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Behavioral/Cognitive

Brain Regions That Represent Amodal Conceptual
Knowledge

Scott L. Fairhall1 and Alfonso Caramazza1,2

1Center for Mind/Brain Sciences, University of Trento, Trento, 38068, Italy, and 2Cognitive Neuropsychology Laboratory, Harvard University, Cambridge,
Massachusetts 02138

To what extent do the brain regions implicated in semantic processing contribute to the representation of amodal conceptual content
rather than modality-specific mechanisms or mechanisms of semantic access and manipulation? Here, we propose that a brain region can
be considered to represent amodal conceptual object knowledge if it is supramodal and plays a role in distinguishing among the
conceptual representations of different objects. In an fMRI study, human participants made category typicality judgments about pictured
objects or their names drawn from five different categories. Crossmodal multivariate pattern analysis revealed a network of six left-
lateralized regions largely outside of category-selective visual cortex that showed a supramodal representation of object categories. These
were located in the posterior middle/inferior temporal gyrus (pMTG/ITG), angular gyrus, ventral temporal cortex, posterior cingulate/
precuneus (PC), and lateral and dorsomedial prefrontal cortex. Representational similarity analysis within these regions determined that
the similarity between category-specific patterns of neural activity in the pMTG/ITG and the PC was consistent with the semantic
similarity between these categories. This finding supports the PC and pMTG/ITG as candidate regions for the amodal representation of
the conceptual properties of objects.

Introduction
Neuropsychological and neuroimaging studies have implicated
multiple brain areas in the performance of semantic tasks (Hillis
and Caramazza, 1991; Damasio et al., 2004; Patterson et al., 2007;
Binder et al., 2009). It remains unclear, however, to what extent
these brain regions contribute to the representation of semantic
content rather than to modality-specific mechanisms or mecha-
nisms that control, or otherwise make possible, semantic access
(Thompson-Schill et al., 1997; Martin and Chao, 2001; see dis-
cussions in Martin, 2007; Mahon and Caramazza, 2009; Whitney
et al., 2011).

A central assumption about amodal semantic/conceptual rep-
resentations is that they can be accessed independently of modal-
ity: the word “dog” activates a generally similar conceptual
content to the picture of a dog. This implies that the brain areas
that represent such conceptual knowledge are supramodal in na-
ture. However, not all of the supramodal brain areas that are
activated by semantic tasks necessarily represent semantic con-
tent. A brain area can have a role in accessing or otherwise oper-
ating over semantic representations without necessarily being
involved in representing conceptual content. One way to identify

brain regions that represent amodal conceptual knowledge is by
combining the supramodal criterion with the additional conser-
vative criterion that, for a brain area to be considered to represent
conceptual knowledge, it must play a role in distinguishing
among the conceptual representations of different objects and, by
extension, different object categories.

In the visual modality, neuroimaging studies have shown that
the spatial pattern of the fMRI response to images of objects
encodes the similarity among objects and among object catego-
ries (Kriegeskorte et al., 2008; Connolly et al., 2012). Representa-
tional similarity analysis (RSA) of the neural activity produced by
object categories compared with the semantic similarity among
those categories provides an important test of the degree to which
semantic content is encoded in the activity of a region. For exam-
ple, Connolly et al. (2012) found that the representational simi-
larity among the neural responses in higher-level visual cortex
produced by six different biological classes matched subjective
ratings of similarity among those categories. Although this cor-
respondence suggests the possibility that higher-level visual cor-
tex represents semantic content, the use of exclusively visual
object modes of presentation makes it impossible to distinguish
the contribution of semantic versus visual properties on this pat-
tern of neural activity. In other words, the supramodal criterion
has not been met.

Previous work has successfully employed supramodal presen-
tation and multivoxel pattern analysis (MVPA) to distinguish
modality-specific versus modality-general representations
(Peelen et al., 2010). In the present study, we used crossmodal
presentation (words and pictures) and a typicality task (e.g., how
typical is an eagle of the category “birds”?) for five semantic cat-
egories: fruits, tools, clothes, mammals, and birds. We then used

Received Jan. 6, 2013; revised April 15, 2013; accepted May 21, 2013.
Author contributions: S.L.F. and A.C. designed research; S.L.F. performed research; S.L.F. contributed unpub-

lished reagents/analytic tools; S.L.F. analyzed data; S.L.F. and A.C. wrote the paper.
This work was supported by the Provincia Autonoma di Trento and the Fondazione Cassa di Risparmio di Trento

e Rovereto.
The authors declare no competing financial interests.
Correspondence should be sent to Scott L. Fairhall, Center for Mind/Brain Sciences, University of Trento, Trento,

Corso Bettini 31, I-38068-Rovereto, Italy. E-mail: fairhall@wjh.harvard.edu.
DOI:10.1523/JNEUROSCI.0051-13.2013

Copyright © 2013 the authors 0270-6474/13/3310552-07$15.00/0

10552 • The Journal of Neuroscience, June 19, 2013 • 33(25):10552–10558



crossmodal MVPA to identify the neural representation of the
different semantic categories independently of the process
through which these representations are accessed. Finally, we
used RSA to determine where in the brain neural activity is sen-
sitive to the conceptual similarity of the content being encoded.

Materials and Methods
Participants. Twenty right-handed, native Italian speakers participated in
this experiment (9 females, mean age 25.3 years, SD � 3.9). All proce-
dures were approved by both the University of Trento Human Research
Ethics Committee and the Harvard University Committee on the Use of
Human Subjects in Research.

Procedure. Five semantic categories were selected: fruit, tools, clothes,
mammals, and birds. In each category there were 32 object exemplars
that could be presented either in written or pictorial form. Word length
was between 4 and 11 letters (mean 6.9, SD 1.7) and did not differ across
categories ( p � 0.15). Words subtended approximately 3–5.5 degrees of
visual angle horizontally and 1.5 vertically. Pictures were separated from
their original background and presented against a square phase-
scrambled background (8.3 degrees of visual angle) generated from
other images in the stimulus set (selected equally from each category).

Stimuli were presented during four fMRI runs (9 min 20 s each). For
every subject, the first two runs were word presentations and the last two
were picture presentations. This order was chosen so that the word pre-
sentation was not confounded by prior exposure to particular images.
Twenty-four 20 s blocks comprised each run (four per category and four
baseline blocks). Each block was preceded by a written cue indicating the
upcoming category (1 s fixation, 1 s cue, 1 s fixation) followed by the

presentation of eight 2.5 s trials (Fig. 1). Each
trial consisted of 400 ms stimulus presentation
followed by the 2100 ms presentation of a fix-
ation cross. Each object exemplar was pre-
sented once per run.

Participants performed a typicality rating of
each item within its semantic category (e.g.,
rating the typicality of “apple” or “coconut” as
a fruit). Subjects responded bimanually (two
buttons for each hand) on a four-point typical-
ity scale (button order was counterbalanced
across participants). The baseline task was a
one-back matching task of phase-scrambled
images.

Univariate analysis. Analysis was performed
in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/). The first four volumes of
each run were discarded. All subsequent im-
ages were corrected for head movement. Slice-
acquisition delays were corrected using the
middle slice as a reference. All images were nor-
malized to the standard SPM8 EPI template
(MNI stereotactic space), resampled to a 3 mm
isotropic voxel size, and spatially smoothed us-
ing an isotropic Gaussian kernel of 3 mm
FWHM. The time series at each voxel for each
participant were high-pass filtered at 128 s and
prewhitened by means of an autoregressive
model AR(1).

Subject-specific � weights were derived
through a general linear model (GLM). For
each subject, the data were best-fitted at every
voxel using a combination of effects of interest.
These were delta functions representing the
onset of each of the experiment conditions,
convolved with the SPM8 hemodynamic re-
sponse function. The six motion regressors,
four response buttons, and reaction time (RT)
were included as regressors of no interest (RT
and response button regressors were con-
volved with the hemodynamic response func-

tion). Betas were extracted for each run for each category.
Whole-brain crossmodal MVPA. A searchlight analysis (Fig. 1) was

performed (Kriegeskorte et al., 2006) using a logistic regression pattern
classifier as implemented in the Princeton MVPA Toolbox (Princeton
University, Princeton, New Jersey, http://www.csbmb.princeton.edu/
mvpa). Classifiers were trained and tested on individual subject data.
Beta values were used from each condition from each run. In this way, the
spatial pattern information entered into the classifier for each category
represented the average response of the presentation of the 32 exemplars
(from either word or picture presentation). The searchlight analysis was
implemented by extracting � vales from a three-voxel-radius sphere cen-
tered on each voxel in the brain. This sized sphere yielded �123 3 mm
voxels and was selected for consistency with previous research (Connolly
et al., 2012).The diameter of the sphere was 21 mm, substantially larger
than the minimal smoothing kernel used during preprocessing (3 mm
FWHM).

The classifier was trained on each modality for subsequent testing on
the other modality. In this way, only the category-specific information
that was general to both modalities was informative to the classifier.
Classification was performed in a pairwise fashion comparing each cate-
gory with each other category. Therefore, a total of eight � maps (2
runs � 2 modalities � 2 categories) were entered in the classifier for each
pairwise iteration. There were 10 such iterations (i.e., the possible num-
ber of pairwise combinations of our five categories). For each searchlight,
the performance of the classifier was summarized at the center voxel of
the sphere (the “summary voxel”). In the unimodal analysis (presented
in Fig. 2 B, C), training and testing were performed on the first and sec-

Figure 1. Schematic of the analytical approach. In a blocked design, participants performed a semantic judgment on objects
drawn from five different object categories: fruit, tools, clothes, mammals, and birds. These were presented either as words (runs
1 and 2) or images (runs 3 and 4). Univariate GLM was used to determine the fMR signal at each voxel in the brain for each condition
and each run. The local pattern of information was extracted within a spherical searchlight (radius � 3 voxels), which was
iteratively focused on every voxel in the brain. Crossmodal classification was performed within each searchlight volume between
each of the 10 possible pairwise category comparisons. Performance was averaged across category comparisons and a one-sample
t test was used to identify regions of high classification performance. ROIs were identified and the between-category confusion
matrix averaged across the ROIs. This allowed the identification of the neural representational similarity between categories in
each ROI for later comparison with the semantic similarity between categories.
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ond run for that modality. Therefore, only half
of the data were available compared with the
crossmodal MVPA.

For whole-brain analysis, the classification
performance for each subject was averaged
across all categories (the 10 pairwise iterations)
and the resulting accuracy maps were entered
into a one-sample t test. Brain maps were ini-
tially thresholded at p � 0.001 uncorrected, ex-
tent �60 voxels. All reported results have been
corrected at the cluster level using the family-
wise error (FWE) correction as implemented
in SPM8.

Semantic distance template. For the assess-
ment of the relationship between neural repre-
sentational similarity and semantic similarity,
an estimate of the semantic relatedness be-
tween the stimuli used in this study was deter-
mined. There are a number of different
methods for determining semantic relatedness
between object concepts (e.g., feature co-
occurrence, subjective similarity, and corpus-
based latent semantic analysis). There are
significant variations across these methods
(for a recent comparison, see Dilkina and
Lambon Ralph, 2012). For this study, the se-
mantic relationship between objects was de-
termined using Wordnet (http://wordnet.
princeton.edu) and the Wordnet::Similarity
interface (http://wn-similarity.sourceforge.net).
The measure used was path length, which re-
flects the shortest hierarchical distance be-
tween objects and was selected because it
produced the most stable estimates of the ca-
nonical taxonomic category structure. The dis-
tance was calculated between each object and
every other object and the average between-
category distance was used as the template index of semantic distance.

Crossmodal RSA. RSA was performed on the classification confusion
matrix (more dissimilar neural patterns are more accurately classified,
more similar patterns more readily confused). ROIs were identified in
the whole-brain crossmodal MVPA described previously. For stability
and normality, confusion matrices were averaged across the summary
voxels attained from the searchlight analysis (Fig. 2A). Specifically, ROIs
were formed by taking the union between spheres centered on decoding
accuracy peaks (Table 1) and the significant decoding accuracy map ( p �
0.001) revealed in the whole-brain analysis (Fig. 2A). The radius of the
sphere was modified to create a comparable number of voxels within
each ROI (90 –106 voxels). The relationship between semantic and neu-
ral similarity patterns was assessed using a weighted contrast. The vector
of contrast weights was derived from the semantic distance template. The
mean semantic distance was subtracted from each cell of this vector,
which was then multiplied element-wise with a vector representing the
10 different cells of the confusion matrix. The resulting values were then
averaged for each subject and a one-sampled t test was used to determine
whether the neural similarity increased as a function of semantic similar-
ity for each ROI.

Data acquisition. Participants lay in the scanner (BioSpin MedSpec 4T;
Bruker) and viewed the stimuli through a mirror system. Data collection
was conducted at the Center for Mind/Brain Sciences, University of
Trento, using a USA Instruments eight-channel phased-array head coil.
A total of 1168 volumes of 34 anterior/posterior-commissure aligned
slices were acquired over four runs (image matrix � 70 � 64, repetition
time � 2000 ms, echo time � 33 ms, flip angle � 76°, slice thickness � 3
mm, gap � 0.45 mm, with 3 � 3 mm in plane resolution).

An additional high-resolution (1�1�1 mm3) T1-weighted MPRAGE
sequence was performed (sagittal slice orientation, centric phase encoding,
image matrix � 256 � 224 [read � phase], field of view � 256 � 224 mm
[read � phase], 176 slices with 1 mm thickness, GRAPPA acquisition with

acceleration factor � 2, duration � 5.36 min, repetition time � 2700, echo
time � 4.18, TI � 1020 ms, 7° flip angle).

Results
Behavioral results
Mean typicality ratings did not differ across categories (Fig. 1A;
all t-values �1). RTs differed significantly between some catego-
ries (Fig. 1B). For words (range, 977–1181 ms), ratings for fruits
were faster than the other four categories (p � 0.01) and ratings
for birds were faster than both mammals and tools (p � 0.05).
For pictures (range, 910 –1050 ms), fruit responses were faster
than tools, clothes, and mammals (p � 0.05), and bird responses
were faster than tool responses (p � 05). Subjects also performed
a perceptual control task—a one-back matching task between
phase-scrambled images. Mean RTs (mean, 790.5 ms) were sig-

Figure 2. Average MVPA classification performance across categories. A, Crossmodal classification performance and unimodal
classification performance for picture (B) and word (C) stimuli. Statistical maps have been thresholded at p � 0.001 and corrected
for multiple comparisons at the cluster level ( p � 0.05).

Table 1. Location, extent, mean accuracy, and significance for the ROIs identified
in the crossmodal pattern analysis (chance accuracy is 0.5)

Cluster Peak

Region p � (FWE-cor) Extent Accuracy p(FWE-cor) T p(unc) x, y, z

Left VTC 0.001 169 0.588 0.001 9.36 8.E-09 �33, �25, �23
0.070 6.75 9.E-07 �39, �16, �26
0.877 5.03 4.E-05 �42, �7, �26

Left pMTG/ITG 0.001 259 0.631 0.004 8.23 5.E-08 �51, �49, �11
Left AG 0.001 426 0.631 0.032 7.14 4.E-07 �48, �70, 31
Left latPFC 0.001 127 0.601 0.424 5.83 6.E-06 �48, 20, 40
Left dmPFC 0.001 302 0.610 0.427 5.83 6.E-06 �15, 17, 49
PC 0.001 90 0.624 0.548 5.61 1.E-05 �3, �64, 31

Abbreviations: cor, corrected; unc, uncorrected.

10554 • J. Neurosci., June 19, 2013 • 33(25):10552–10558 Fairhall and Caramazza • Neural and Semantic Similarity of Object Concepts

http://wordnet.princeton.edu
http://wordnet.princeton.edu
http://wn-similarity.sourceforge.net


nificantly faster than each of the conditions of interest (p �
0.001). Mean accuracy was 81.0%.

Crossmodal sensitivity to semantic category
First, the average overall crossmodal classification performance
(collapsed across category pairs) attained by the whole-brain
crossmodal MVPA was determined. This revealed ROIs sensitive
to semantic category in posterior middle/inferior temporal gyrus
(pMTG/ITG), angular gyrus (AG), ventral temporal cortex
(VTC; fusiform, parahippocampal, and perirhinal cortex), the
posterior cingulate/precuneus (PC), the lateral and dorsomedial
prefrontal cortex (latPFC and dmPFC; Fig. 1A, Table 1). The
apparent left laterality of this network is quantitative rather than
qualitative, with weaker effects being evident in geometrically
equivalent right hemispheric regions (mean classification accu-
racy 56 –57%; t-values 2.1–2.6, p � 0.05).

To assess the influence of susceptibility artifacts on the iden-
tified ROIs (particularly VTC), we analyzed the temporal signal-
to-noise ratio (tSNR) for each participant in each ROI. tSNR was
calculated by dividing the mean intensity of a voxel by the SD of
that voxel’s signal over time separately for each fMRI run (Fried-
man et al., 2006). Mean tSNRs for each ROI were as follows:
pMTG/ITG, 112.9; AG, 104.9; VTC, 125.6; PC, 144.1; latPFC,
105.3; and dmPFC, 138.3. These values are comparable across
ROIs and well above the minimum “good” value for signal detec-
tion (�20; Binder et al., 2011). To assess our ability to detect
effects in regions of the anterior temporal lobe (ATL) previously
linked to semantic processing, we calculated the tSNR in 3-voxel
radius spheres centered on coordinates described previously
(Binney et al., 2010; Visser and Lambon Ralph, 2011). The tSNR
was again seen to be robust (118.4 and 98.6, respectively). tSNR
dropped off only in more anterior regions of the ventral ATL, as
reported in Peelen and Caramazza (2012), who found a tSNR of
51.6). However, even here, tSNR remained sufficiently high for
signal detection. These values indicate that signal quality was
good and detectability was relatively high in this study.

Might this multivariate supramodal sensitivity to category
also be evident in the univariate magnitude of the response?
Within our ROIs, overall univariate responses were comparable
between words and pictures, with the exception of a stronger
effect for pictures in the left pMTG/ITG (t(19) � 2.4, p � 0.05). To
determine if subject-specific variations in the magnitude of the
response predicted semantic category, we next averaged the re-
sponses across each searchlight sphere (removing the spatial pat-
tern) and trained and tested the classifier on the average response
within the sphere. This analysis revealed two frontal clusters in
the latPFC (xyzmni � �42, 17, 31; 33 voxels) and dmPFC (�15,
17, 52; 58 voxels; p � 0.001, extent � 30 voxels), but not else-
where. Therefore, only in these regions did the category-specific
pattern in the magnitude of the response and the spatial pattern
contain information about semantic category.

Prior research has indicated a selective response in the left
pMTG for visually presented tools. This motivated further exam-
ination of this cluster to ensure that the effects obtained here for
this region are not merely the result of this region’s sensitivity to
tools relative to the other categories. We first replicated the
MVPA analysis considering only the four nontool categories. The
pMTG/ITG cluster remained highly significant (p � 0.001 FWE
corrected, 165 voxels), indicating that this region is sensitive to
other semantic categories beyond tools. We then identified the
“classic” tool-selective region in the pictorial modality through
the contrast tools � mammals. The peak of the supramodal
category-sensitive cluster was �1.5 cm anterior to that of the

conventional tool-selective cluster (xyzmni � �48, �64, �5; 439
voxels). Although the two clusters partially overlapped, the su-
pramodal category-sensitive activation spread more anteriorly
(�40% overlap; 102 of the 259 voxels).

For comparison, we also included the complementary MVPA
for unimodal (word and picture) presentation (Fig. 2B,C).
MVPA performed within the picture domain revealed wide-
spread sensitivity to category in the visual cortex (lateral occipital
cortex and sections of the fusiform and parahippocampal gyri
and early visual cortex). Within the word modality, sensitivity to
semantic category was only observed in the pMTG/ITG and lat-
PFC. There was little overlap in picture, word, and crossmodal
decoding. This can be the result not only of modality-specific
information (particularly in the case of images), but also reduced
power due to the smaller train-test sets available to the within-
modality classifiers. Examination of unimodal (word or picture)
effects in the six supramodal ROIs revealed that there was some
evidence for unimodal categorical information in each of these
regions. Within each ROI, searchlight performance was averaged
across category pairs separately for the word and picture presen-
tation runs. Classification performance was above chance in all
six ROIs (p � 0.05).

Comparing semantic and visual category sensitivity
Category sensitivity evident during image presentation may re-
flect semantic processing (Connolly et al., 2012). However, with
the exception of the left pMTG/ITG and anterior parts of the left
mid-fusiform, there appeared to be little overlap between visual
and supramodal category-sensitive neural populations (Fig.
2A,B). To investigate this relationship more fully, we examined
the performance at each summary voxel for picture and word
MVPA. This analysis was performed in those brain regions show-
ing robust image-based sensitivity to category (Fig. 2B) while
excluding areas showing supramodal sensitivity (Fig. 2A) and
early visual cortex. The correlation between the local categorical
representation for pictures and words revealed a significant dis-
sociation between sensitivity to category in the word and image
modality (r � �0.19, p � 0.001). Therefore, outside of the su-
pramodal ROIs, stronger image-based category sensitivity was
associated with decreased word-based sensitivity to category. This
indicates that there is a division of labor within the ventral
stream, with those brain regions most sensitive to image-based
categorical distinctions being separate from supramodal repre-
sentations of category.

Is supramodal categorical information present at a spatial
scale larger than that sampled by our searchlight, such as medial
(inanimate) to lateral (animate) organization of the ventral
stream? To determine this, all visually responsive voxels were
extracted from ventral stream regions (all pictures � phase-
scrambled, p � 0.001) and an MVPA was performed at this broad
spatial scale (�5000 voxels). Predictably, decoding was highly
significant for the picture task (p � 0.001), but was not evident
for the word task (t � 1). Therefore, there was no indication that
supramodal categorical representations are present in the ventral
stream at broad spatial scales.

Representational and semantic similarity
The preceding analysis allowed us to identity regions with a
high overall sensitivity to semantic category, but did not allow
us to assess the relationship between categories. To evaluate
this relationship in the six supramodal regions, we next per-
formed RSAs using the confusion matrix between each cate-
gory as an index of neural representational similarity (Fig. 3).
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The representational similarity of each
category was then compared with the se-
mantic template derived from the
Wordnet database. Of the six ROIs, only
in the pMTG/ITG and PC was there a
relationship between semantic similar-
ity and representational neural similar-
ity (Fig. 3, all other regions t � 1). This
indicates that, in these ROIs, semanti-
cally more similar categories have more
similar neural representations. Inspec-
tion of the dendrograms in Figure 3
shows that a broad semantic taxonomy
is evident and that these effects are not
driven by differences between one single
category and the others. Nonetheless,
there may be some biases embedded
within this structure. There appeared to
be some weighting toward tools in the
pMTG/ITG, and the PC seemed to con-
tain relatively little information about
artifacts (tools and clothes).

As a final check for RT confound ef-
fects, the representational similarity was
compared with the RT similarities among
categories. Neural similarity across cate-
gories did not vary with RT similarity (t-
values �1).

Discussion
In this study, we employed crossmodal
MVPA and RSA to identify where in the
brain the pattern of neural representation
was consistent with amodal conceptual
content. We identified six (predomi-
nantly) left-lateralized regions that exhib-
ited overall supramodal sensitivity to
semantic category. RSA determined that
in two of these regions, pMTG/ITG and
PC, the neural representational similarity
among categories conformed to the se-
mantic relationship among objects within
those categories. This concordance be-
tween neural and semantic relationships
within pMTG/ITG and PC supports the
view that these regions encode modality-
neutral conceptual information.

The role of pMTG/ITG in semantic
processing has been supported by conver-
gent evidence from lesions (Hillis and
Caramazza, 1991; Damasio et al., 2004),
neuroimaging studies (Thompson-Schill et al., 1997; Binder et
al., 2009), and transcranial magnetic stimulation using word
(Whitney et al., 2011) and picture stimuli (Hoffman et al., 2012).
Moreover, during rest, individual differences in spontaneous ac-
tivation in pMTG most strongly predict conceptual processing
efficiency, suggesting a central role in semantic processing (Wei
et al., 2012). However, this central role may either reflect repre-
sentation or retrieval/selection operations performed on seman-
tic content (Whitney et al., 2011). The relationship between
neural patterns of activation and semantic distance patterns ob-
served in our study supports the former possibility—the repre-
sentation of conceptual content in pMTG/ITG, at least in regard

to the semantic content that is accessed by both visual objects and
their names.

One possible explanation for the observed results is that
pMTG/ITG effects merely reflect tool selectivity. Multiple studies
have reported tool selectivity in the left pMTG (Chao et al., 2002;
Mahon et al., 2007; Simmons et al., 2010; Fairhall et al., 2011) and
there is some evidence that this extends to crossmodal presenta-
tion (Noppeney et al., 2006). To rule out this possibility, a sec-
ondary analysis was performed and it was found that: (1)
supramodal sensitivity to semantic category persists when the
tool category is removed from the analysis and (2) the anatomical
locus of this category-sensitive cluster is anterior to the classical

Figure 3. Relationship between neural representational similarity and semantic similarity for five object categories: fruit, tools,
clothes, mammals, and birds. The semantic template of between category dissimilarity was used to form a weighted contrast on
the neural dissimilarity between categories (middle). The relationship between semantic and neural similarity was significant in
the posterior MTG/ITG and PC. Dendrograms depict the clustering of the different semantic categories in these brain regions. Neural
dissimilarity is in units of decoding accuracy (where chance � 0.5).
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tool-selective region. The more anterior locus of our supramodal
ROI is consistent with prior reports of non-category-selective
semantic effects (Simmons et al., 2010; Wei et al., 2012) and may
reflect a functional subdivision of pMTG/ITG.

Less widely recognized than pMTG, PC is one of the most
consistently reported brain regions in studies of semantic pro-
cessing (Binder et al., 2009). For example, PC is activated when
people report semantic properties about animals (Binder et al.,
1999) or the nationality or occupation of famous people (Fairhall
et al., 2013). At rest, spontaneous activity in PC is coupled with
the section of pMTG associated with conceptual processing effi-
ciency (Wei et al., 2012). The PC’s strong connections to frontal
and association (such as pMTG) cortices and its central involve-
ment in internalized “default-mode” cognition has led to the
proposal that it is involved in elaborating highly integrated infor-
mation (Cavanna and Trimble, 2006). Access to such highly in-
tegrated information is consistent with a functional role in the
abstract representation of semantic content. The recruitment of
PC in semantic tasks has previously been attributed to the incidental
retrieval of episodic memories (Gobbini and Haxby, 2007; Binder et
al., 2009). However, in this study, the minimal episodic demands of
the task (typicality judgment), the type of stimuli used–basic, every-
day objects–and the preservation of between-category semantic re-
lationships in the neural representation suggest that PC plays a role
in conceptual representation that extends beyond episodic memory.
The relationship between conceptual and neural similarity supports
a role in conceptual representation, but evidence on the nature of
semantic deficits in the early stages of Alzheimer’s disease suggests
that PC may have an additional role in semantic control (Corbett et
al., 2012).

We also identified four regions (VTC, AG, latPFC, dmPFC)
that were sensitive to category but insensitive to the semantic
relationship among categories. This pattern of response may re-
flect involvement in guiding the selection and retrieval of task-
relevant semantic content, particularly in the case of the latPFC
and dmPFC (Thompson-Schill et al., 1997; Martin and Chao,
2001; Wagner et al., 2001; Jefferies and Ralph, 2006; Binder et al.,
2009). Although the response profile of neural populations ful-
filling this function is uncertain, in the macaque latPFC, neurons
respond to ad hoc, arbitrarily formed categories based upon the
online task set rather than natural semantic categories (Cromer et
al., 2010). In specific situations, such as in the current study, ad
hoc categories can correspond to semantic categories (e.g., when
a task requires a decision to be made for the category tools), but
their functional role in PFC is not dependent on the semantic
content of the categories, merely on their task relevance. If such a
process of ad hoc (and not semantic) category formation were
occurring in the latPFC and dmPFC during the typicality task,
one would expect the pattern of decoding performance we have
observed: distinct neural patterns associated with the task-
defined categories but no systematic relationship among them.
Similar processes may occur in the AG, which has been impli-
cated in the fluent integration of conceptual information (Binder
et al., 2009), resulting in ad hoc, novel semantic representations.

A surprising result was the lack of sensitivity to semantic rela-
tionships in VTC. Damage to this region is frequently associated
with semantic deficits (Patterson et al., 2007) and, in this study,
the overall classification performance (averaging across category
pairs) was most reliable in this region (compare t-values in Table
1). However, classification performance was relatively uniform
between categories and was not influenced by semantic similar-
ity. Analysis of the tSNR in the VTC ROI indicated that signal
quality was robust. However, poorer signal-to-noise ratios in

more anterior aspect of the ventral ATL (Devlin et al., 2000) may
have hindered detectability of semantic relationships (post hoc
analysis revealed a potential distinction between animate and
inanimate categories; t(19) � 1.81, p � 0.043 uncorrected). Alter-
natively, conceptual representations in these regions might not
reflect classical taxonomic semantic relationships. Different as-
pects of semantics may be represented in different brain regions.
For example, VTC might represent semantic knowledge about
object form, whereas the AG might be involved in the represen-
tation of motor knowledge. This pattern of representation pro-
vides another potential explanation for sensitivity to category in
the absence of sensitivity to overall semantic distance.

With the exception of the left pMTG/ITG and anterior parts of
the left fusiform gyrus, an interesting dissociation was seen be-
tween supramodal and image-based sensitivity to the semantic
category. Those regions most sensitive to image-based category
differences actually showed decreased sensitivity to supramodal
semantic category differences. Objects drawn from the same se-
mantic category share not only more conceptual properties, but
also a greater number of visual features (Caramazza, 1994;
Dilkina and Lambon Ralph, 2012). The results observed in the
present study suggest that reports of semantic-like similarity
structure for images of objects (Kriegeskorte et al., 2008) and
phylogenetic classes of animals (Connolly et al., 2012) may reflect
the processing of such shared visual features.

Might category sensitivity have arisen due to differences in
task? MVPA is a highly sensitive measure and small differences in
task that are undetectable in univariate analysis might produce
reliable effects with MVPA. We do not think this to be case here.
The typicality judgment task was the same across all categories.
Moreover, typicality ratings were equivalent across categories,
RT and responses were included in the fMRI GLM as regressors of
no interest, and representational similarity was not related to
similarity in reaction time. These factors make it unlikely that
task differences produce spurious category sensitivity.

It this study, we have emphasized the importance of semantic
and neural distances in uncovering brain areas involved in con-
ceptual processing. However, standard subtraction techniques
(balancing for sensory/phonological factors or manipulating
the level of required cognitive control) and the use of criteria
such as the capacity to generalize conceptual knowledge across
different exemplars even when surface characteristics may be
very different (Lambon Ralph and Patterson, 2008; Lambon
Ralph et al., 2010) remain highly effective tools for the identi-
fication of the neural correlates of conceptual representation.
It is also possible that there are semantic representations pres-
ent in the brain that do not encode the semantic distances
between categories, at least at the spatial scales measured by
fMRI, and that controlled subtraction approaches may be
more suitable for identifying such representations.

To summarize the results of this study, the supramodal crite-
rion was met in a network of six left lateralized regions largely
outside of category-selective visual cortex. The sensitivity to se-
mantic category in the latPFC, dmPFC, AG, and VTC may arise
for a number of reasons, including category-sensitive variations
in the cognitive operations performed over semantic content.
In contrast, the pattern of neural activity in pMTG/ITG and
PC not only respected the supramodal criterion, but also re-
flected the semantic distances among the semantic categories
being encoded, a strong test of the criterion that neural repre-
sentation should reflect the conceptual content being en-
coded. It is unlikely that the relationship between semantic
and neural representational distance would be apparent in

Fairhall and Caramazza • Neural and Semantic Similarity of Object Concepts J. Neurosci., June 19, 2013 • 33(25):10552–10558 • 10557



neural populations not encoding conceptual content. This
finding supports the PC and pMTG/ITG as candidate regions,
probably among others, for the supramodal representation of
the conceptual properties of objects.
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Wagner AD, Parè-Blagoev EJ, Clark J, Poldrack RA (2001) Recovering
meaning: left prefrontal cortex guides controlled semantic retrieval. Neu-
ron 31:329 –338. CrossRef Medline

Wei T, Liang X, He Y, Zang Y, Han Z, Caramazza A, Bi Y (2012) Predicting
conceptual processing capacity from spontaneous neuronal activity of the
left middle temporal gyrus. J Neurosci 32:481– 489. CrossRef Medline

Whitney C, Kirk M, O’Sullivan J, Lambon Ralph MA, Jefferies E (2011) The
neural organization of semantic control: TMS evidence for a distributed
network in left inferior frontal and posterior middle temporal gyrus.
Cereb Cortex 21:1066 –1075. CrossRef Medline

10558 • J. Neurosci., June 19, 2013 • 33(25):10552–10558 Fairhall and Caramazza • Neural and Semantic Similarity of Object Concepts

http://dx.doi.org/10.1162/089892999563265
http://www.ncbi.nlm.nih.gov/pubmed/9950716
http://dx.doi.org/10.1093/cercor/bhp055
http://www.ncbi.nlm.nih.gov/pubmed/19329570
http://dx.doi.org/10.1016/j.neuroimage.2010.09.048
http://www.ncbi.nlm.nih.gov/pubmed/20884358
http://dx.doi.org/10.1093/cercor/bhq019
http://www.ncbi.nlm.nih.gov/pubmed/20190005
http://dx.doi.org/10.1098/rstb.1994.0136
http://www.ncbi.nlm.nih.gov/pubmed/7886147
http://dx.doi.org/10.1093/brain/awl004
http://www.ncbi.nlm.nih.gov/pubmed/16399806
http://dx.doi.org/10.1093/cercor/12.5.545
http://www.ncbi.nlm.nih.gov/pubmed/11950772
http://dx.doi.org/10.1523/JNEUROSCI.5547-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22357845
http://dx.doi.org/10.3233/BEN-2012-0346
http://www.ncbi.nlm.nih.gov/pubmed/22207420
http://dx.doi.org/10.1016/j.neuron.2010.05.005
http://www.ncbi.nlm.nih.gov/pubmed/20547135
http://dx.doi.org/10.1016/j.cognition.2002.07.001
http://www.ncbi.nlm.nih.gov/pubmed/15037130
http://dx.doi.org/10.1006/nimg.2000.0595
http://www.ncbi.nlm.nih.gov/pubmed/10860788
http://dx.doi.org/10.1152/jn.01138.2010
http://www.ncbi.nlm.nih.gov/pubmed/21543757
http://dx.doi.org/10.1093/cercor/bht039
http://www.ncbi.nlm.nih.gov/pubmed/23425892
http://dx.doi.org/10.1016/j.neuroimage.2006.07.012
http://www.ncbi.nlm.nih.gov/pubmed/16952468
http://dx.doi.org/10.1016/j.neuropsychologia.2006.04.015
http://www.ncbi.nlm.nih.gov/pubmed/16797608
http://dx.doi.org/10.1093/brain/114.5.2081
http://www.ncbi.nlm.nih.gov/pubmed/1933235
http://dx.doi.org/10.1080/02687038.2011.608838
http://dx.doi.org/10.1093/brain/awl153
http://www.ncbi.nlm.nih.gov/pubmed/16815878
http://dx.doi.org/10.1073/pnas.0600244103
http://www.ncbi.nlm.nih.gov/pubmed/16537458
http://dx.doi.org/10.1016/j.neuron.2008.10.043
http://www.ncbi.nlm.nih.gov/pubmed/19109916
http://dx.doi.org/10.1196/annals.1440.006
http://www.ncbi.nlm.nih.gov/pubmed/18400924
http://dx.doi.org/10.1073/pnas.0907307107
http://www.ncbi.nlm.nih.gov/pubmed/20133780
http://dx.doi.org/10.1146/annurev.psych.60.110707.163532
http://www.ncbi.nlm.nih.gov/pubmed/18767921
http://dx.doi.org/10.1016/j.neuron.2007.07.011
http://www.ncbi.nlm.nih.gov/pubmed/17678861
http://dx.doi.org/10.1146/annurev.psych.57.102904.190143
http://www.ncbi.nlm.nih.gov/pubmed/16968210
http://dx.doi.org/10.1016/S0959-4388(00)00196-3
http://www.ncbi.nlm.nih.gov/pubmed/11301239
http://dx.doi.org/10.1093/cercor/bhi123
http://www.ncbi.nlm.nih.gov/pubmed/15944370
http://dx.doi.org/10.1038/nrn2277
http://www.ncbi.nlm.nih.gov/pubmed/18026167
http://dx.doi.org/10.1523/JNEUROSCI.1953-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23136412
http://dx.doi.org/10.1523/JNEUROSCI.2161-10.2010
http://www.ncbi.nlm.nih.gov/pubmed/20668196
http://dx.doi.org/10.1093/cercor/bhp149
http://www.ncbi.nlm.nih.gov/pubmed/19620621
http://dx.doi.org/10.1073/pnas.94.26.14792
http://www.ncbi.nlm.nih.gov/pubmed/9405692
http://dx.doi.org/10.1162/jocn_a_00007
http://www.ncbi.nlm.nih.gov/pubmed/21391767
http://dx.doi.org/10.1016/S0896-6273(01)00359-2
http://www.ncbi.nlm.nih.gov/pubmed/11502262
http://dx.doi.org/10.1523/JNEUROSCI.1953-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22238084
http://dx.doi.org/10.1093/cercor/bhq180
http://www.ncbi.nlm.nih.gov/pubmed/20851853

	Brain Regions That Represent Amodal Conceptual Knowledge
	Introduction
	Materials and Methods
	Results
	Behavioral results
	Crossmodal sensitivity to semantic category
	Comparing semantic and visual category sensitivity
	Representational and semantic similarity
	Discussion

	References

