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Is it possible to infer the time evolving quantum state of a multichromophoric system from a sequence
of two-dimensional electronic spectra (2D-ES) as a function of waiting time? Here we provide a
positive answer for a tractable model system: a coupled dimer. After exhaustively enumerating the
Liouville pathways associated to each peak in the 2D-ES, we argue that by judiciously combining
the information from a series of experiments varying the polarization and frequency components of
the pulses, detailed information at the amplitude level about the input and output quantum states
at the waiting time can be obtained. This possibility yields a quantum process tomography (QPT)
of the single-exciton manifold, which completely characterizes the open quantum system dynamics
through the reconstruction of the process matrix. In this manuscript, we present the general theory
as well as specific and numerical results for a homodimer, for which we prove that signals stemming
from coherence to population transfer and vice versa vanish upon isotropic averaging, therefore, only
allowing for a partial QPT in such case. However, this fact simplifies the spectra, and it follows that
only two polarization controlled experiments (and no pulse-shaping requirements) suffice to yield the
elements of the process matrix, which survive under isotropic averaging. Redundancies in the 2D-ES
amplitudes allow for the angle between the two site transition dipole moments to be self-consistently
obtained, hence simultaneously yielding structural and dynamical information of the dimer. Model
calculations are presented, as well as an error analysis in terms of the angle between the dipoles and
peak amplitude extraction. In the second article accompanying this study, we numerically exemplify
the theory for heterodimers and carry out a detailed error analysis for such case. This investigation
reveals an exciting quantum information processing (QIP) approach to spectroscopic experiments
of excitonic systems, and hence, bridges an important gap between theoretical studies on excitation
energy transfer from the QIP standpoint and experimental methods to study such systems in the
chemical physics community. © 2011 American Institute of Physics. [doi:10.1063/1.3569694]

I. INTRODUCTION

Multidimensional optical spectroscopies (MDOS) pro-
vide very powerful tools to study excited state dynamics of
multichromophoric systems in condensed phases. These tech-
niques distribute spectral features along several dimensions,
uncluttering data which would otherwise appear obscured in
linear spectroscopies and simultaneously yielding novel infor-
mation on the dynamics of the probed system.1 Possibilities
in multidimensional techniques include decongesting spectral
line shapes, differentiating between homogeneous and inho-
mogeneous broadening mechanisms, providing unambiguous
signatures about couplings between chromophores, and yield-
ing signatures of coherent and incoherent processes involving
excited states at the amplitude level.2, 3 Although MDOS have
been historically inspired by their NMR analogues, the time
scales of the physical and chemical processes studied through
MDOS are quite different from the ones in NMR.4–7 The
characteristic time scales of NMR are milliseconds, a resolu-
tion that does not allow for the observation of a wide variety
of chemical dynamics in condensed phases occurring in the
orders of femto and picoseconds. On the other hand, fem-
tosecond time scales can be easily accessed with ultrafast op-

a)Electronic mail: aspuru@chemistry.harvard.edu.

tical techniques. Examples of phenomena studied via MDOS
are vast and include molecular reorientation processes,8, 9

electron transfer,10 vibrational coherences in organometal-
lic complexes11–13 or halogens in rare gas matrices,14, 15

phonon dynamics in carbon nanotubes,16 protein unfolding
kinetics,17 and organic polymers,18, 19 many-body physics in
semiconductor quantum wells20–22 and quantum dots,23 as
well as excitonic dynamics in light-harvesting systems.24–29

In particular, experiments on the latter topic have revealed
the presence of unexpectedly long lived quantum coherences
in photosynthetic systems. This phenomenon has attracted
considerable attention from the quantum information pro-
cessing (QIP) community, which has focused on elucidating
the interplay between coherent and incoherent dynamics in
the transport of energy in excitonic networks.30–37

Traditionally, the spectroscopy of condensed phases is
formulated as a response problem: The molecular system
is perturbed with a sequence of short laser pulses, and the
coherent polarization response due to this set of perturbations
(nonlinear polarization) is subsequently measured.1 Infor-
mally, we can describe the exercise as “kicking” the quantum
black box (molecular system) and “listening to the whispers”
(measuring the response) due to the kicks, from which some
properties of the box can be inferred. This description of

0021-9606/2011/134(13)/134505/19/$30.00 © 2011 American Institute of Physics134, 134505-1
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spectroscopy is reminiscent to an idea stemming from the
quantum optics and QIP communities, namely, quantum
process tomography (QPT).38–41 Broadly speaking, QPT
is a systematic procedure to characterize a quantum black
box by sending a set of inputs, measuring their outputs, and
analyzing the functional relationships between them. With the
increasing effort of quantum engineering of gates and devices,
QPT constitutes a cornerstone of QIP theory and experiment,
as it provides a necessary check on the performance of the re-
spective quantum black boxes. A natural question arises from
the comparison of the two aforementioned concepts: Can the
spectroscopy of condensed phases be formulated as a QPT?
In a previous study,42 we provided an affirmative answer
to this question, at least for a molecular dimer. We showed
that a set of two-color polarization controlled rephasing
photon-echo (PE) experiments are sufficient to reconstruct
the density matrix elements associated with the dynamics
of the single-exciton manifold, and therefore, systematically
characterize the excited state dynamics of the dimer, which
can be regarded as the black box. For pedagogical reasons,
we found it simpler and more convenient to concentrate our
attention on the real time picture of the experiment, to make
an explicit identification of the preparation, evolution, and
detection steps of the QPT, with the coherence, waiting, and
echo times, respectively. However, due to the widespread
practice of displaying partially Fourier transformed data of
the nonlinear optical polarization with respect to certain time
intervals, it is worthwhile translating our results to the more
visual two-dimensional electronic spectrum5, 115 (2D-ES),
and in fact, this is one of the main results of the present work.

The present article is organized as follows: we begin in
Sec. II with a review of some relevant ideas of QPT and also
introduce the process matrix as the main object to be recon-
structed by means of QPT. In Sec. III, relevant details on the
dimer model system are presented. Section IV describes the
rephasing heterodyne photon-echo experiment for the dimer
and explains that the collected macroscopic polarization sig-
nal is a linear combination of elements of the process matrix
at the waiting time χ (T ). This implies that QPT can be per-
formed by repeating several experiments with different pulse
parameters in order to extract these elements. In Sec. V, the
ideas of Sec. IV are mapped into the language of a 2D-ES,
where each of the diagonal and cross peaks is associated
with a set of elements of χ (T ), and each of the axes of the
spectrum can be associated with a preparation and a detec-
tion stage. Finally, in Sec. VI, these ideas are specialized to
homodimer systems where, after isotropic averaging, only a
partial QPT is possible, as some elements of χ (T ) are unde-
tectable. Nevertheless, we note that the partial QPT is easily
realized with current experimental capabilities, since it can
be reconstructed with only two spectra resulting from differ-
ent pulse polarization configurations for each given waiting
time. The angle between the site dipoles is self-consistently
obtained from these spectra, and an error analysis based on
this angle as well as peak overlaps is carried out. Numerical
calculations on a secular Redfield dissipation model are pre-
sented. Extensions of the procedure to account for inhomoge-
neous broadening, more sophisticated signal analysis, as well
as bigger systems, are discussed at the end of this manuscript.

A detailed analysis for heterodimers is carried out in the next
article accompanying this investigation. The present work is
an important bridge between the QIP approach to study of
energy transport in excitonic networks and the actual experi-
mental techniques utilized to probe such systems in the chem-
ical physics community.

II. RELEVANT CONCEPTS OF QUANTUM PROCESS
TOMOGRAPHY AND GENERAL DEFINITIONS

Consider an arbitrary quantum system (quantum black
box) interacting with an environment. We are interested in
its evolution as a function of time T in the form of a re-
duced density matrix ρ(T ). Very generally, this evolution is a
linear transformation acting on the initial quantum state (see
Appendix):43, 44

ρ(T ) = χ (T )ρ(0). (1)

χ (T ) is the central object of this article and shall be called
process matrix. Equation (1) can be regarded as an integrated
equation of motion for every T .117 It is important to empha-
size that the expression holds both for Markovian and non-
Markovian dynamics, as can be seen from the derivation in
the Appendix. Equation (1) can be expressed in terms of a
basis for the Liouville space of the system:

ρab(T ) =
∑
cd

χabcd (T )ρcd (0). (2)

For purposes of this article, we present two useful defini-
tions. Consider the Liouville space L of the system and clas-
sify the vectors of L in proper and improper density matrices.
A state or a density matrix is proper if it satisfies all the con-
ditions of a physical quantum state; namely, this is Hermitian,
positive semidefinite, and has trace one. An improper state is
any matrix that lives in the Liouville space but is not a proper
density matrix. Clearly, any improper density matrix in the
same Liouville space may be written as a unique linear com-
bination of a set of linearly independent proper density matri-
ces. In principle, Eq. (2), being a physical equation of motion,
is restricted to the domain of proper density matrices ρ(0).
However, by linearity, its extension to any linear combination
of proper states is well defined, so its validity for improper
density matrices is not under question.

The meaning of the process matrix χ (T ) is easy to
grasp: Conditional on the initial state being prepared at
ρ(0) = |c〉〈d|, χabcd (T ) is the value of the entry ab of the
quantum state after time T , ρ(T ), i.e., χabcd (T ) = 〈a|ρ(T )|b〉.
Therefore, χabcd (T ) denotes a state to state transfer ampli-
tude. Note that ρ(0) = |c〉〈d| is an improper density matrix if
c �= d (coherences on their own are not valid quantum states).
However, improper states are not necessarily unphysical
as one expects at a first glance. Most of our intuition for
nonlinear spectroscopies in the perturbative regime stems
from the consideration of how a perturbative amplitude
created at a certain entry |c〉〈d| of the total (proper) density
matrix is transferred to other entries due to free evolution, as
time progresses.1 It is not the evolution of the total density
matrix (which to leading order is unperturbed, mostly in
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its ground state, and not yielding a time-dependent dipole)
what is effectively monitored in the phase-matched signal,
but the evolution of an effective density matrix, such as
|c〉〈d|, which can be improper. Terms such as transfer from
population to population, coherence to coherence, population
to coherence, and coherence to population are all ubiquitous
in the jargon of MDOS. However, the monitoring of these
terms is often ambiguous, incomplete, and in most cases,
qualitative. Obtaining quantitative information about these
events amounts to finding each of the elements of χ (T ).

The transformation in Eq. (2) is limited by two classes of
restrictions for the process matrix associated with Hermiticity
and trace preservation:∑

a

χaacd (T ) = δcd , (3)

χabcd (T ) = χ∗
badc(T ). (4)

We derive these conditions in the Appendix, but their content
is intuitive: if ρ(0) is a proper density matrix, ρ(t) remains as a
valid quantum state as T evolves if these two requirements are
preserved. In particular, elements of the form χaabb(T ), which
denote population transfers, are purely real as one expects,
whereas the other elements are in general complex.118

Equations (1) and (2) are remarkable because they guar-
antee that, in principle, if χ (T ) is known, the quantum black
box described by ρ(T ) is perfectly understood, as it predicts
by linearity the evolution of an arbitrary initial state in L. Al-
though ρ(T ) describes an open quantum system, details about
the environment evolution need not be included explicitly, but
only in an averaged sense via the elements of χ (T ). We shall
operationally define QPT as any procedure to reconstruct
χ (T ). A possible QPT is the following: (a) Prepare a linearly
independent set of states ρ(0) that spans L; (b) for each of
the prepared states, wait for a free evolution time T and deter-
mine the density matrix at that time. Any protocol for deter-
mining a density matrix for a system is called quantum state
tomography (QST).45–49 In essence, QPT can be carried out
for any system if both a selective preparation of initial states
and QST can be achieved. Variants of this methodology exist
although all of them operate within the same spirit.38–41 QPT
has been successfully implemented in a wide variety of exper-
imental scenarios, including nuclear magnetic resonance,50–52

ion traps,53 single photons,54, 55 solid state qubits,56 optical
lattices,57 and Josephson junctions.58 In this article, we show
how to perform QPT for a model coupled dimer using two-
color polarization controlled heterodyne photon-echo experi-
ments, extending the domain of application of QPT to systems
of chemical and biophysical interest.

III. MODEL SYSTEM: COUPLED DIMER

Consider a molecular dimer described by the effective
Hamiltonian:3, 59, 60

HS = ωAa+
A aA + ωBa+

B aB + J (a+
A aB + a+

B aA), (5)

where a+
i and ai are creation and annihilation operators for a

single Frenkel exciton in the site i ∈ {A, B}, ωA, ωB are the

first and second site energies, and J is the coupling between
the chromophores.

The standard diagonalization of this Hamiltonian, which
is effectively a two-level system for the single-exciton mani-
fold, follows from defining some convenient parameters: The
average of the site energies ω̄ = 1/2(ωA + ωB), the difference
� = 1/2(ωA − ωB), and the mixing angle θ = 1/2 arctan( J

�
).

By introducing the operators

aα = cos θaA + sin θaB,

aβ = − sin θaA + cos θaB, (6)

the Hamiltonian in Eq. (5) can be readily written as

HS = ωαa+
α aα + ωβa+

β aβ, (7)

where the eigenvalues ωα and ωβ of the single excitons are

ωα = ω + � sec 2θ,

ωβ = ω − � sec 2θ. (8)

Denoting |g〉 as the molecular ground state or the exci-
tonic vaccuum, |A〉 = a+

A |g〉 and |B〉 = a+
B |g〉 are the exci-

tons at each site, whereas |α〉 = a+
α |g〉, |β〉 = a+

β |g〉 are the
delocalized excitons. The biexcitonic state, expressed by | f 〉
= a+

A a+
B |g〉 = a+

α a+
β |g〉, also plays a role in our study, as it

is resonantly accessed through excited state absorption (ESA)
after several pulses. Notice that the Hamiltonian HS does not
contain two-body operators and, therefore, does not account
for exciton–exciton binding or repulsion terms, so the energy
level of the biexciton is just the sum of the two exciton en-
ergies, ω f = ωα + ωβ = ωA + ωB.

2 Defining ωi j ≡ ωi − ω j ,
the following relations hold:

ωαg = ω fβ,

ωβg = ω f α. (9)

Since we are concerned with the interaction of the chro-
mophores with electromagnetic radiation, we make some re-
marks on the geometry of the transition dipoles. Let μi j

= 〈i |μ̂| j〉. Assume that the transition dipole moments from
the ground to the single excitons in the site basis are μg A

= μAg = d A and μgB = μBg = d B , respectively. It follows
that the dipole moments μi j for i, j ∈ {α, β, f } are located in
the same plane but in general have different magnitudes and
directions: [

μαg

μβg

]
=

[
cos θ sin θ

− sin θ cos θ

] [
d A

d B

]

[
μ f α

μ fβ

]
=

[
sin θ cos θ

cos θ − sin θ

] [
d A

d B

]
. (10)

We also have μi j = μ j i . As enumerated in our model,
dipole mediated transitions only couple the ground state to
the single excitons and the single excitons to the biexciton.

IV. PHOTON-ECHO EXPERIMENT AS QUANTUM
PROCESS TOMOGRAPHY

In a four-wave mixing experiment, an ensemble of iden-
tical dimers interact with a series of three ultrashort laser
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pulses. The perturbation due to these pulses is given by

V (r, t) = −λ

3∑
i=1

μ̂ · ei E(t − ti )e
i ki ·r−iωi (t−ti ) + c.c.,

(11)
where λ is the intensity of the electric field, which is as-
sumed to be weak compared to the characteristic energy
scales of HS , μ̂ is the dipole operator, ei , ti , ki , ωi denote the
polarization,119 time center, wavevector, and carrier frequency
of the i th pulse, and r is the position of the center of mass
of the molecule. E(t) is the slowly varying pulse envelope,
which we choose as a Gaussian with width σ , or full-width
half-maximum FW H M = 2

√
2 ln 2σ , E(t) = e−t2/(2σ 2). The

pulses are sent to the sample in a noncollinear fashion, gener-
ating a time-dependent dipole in each of the molecules. Since
the characteristic size of a molecule is much smaller than the
wavelength of the radiation, 2π/|ki |, each molecule only ex-
periences a potential that changes in time but is uniform in
space, consistent with the dipole approximation. Nonetheless,
the spatial dependence of the pulses is still important, as the
phases e±i ki ·r are imprinted to molecules located across dif-
ferent positions r in the sample. The size of the sample is
much larger than 2π/|ki |, so there is a considerable spacial
modulation of the polarization due to these phases. Denot-
ing the time-dependent state of the molecule at position r by
ρ(r, t), a perturbative treatment allows us to decompose the
density matrix into Fourier components:

ρ(r, t) =
∑

s

ρs(t)ei ks ·r , (12)

where ks = lk1 + mk2 + nk3 and l, n, m are integers. Notice
that ks equals a linear combination of the wavevectors as-
sociated with each pulse. Depending on the location of the
molecule, each pulse will act with a spatial phase, so that the
total phase accumulated in the quantum state of the molecule
at r equals ei ks ·r for a given combination of perturbations.
Each improper density matrix ρs(t) corresponds to one of
these phases and can be calculated by keeping track of the
actions of the pulses in the bra and the ket of the system
using double-sided Feynman diagrams.1, 2 Equation (12) im-
plies that the optical polarization induced on the molecule can
also be Fourier decomposed into different components:61–63

P(r, t) = T r (μ̂(r)ρ(r, t)) = ∑
s P s(t)ei ks ·r , where μ̂(r) de-

notes the dipole operator of the molecule located at r . The
experimental setting we describe is analogous to the one of
an array of dipole antennas which are spatially phased in a
grating with respect to each other and oscillate in time. Clas-
sical electromagnetism predicts that the induced macroscopic
polarization of this array emits radiation which is precisely
concentrated along the vectors ks . This condition, which re-
flects conservation of momentum of the fields, is known as
phase matching.64 A fourth pulse of the same wavevector as
one of the ks , known as the local oscillator, is allowed to in-
terfere with the radiation along that direction. By varying the
phases of this fourth field, two heterodyne detections can be
carried out to extract the real and imaginary components of
Ps(t) ≡ P s(t) · e4, respectively, where e4 is the polarization
of the local oscillator.

In this article, we are interested in the signal along kP E

= −k1 + k2 + k3, the so called PE direction.65 The frequency
components of the pulses lie within the optical regime, so they
can induce the transitions enumerated in Sec. III. Tradition-
ally, in the MDOS literature, the intervals between the time
centers of the pulses are called coherence τ = t2 − t1, waiting
T = t3 − t2, and echo t = t4 − t3 times, respectively. Here, t4
is the time of detection of the signal.66 We shall only con-
sider rephasing photon-echo signals, where t1 < t2 < t3 < t4,
where the inhomogeneous broadening is rephased.67 Due to
these explicit interval dependences, the collected signal can
be expressed as PP E (τ, T, t).

As explained in our previous studies42, 116 the PE experi-
ment for a dimer probes its single exciton dynamics, and the
data resulting from a set of experiments with different con-
trols yield a QPT. In fact, the polarization signal for this sys-
tem may be expressed as a linear combination of elements of
the process matrix χ (T ):

[PP E ]ω1,ω2,ω3
e1,e2,e3,e4

(t) =
∑
p,q,r

C p
ω1

Cq
ω2

Cr
ω3

P p,q,r
e1,e2,e3,e4

(t), (13)

where,

P p,q,α
e1,e2,e3,e4

(t)

= − (μpg · e1)(μqg · e2)Ggp(τ )

×{[(μαg · e3)(μαg · e4)Gαg(t)

× (χggqp(T ) − δpq − χααqp(T ))

+ (μ fβ · e3)(μ fβ · e4)G fβ(t)χββqp(T )

+ ((μ fβ · e3)(μ f α · e4)G f α(t)

− (μαg · e3)(μβg · e4)Gβg(t))χβαqp(T )]}, (14)

and the analogous expression for P p,q,β
e1,e2,e3,e4 (t) follows by car-

rying out the substitutions {α, β} → {β, α} in Eq. (14).
The coefficients C p

ωi for p ∈ {α, β} are frequency ampli-
tudes of the laser pulse which is centered at ωi , evaluated at
the transition energy ωpg:

C p
ωi

= −λ

i

√
2πσ 2e−σ 2(ωpg−ωi )2/2, (15)

and

Gi j (τ ) = �(τ )e(−iωi j −�i j )τ (16)

is the propagator of the optical coherences |i〉〈 j | in the coher-
ence and echo times, which, has been taken to be the product
of a coherent oscillatory term beating at a frequency ωi j and
an exponential decay with dephasing rate �i j . This propaga-
tor is defined only for τ > 0 via the step function �(τ ). The
frequencies of the coherences in the coherence and echo in-
tervals have opposite signs, reflecting the rephasing character
of the signal. In optical PE experiments, it is customary to as-
sume that the free-induction decay characterized by the evo-
lution of optical coherences in the coherence and echo times
is well characterized and given by expressions of the form of
Eq. (16). The reason is that the characteristic energetic scales
of the vibrational degrees of freedom are much lower than the
optical gap, so the only nonunitary dynamics they induce in
the optical coherence is, to a good approximation, restricted
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to dephasing �i j which can be inferred from the polarization
signal.120 The dynamics in the waiting time is more complex,
consisting of small frequencies due to excitonic superposi-
tions which are strongly influenced by the bath. It is the latter
interval where QPT will prove useful.

The polarization signal yields a linear combination of
elements χabcd (T ) weighted by the probability amplitude
to prepare a state |c〉〈d| with the first two pulses and detect
|a〉〈b| with the third pulse and the fourth heterodyning pulse.
These probability amplitudes can be controlled by manipulat-
ing the polarization of the pulses ei as well as the frequency
amplitudes for the resonant transitions C p

ω1, Cq
ω2 , Cr

ω3
. In

essence, state preparation and QST are implicit in the coher-
ence and echo times, respectively (see Ref. 42). In a different
context, Gelin and Kosov had previously hinted at a similar
idea by identifying these times as “doorway” and “window”
intervals.68 By conducting several experiments varying these
control knobs and collecting the signal from each of these
settings, a system of linear equations can be established
whereby the elements of χ (T ) can be inverted, and therefore
QPT is achieved. This statement is correct provided that be-
sides the free-induction decay rates �i j , the parameters ωαg ,
ωβg , μαg , μβg , μ f α , and μ fβ are all known or can be obtained
self-consistently during the experiment. We will elaborate on
these points for the case of a homodimer in Sec. V.

Notice that Eq. (13) monitors all the 12 real valued
parameters involving χabcd (T ) for a, b, c, d ∈ {α, β}, so
that they allow for the QPT of the single-exciton manifold,
which is an effective quantum bit (qubit) system. However,
it also keeps track of the elements χggcd (T ) c, d ∈ {α, β},
that is, the possibility of amplitude leakage errors from the
single-exciton channel to |g〉〈g|. It is known that whereas
the excitonic dynamics occurs in femtosecond time scales,
exciton recombination happens in the order of nanoseconds.
Therefore, these decay channels could be potentially ignored
in many experimental systems. We shall keep them in our
theoretical analysis as they do not increase the complexity of
the problem by much, although in situations where this could
be problematic, we could accordingly disregard them.

V. QPT FROM 2D SPECTRUM OF PE

As mentioned, QPT can be carried out from data resulting
from a series of experiments varying colors and polarizations
of the pulses. The necessary information can in principle be
obtained by collecting a single point datum for a fixed pair
of τ and t points for each of the experiments. Often, how-
ever, the PE signal is collected across many τ, T, t points, and
conveniently processed into a 2D correlation spectrum in the
conjugate frequency variables ωτ and ωt :

S(ωτ , T, ωt ) = i
∫ ∞

0
dτe−iωτ τ

∫ ∞

0
dteiωt t PP E (τ, T, t),

(17)

which still evolves in the T coordinate.121 By performing the
integrals of Eq. (17) using Eq. (13), we obtain:

S(ωτ , T, ωt ) = i
∑

m,n=α,β

lτ,m(ωτ )lt,n(ωt )Smn(T ). (18)

The spectrum consists of a sum of four resonances at (ωτ ,

ωt ) ∈ {(ωαg, ωαg), (ωαg, ωβg), (ωβg, ωαg), (ωβg, ωβg)}, which
correspond to the frequencies of the optical coherences at the
coherence and echo times. These resonances are modulated
by line shape functions of the form

lτ,m(ωτ ) = 1

i(ωτ − ωmg − i�mg)
, (19)

lt,n(ωt ) = 1

i(−ωt + ωng − i�ng)
, (20)

that correspond to the one-sided Fourier transform of the
propagator along each τ and t axis.122 The peaks are centered
about ω = ωmg and have a width parameter �mg . The differ-
ence in signs for the Fourier transform in Eq. (17) guaran-
tees that all the resonances appear in the first quadrant of both
frequency axes. The expressions for the amplitudes Smn(T ),
associated with peaks centered at (ωτ , ωt ) = (ωmg, ωng), are
given by123

Sαα(T )=− iCα
ω1

Cα
ω2

(μαg · e1)(μαg · e2)

×{Cα
ω3

[(μαg ·e3)(μαg ·e4)(χggαα(T )−1−χαααα(T ))

+ (μ fβ · e3)(μ fβ · e4)χββαα(T )]

+ Cβ
ω3

[(μ f α · e3)(μ fβ · e4) − (μβg · e3)

× (μαg · e4))χαβαα(T )]}
− iCα

ω1
Cβ

ω2
(μαg · e1)(μβg · e2)

×{Cα
ω3

[(μαg · e3)(μαg · e4)(χggβα(T ) − χααβα(T ))

+ (μ fβ · e3)(μ fβ · e4)χβββα(T )]

+ Cβ
ω3

[((μ f α · e3)(μ fβ · e4) − (μβg · e3)

× (μαg · e4))χαββα(T )]}, (21)

Sαβ(T )=− iCα
ω1

Cα
ω2

(μαg · e1)(μαg · e2)

×{Cβ
ω3

[(μβg ·e3)(μβg ·e4)(χggαα(T )−1−χββαα(T ))

+ (μ f α · e3)(μ f α · e4)χαααα(T )]

+ Cα
ω3

[((μ fβ · e3)(μ f α · e4) − (μαg · e3)

× (μβg · e4))χβααα(T )]}
− iCα

ω1
Cβ

ω2
(μαg · e1)(μβg · e2)

×{Cβ
ω3

[(μβg · e3)(μβg · e4)(χggβα(T ) − χβββα(T ))

+ (μ f α · e3)(μ f α · e4)χααβα(T )]

+ Cα
ω3

[((μ fβ · e3)(μ f α · e4) − (μαg · e3)

× (μβg · e4))χβαβα(T )]}, (22)

and Sββ(T ), Sβα(T ) follow immediately from Eqs. (21) and
(22) by performing the substitutions {α, β} → {β, α}. Typi-
cally, the probed samples are in solution, so the molecules
in the ensemble are isotropically distributed. The isotropic
average 〈·〉 for a tetradic (μa · e1)(μb · e2)(μc · e3)(μd · e4) is
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FIG. 1. Liouville space pathways corresponding to each of the four resonances in the rephasing 2D-ES of a coupled dimer. The amplitude Smn(T ) corresponds
to the peak located at (ωτ , ωt ) = (ωmg, ωng), which are the values of the optical frequencies at the coherence and echo time intervals τ and t , respectively. These
amplitudes provide information on the coherent and incoherent excitonic processes at the waiting time T by enumerating the possible initial and final states
at the waiting time T which satisfy the PE phase matching condition for the pulses acting at times t1, t2, t3, t4. The information contained in the amplitudes
Smn(T ) can be distilled to reconstruct the process matrix for the single-exciton manifold of the dimer, thus allowing a QPT.

given by69

〈(μa · e1)(μb · e2)(μc · e3)(μd · e4)〉
=

∑
m1m2m3m4

I (4)
e1e2e3e4;m1m2m3m4

× [(μa · m1)(μb · m2)(μc · m3)(μd · m4)], (23)

Ie1e2e3e4;m1m2m3m4

= 1

30
[δe1e2δe3e4 δe1e3δe2e4 δe1e4δe2e3 ]

×
⎡
⎣ 4 −1 −1

−1 4 −1
−1 −1 4

⎤
⎦

⎡
⎣ δm1m2δm3m4

δm1m3δm2m4

δm1m4δm2m3

⎤
⎦ , (24)

where ei and mi are the polarizations of the pulses in the lab
and the molecular frames, respectively. The isotropic average
consists of a sum of molecular frame products [(μa · m1)(μb ·
m2)(μc · m3)(μd · m4)] weighted by the isotropically invari-
ant tensor I (4)

e1e2e3e4;m1m2m3m4
.

Since the information in Eq. (18) is in principle contained
in Eq. (13), several conclusions from our previous study are
immediately transferable: The elements of χ (T ) can be all be
extracted by repeating a number of experiments with differ-
ent polarization configurations for the fields and two different
waveforms for the pulses. Under different motivations, theo-
retical proposals for manipulating 2D-ES using pulse-shaping
capabilities have been previously reported.70, 71 An extensive
study of this possibility for a heterodimer will be presented in
the second article accompanying this study.

Equations (21), (22), and their analogues upon the
{α, β} → {β, α} substitutions can also be derived by classi-
fying the double-sided Feynman diagrams that oscillate at the
particular frequencies for the coherence and waiting times in
each of the four resonances (Fig. 1). In analyzing the possi-
ble pathways in Liouville space, we make use of the rotating
wave approximation: Perturbations which are proportional to
−e−i ki ·r+iωi (t−ti )μ̂ · ei can de-excite the ket and excite the bra,
whereas the ones proportional to −ei ki ·r−iωi (t−ti )μ̂ · ei can ex-
cite the ket and de-excite the bra. As an illustration, consider
the signal Sαβ(T ), which arises from diagrams oscillating with
frequency ωgα at the coherence time and ωβg at the echo time
[Fig. 1(b)]. The two states at the coherence time which can

oscillate at ωgα are |g〉〈α| or |β〉〈 f |, but the latter can-
not be produced by a single action of the dipole operator
on the initial ground state |g〉〈g|. Therefore, |g〉〈α| is the
only possible state for the coherence interval and is pro-
duced by acting the first pulse on the bra of the ground
state: |g〉〈g| → |g〉〈α|. Similar considerations imply that the
state at the echo time must be |β〉〈g| or | f 〉〈α|. Given these
constraints, we are ready to enumerate the possible initial
and final states for the waiting time interval which are com-
patible with these restrictions. By exciting the ket or de-
exciting the bra of |g〉〈α| with the second pulse, the fol-
lowing initial states |c〉〈d| for the quantum channel can be
produced: |c〉〈d| ∈ {|α〉〈α|, |β〉〈α|, |g〉〈g|}. The final states
|a〉〈b| ∈ {|α〉〈α|, |β〉〈α|, |β〉〈β|, |g〉〈g|} can all give rise to
|β〉〈g| or | f 〉〈α| by exciting the ket or de-exciting the bra with
the third pulse. Therefore, in principle, there are 4 × 3 = 12
possibilities for χabcd (T ) which contribute to Sαβ(T ). How-
ever, we assume that the state |g〉〈g| does not evolve to other
states due to the bath:

χabgg(T ) = δagδbg, (25)

This assumption is quite reasonable, as we are ignoring pro-
cesses where phonons can induce optical excitations from
|g〉〈g|. This condition is present in Eq. (14) in the δ−function
terms and in Eqs. (21) and (22) in the “–1” terms, which corre-
spond to −χgggg(T ). This leaves 12 − 4 = 8 possibilities for
χabcd (T ) contributing to Sαβ(T ).

To be more explicit, consider the pathways in Sαβ(T ) that
monitor the population to coherence process χβααα(T ). These
are displayed in Fig. (2). The pathway on the left represents

FIG. 2. A more detailed view on the Liouville space pathways correspond-
ing to the monitoring of the population to coherence process χβααα(T ) in
the peak at (ωτ , ωt ) = (ωαg, ωβg) of the rephasing 2D-ES. These diagrams
belong to the amplitude Sαβ (T ) and can be easily constructed by taking into
account the PE phase matching and the resonant conditions.
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FIG. 3. Summary of QPT for a coupled dimer in the rephasing 2D-ES. The
Liouville pathways depicted in Fig. 1 can be condensed into this diagram.
The horizontal axis for the coherence frequency ωτ is associated with a state
preparation, whereas the vertical axis for the echo frequency ωt corresponds
to a detection. The four resonances labeled as (m, n) correspond to peaks
located at (ωτ , ωt ) = (ωmg, ωng). Their amplitudes contain information on
χabcd (T ), where cd is the state prepared at the beginning of the waiting time
interval and ab the state detected at the end of the same interval. For instance,
the peak at (ωα, ωβ ) keeps track of the elements χabcd (T ) where |c〉〈d|
∈ {|α〉〈α|, |β〉〈α|, |g〉〈g|} and |a〉〈b| ∈ {|β〉〈α|, |β〉〈β|, |α〉〈α|, |g〉〈g|}.

the ESA from the single-exciton manifold and is proportional
to (−Cα

ω1
μαg · e1)(Cα

ω2
μαg · e2)(Cα

ω3
μ fβ · e3)(μ f α · e4), an ex-

pression which can be immediately read out from the dia-
gram: Each interaction with the field picks up a factor cor-
responding to the amplitude of the transition, which depends
on the alignment of the corresponding dipole with the polar-
ization of the pulse, as well as the frequency amplitude of
the pulse at the given transition. A minus sign is included if
the perturbation is on the bra. Similarly, the pathway on the
right involves stimulated emission (SE) and is proportional to
(−Cα

ω1
μαg · e1)(Cα

ω2
μαg · e2)(−Cα

ω3
μαg · e3)(μβg · e4).

The rest of the diagrams for all the peaks can be system-
atically analyzed in the way described above. In general, the
pathways we need to consider can be classified in ESA, SE,
and ground state bleaching (GSB) processes. GSB processes
are the ones that take |g〉〈g| at the end of the waiting time
to a dipole active coherence involving an excited state and
are associated with the δ−function and –1 terms mentioned
two paragraphs above. ESA pathways, which are propor-
tional to dipole transitions involving the excited state, differ
in sign from SE and GSB pathways, as can be easily noted by
inspection.

Figure 3 provides a mnemonic device to keep track of the
Liouville pathways that each peak in the 2D electronic spec-
trum monitors, and therefore, also provides a scheme for the
QPT protocol. The ωτ axis can be associated with a particular
state preparation, whereas the ωt axis with a particular de-
tection. Each peak reflects a nontrivial number of processes
in Liouville space. As an illustration, we consider in Fig.
4 the ideal case where the bath does not interact with the
system, in which case a very simple picture is recovered:
the off-diagonal peaks beat at the coherence frequency and
the diagonals remain static. This case can be easily de-
rived from the expressions for the peak amplitudes such as
Eqs. (21) and (22), by substituting χabcd (T ) = δacδbde−iωab T ,
that is, the case where populations remain static, whereas co-
herences simply beat at exciton difference frequencies.

FIG. 4. Rephasing 2D-ES of a coupled dimer in the absence of interactions
with a bath. Under unitary dynamics of the excitonic system, each of the
four resonances keep track of the elements of χ (T ) indicated in the diagram.
Notice that diagonal peaks do not oscillate as a function of waiting time T ,
whereas off-diagonals beat at the frequency equal to the difference in energies
of the single exciton eigenstates.

VI. THE CASE OF THE HOMODIMER

To gain insights into the described QPT protocol, we spe-
cialize the results above to a coupled homodimer. In the fol-
lowing subsections, we discuss, for this particular case, (a)
the Hamiltonian and the transition dipole moments involved
in the experiments, (b) properties of the spectroscopic signals
under isotropic averaging, (c) stability of the numerical in-
version, (d) analytical expressions of the elements of χ (T ) in
terms of the peak amplitudes of the spectra, (e) a procedure to
extract the angle φ between the dipoles, (f) a summary of the
QPT procedure, and (g) a numerical example with a model
system. A similar study focused on the heterodimer will be
presented in the second article of this series.

A. Hamiltonian and transition dipole moments

In the homodimer, the two sites are identical chro-
mophores with energies ωA = ωB = ω̄, and the Hamiltonian
in Eqs. (5) and (7) is given by

HS = ω̄(a+
A aA + a+

B aB) + J (a+
A aB + a+

B aA)

= (ω̄ − J )a+
α aα + (ω̄ + J )a+

β aβ, (26)

which we have diagonalized with the symmetric a+
α |g〉 and

antisymmetric a+
β |g〉 single-exciton states given by

a+
α = 1√

2
(a+

A + a+
B ),

a+
β = 1√

2
(a+

A − a+
B ). (27)

Using Eq. (10), the transition dipoles take the simple forms:

μαg = 1√
2

(d A + d B),

μβg = 1√
2

(d A − d B),

μ f α = μαg,

μ fβ = −μβg. (28)
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FIG. 5. Transition dipole moments of a homodimer. Diagrams for (a) sites
and (b) eigenstates.

Interestingly, these expressions are independent of the cou-
pling J . Also, notice that μαg and μ f α are perpendicular to
μβg and μ fβ (see Fig. 5). Denoting the norm of each site
dipole by

|d A| = |d B | = d, (29)

the following relationships follow:

|μαg| = |μ f α| = μαg =
√

2d cos

(
φ

2

)
,

|μβg| = |μ fβ | = μβg =
√

2d sin

(
φ

2

)
. (30)

As expected, in the degenerate limit that φ = 0 or π (the
site dipoles are parallel or antiparallel), one of the delocalized
excitons becomes dark and there is only one bright transition
from the ground state. If this is not the case, in general, the
two transitions are bright and their dipoles perpendicular to
each other. Furthermore, as a difference with the heterodimer
case, there are only three (instead of four) different transition
dipoles in the homodimer, and two of them are just negative
of each other. The degenerate case will be discussed as a limit
of the more general one in the next paragraphs.

B. Isotropic averaging of signals

An important observation regarding isotropic averaging
follows:

Claim. Upon isotropic averaging, signals stemming from
coherence to population or population to coherence transfer
cannot be monitored in the 2D-PE spectrum of a homodimer.

Proof. Without loss of generality, align μβg and μαg

in the y and z directions in the frame of the molecule.
Equation (23) implies that the only terms in the sum that con-
tribute to an isotropic averaging are the ones where only two
or four polarizations of the field are the same. In the expres-
sions for Sαα(T ) and Sαβ(T ) [Eqs. (21) and (22)], as well as
the corresponding ones for Sββ(T ) and Sβα(T ), all the dipole
polarization terms corresponding to coherence to population
and the opposite processes involve three dipoles of the same
kind and a perpendicular one. Therefore, they vanish under
isotropic averaging. As an example, consider the the terms
associated with χβααα(T ) in Sαβ (T ):〈(−Cα

ω1
μαg · e1

) (
Cα

ω2
μαg · e2

) (
Cα

ω3
μ fβ · e3

) (
μ f α · e4

)〉
∝ 〈(μαg · e1)(μαg · e2)(μβg · e3)(μαg · e4)〉iso = 0,〈(−Cα

ω1
μαg · e1

) (
Cα

ω2
μαg · e2

) (−Cα
ω3

μαg · e3
) (

μβg · e4
)〉

∝ 〈(μαg · e1)(μαg · e2)(μαg · e3)(μβg · e4)〉 = 0. �

The claim above allows for a considerable simplification
of Eqs. (21) and (22). Each of the peaks in the 2D spectrum
keeps track of fewer elements of the process matrix χ (T )
upon isotropic averaging: Only population to population and
coherence to coherence transfers can be monitored. For clar-
ity, we display the results for the four peaks of an isotrop-
ically averaged 2D spectra in Tables I and II. We introduce
the notation 〈·〉e1e2e3e4 , which denotes the isotropically aver-
aged signal stemming from the two pulse polarization config-
urations (e1, e2, e3, e4) = (z, z, z, z), (z, z, x, x), so that the
terms 〈Smn(T )〉e1e2e3e4 and 〈S(ωτ , T, ωt )〉e1e2e3e4 have the ob-
vious meanings.

We focus our attention on experiments with short pulses
that are broadband enough to create either exciton |α〉 or
|β〉 with the same amplitude, that is, C p

ωi = C , for a purely

TABLE I. Isotropically averaged 2D-ES peak amplitudes for the zzzz configuration.

〈Sαβ (T )〉zzzz

= −iCα
ω1

Cα
ω2

Cβ
ω3

×
[

1

15
μ2

αgμ2
βg(χggαα(T ) − 1 − χββαα(T ))

+ 1

5
μ4

αgχαααα(T )

]

− iCα
ω1

Cβ
ω2 Cα

ω3

[
(−)

2

15
μ2

αgμ2
βgχβαβα(T )

]

〈Sββ (T )〉zzzz

= −iCβ
ω1 Cβ

ω2 Cβ
ω3

×
[

1

5
μ4

βg(χggββ (T ) − 1 − χββββ (T ))

+ 1

15
μ2

βgμ2
αgχααββ (T )

]

−iCβ
ω1 Cα

ω2
Cα

ω3

[
(−)

2

15
μ2

βgμ2
αgχβααβ (T )

]

〈Sαα(T )〉zzzz

= −iCα
ω1

Cα
ω2

Cα
ω3

×
[

1

5
μ4

αg(χggαα(T ) − 1 − χαααα(T ))

+ 1

15
μ2

αgμ2
βgχββαα(T )

]

−iCα
ω1

Cβ
ω2 Cβ

ω3

[
(−)

2

15
μ2

αgμ2
βgχαββα(T )

]

〈Sβα(T )〉zzzz

= −iCβ
ω1 Cβ

ω2 Cα
ω3

×
[

1

15
μ2

βgμ2
αg(χggββ (T ) − 1 − χααββ (T ))

+ 1

5
μ4

βgχββββ (T )

]

−iCβ
ω1 Cα

ω2
Cβ

ω3

[
(−)

2

15
μ2

βgμ2
αgχαβαβ (T )

]
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TABLE II. Isotropically averaged 2D-ES peak amplitudes for the zzxx configuration.

〈Sαβ (T )〉zzxx

= −iCα
ω1

Cα
ω2

Cβ
ω3

×
[

2

15
μ2

αgμ2
βg(χggαα(T ) − 1 − χββαα(T ))

+ 1

15
μ4

αgχαααα(T )

]

−iCα
ω1

Cβ
ω2 Cα

ω3

[
(+)

1

15
μ2

αgμ2
βgχβαβα(T )

]

〈Sββ (T )〉zzxx

= −iCβ
ω1 Cβ

ω2 Cβ
ω3

×
[

1

15
μ4

βg(χggββ (T ) − 1 − χββββ (T ))

+ 2

15
μ2

βgμ2
αgχααββ (T )

]

−iCβ
ω1 Cα

ω2
Cα

ω3

[
(+)

1

15
μ2

βgμ2
αgχβααβ (T )

]

〈Sαα(T )〉zzxx

= −iCα
ω1

Cα
ω2

Cα
ω3

×
[

1

15
μ4

αg(χggαα(T ) − 1 − χαααα(T ))

+ 2

15
μ2

αgμ2
βgχββαα(T )

]

−iCα
ω1

Cβ
ω2 Cβ

ω3

[
(+)

1

15
μ2

αgμ2
βgχαββα(T )

]

〈Sβα(T )〉zzxx

= −iCβ
ω1 Cβ

ω2 Cα
ω3

×
[

2

15
μ2

βgμ2
αg(χggββ (T ) − 1 − χααββ (T ))

+ 1

15
μ4

βgχββββ (T )

]

−iCβ
ω1 Cα

ω2
Cβ

ω3

[
(+)

1

15
μ2

βgμ2
αgχαβαβ (T )

]

imaginary constant C , for all p and ωi . This condition can
be easily relaxed, but we shall proceed with it to analyze
our QPT protocol with more detail. Using the condition of
Eq. (3), we can eliminate the variables χggαα(T ) and χggββ(T )
for χαααα(T ), χββαα(T ), χααββ(T ), χββββ(T ). Also, taking ad-

vantage of Eq. (4), we discard χβαβα(T ) and χαββα(T ) and
keep χαβαβ(T ) and χβααβ (T ). From the left column (LC) of
the real and imaginary parts of the spectra (see left columns
of Tables I and II), we derive the following real valued matrix
equation:

iC3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

5
μ4

αg

1

5
μ4

αg − 1

15
μ2

αgμ
2
βg 0

2

15
μ2

αgμ
2
βg 0 0

2

15
μ4

αg

1

15
μ4

αg − 2

15
μ2

αgμ
2
βg 0 − 1

15
μ2

αgμ
2
βg 0 0

−1

5
μ4

αg + 1

15
μ2

αgμ
2
βg

2

15
μ2

αgμ
2
βg

2

15
μ2

αgμ
2
βg 0 0 0

− 1

15
μ4

αg + 2

15
μ2

αgμ
2
βg

4

15
μ2

αgμ
2
βg − 1

15
μ2

αgμ
2
βg 0 0 0

0 0 0 0 0 − 2

15
μ2

αgμ
2
βg

0 0 0 0 0
1

15
μ2

αgμ
2
βg

0 0 0 0 − 2

15
μ2

αgμ
2
βg 0

0 0 0 0
1

15
μ2

αgμ
2
βg 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χαααα(T )

χββαα(T )

�{χαβαβ(T )}
�{χβααβ(T )}

{χαβαβ(T )}

{χβααβ(T )}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�{〈Sαα(T )〉zzzz}
�{〈Sαα(T )〉zzxx }
�{〈Sαβ(T )〉zzzz}
�{〈Sαβ(T )〉zzxx }

{〈Sαα(T )〉zzzz}

{〈Sαα(T )〉zzxx }

{〈Sαβ(T )〉zzzz}

{〈Sαβ(T )〉zzxx }

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)
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Similarly, the right column (RC) of the spectra yields:

iC3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

5
μ4

βg

1

5
μ4

βg − 1

15
μ2

βgμ
2
αg 0

2

15
μ2

βgμ
2
αg 0 0

2

15
μ4

βg

1

15
μ4

βg − 2

15
μ2

βgμ
2
αg 0 − 1

15
μ2

βgμ
2
αg 0 0

−1

5
μ4

βg + 1

15
μ2

βgμ
2
αg

2

15
μ2

βgμ
2
αg

2

15
μ2

βgμ
2
αg 0 0 0

− 1

15
μ4

βg + 2

15
μ2

βgμ
2
αg

4

15
μ2

βgμ
2
αg − 1

15
μ2

βgμ
2
αg 0 0 0

0 0 0 0 0
2

15
μ2

βgμ
2
αg

0 0 0 0 0 − 1

15
μ2

βgμ
2
αg

0 0 0 0
2

15
μ2

βgμ
2
αg 0

0 0 0 0 − 1

15
μ2

βgμ
2
αg 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χββββ(T )

χααββ(T )

�{χαβαβ(T )}
�{χβααβ(T )}

{χαβαβ(T )}

{χβααβ(T )}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�{〈Sββ(T )〉zzzz}
�{〈Sββ(T )〉zzxx }
�{〈Sβα(T )〉zzzz}
�{〈Sβα(T )〉zzxx }

{〈Sββ(T )〉zzzz}

{〈Sββ(T )〉zzxx }

{〈Sβα(T )〉zzzz}

{〈Sβα(T )〉zzxx }

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (32)

Inverting Eqs. (31) and (32) yields most of the elements of
χ (T ) involving the single-exciton manifold. While the pre-
sented QPT for the homodimer is partial, no complicated
pulse shaping efforts need to be carried out. Instead, the re-
quirement is standard pulse polarization control achievable
with current experimental capabilities.11, 12, 72–77

The transition dipole moments must be well character-
ized in order to construct the matrices in Eqs. (31) and (32).
This requirement is self-consistently fulfilled by only col-
lecting the spectra in the collinear and cross-polarized con-
figurations. Notice that χαααα(T ) and χββαα(T ) are exclu-
sively monitored in the LC, and χββββ(T ) and χααββ(T ) only
detected in the RC. However, coherence transfer terms
χαβαβ (T ) and χβααβ(T ) are repeatedly monitored in different
peaks in both sides of the spectra. Due to this repetition, there
are redundant equations that allow for the self-consistent ex-
traction of the angle φ without compromising the inversion of
the elements of χ (T ). Details about this parameter extraction
are developed in subsection E. For the time being, we assume
that the information about the transition dipoles is previously
known.

C. Stability of the quantum process tomography
protocol for a homodimer

In order to characterize the stability of inversion of χ (T ),
we can arrange Eqs. (31) and (32) into a single matrix equa-
tion M �χ (T ) = �S(T ), where M is a 16 × 8 matrix of dipole
moments, �χ (T ) is a vector of 8 unknowns, and �S(T ) is a vec-
tor of 16 real valued amplitudes extracted from the signal. De-
noting with ‖ · ‖ the spectral norm of a vector or a matrix,78

we obtain a bound on the relative error of the inverted vector
�χ (T ) which yields the QPT:

||� �χ(T )||
|| �χ(T )|| ≤ κ

‖ �S(T ) ‖
‖ S(T ) ‖ , (33)

where � �χ(T ) and �S(T ) denote errors in �χ(T ) and S(T )
upon inversion, respectively, and the condition number κ is
given by

κ =‖ M ‖‖ M−1 ‖ . (34)

The lowest possible value for a condition number is
κ = 1. In Fig. (6), a plot of κ versus φ (red) is displayed. As
expected, very large values of κ , which denote unstable in-
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versions, are expected for systems where the site dipoles are
aligned or antialigned, when one of the eigenstates of HS be-
comes dark. We also indicate a range of angles where κ is
below an acceptable threshold, say κ ≤ 200 (blue horizon-
tal line), which consists of angles in the range 0.12π ≤ φ

≤ 0.88π . Also, note that κ is symmetric about the minimum
of κ at φ = π/2, where the best inversion is carried out with
κ ≈ 3.9.

D. Analytical expressions for χ (T)

To gain insights into the QPT protocol, we derive explicit
expressions for the elements of χ (T ) in terms of the ampli-
tudes of the spectra and the angle φ between the dipoles. First,
we substitute Eqs. (29) and (30) into the expression associated
with the LC of the spectra in Eq. (31). The following relations
are obtained after inverting the resulting matrix equation:

χggαα(T ) − 1 = −3 sec2(φ/2)

(iC3)(4d4)

×�{〈Sαα(T )〉zzzz + 2〈Sαα(T )〉zzxx

+〈Sαβ (T )〉zzzz + 2〈Sαβ (T )〉zzxx }, (35)

χαααα(T ) = −3 sec2(φ/2)

(iC3)(4d4)

×�{(cos φ − 1)(〈Sαα(T )〉zzzz + 2〈Sαα(T )〉zzxx

+ cos φ(〈Sαβ(T )〉zzzz + 2〈Sαβ (T )〉zzxx )}, (36)

χββαα(T ) = 3 sec2(φ/2)

(iC3)(4d4)

×�{cos φ(〈Sαα(T )〉zzzz + 2〈Sαα(T )〉zzxx )

+(cos φ + 1)(〈Sαβ(T )〉zzzz + 2〈Sαβ (T )〉zzxx )},
(37)

FIG. 6. Stability of the homodimer QPT protocol. As described in the text,
the QPT protocol depends on the inversion of a matrix which is a function
of transition dipole moments. The condition number of the matrix (κ) vs the
angle between site dipoles (φ) is plotted in red. The blue line plots the con-
stant value of κ = 200, as a reference to indicate that for the range of angles
0.12π ≤ φ ≤ 0.88π , the condition number is below that value.

�{χαβαβ(T )} = 3

(iC3)(4d4)

×�{2(〈Sαα(T )〉zzzz + 2〈Sαα(T )〉zzxx )

+ (cot2
φ

2
+ 2 tan2 φ

2
+ 5)〈Sαβ (T )〉zzzz

− (3 cot2
φ

2
+ tan2 φ

2
)〈Sαβ(T )〉zzxx }, (38)

�{χβααβ (T )} = 3

(iC3)(4d4)

×�
{ (

cot2
φ

2
+ 2 tan2 φ

2
+ 1

)
〈Sαα(T )〉zzzz

−
(

3 cot2
φ

2
+ tan2 φ

2
+ 8

)
〈Sαα(T )〉zzxx

− 2(〈Sαβ (T )〉zzzz + 2〈Sαβ (T )〉zzxx )

}
, (39)


{χαβαβ(T )}=− 15

(iC3)(8d4)


{(

csc2 φ

2
sec2 φ

2

)
〈Sαβ (T )〉zzzz

}

= 15

(iC3)(4d4)


{(

csc2 φ

2
sec2 φ

2

)
〈Sαβ (T )〉zzxx

}
,

(40)


{χβααβ (T )}=− 15

(iC3)(8d4)


{(

csc2 φ

2
sec2 φ

2

)
〈Sαα(T )〉zzzz

}

= 15

(iC3)(4d4)



{(
csc2 φ

2
sec2 φ

2

)
〈Sαα(T )〉zzxx

}
.

(41)

Similarly, the RC of the spectra through Eq. (32) yields
expressions for χggββ(T ) − 1, χββββ(T ), χααββ (T ), and again,
the real and imaginary parts of χαβαβ(T ) and χβααβ (T ). These
expressions follow from the ones right above by the substitu-
tions {α, β} → {β, α} and φ → π − φ [see Eqs. (30)].

From Eq. (40) of the LC as well as the analogues
of the RC of the spectra, we notice that the imagi-
nary parts of 〈Sαβ(T )〉zzzz , 〈Sαβ(T )〉zzxx , 〈Sβα(T )〉zzxx , and
〈Sβα(T )〉zzxx , are all exclusively proportional to 
{χαβαβ(T )}.
The least-squares solution for 
{χαβαβ(T )} using Eqs. (31)
and (32) is just the average of these four values; the anal-
ogous conclusion holds for 
{χβααβ(T )}. The real parts,
�{χαβαβ (T )},�{χβααβ (T )} satisfy less trivial relationships.
Each of them appears twice in the equations, once in the RC
and another time in the LC of the spectra. It is this redundancy
in the spectral information what allows for the extraction of
the angle between the dipoles.

E. Determination of the angle ϕ between the
two dipoles

Equating the values of �{χαβαβ(T )} from the expres-
sions in Eq. (38) and its RC analogue results in the following

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.103.149.52 On: Wed, 12 Mar 2014 18:14:28



134505-12 J. Yuen-Zhou and A. Aspuru-Guzik J. Chem. Phys. 134, 134505 (2011)

quadratic equation in ξ = tan2
(

φ

2

)
:

� {[〈Sβα(T )〉zzzz − 3〈Sβα(T )〉zzxx − 2〈Sαβ (T )〉zzzz

+ 〈Sαβ (T )〉zzxx ]ξ 2

+ [5〈Sβα(T )〉zzzz + 2〈Sββ(T )〉zzzz + 4〈Sββ (T )〉zzxx

− 5〈Sαβ (T )〉zzzz − 2〈Sαα(T )〉zzzz − 4〈Sαα(T )〉zzxx ]ξ

+ [2〈Sβα(T )〉zzzz − 〈Sβα(T )〉zzxx − 〈Sαβ(T )〉zzzz

+ 3〈Sαβ (T )〉zzxx ]} = 0. (42)

A similar expression can be found for �{χβααβ (T )} from
Eq. (39) and its RC analogue:

� {[2〈Sαα(T )〉zzzz − 〈Sαα(T )〉zzxx − 〈Sββ(T )〉zzzz

+ 3〈Sββ(T )〉zzxx ]ξ 2

+ [〈Sαα(T )〉zzzz − 8〈Sαα(T )〉zzxx − 2〈Sαβ (T )〉zzzz

− 4〈Sαβ (T )〉zzxx

− 〈Sββ(T )〉zzzz + 8〈Sββ(T )〉zzxx + 2〈Sβα(T )〉zzzz

+ 4〈Sβα(T )〉zzxx ]ξ

+ [〈Sαα(T )〉zzzz − 3〈Sαα(T )〉zzxx − 2〈Sββ (T )〉zzzz

+ 〈Sββ(T )〉zzxx ]} = 0. (43)

The identities in Eqs. (42) and (43) are remarkable in
the sense that they are satisfied at every waiting time T : they
do not depend on short time coherent dynamics or long time
asymptotic behavior. By monitoring the peak amplitudes of
the spectra arising from the two different polarization con-
figurations, the angle φ between the two site dipoles can be
readily extracted using either expression. This determination
is robust because it can be repeated for every value of T for
which the signal has been collected.

F. Summary of quantum process tomography
protocol for a coupled homodimer

We proceed to summarize the algorithm of the QPT pro-
tocol for a coupled homodimer.

(1) Obtain the amplitudes 〈Smn(T )〉e1e2e3e4 for m, n ∈
{α, β} and the two polarization settings (e1, e2, e3, e4)
= (z, z, z, z), (x, x, z, z). This information can be ex-
tracted from the two respective polarization controlled
2D-ES, 〈S(ωτ , T, ωt )〉e1e2e3e4 . For simplicity, all the
pulses are taken to be of the same duration (short com-
pared to the time scales of excited state dynamics).

(2) Extract the angle φ from the data of step 1 and Eqs. (42)
and (43).

(3) Plug in information obtained from step 1 and the angle
φ from step 2 into the expressions for the elements of
χ (T ) in Eqs. (35)–(41) and their RC analogues. Some
important observations: (a) These expressions are all
proportional to the factor (C3d4)−1. The norm of the
dipole d can be extracted from the intensity of the ab-
sorption spectrum of the monomer. Alternatively, we can

assume that χggαα(T ), χggββ ≈ 0 during femtosecond
time scales, so that Eq. (35) or its RC analogue can be
used to extract the constant factors. Finally, if this infor-
mation is not readily available, the results are known up
to this constant factor. (b) By construction from Eq. (42),
the calculated value of �{χαβαβ(T )} will be the same us-
ing either Eq. (38) or its RC analogue. The same holds
for Eqs. (43), �{χβααβ(T )}, and (38) and its respective
RC analogue.

G. Numerical example

In this subsection, we illustrate the described QPT pro-
tocol with a model homodimer. Marcus and co-workers have
recently reported a synthetic system of porphyrin molecules,
which self-assemble into homodimers in the presence of
liposomes.79 The parameters of this system, extracted from
phase-modulation electronic coherence spectroscopy, are
ω̄ = 16633 cm−1, J = 175 cm−1, and φ = 65◦. Information
on the spectral density of this system is not available in the
literature yet. We adopt a simple system–bath model based on
the secular Redfield approach and independent bath approx-
imation (IBA) for each site. The weak system–bath model is
reasonable since porphyrins are rigid molecules which change
their structures minimally upon electronic excitation. The
IBA must be re-examined, since the liposome media guar-
antee a bath that could be strongly correlated in both sites.
Nevertheless, the purpose of this example is not to provide
an exact account of the excited state dynamics of this system
but rather an illustration of the QPT protocol using reasonable
time scales that one might encounter in a realistic setting. Fur-
thermore, a careful study of the precise bath-induced dynam-
ics would probably include non-Markovian effects.35, 80–82 All
of these contributions effects are beyond the scope of this
study and shall be addressed in future work in collaboration
with an experimental realization. However, we remind the
reader that the proposed QPT is valid for both Markovian and
non-Markovian baths.

We consider a harmonic bath with an Ohmic spec-
tral density: J (ω) = λ/ωcωe−ω/ωc , with λ = 100 cm−1,
ωc = 150 cm−1 at a temperature T = 273 K . Identical baths
are assumed to be linearly coupled to each of the sites. We
closely follow the calculation reported in Ref. 83 and adapted
in Ref. 42. The dynamics of the total excitonic system, which
is a proper density matrix, is governed by the following equa-
tion of motion:

ρ̇(T ) = −i[HS, ρ(T )] − Rρ(T ), (44)

where R denotes the time-independent sparse dissipative su-
peroperator containing only a few nonzero elements listed in
Table III. Since ρ̇(T ) only depends on ρ(T ) and not on the
value of the quantum state at previous times, the simulated
dynamics are Markovian.

It is well known that the secular Redfield equations guar-
antee thermal equilibrium since the population transfer rates
satisfy Rααββ/Rββαα = e−ωαβ/kBT , where kB is the Boltzmann
constant. Also, R f g f g will not be relevant for the calculations,
as coherences between the ground state and the biexciton are
never created in the PE experiment. The free-induction decay
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TABLE III. Values (in f s−1) of nonzero rates of the secular Redfield tensor.

Rββαα 8.02 × 10−4

Rααββ = e−ωαβ/kB T Rββαα 5.07 × 10−3

Rαβαβ = Rβαβα 2.93 × 10−3

Rαgαg = Rgαgα = R f α f α = Rα f α f 1.23 × 10−2

Rβgβg = Rgβgβ = R fβ fβ = Rβ fβ f 1.45 × 10−2

R f g f g = Rg f g f 4.77 × 10−2

rates for the coherence and echo intervals will be taken for
simplicity to be the same, �αg ≈ �βg ≈ 1

2 (Rαgαg + Rβgβg).
This restriction is by no means necessary but will simplify
the simulations below.

The nonzero elements of χ (T ) for the single-exciton
manifold are presented in Table IV.

In this particular calculation, coupling to the photon bath
has been ignored beyond the ultrashort pulses, as spontaneous
emission occurs in the order of nanoseconds, i.e., χggαα(T )
= χggββ(T ) = 0. Therefore, Eq. (3) can be readily confirmed
as χαααα(T ) + χββαα(T ) = χααββ(T ) + χββαα(T ) = 1. Also,
due to the secular approximation, χβααβ(T ) = (χαββα(T ))∗

= 0. The picture of the secular Redfield equations is very
simple and provides transparent means for understanding the
QPT protocol for the homodimer: The evolution of popula-
tions and the coherences independently satisfy standard first-
order kinetic equations, leading to exponential integrated dy-
namics.

In Fig. 7, we display the calculated 2D-ES of this model
system. We consider the three pulses to be identical, centered
about ω1 = ω2 = ω3 = 16633 cm−1, of FWHM = 20 f s, i.e.,
σ = 8.49 f s, which amount to an equal excitation ampli-
tude C for both |α〉 and |β〉. Rabi oscillations for a coher-
ent superposition between |α〉 and |β〉 occur with a period
Tc = 47.5 f s. We present several snapshots of the real and
imaginary parts of the spectra at values of waiting time T cor-
responding to multiples of Tc/2, skipping Tc = 0, as our the-
ory has avoided pulse overlap effects. In principle, as Eq. (22)
and its RC analogue indicate, the excitonic quantum beats as-
sociated with the term χαβαβ(T ) can be monitored by looking
at either cross peak of the spectra. This feature is subtly mani-
fested in every column of the figure, but more easily perceived
in the real part the zzxx spectrum, where the peak at (ωβ, ωα)
changes from red to yellow/green every interval Tc/2 before
the bosonic bath has washed out significant portion of the co-
herent dynamics at about T = 5 Tc. Also, incoherent popula-
tion transfer primarily from |β〉 to |α〉 (downhill) manifests as
a decrease in amplitude of the peak at (ωβ, ωβ) due to ESA
and an increase in (ωβ, ωα) due to SE.2 This effect is not very
evident in most of the spectra but more obviously seen in the
real part of zzxx spectrum. The ambiguities arising from the

TABLE IV. Nonzero elements of χ (T ) involving single-exciton states for
the secular Redfield model.

χαααα(T ) e−Rββαα T

χββαα(T ) 1 − e−Rββαα T

χββββ (T ) e−Rααββ T

χααββ (T ) 1 − e−Rααββ T

χαβαβ (T ) = (χβαβα(T ))∗ e−iωαβ T e−Rαβαβ T

qualitative glimpse of these 2D-ES are another compelling
reason to adopt a QPT approach to filter out information on
the quantum state of the probed system from them.

From the simulated spectra 〈S(ωτ , T, ωt )〉e1e2e3e4 , the ex-
traction of the terms 〈Smn(T )〉e1e2e3e4 is achieved with high fi-
delity (>99%) by a nonlinear optimization routine based on
the simplex search method with bound constraints.84 The sig-
nals are fitted to a sum of four different resonances as in the
isotropically averaged version of Eq. (18).124 The parame-
ters ωmg , ωng , �, and 〈Smn(T )〉e1e2e3e4 are reconstructed from
2D-ES with a grid spacing of �ωτ = �ωt = 1 cm−1 and a
grid size of 1050 cm−1 for every axis. We present the results
of this calculation in Fig. 8. Notice that the imaginary parts
of the diagonal peaks are zero since no terms of the form
χβααβ (T ) = (χαββα(T ))∗ are considered in the secular Red-
field theory, and population transfer terms are purely real.

Equation (42) is solved at every waiting time T ∈ [Tc/2,

10Tc] yielding the roots ξ = 1.000, 0.4059 for every T ,
without variance after the fourth decimal digit, indicating its
robustness for the inversion of φ. These values of ξ imply
φ = 90◦ or 65◦. The same exercise with Eq. (43) gives ξ =
−0.4059, 0.4059, and φ = 65◦ or 86.3i◦. Since both identi-
ties need to hold simultaneously, the result φ = 65◦ follows
unambiguously, as expected.

Finally, the terms 〈Smn(T )〉e1e2e3e4 and the angle φ

allow for the evaluation of the elements of χ (T ) which are
extractable for the homodimer. Figure 9 shows that this recon-
struction coincides with the analytical expressions presented
in Table IV. The population decay terms χαααα(T ), χββββ(T )
both start at 1 and reach 0 exponentially, the second faster
than the first, since |β〉 is the excitonic state of higher
energy. The population transfer terms χααββ(T ), χββαα(T ) are
complementary to the former ones, with the transfer from |β〉
to |α〉 being faster for the same reasons just mentioned. The
coherence term decays exponentially, with real and imaginary
parts π/2 phase shifted one from another. The calculated
time scale of this decay (hundreds of femtoseconds) is
similar to the one inferred from the experiment reported by
Lee and co-workers, where a superposition of excitons in
the bacteriopheophytin and bacteriochlorophyll sites in the
reaction center of purple bacteria is monitored indirectly
through a two-color experiment.85

VII. DISCUSSION

In the present article, we have outlined a general theory
for carrying out the QPT for a molecular dimer using the
information contained in various frequency and polarization
controlled 2D-ES. We started by providing the basic concepts
of QPT and operationally defined a QPT as a protocol to ex-
tract the process matrix χ (T ), which in principle, completely
characterizes a quantum black box (in our case, the box being
the single-exciton manifold of the dimer). After reviewing the
model Hamiltonian as well as the transition dipole moments
of an excitonic dimer, we adapted the QPT theory presented
in our previous work, where the nonlinear polarization was
analyzed in real time for single values of τ and t times [see
Eqs. (13) and (14)],42 to the more standard and visual Fourier
transformed signal collected along several values of these
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FIG. 7. 2D-ES for coupled porphyrin homodimer with secular Redfield model. From left to right, we show the real and imaginary parts of the spectrum
with zzzz polarization setting (first and second columns), and with zzxx setting (third and fourth columns). Each row represents a particular waiting time T ,
corresponding to (a) Tc/2, (b) Tc , (c) 3Tc/2, (d) 2Tc , (e) 9Tc/2, (f) 5Tc , where Tc = 47.5 f s is the period for one Rabi oscillation between |α〉 and |β〉. The
color map is such that red is associated with positive numbers, green with values about zero, and blue with negative numbers.
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FIG. 8. Traces of 〈Smn(T )〉e1e2e3e4 for m, n ∈ {α, β} and (e1, e2, e3, e4) ∈ {(z, z, z, z), (z, z, x, x)}. (a) Real and (b) imaginary parts for the zzzz configuration;
(c) real and (d) imaginary parts for the zzxx configuration. Each of the plots shows the evolution of the peak amplitudes Sαα(T ) (red crosses), Sαβ (T ) (green
circles), Sβα(T ) (blue squares), and Sββ (T ) (black diamonds).

interval times. The central result of this exercise was Eqs. (21)
and (22), which from a purist’s standpoint completes the QPT
effort: the peaks in a heterodyne-detected 2D-ES can be ex-
pressed as linear combinations of elements of the process ma-
trix χ (T ). This information can be distilled by carrying out
several experiments alternating the frequency components of
the pulses as well as their polarization. By setting up a system
of linear equations with this data, a linear algebraic routine
yields the inversion of χ (T ) for every waiting time T . To give
a more intuitive picture of this procedure, the particular case
of a homodimer was studied in detail. The degeneracies of
this system yield a perpendicular set of transition dipole mo-
ments which considerably simplify the theory (see Fig. 5). It
was shown that under isotropic average of the signal, no popu-
lation to coherence processes or vice versa can be monitored,
impeding a full QPT for the single-exciton manifold of this
system. However, the partially achievable QPT is very sim-
ple, robust with respect to transition dipole moment parame-
ters as long as they are not aligned or antialigned, and readily
implemented without pulse shaping. The only requirement is
the collection of two polarization controlled 2D-ES. Numeri-
cal examples with a model homodimer validated the presented
theory.

The possibilities that QPT opens for the study of excited
state dynamics in condensed molecular systems are as vast as
the information acquired at the amplitude level of the evolving
quantum state of the probed system. On the one hand, with the
peaks in the 2D spectrum indicating a plethora of pathways in

Liouville space, understanding of the dynamics is undoubt-
edly enhanced by the dissection of these peaks into processes
described by the χ (T ) matrix. On the other hand, a wide
range of questions can be addressed with this information, for
instance: is a Markovian description accurate?35, 86–88 If not,
what is the degree of non-Markovianity of the dynamics?89, 90

If it is Markovian, is the secular Redfield equation appropriate
or are nonsecular processes important?91 Is there any degree
of entanglement in the quantum states produced in the single-
exciton manifold upon photoexcitation?37, 92 What is the rate
of decoherence of a quantum superposition between excitonic
states?93–97

A few aspects have not been fully addressed with respect
to the implementation of QPT of a molecular dimer. These
issues will be carefully studied in future publications in
collaboration with experimental groups. The role of static
disorder in the eigenenergies of the system as well as in
the distribution of the angle φ will necessarily yield an
inhomogenously averaged signal from which the relevant
information must be carefully extracted. We anticipate this
feature to add another step of parameter fitting but not change
the results of our theory dramatically. Furthermore, we have
ignored the possibility of resolving the vibronic structure
accompanying each of the four resonances in the 2D-ES. If
this were to happen, it might be wiser to take the approach
of Cina and co-workers98–100 to consider the evolution of the
nuclear wavepackets for a few modes strongly coupled to the
system and maybe regard the rest of the modes as a bath. A
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FIG. 9. Extractable elements of χ (T ) for homodimer. (a) Processes starting from |α〉〈α|: χggαα(T ) (red crosses), χαααα(T ) (green circles), and χββαα(T ) (blue
squares). (b) Processes starting from |β〉〈β|: χggββ (T ) (red crosses), χααββ (T ) (green circles), χββββ (blue squares). (c) Processes indicating coherence transfer:
�{χαβαβ (T )} (red crosses), 
{χαβαβ (T )} (green circles), �{χβααβ (T )} (blue squares), and 
{χβααβ (T )} (black diamonds).

small caveat of a linear extension in the size of the Hilbert
space of the system would be the exponential increase of
experimental resources,41 so either partial or compressed
sensing approaches101, 102 would be necessary. Alternatively,
by going back to the time-domain picture provided by the
authors in their previous work42 and applying novel concepts
of QPT for initially correlated states,103–105 a coarse grained
and consistent tomographic protocol could be designed to
address this problem. Finally, it might be worth considering
additional nonlinear optical spectroscopic techniques such as
considering the analysis of both rephasing and nonrephasing
signals,67, 106 transient grating,18 pump probe,11 or phase cy-
cling of multipulse induced fluorescence107–109 to investigate
if they provide additional information for a more robust QPT.

In future publications, we plan to extend the presented
ideas to the domain of bigger excitonic networks, such as
the Fenna–Mathews–Olson complex in purple bacteria24, 25

or the phycoerythrin PE-645 from cryptophite Rhodomonas
CS24 and the phycocyanin PC645 from the cryptophite
Chroomonas CCMP270.26 In principle, most of the ideas pre-
sented in this article should still hold. If a full QPT turns out to
be costly in terms of experimental resources, coarse grained
or partial approaches like the ones mentioned above could be
potentially powerful approaches.

We hope to have convinced the reader that the QPT ap-
proach follows the spirit of MDOS in a very natural way. By
systematically studying excited state dynamics as a quantum
black box, an intriguing perspective on MDOS has emerged
that allows the use of tools designed in the QIP community
in order to study excited state dynamics of excitonic systems.

We believe that the identification of a collection of 2D-PE ex-
periments as a QPT is an important result that bridges the gap
between QIP theoretical studies of excitation energy trans-
fer in quantum networks and experimental probes of exci-
ton dynamics in the chemical physics community. Once the
experimental implementation of QPT is performed in exci-
tonic systems, very specific mechanistic questions about ex-
citation dynamics can be answered, master equation models
can be validated,56 and the proposal of active manipulation
schemes of energy transport based on coherent control can
be suggested.110–113 These topics will be subject of future
studies.
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APPENDIX: DERIVATION OF EQS. (1), (3), AND (4)

Proof of Eq. (1). Consider a system S interacting with a
bath B. The total density matrix of the composite object is
ρtotal, whereas the reduced one for the system and the bath
are ρ and ρB , respectively. Suppose that the total initial state
is a tensor product of the form

ρtotal(0) = ρ(0) ⊗ ρB(0), (A1)

where ρB(0) is assumed to be fixed at

ρB(0) =
∑

β

pβ |eβ〉〈eβ |, (A2)

with pβ ≥ 0, for every initial state ρ(0) of the system, and∑
β pβ = 1. At time T , the state of the composite object is

simply a rotation of the initial state (it is a closed system):

ρtotal(T ) = U (T )ρtotal(0)U+(T ). (A3)

Here, U (T ) = T (e−i
∫ T

0 Htotal(t ′)dt ′
) is the propagator for the

entire object, where T is the time ordering operator, and
Htotal is given by

Htotal = HS + HB + HSB, (A4)

where HS, HB, HSB are terms in the Hamiltonian that depend
only on S, on B, or on degrees of freedom of both, respec-
tively. Taking the trace of Eq. (A3) with respect to the states
of B yields ρ(T ):

ρ(T ) =
∑
αβ

pβ Eαβ(T )ρ(0)E+
αβ(T ) (A5)

where:

Eαβ(T ) = 〈eα|U (T )|eβ〉, (A6)

is a Kraus operator and Eq. (A5) is known as the operator sum
representation.43, 44 Note that∑

αβ

pβ Eαβ(T )E+
αβ(T ) =

∑
αβ

pβ〈eα|U (T )|eβ〉〈eβ |U+(T )|eα〉

=
∑

β

pβ〈eβ |IS ⊗ IB |eβ〉

= IB, (A7)

where we have exploited the fact that

U+(T )U (T ) = IS ⊗ IB, (A8)

with IS and IB being identity operators in S and B, respec-
tively. A transformation on ρ(0) that satisfies Eqs. (A5) and
(A7), together with pβ ≥ 0 for all β is called a completely
positive map.43

By identifying

χabcd (T ) =
∑
αβ

[Eαβ(t)]ac
[
E+

αβ(t)
]

db

=
∑
αβ

pβ〈eα, a|U (T )|eβ, c〉〈eβ, d|U+(T )|eα, b〉.

(A9)

We have shown the equivalence between Eqs. (A5) and (1).
�

Proof of Eq. (3). Using Eq. (A9) and exploiting the fact
that U+(T )U (T ) = I , where I is the identity in the tensor
space, we get:∑

a

χaacd (T )=
∑
aαβ

pβ〈eα, a|U (T )|eβ, c〉〈eβ, d|U+(T )|eα, a〉

=
∑
aαβ

pβ〈eβ, d|U+(T )|eα, a〉〈eα, a|U (T )|eβ, c〉

=
∑

β

pβ〈eβ, d|eβ, c〉

= δcd . (A10)

�

Proof of Eq. (4). Manipulating Eq. (A9), it follows that

χbadc(T )=
∑
αβ

pβ〈eα, b|U (T )|eβ, d〉〈eβ, c|U+(T )|eα, a〉

=
⎛
⎝∑

αβ

pβ〈eα, a|U (T )|eβ, c〉〈eβ, d|U+(T )|eα, b〉
⎞
⎠

∗

=χ∗
abcd (T ). (A11)

�

In this Appendix, we have presented derivations for the
linear transformation of ρ(0) to ρ(T ) based on the tensor
product initial state of Eq. (A1) with fixed ρB(0), which im-
plies completely positive dynamics. Generalizations of this
transformation to include initial states correlated with differ-
ent baths have been presented by Shabani and Lidar.114 At this
stage, it is unclear whether consideration of noncompletely
positive maps, or strong initial system–bath correlations will
be relevant for QPT of the excitonic systems of our interest,
where the system is coupled to a bath consisting of a large
number of modes. These issues are currently being pursued
and the results will be presented in future work. However, it
is important to highlight that the derivations in this Appendix
hold for both Markovian and non-Markovian systems.
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