The disadvantage of such studies 
is that whenever the underlying trait of interest is continuous, quick or brief measures are 
inherently less reliable (i.e., are subject to more measurement error) than are more detailed ones.  
 
Genetic association studies, then, present researchers with a tradeoff between using high-quality 
or high-technology (e.g., neuroimaging) measures of each phenotype, which are often only 
feasible for small samples, and having a large sample in which the phenotype is measured 
poorly. In social science research, this dilemma is commonly resolved in favor of smaller 
samples with higher quality measures—and perhaps for this reason, that is the strategy in most of 
the social-science genetic association studies conducted to date, including the one we reported 
here. But because the genetic architecture of behavioral traits is likely to feature very weak 
genetic associations, our intuitions regarding the appropriate research strategy may not be correct 
when carried over from non-genetic social science research, where effect sizes are typically 
much larger. There is as yet no straightforward way to calculate an expected effect size for 
genetic associations in social science, so the best we can do is to assume that effects will be 
similar to those found for other complex (polygenic) traits—tiny. 
 
Figure 3 displays the results of a set of power calculations that quantify the tradeoff. The 
phenotype is assumed to be normally distributed. The y-axis shows effect sizes in terms of R2, 
the fraction of variance in the phenotype explained by variation in a single genotype, ranging 
from 0 to 0.01 (one percent) in increments of 0.001 (one-tenth of one percent). The x-axis is the 
sample size. Each curve graphs the locus of effect-size/sample-size pairs that gives 50% power 
to detect the association at p = 5×10–8 for a given phenotype reliability. The phenotype reliability 
is measured in terms of the test-retest correlation, i.e., the correlation between two independent 
measurements of the phenotype. We consider the cases where reliability is equal to 1.0, 0.8, 0.6, 
0.4, and 0.2. 
 
For the very small effect sizes that can be expected for behavioral traits, Figure 3 indicates that it 
will generally be better to sacrifice phenotype quality in favor of larger sample sizes. For 
example, consider an effect size of R2 = 0.001 (0.1% of the variance). This is the size of the 
association found in a meta-analysis of the association between cognitive ability and variation in 
the COMT gene in 67 independent samples, and it is likely to be biased upward because the 
meta-analysis found evidence of publication bias.79 Since cognitive ability is among the most 
reliably measured social science traits and since the meta-analysis found evidence of publication 
bias, such an effect size is likely to be representative of the largest associations we can expect for 
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a behavioral trait. Given R2 = 0.001, for a perfectly-measured phenotype (reliability = 1.0), 50% 
power requires a sample size of 30,000 individuals. This is far too large a sample to obtain high-
quality measures of behavioral traits, which generally requires bringing the research subjects into 
a laboratory and conducting repeated tests spanning many minutes or hours. In contrast, for a 
phenotype with test-retest reliability of 0.6—which is typical of behavioral phenotypes measured 
by brief questionnaires—50% power requires a sample size of 50,000 individuals. Samples at 
least this large have recently become feasible. Medical datasets that have already collected 
GWAS data could much more easily add brief behavioral questionnaires to their ongoing data 
collections than onerous laboratory sessions. Since such medical datasets in aggregate comprise 
hundreds of thousands of participants, such a research strategy should be possible.4 

 
 
Conclusions 
 
We conducted a Genome-Wide Association Study on more than 100 carefully measured 
phenotypes in more than 400 subjects, but found very few loci of large effect associated with any 
trait other than the pigmentation of eyes and skin. This includes a substantial proportion of the 
traits that have been of theoretical interest to behavioral scientists in recent decades. Four points 
emerge from our analysis: 
 
1. The genetic architecture of trait variation cannot be taken as constant across traits, particularly 
the expectation that a single gene or a small number of genes will have a noticeable effect on the 
trait. First, the shortness of the causal chain between the DNA and the trait matters a great deal, 
with single-gene effects being more likely for traits generated by a single protein or regulatory 
shift. Second, the genetic architecture of a trait is intimately intertwined with its evolutionary 
history. The implications flow in both directions: the discovery of an association between a gene 
and a trait can illuminate the evolution of our species, and the evolutionary process determines 
which associations we can most readily discovered. In particular, stabilizing selection of 
moderate strength, which permits a substantial background of weak or rare variants, supplies the 
fuel for polygenic adaptation and may obviate the need for mutations of large effect to arise after 
a sudden environmental change. 
 
2. Many psychological traits of interest to researchers are themselves plausible causes of 
participation in scientific research, which raises the potential of spurious associations. Measuring 
such traits (e.g., cognitive ability and personality) and incorporating them into analyses is one 
strategy for dealing with this issue. 
 
3. If there are two ways to measure a trait—a high-reliability measure that can be performed only 
on a small sample because of the required time, effort, and resources, versus a lower-reliability 
brief measure that can be administered to a large sample—power analyses suggest that using the 
lower-reliability measure with the larger sample size is likely to be the best strategy. Researchers 
interested in the genetic architecture of behavioral traits should therefore consider working with 
large-scale survey datasets such as the HRS, WLS, and ELSA, as well as medical-genetic studies 
that are willing to conduct social science surveys among their participants. 
 
4. Genetic associations with behavioral traits have proven notoriously difficult to replicate. This 
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is not because the relevant traits are not heritable or the original studies were poorly designed or 
knowingly underpowered; researchers at the time lacked the resources for conducting more 
genotyping and assembling larger samples, and they were hoping to find common alleles with 
large effect size. Our discussion of Fisher’s model, and the empirical experience accumulated in 
the first fifteen years of social science genetics, suggest that individual gene effect sizes for traits 
not under strong selection are likely to be extremely small, and therefore require extremely large 
datasets to be detected. 
 
The fact that faster, cheaper, and more powerful methods of genotyping have led to fewer, 
smaller, and less reliable findings on the connection between genes and behavior, despite the 
near-certainty that such connections exist, stands as one of the disappointments of 21st century 
science. To make progress, we should shift away from the traditional model of epidemiology via 
statistical significance testing, in which large significant correlations are the standards of success 
and worthy of newspaper headlines, while negative results are considered a failure and destined 
for the file drawer. It has become increasingly clear that this practice has led to mischief both in 
epidemiology and in social science,80,81 and it may also be preventing the discovery of important 
scientific insights. If we have learned that behavioral genetic variation is caused by many genes 
with effects that are too small to currently measure, then we have also learned something 
important about the physiology and evolutionary history of such traits. With nature as with 
people, the Yiddish expression may apply: No answer is also an answer. 
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Figure 1. R.A. Fisher’s geometric model of adaptation.21 A is the current mean phenotype of the 
population, A’ is the mean phenotype that would result if the mutation denoted by the arrow 
were to be instantly fixed, and O is the new optimum favored by natural selection. The narrow 
distribution of trait 1 values around A is the situation that would prevail under strong stabilizing 
selection, while the broad distribution would prevail under weak stabilizing selection. 
 

!
 
  

trait 1

trait 2

OA

A'

strong
stabilizing selection

weak
stabilizing selection



“Why Is It Hard to Find Genes …” – p. 27 

Figure 2. Examples of directed acyclic graphs containing a “collider” (the common effect of two 
or more causes).33 Conditioning on observing a collider alters the apparent covariation among the 
causes; for example, two independent causes that are uncorrelated when all observations are 
considered can appear to be negatively correlated when only observations containing the collider 
are considered. 
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Figure 3. An illustration of how the reliability (measurement error, denoted here as Rho) of a 
phenotype affects the relationship between effect size of a genetic association and the sample 
size required to achieve 50% statistical power to detect the effect at the genome-wide 
significance threshold of 5×10–8. For example, if one expects a genotype to explain 0.4% of the 
variance in a trait (R2 = .004), then a sample of about 10,000 subjects is required to achieve 50% 
power when reliability is 0.80, but a sample of 20,000 subjects is required if reliability is 0.40. 
That is, with a sample of 20,000 instead of 10,000, instruments that are only one-quarter as 
reliable provide the same power to detect the effect.  
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Table 1. Heritabilities of Selected Medical, Physical, and Behavioral Traits 
 
Phenotype Heritability Source 
 
Medical and Physical Traits: 
 
Lipoprotein A level (age 17) 95% Boomsma et al.82 
LDL Cholesterol level (age 44) 69% Boomsma et al.82  
HDL Cholesterol level (age 44) 67% Boomsma et al.82 
Heart rate (age 17) 44% Boomsma et al.82  
Respiration rate (age 44) 61% Boomsma et al.82  
Testosterone level (age 17)  Boomsma et al.82  
 Males 66% 
 Females 41% 
Birth weight 10% Boomsma et al.82  
Height (ages 16–adult) 80%* Visscher et al.83 
 
Behavioral Traits: 
 
Problem behavior (age 3)  Boomsma et al.82  
 Externalizing 
  Males 49% 
  Females 73% 
 Internalizing 
  Males 61% 
  Females 66% 
Personality Traits (adults)  Bouchard84 

Neuroticism 48% 
Extraversion 54% 
Openness to Experience 57% 
Agreeableness 42% 
Conscientiousness 49% 

General Cognitive Ability (age 18) 81% Boomsma et al.82 
Boredom susceptibility (age 18) 50% Boomsma et al.82  
Anxiety (age 18) 54% Boomsma et al.82  
Depression (age 18)  Boomsma et al.82  
 Males 39% 
 Females 53% 
Smoking (yes/no, at age 18)  Boomsma et al.82  
 Males 66% 
 Females 32% 
Alcohol Use (yes/no, at age 18)  Boomsma et al.82  
 Males 48% 
 Females 75% 
Sports Participation (age 18) 47% Boomsma et al.82  
Religiosity (adults) 38% Bouchard84  
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Specific religion practiced (age 18) 0% Boomsma et al.,82 Bouchard84 
Conservatism (adults) 55% Bouchard84  
Risk Attitudes  Cesarini et al.85  
 General willingness to take risk 21% 
 Willingness to take financial risk 26% 
 Risk aversion 34% 
 Portfolio volatility 25% Cesarini et al.86 
Cooperation  Cesarini et al.87 
 Trust 15%  
 Trustworthiness 18% 
Income (single year) 38% Taubman88 
Income (single year)  Benjamin et al.4 
 Men 37% 
 Women 28% 
Education (years) 28% Taubman88 
 
Behavioral Traits – Estimates Corrected for Measurement Error: 
 
Risk Attitudes  Cesarini et al.85 
 General willingness to take risk 35% 
 Willingness to take financial risk 37% 
 Risk aversion 54% 
Income (20-year average)  Benjamin et al.4 
 Men 58% 
 Women 46% 
 
 
* Estimated from genome-wide SNP data from twin and sibling pairs in Australia. 
 
Notes: Estimates are averages of male and female heritabilities except when heritabilities are 
provided separately for both sexes (these are cases in which heritability differs by a large amount 
between males and females). Except in the third section, heritability estimates are not adjusted 
for differences in measurement error, longitudinal stability, or test-retest reliability of the 
phenotypes. Heritabilities may also vary with age; e.g., general cognitive ability becomes more 
heritable with age. Summaries of heritabilities of these and other phenotypes may be found in 
Plomin et al.,89 Boomsma et al.,82 Bouchard,84 and Barnea et al.90 
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Table 2. Characteristics of the sample in age, sex, general cognitive ability (MAB 
scales), and personality traits (NEO Five-Factor Inventory scales). 

 
 

 Trait  mean  SD 
 age (years) 25.2  6.44 
 sex             67.6% female 
 MAB Arithmetic  .797 (0)  .836 (1) 
 MAB Similarities  1.054 (0)  .601 (1) 
 MAB Vocabulary 1.386 (0) .891 (1) 
 NEO Neuroticism (college, female)  21.90 (25.83)  8.38 (7.59) 
 NEO Neuroticism (adult, female)  18.71 (20.54)  9.13 (7.61) 
 NEO Neuroticism (college, male)  18.53 (22.49)  10.04 (7.92) 
 NEO Neuroticism (adult, male)  18.84 (17.60)  10.46 (8.61) 
 NEO Extraversion (college, female)  30.10 (31.27)  6.89 (5.64) 
 NEO Extraversion (adult, female)  29.19 (28.16)  7.55 (5.82) 
 NEO Extraversion (college, male)  29.08 (29.22)  6.10 (5.97) 
 NEO Extraversion (adult, male)  29.70 (27.22)  8.64 (5.85) 
 NEO Openness (college, female)  34.02 (27.94)  6.57 (5.72) 
 NEO Openness (adult, female)  34.42 (26.98)  5.57 (5.87) 
 NEO Openness (college, male)  31.79 (27.62)  6.57 (6.08) 
 NEO Openness (adult, male)  31.36 (27.09)  7.04 (5.82) 
 NEO Agreeableness (college, female)  33.80 (31.00)  5.51 (5.33) 
 NEO Agreeableness (adult, female)  34.42 (33.76)  4.71 (4.74) 
 NEO Agreeableness (college, male)  31.46 (28.76)  6.05 (5.24) 
 NEO Agreeableness (adult, male)  32.00 (31.93)  5.70 (5.03) 
 NEO Conscientiousness (college, female)  33.64 (31.02)  7.40 (6.53) 
 NEO Conscientiousness (adult, female)  32.29 (35.04)  7.15 (5.78) 
 NEO Conscientiousness (college, male)  30.17 (30.21)  6.54 (7.19) 
 NEO Conscientiousness (adult, male)  33.33 (34.10)  8.04 (5.95) 
 
The summary statistics reported in the respective manuals are given in parentheses next to the 
corresponding sample statistics. The MAB scores were scaled as standard normal using the 
tables in the MAB manual.91 The NEO summary statistics were calculated for participants 
between the ages of 18 and 22 for purposes of comparison with the college norms in the NEO 
manual92 and for participants age 30 and over for comparison with the adult norms.   
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Table 3. Association results for pigmentation phenotypes. 

 trait  reported  proxy  r2  minor  sample  HapMap  effect  p-value  gene 
 SNP SNP   allele  MAF  MAF  size 
 eye darkness  rs12913832    A  .222  .208  .998  2x10–68  HERC2 
 eye darkness  rs12896399  rs1075830  .615  A  .460  .308  .167  .003  SLC24A 
 eye darkness  rs1393350    A  .266  .192  –.154  .02  TYR 
 eye darkness  rs1408799    T  .313  .300  .095  .11  TYRP1 
 hair darkness  rs12913832    A  .223  .208  .840  1x10–13  HERC2 
 hair darkness  rs12896399  rs1075830  .640  A  .460  .308  .372  9x10–5  SLC24A4 
 hair darkness  rs12821256    C  .095  .142  –.352  .03  KITLG 
 red hair  rs1805007    T  .076  .147  7.44  2x10–6  MC1R 
 red hair  rs1015362    T  .278  .233  .507  .09  ASIP 
 freckling  rs1805007    T  .076  .147  .613  6x10–6  MC1R 
 freckling  rs1042602    A  .346  .417  –.223  .005  TY R 
 freckling  rs2153271  rs1416742  .949  G  .384  .373  –.139  .07  BNC2 
 freckling  rs619865    A  .098  .108  .178  .15  ASIP 
 skin darkness  rs1805007    T  .076  .147  –.267  .005  MC1R 
 skin darkness  rs1042602    A  .346  .417  –.118  .03  TY R 
 skin darkness  rs619865    A  .098  .108  –.156  .07  ASIP 

  
Eye darkness was reported on a 3-point scale. Hair darkness was recorded on 9-point scale. Red hair was recorded as a dichotomous 
trait, and its effect size is reported as an odds ratio. Freckling and skin darkness were recorded on 5-point scales. All effect sizes for 
non-dichotomous traits are reported as the expected change in trait value per each additional copy of the minor allele. All alleles are 
coded according to NCBI build 36 coordinates on the forward strand. 
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Table 4A. Association results for physical phenotypes. 
 trait  reported  proxy  r2  minor  sample  HapMap  effect  p-value  gene 
 SNP  SNP   allele  MAF  MAF  size 
 standing height  rs7460090    C  .134  .117  - .188  .07  SDR16C5 
 standing height  rs237743    A  .231  .308  .175  .04  ZNFX1 
 standing height  rs6439167    T  .201  .183  - .191  .03  C3orf47 
 standing height  rs889014    T  .347  .375  - .124  .10  BOD1 
 standing height  rs7274811  rs3213183  .692  A  .304  .267  - .140  .07  ZNF341 
 standing height  rs7759938  rs369065  1  C  .332  .364  .172  .02  LIN28B 
 standing height  rs3764419  rs9890032  .982  G  .401  .375  - .188  .009  ATAD5/RNF135 
 standing height  rs3791675    T  .228  .275  - .305  4 x 10-4  EFEMP1 
 standing height  rs724016    G  .428  .483  .121  .10  ZBTB38 
 standing height  rs1351394  rs7968682  .983  T  .499  .517  - .120  .10  HMGA2 
 strength  rs1815739  rs540874  1  A  .428  .458  .252  .006  ACTN3 

  
Effect sizes for height are reported in standard deviation units. Note that these effect sizes tend to be inflated because of the “winner’s 
curse.” Strength was reported on a 5-point scale. 
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Table 4B. Association results for the behavioral phenotypes with previously reported SNPs. 
 

 trait  reported  proxy  r2 minor  sample  HapMap  effect  p-value  gene 
 SNP  SNP   allele  MAF  MAF  size 
 general cognitive ability  rs2760118  rs7775073  .982  G  .316  .317  .062*  .42  ALDH5A1 
 general cognitive ability  rs324650    T  .464  .467  .026  .72  CHRM2 
 general cognitive ability  rs363050    G  .444  .475  - .027  .72  SNAP-25 
 general cognitive ability  rs17571  rs17834326  .781  A  .083  .083  - .051*  .70  CTSD 
 general cognitive ability  rs760761  rs2619545  1  C  .196  .192  - .033*  .72  DTNBP1 
 Conscientiousness  rs2576037  rs7233515  .879  A  .400  .408  - .038  .60  KATNAL2 
 Neuroticism  rs12883384    A  .410  .317  - .014*  .85  MAMDC1 
 paired-associate recognition  rs17070145    T  .338  .267  .065  .37  KIBRA 
 3-back accuracy  rs4680    A  .449  .517  .027  .72  COMT 

  
Effect sizes are reported in sample standard deviation units. An asterisk indicates that the estimated effect in our study had a sign 
opposite to what had been previously reported. 
 
 
 
 
 

Table 5. Novel association results for behavioral phenotypes. 
 trait  reported  minor  sample  HapMap  effect  p-value 
 SNP  allele  MAF  MAF  size 
 liberal vs conservative  rs10952668  T  .458  .392  .552 (.478) 2 x 108 (1 x 10-6) 
 gambling frequency  rs1402494  G  .206  .241  .278 (.276)  3 x 108 (6 x 10-8) 
 
Liberal vs conservative was reported on a 7-point scale. Gambling frequency was reported on a 5-point scale. Effect sizes and p-values 
after adjustment for general cognitive ability, Openness, Neuroticism, and Agreeableness are given parenthetically. Note that effect 
estimates may be inflated as a result of the winner’s curse. 
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SUPPORTING ONLINE MATERIAL 
 
 
Measures 
 
Table S1 lists all of the phenotypes measured in this study. Any variable taking more than ten 
values was regarded as quantitative rather than polytomous (ordered categorical). A parenthetical 
N in Table S1 indicates that we were able to remove sex differences in mean and variance from a 
quantitative variable and then use a quantile transformation to render the resulting scores 
normally distributed. These transformations should increase statistical power to detect genetic 
associations for traits showing sex differences. Below are details on some of the behavioral 
phenotypes whose labels in Table S1 are not self-explanatory. (Except as noted, all economic 
games were played with real monetary incentives.) 
 
3-back. Participants viewed a succession of words, each new word appearing every three 
seconds. Participants were instructed to indicate as quickly and accurately as possible whether 
each word matched the word seen three items previously. This task has often been employed as 
an indicator of working memory capacity.1 

 
Barratt Impulsiveness Scale (BIS). This self-report has been found to measure three distinct 
factors (inattention, motor impulsiveness, and lack of planning).2 We used the sum of these three 
factor scores as a measure of this self-report’s general factor. 
 
Cambridge Face Memory Test (CFMT). Participants studied three photos of each of six target 
human faces and were then tested with a series of forced-choice items, each consisting of three 
faces, one of which was a target. This test has been shown to be a sensitive measure of 
prosopagnosia (a specific deficit in recognizing other people by their facial features) and also 
normal variability in the ability to recognize faces.3, 4 

 
Dictator game. Each participant was asked to imagine being randomly and anonymously paired 
with another participant. The participant was then asked to allocate ten dollars between the 
members of the pair. How much of the ten dollars each participant is willing to give away to the 
other person in this task has been used as a measure of the participant’s heritable altruistic 
tendencies.5,6 Because the distribution of allocation was almost bimodal, nearly all participants 
giving away either zero or five dollars, we treated this phenotype as dichotomous; all participants 
who gave anything at all were given the higher score. 
 
Discounting the future. Participants were presented a set of choices between smaller prompt 
rewards and larger delayed rewards. Temporal discount rates inferred in this way, have been 
found to be associated with substance abuse and other outcomes.7 

 
General cognitive ability. We combined the following indicators into a standardized cognitive 
ability composite: (1) a short form of Raven’s Advanced Progressive Matrices8, a measure of 
abstract reasoning ability; (2) the Arithmetic, Similarities, and Vocabulary subtests of the 
Multidimensional Aptitude Battery (MAB), which measure verbal ability; and (3) accuracy on a 
forced-choice version of the Shepard-Metzler Mental Rotation task (SMMR) a measure of spatial 
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ability.9 
 
Inattentional blindness. Participants watched a video of two teams of three players, one team 
wearing white shirts and the other wearing black shirts, who moved around erratically in an 
elevator lobby. The passes were either bounce passes or aerial passes; players would also dribble 
the ball, wave their arms, and make other movements. After about 45 seconds, a person wearing 
a gorilla costume walked through the action. The relatively high proportion of participants who 
report not seeing the gorilla at all is generally regarded as surprising.10 The causes of individual 
differences in this task are unknown. This finding has achieved wide publicity, so we treated any 
participant who reported having seen or heard of it as a missing data point; others were classified 
as either noticing or missing the gorilla. 
 
Loss aversion. Participants were presented with a set of choices between (1) receiving nothing 
or (2) a 50% chance of gaining an amount x and a 50% chance of losing an amount y. This is a 
standard measure of aversion to suffering financial losses.11 The main loss aversion measure 
involved real money stakes; a separate measure was made with fictitious higher stakes. 
 
NEO Five-Factor Inventory. A 60-item self-report instrument with 12 items measuring each of 
the following five personality factors, which constitute the most widely accepted factorization of 
personality: Neuroticism, Extraversion, Openness to Experience, Agreeableness, and 
Conscientiousness. 
 
Paired-associate recognition. After studying a series of 25 word pairs, participants were given a 
recognition test in which they were given the first word in a pair and had to choose the second 
from among four presented alternatives. The words in the pairs were abstract and unrelated, and 
the distractor words were other words from the experiment, making this task difficult.12 

 
Religiosity. We administered a standard scale to measure religiousness.13 

 
Risk aversion. Participants were presented with a set of choices between (1) a 100% chance of 
receiving an amount x or (2) a 50% chance of receiving an amount y > x and a 50% chance of 
receiving nothing. Risk-averse choices involved turning down a larger expected value prospect 
(e.g., 50% chance of receiving $10) in favor of a smaller guaranteed amount (e.g., 100% chance 
of receiving $4). This is a standard measure.11 

 
Shape memory. In a study phase, participants were presented a series of irregular shapes, one at 
a time. In a test phase, participants then had to press one key if the shape they were viewing had 
already been presented in the study phase, another key if it was new.  
 
Social attitudes. Items asking for attitudes toward abortion, alcohol consumption, and other 
social issues were taken from an existing scale.14 Because the factor model postulated by the 
scale’s authors did not fit our data well, we analyzed each item separately. 
 
Spatial memory. In a study phase, participants viewed a circular array of gray dots. Several of 
the dots briefly turned black, one at a time. The display continued in a test phase, where 
participants indicated whether each black dot had also turned black during the study phase. 
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Serial Reaction Time Task (SRTT). Participants viewed a line of four squares. During each of 
384 trials a black diamond briefly appeared in one of the squares, and in response participants 
had to press one of four corresponding keys, using four fingers of their preferred hand. 
Unbeknownst to the participants, a fixed subsequence of the stimuli appeared repeatedly 
throughout the task, alternating with runs of stimuli chosen at random. Response time (RT) tends 
to decrease with each successive presentation of the repeating subsequence, although most 
participants do not consciously notice the repetition. The mean difference in RT between the 
repeating stimuli and the random stimuli was taken as a measure of implicit skill learning. 
 
Utilitarianism. Participants were presented with a set of moral dilemmas in which participants 
rated on a 1–5 scale the appropriateness of a “utilitarian” response to the situation.15 A typical 
item: “You are at the wheel of a runaway trolley quickly approaching a fork in the tracks. On the 
tracks extending to the left is a group of five railway workmen. On the tracks extending to the 
right is a single railway workman. If you do nothing the trolley will proceed to the left, causing 
the deaths of the five workmen. The only way to avoid the deaths of these workmen is to hit a 
switch on your dashboard that will cause the trolley to proceed to the right, causing the death of 
the single workman. Is it appropriate for you to hit the switch in order to avoid the deaths of the 
five workmen?” 
 
Verbal fluency. Participants were given one minute to utter as many distinct words as possible 
beginning with a certain letter. Person names, places, and numbers were not counted. The letters 
F, A, and S were used. The counts of the uttered words beginning with these letters appeared to 
be equal indicators of a common factor after standardization. 
 
Vividness of Visual Imagery Questionnaire (VVIQ). Participants were told to visualize certain 
scenes or persons and rate the vividness of distinct aspects of the mental image.16 

 

 

To make the choices in the economic tasks (intertemporal choice, fairness, loss aversion, risk 
aversion) meaningful to the participants, we told them at the outset that their choices in these  
tasks might be implemented with real money. The payment policy worked as follows: At the end 
of the session, each participant rolled a six-sided die. If he or she rolled a six, then a further 
random draw was conducted to choose one item from the behavioral-economic tasks, which was 
then fulfilled for that participant. For example, suppose that the participant rolled a six, and the 
second draw selected an item from the discounting task. If the participant expressed a preference 
for x dollars 30 days from now over y dollars 60 days from now, then the participant was written 
a check for x dollars dated 30 days from the date of the phenotyping session (or given a debit 
card for the same amount that would be activated on the same date). Any losses suffered in the 
loss aversion task came out of $5 cash given to each participant at the beginning of the session. 
This $5 was given in addition to the advertised $50 compensation.  
 

The MAB subtests were scored according to the instructions in the test manual.17 Factor analyses 
of the BIS, the NEO, religiosity, utilitarianism, verbal fluency, and the VVIQ resulted in 
solutions with nonzero uniquenesses. For these phenotypes we estimated factor scores by 
Bartlett’s method, which is equivalent to maximum likelihood (ML) if the uniquenesses are 
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normally distributed. A few participants were missing some data as a result of omits, 
photocopying errors, computer failures, and other administrative issues. Participants’ factor 
scores were treated as missing if they responded to fewer than half of a scale’s indicators. We 
used the OpenMx package in R to perform all factor analyses.18 All coding and scoring of 
phenotypic measures was performed blind to participant genotypes. 
 
Parameters describing the responses of each participant during the behavioral-economic tasks 
were estimated by ML, assuming choice error drawn from an extreme-value distribution. For 
example, an “interest rate” for discounting utility flows over time was estimated for each person 
and used as the phenotype for the discounting task. 
 
 
 
DNA Collection, Extraction, and Genotyping 
 
At two points during the phenotyping session, participants provided DNA samples by washing 
their mouths with 10 ml of Scope mouthwash, which dislodges loose cells, and then releasing the 
mouthwash into a Nalgene bottle. Samples were stored either in a freezer at –20° C or in packed 
dry ice until DNA extraction. Genomic DNA was extracted using a QIAamp DNA Blood Mini 
Kit according to the manufacturer’s recommended protocol. 
 
Genomic DNA samples normalized to 50 ng/µl were genotyped at either Stanford Genome 
Technology Center (SGTC) or Expression Analysis (EA) in Durham, North Carolina, in four 
batches, using the Affymetrix Genome-Wide Human SNP Array 6.0. SNP genotypes were called 
using the Birdseed v2 algorithm applied to each batch individually. The median call rate before 
application of quality-control criteria was 99.64%. Between-batch reproducibility was assessed 
by genotyping both samples provided by each of two participants. Average genotype 
concordance between replicates was 99.7%. 
!
Our quality-control criteria at this stage excluded all participants missing more than 7% of their 
genotypic data, all SNPs with minor allele frequency (MAF) less than .05, all SNPs deviating 
from Hardy-Weinberg equilibrium at a significance threshold of 5×10–8, and all SNPs missing 
more than 5% of their calls. We then computed the principal components of the resulting 
genotype matrix with the program EIGENSTRAT.19 To guard against population stratification, 
all participants who were more than six standard-deviation units from the origin on any of the top 
10 PCs were iteratively excluded (a total of 14 participants). 
 
After application of all quality control measures, the final cleaned dataset included 401 
individuals and 661,107 SNPs. Nine statistically significant principal components at a 
significance threshold of .05 were found. The components corresponding to the fourth and fifth 
largest eigenvalues weakly distinguished the two genotyping laboratories, despite the application 
of our quality-control steps. The first, second, third, and sixth components were significantly 
correlated with the geographical distance of grandparental origin from England. The seventh 
component tended to spread out individuals reporting non-British grandparents, whereas the 
eighth component tended to separate those reporting two or more British grandparents from 
those reporting one or none. The ninth component tended to spread out individuals reporting 
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British grandparents, perhaps reflecting structure within Britain. To control for remaining 
stratification, we included all nine significant principal components as covariates in the tests for 
SNP-trait association. 
 
!
! !
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Table S1. All phenotypes measured. Any phenotype measured in paper mode was administered 
as a traditional paper-and-pencil test. Self-report refers to questionnaire data recorded either on 
paper forms or a SurveyMonkey questionnaire. Phenotypes measured in computer mode were 
implemented as PsyScope tasks requiring participants to provide keyboard input. Physical traits 
were directly measured by an experimenter using either a measuring tape or a standard bathroom 
scale. Audio refers to sound-recorded data that was later transcribed and coded. 
 
Phenotype Mode Scale      
 
3-back accuracy computer quantitative (N) 
3-back RT computer quantitative (N) 
acne severity as adolescent self-report polytomous 
acne severity as adult self-report polytomous 
acne severity overall self-report polytomous 
alcohol consumption frequency (last 12 months) self-report polytomous 
alcohol drinks per drinking occasion self-report quantitative 
alcohol total drinks in last year self-report quantitative (N) 
allergic to animals self-report dichotomous 
allergic to drugs self-report dichotomous 
allergic to food self-report dichotomous 
allergies (any) self-report dichotomous 
anticipated remaining life expectancy self-report quantitative (N) 
asthma as adult self-report dichotomous 
asthma as child self-report dichotomous 
athleticism self-report polytomous 
attitude toward abortion on demand self-report polytomous 
attitude toward alcohol self-report polytomous 
attitude toward attention-drawing clothes self-report polytomous 
attitude toward being the center of attention self-report polytomous 
attitude toward being the leader of groups self-report polytomous 
attitude toward big parties self-report polytomous 
attitude toward capitalism self-report polytomous 
attitude toward castration as sex crime punishment self-report polytomous 
attitude toward death penalty for murder self-report polytomous 
attitude toward doing athletic activities self-report polytomous 
attitude toward dressing well at all times self-report polytomous 
attitude toward education self-report polytomous 
attitude toward exercising self-report polytomous 
attitude toward getting along well with others self-report polytomous 
attitude toward illegal drugs self-report polytomous 
attitude toward legalized gambling self-report polytomous 
attitude toward loud music self-report polytomous 
attitude toward making racial discrimination illegal self-report polytomous 
attitude toward open-door immigration self-report polytomous 
attitude toward organized religion self-report polytomous 
attitude toward playing chess self-report polytomous 
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attitude toward playing organized sports self-report polytomous 
attitude toward public speaking self-report polytomous 
attitude toward reading books self-report polytomous 
attitude toward rollercoaster rides self-report polytomous 
attitude toward smoking self-report polytomous 
attitude toward voluntary euthanasia self-report polytomous 
back pain self-report dichotomous 
BIS inattention self-report quantitative (N) 
BIS general self-report quantitative (N) 
BIS motor self-report quantitative (N) 
BIS nonplanning self-report quantitative (N) 
body mass index measured quantitative (N) 
body type (scrawny to obese) self-report polytomous 
ca_eine mg per day self-report quantitative 
CFMT computer quantitative (N) 
cigarette packs per day self-report polytomous 
cleft chin self-report dichotomous 
co_ee cups per day self-report polytomous 
corrective lenses needed currently self-report dichotomous 
corrective lenses needed at any time self-report dichotomous 
curl tongue self-report dichotomous 
Democrat vs. Republican self-report polytomous 
dental braces worn (ever) self-report dichotomous 
dental braces worn or needed (ever) self-report dichotomous 
dictator game self-report dichotomous 
dimples self-report dichotomous 
discounting the future self-report quantitative (N) 
drink alcohol (ever) self-report dichotomous 
earlobes free (vs. hanging) self-report dichotomous 
evening person self-report dichotomous 
exercise amount per week self-report polytomous 
exercise intensity self-report polytomous 
exercise regularly self-report dichotomous 
eye color self-report polytomous 
facial hair color self-report polytomous 
facial hair color (red vs. not red) self-report dichotomous 
farsighted self-report dichotomous 
first toe longer than second toe self-report dichotomous 
floss teeth regularly self-report dichotomous 
freckles on face self-report polytomous 
gambling frequency self-report polytomous 
general cognitive ability multiple quantitative (N) 
hair color self-report polytomous 
hair color (red vs. not red) self-report dichotomous 
hair curliness self-report polytomous 
hair on middle segment of any finger self-report dichotomous 
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happiness sumscore self-report quantitative (N) 
hay fever self-report dichotomous 
heterosexual self-report dichotomous 
hitchhiker's thumb self-report dichotomous 
hours of sleep average self-report quantitative 
hours of sleep last night self-report quantitative 
illegal drug use self-report polytomous 
inattentional blindness computer dichotomous 
in-person contact with family or very close friends self-report dichotomous 
last doctor's appointment for checkup self-report polytomous 
liberal vs conservative self-report polytomous 
loss aversion self-report quantitative 
MAB Arithmetic paper quantitative (N) 
MAB Similarities paper quantitative (N) 
MAB Vocabulary paper quantitative (N) 
memory problems self-report dichotomous 
migraines at any time self-report dichotomous 
migraine frequency self-report polytomous 
migraine within last 12 months self-report dichotomous 
morning person self-report dichotomous 
multivitamin supplement self-report dichotomous 
nearsighted self-report dichotomous 
NEO Agreeableness self-report quantitative (N) 
NEO Conscientiousness self-report quantitative (N) 
NEO Extraversion self-report quantitative (N) 
NEO Neuroticism self-report quantitative (N) 
NEO Openness self-report quantitative (N) 
paired-associate recognition computer quantitative (N) 
percentage of income saved over last 3 years self-report quantitative 
physical attractiveness self-report polytomous 
quality of sleep self-report polytomous 
RAPM computer quantitative (N) 
religiosity self-report quantitative 
right-handed self-report dichotomous 
risk aversion self-report quantitative (N) 
seat belt use self-report polytomous 
shape memory accuracy computer quantitative (N) 
shape memory response time computer quantitative (N) 
sitting height measured quantitative (N) 
skin color and sun exposure response self-report polytomous 
SMMR accuracy computer quantitative (N) 
SMMR response time computer quantitative (N) 
smoked cigarette (ever) self-report dichotomous 
soda cups per day self-report polytomous 
spatial memory accuracy computer quantitative (N) 
spatial span response time computer quantitative (N) 
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SRTT accuracy computer quantitative 
SRTT overall RT computer quantitative (N) 
SRTT improvement in RT computer quantitative (N) 
standing height measured quantitative (N) 
strength self-report polytomous 
stress level within last 12 months self-report polytomous 
sunscreen or protective clothing use self-report polytomous 
tea cups per day self-report polytomous 
time woke up this morning self-report quantitative (N) 
tobacco use frequency (current) self-report polytomous 
tobacco user (current) self-report dichotomous 
tobacco user (ever) self-report dichotomous 
unprotected sex self-report polytomous 
utilitarianism self-report quantitative (N) 
verbal fluency audio quantitative (N) 
vision quality (uncorrected) self-report polytomous 
VVIQ self-report quantitative (N) 
weight measured quantitative (N) 
weight (maximum) self-report quantitative (N) 
widow’s peak self-report dichotomous 
 
! !
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