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RNAs 

 

Abstract 

 

Since its early discovery as a messenger, RNA has been shown to play a diverse set of 

regulatory, structural and even catalytic roles. The more recent understanding that the genome is 

pervasively transcribed stimulated the discovery of a new prevalent class of long non coding 

RNAs (lncRNAs). While these are lower abundant and relatively less conserved than other class 

of functional RNAs, lncRNAs are emerging as key players in different cellular processes in 

development and disease.  

 

Determining the function of individual lncRNAs, however, still remains a challenge. Recent 

advances in transcriptome profiling and RNA imaging allow for an unprecedented analysis of 

lncRNA transcripts. In this thesis I applied RNA sequencing (RNA-Seq) and single molecule 

RNA florescent in situ hybridization (FISH) to systematically characterize lncRNAs as a class 

and as individuals.  

      

First, I used an integrative approach to define a reference catalogue of over 8,000 human large 

intergenic noncoding RNAs (lincRNAs). This catalogue unifies previously existing annotation 

sources with transcripts we assembled from RNA-Seq data collected from ~4 billion RNA-Seq 

reads across 24 human tissues and cell types.  I characterized each lincRNA by a panorama of 

more than 30 properties, including sequence, structural, transcriptional, and orthology features.  

 

We find that lincRNA expression is strikingly tissue specific compared to coding genes, and that 

they are typically co-expressed with their neighboring genes, albeit to a similar extent to that of 

pairs of neighboring protein-coding genes. We identify ~1000 lincRNAs that have a syntenic 
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expressed ortholog in another species. We distinguish an additional sub-set of transcripts that 

have high evolutionary conservation but may encode open reading frames, and may serve either 

as lincRNAs or as small peptides. Our integrated, comprehensive, yet conservative, reference 

catalogue of human lincRNAs reveals the global properties of lincRNAs and facilitates 

experimental studies and further functional classification of these genes.  

 

To approach other fundamental aspects of lincRNAs biology, including their subcellular 

localization, abundance and variation at a single cell resolution, we then systematically applied 

single molecule imaging. We used single-cell single-molecule RNA FISH to survey 61 lncRNAs 

and catalog their abundance and cellular localization patterns in three human cell types. I chose 

our lncRNA set by a variety of properties such as conservation and tissue specific expression 

across a spectrum of expression abundance. Notably, we reveal challenges in applying single 

molecule RNA-FISH to reliably measure lncRNAs and establish an integrated imaging and 

computational strategy to overcome these.  

 

We found that lncRNAs have diverse sub-cellular localization patterns, ranging from strictly 

nuclear localization to almost exclusive cytoplasmic localization, with the majority localized 

primarily in the nucleus. We observed that the low abundance of lncRNAs as measured in bulk 

cell populations cannot be explained by high expression in a small subset of ‘jackpot’ cells 

among a majority of non-expressing cells. Simultaneous analysis of lncRNAs and mRNAs from 

corresponding divergently transcribed loci showed that divergent lncRNAs do not present a 

distinct localization pattern and are not always co-regulated with their neighbor. Overall, our 

study highlights important differences and similarities between lncRNAs and mRNAs. The rich 

set of localization patterns we observe suggest a broad range of potential functions for lncRNAs. 

 

In summary, this work highlighted key properties of lncRNAs as a class and individually. It 

demonstrated the application of two emerging technologies for the specific study of this low 

abundant class of lncRNAs, revealed challenges, and provided strategies to approach them. 

Importantly, our catalogs provide valuable resources that can assist in generating testable 

hypothesis for mechanistic studies that would further elucidate lncRNAs functions.  
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Chapter 1 |  Introduction 
 

1.1 RNA as a functional molecule 

 

The central dogma of biology describes RNA as a messenger carrying the genetic information 

encoded in the DNA to the factories decoding it to protein [1]. Yet, this initial perception of 

RNA as a passive molecule is misleading, because ever since the discovery of the messenger 

RNA (mRNA) in the early 1960s [2], RNA was shown to play key roles in diverse processes 

including as a catalyst. In fact, RNA’s unique capability to form structure and to base pair with 

nucleic acid was already demonstrated within the process of protein translation with the 

discovery of transfer RNA (tRNA) [3, 4] and the more recent appreciation that the ribosomal 

RNA itself carries catalytic activity [5-7].  

 

In the 1960s another large set of heteronuclear RNAs (hnRNAs), that resembled mRNA but did 

not enter the ribosome, was discovered [8, 9]. This fraction was first elucidated with the 

discovery of  small nuclear RNA (snRNAs) [10], later shown to be involved in splicing [11], and 

the discovery of splicing [12] and of small nucleolar RNA (snoRNA) [11], which are involved in  

ribosome biogenesis, in the 1970s. snoRNA and snRNA were discovered based on their nuclear 

localization , are conserved from yeast to mammals, and use base pair complementarity as part of 

their target recognition [13]. Interestingly, snRNAs are transported to the cytoplasm to be 

assembled into a ribonucleoprotein complex and then shuttle back to the nucleus to participate in 

splicing [13]. 

    

The 1980s provided a new perspective with the discoveries of catalytic RNAs: the RNaseP in 

bacteria [14], and the self-splicing RNA in Tetrahymeana [15][16], which were later followed by 

discoveries of several riboswitches [17]. Together these supported the idea of an ancient “RNA 

world” in which RNA was the sole molecule capable of preserving genetic information and 

catalyzing chemical reactions [18].  
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In the 1990s, the regulatory roles of RNA were started to be appreciated with the discovery of 

the first microRNA in C. elegance, lin-4, that repressed lin-14 through short sequence base 

pairing with the 3’ untranslated region (UTR) of its mRNA target [19]. let7 was later shown to 

act similarly [20].  Genome scale efforts in the early 2000s then revealed an abundant class of 

such tiny RNA, termed microRNAs [21-23], now known to destabilize their mRNA target by 

base-pairing with the 3’ UTR of the mRNA through a short seed sequence on the microRNA, 

while being bound to a protein complex containing Argonaute proteins [24]. microRNAs, which 

were shown to be conserved in animals and plants,  have critical roles in diverse processes in 

development and disease by the same shared mechanism [24]. The piwi-interacting RNAs 

(piRNAs) are another class of more recently discovered small RNAs that ‘guide’ Argonaute 

mediated silencing of transposons in the testis [25]. 

 

The early 1990’s also brought the idea that RNA may come “in many more flavors” with the 

discovery of two long RNA molecules that had every property of an mRNA yet did not appear to 

encode a protein. These were therefore referred as long non coding RNAs (lncRNAs).  H19, the 

first lncRNA discovered, showcases many of the themes used to this day to discover new 

lncRNAs.  H19 was inadvertently discovered  during a differential hybridization screen that first 

detected this highly abundant RNA in fetal liver [26]. Immediately it had become a mystery: it 

did not have any open reading frame (ORF) that was conserved in its mouse orthologs, it was 

cytoplasmic but did not associate with ribosomes, and polyclonal antibodies raised against the in 

vitro product of its longest ORF did not detect any proteins in vivo. While the functional role of 

this imprinted gene [27] remained a mystery until later when it was shown it is in fact a 

microRNA host gene [28-30] , it suggested that many other such lncRNAs could exist. 

 

Shortly after the discovery of H19, a screen to detect genes escaping X inactivation (XIC) 

revealed XIST (X inactive specific transcript) [31], a lncRNA that coats the inactive X 

chromosome [32, 33] and is required for XIC [34, 35], which soon became a paradigm for 

understanding lncRNA mechanism of action [36]. A few other lncRNAs including: TSIX [37], 

Air [38], Tug1 [39], NRON [40], Kcnq1ot1 [41] and HOTAIR [42] were discovered in the 

following decade. Yet, the genome scale efforts pursued at that time suggested these were only 

the tip of the iceberg.  
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1.2 The discovery of a prevalent class of lncRNAs  

 

Emerging technologies reveal pervasive transcription of mammalian genomes 

 

The completion of sequencing of the human genome revealed that its vast majority (>95%) does 

not encode protein [43, 44]. Rather, its ~20,000 protein coding genes are dispersed within 

repetitive elements (that in total account for 50%-70% of the human genome [45]) and other 

regulatory sequence. Surprisingly, subsequent high-throughput genome scale efforts revealed 

that as much as ~70-90% of mammalian genomes is transcribed at some time point during 

development [46]. This was first observed using unbiased transcriptome profiling by 

hybridization to tilling microarrays targeting one or several chromosomes [47-49] and then by 

deep sequencing of large pools of cDNA clones (usually in their truncated forms as expressed 

sequence tags (ESTs) to increase throughput and cost effectiveness) [46, 50].  

 

The extreme rarity of most of these new transcripts [50], however, questioned whether this 

transcription is in fact accidental. In support of this view, it was shown that as many as 90% of 

RNA Polymerase II initiation events are non-specific [51]. Moreover, these transcribed regions 

suffered from low cross-species conservation rates and therefore were less likely to be functional 

[52].   However, it was suspected that the large pool of cryptic transcripts does include a subset 

of RNA molecules that may not encode new proteins but might indeed be functional. The 

existence of short functional RNA, such as microrRNAs, as well as lncRNAs, such as XIST and 

imprinting lncRNAs, was already clear [53]. It remained unclear, however, how many functional 

ncRNA were still to be discovered. To do so one first needed a ‘map’ of potential transcript 

models to explore. 

 

Finding needles in a haystack – early discoveries of lncRNA sets 

  

Most of the early studies discovering these new transcripts used tiling microarrays in which 

cDNA from poly-adenylated or ribo-depeleted RNA, is hybridized to microarrays comprised of 

short probes (~50bp) tiling large continuous genomic regions at high resolution (~10bp) [54, 55]. 

Computational analysis was then applied to define peaks of hybridization signal across the tiled 
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region and subsequently to identify the boundaries of transcribed regions. This approach was 

applied to identify lncRNAs across mammalian genomes [47-49]  and at fine resolution across 

the HOX genes clusters [42].  This hybridization approach, however, suffered from low 

reproducibility, low dynamic range and low resolution which was essential to define exon 

boundaries of spliced transcripts  [56] [57].   

 

A significant advancement in the discovery of a lncRNA subset that was likely to be functional 

was in the pioneering work by Guttman et al. [58].  In this work chromatin state maps coupled 

with tiling arrays and novel algorithms were used to identify large intergenic (or intervening) non 

coding RNAs (lincRNAs) that carried the chromatin signature of actively transcribed genes [58]. 

Chromatin state maps are generated by chromatin immune-precipitation followed by next 

generation sequencing (ChIP-Seq) to detect the genomic regions marked by a specific chromatin 

modification [59]. Using such maps, researchers revealed the chromatin state of different 

genomic loci such as promoters, actively transcribed genes, repressed regions, enhancers and 

others [60, 61].  

 

By scanning for ‘K4-K36’ domains, that is histone 3 lysine 4 trimethylation (H3K4me3) across 

the promoter followed by H3K36me3 along the downstream transcribed region, in gene deserts, 

~3500 novel noncoding gene loci were identified in the mouse [58] and human [62]. 

Hybridization of poly-A RNA to tiling microarrays tiling 350 of the ~1600 intergenic K4-K36 

domains in mouse, confirmed the expression of ~70% of these transcripts and defined their 

exons. Interestingly, these exonic regions demonstrated elevated evolutionary conservation 

despite very low coding potential, which suggested they were likely to be functional ncRNAs. 

Importantly, a significant number of these were later shown to have phenotypic effect in 

response to perturbation [63-66].  

 

Overall, the key advancement in the ‘K4-K36’ domains approach is that it demarcated genomic 

regions that were likely to be homogeneously and significantly expressed across the population 

and could be effectively detected by a cost effective hybridization based approach. This was due 

to the use of a statistical approach (scan statistics) to define a robust signal, and since it relied on 

chromatin state maps which reflect the aggregate of a binary signal per cell (as each cell can 
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produce a limited amount of signal per genomic loci) rather than on RNA measurements (as 

RNA is an amplified signal from one genomic locus). While this approach identified transcripts 

that were likely to be functional based on their conservation, it was still limited as it did not 

define the complete and accurate transcript model and exon boundaries, information that is 

essential for subsequent functional investigation.  

 

In parallel to these studies, efforts to sequence full cDNA clones were on going by large 

consortia and annotation groups such as the FANTOM (Functional Annotation of The Mouse) 

project [46]  and GENCODE (the reference annotation of ENCODE, the Encyclopedia Of DNA 

Elements, in human) [67]. The first catalog of potential lncRNAs in mouse was generated by the 

FANTOM consortium and included 3652 high confidence transcripts distinguished from 

>34,000 novel transcripts that were detected by cDNA cloning followed by Sanger sequencing 

across mouse tissues [46, 68, 69]. These were termed macroRNAs and were shown to be under 

purifying selection [70, 71] and differentially expressed in several developmental systems in the 

mouse [72-74]. Parallel sets were later created for human but were still limitedly explored [75, 

76]. 

 

While providing most accurate gene models for newly discovered transcripts, back in 2009 

catalogs containing these models did not detail the tissues or cell type in which they were 

expressed, limiting the accessibility to study them by the wide community. Moreover, full cDNA 

cloning had lower throughput and was more costly compared to short tag sequencing and tiling 

arrays and catalogs relying on such approach were still partial with respect the number of cell 

types sampled and the detection of low abundant molecules. A major step forward was the 

appearance of high-throughput RNA sequencing (RNA-Seq).  

 

RNA-Seq – transcriptome exploration within reach 

 

Massively parallel cDNA sequencing, or RNA-Seq, uses massively-parallel sequencing 

technologies and provides a cost effective experimental procedure to explore the entire 

transcriptome in an unbiased manner and fine resolution [77]. The availability of millions of 

RNA sequencing reads and new algorithms offered far more precise measure of the 
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transcriptome relative to hybridization based approaches. Briefly, an RNA sample (usually 

fractionated as polyA, or depleted of rRNA) is converted to cDNA, fragmented and tagged with 

adaptors on one or both ends. cDNA is then amplified (with some exceptions) and fragments are 

sequenced from either one or both ends (single- or paired- end reads, respectively) on a next 

generation sequencer to obtain short sequence reads (read length varies based on the technology 

used and are usually within the range of 35-400 bp).   

 

This unbiased sample of the transcriptome can be used to both identify the transcribed transcripts 

(including previously unknown transcripts) and to quantify their abundance. This requires 

powerful computational methodologies for read alignment, ab-initio (or de-novo) transcript 

assembly and estimation of transcript abundance and differential expression [78]. Next, I will 

highlight the key methods for each task used in our work to annotate lincRNAs from RNA-Seq 

data. 

 

Fully leveraging the power of RNA-Seq to identify novel transcripts requires a fast aligner that 

will map short reads to the genome, including reads that span exon-exon junctions termed 

spliced reads.  Tophat [79], provides such a solution in two main steps. First it uses Bowtie [80], 

a fast un-spliced reads aligner, to map all reads that map to the reference genome without 

allowing large gaps. Bowtie is significantly faster than traditional unspliced aligners as it uses 

the Burrows-Wheeler transformation (BWT) [81] that compacts the genome into a database that 

can be searched efficiently. Briefly, BWT is an efficient string compression technique that 

permutes a string in a reversible manner such that the new string contains repeats of identical 

characters and the same character composition as in the input string. Next, Tophat identifies all 

potential exon spliced junctions based on the islands of already mapped reads, and performs a 

second fast alignment step to map the spliced reads (Figure 1.1).  

 

To define the map of all expressed transcripts in a given sample one needs to assemble the reads 

into transcripts. This task of transcript reconstruction can be approached by either genome 

independent [82] or guided approaches [83, 84] (Figure 1.2a). Since the latter approach is more 

computationally efficient and a reference genome is available for our organisms of interest, it is 

mostly adopted for the task of lncRNA annotation. Originally, two such methods, named 
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Cufflinks [84] and Scripture [83], were developed to reconstruct full transcripts given a spliced 

read alignment to a reference genome taking advantage of longer read length (~75bp). The main 

difference between the two approaches is that Cufflinks identifies a minimal set of isoforms that 

can explain the alignment, while Scripture reports all isoforms (Figure 1.2b). This main 

difference is relevant when solving the subsequent task of isoform abundance estimation [78].  

 

Scripture, originally designed to distinguish low expressed transcript from noise, uses a scan 

statistics to identify all isoforms that are significantly expressed on a particular genomic locus 

[83]. In brief, Scripture transform the genome alignment to a graph topology that represents all 

the possible connections of bases that occur continuously (non-spliced reads) or non-

continuously (spliced reads) and assigns weights to these connections based on read density. It 

then scans this graph using a sliding window and applies a scan statistics to identify all 

connected paths that are significantly represented. These correspond to significantly expressed 

transcripts. 

 

Cufflinks was designed to detect the most likely isoforms and estimate their abundance, 

simultaneously [84]. It uses a conceptually similar graph representation of the read alignment 

and relies on graph theory to provide a maximum likelihood explanation of the data that 

corresponds to a minimal set of isoforms in a given locus.  Cufflinks may include more lowly 

expressed transcripts in its output compared to Scripture. Importantly, it addresses both the 

transcript reconstruction and abundance estimation tasks at once and fully utilizes the power of 

paired end reads which can inform connections between distal exons despite the limited read 

length.   

 

Given a set of transcript models one can then use RNA-Seq to quantify their abundance across 

samples as well identify transcripts that are differentially expressed across samples. Initially, the 

RPKM (read per kilobase of transcript per million mapped reads) metric was introduced as a 

simple approach to estimate gene abundance by counting all the reads aligned to the gene and 

normalizing this sum by the transcript’s length and the library coverage [85]. This approach, 

however, turned out to be naïve for the task of quantifying the abundance of isoforms of the 

same gene, as this requires a systematic approach to model the uncertainty in assigning reads to 
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each of the isoforms. Since many of the reads align to exonic regions that are shared between 

isoforms they cannot be assigned uniquely [78]. 

 

Later and more advanced methods such as Cufflinks [84, 86], mixture of isoforms (MISO) [87] 

and RSEM (RNA-Seq by Expectation Maximization) [88] estimate abundance at the isoform 

level and model the uncertainty in read assignment by constructing a 'likelihood function' which 

models the sequencing process and identifies isoform abundance estimates that best explain the 

reads obtained in the experiment (i.e. a maximum likelihood estimate (MLE)).  These methods 

apply different statistical frameworks to find a MLE, and provide a confidence measure on this 

estimate. This is especially important in the case of low abundant isoforms for which the 

uncertainty is greater. 

 

The combination of different de-novo assembly approaches provides a better understanding of a 

newly explored transcriptome as one can establish classification and scoring schemes that 

categorizes each transcript (e.g. one can apply a scan statistics on a minimal isoform set reported 

by Cufflinks as an additional measure of abundance). Of note, large isoform complexity in a 

given region imposes computational challenges that require enhanced computational resources to 

obtain a solution. Therefore, when using RNA-Seq ab initio assemblers that report a maximal 

isoform set, it may be necessary to pre-filter such sets prior to the isoform quantification step, as 

incorrect or miss-assembled transcripts introduce uncertainty and complexity which may result 

with infeasible computation [78]. Overall, isoform based methods provide a confidence measure 

on their predictions, which is particularly informative for low abundant transcripts such as 

lncRNAs.  
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Figure 1.1|  An exon first approach for read alignment.  Adapted with permission from Garber et al. 

[78].  The illustration describes reads originating from a two exon transcript. Portions of the reads are 

labeled based on the exon of origin.  In the first step unspliced reads are fully mapped to the genome 

(top). The remaining spliced reads are then divided into smaller pieces which are stored in an efficient 

database (DB). Genomic regions that were covered by exonic reads are used to generate possible splice 

sites between neighboring exons. A seed and extend step is then applied to map to spliced reads by 

mapping the k-mer seeds to the possible splice junctions and extending these from this initial mapping to 

align the full read from the two sides of the exon junction. 
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Figure 1.2| Transcript reconstruction approaches. Adapted with permission from Garber et al.[78]. 

(a) The illustration describes two isoforms of the same gene (labeled black and gray) and reads 

originating from each isoform are labeled accordingly. In a genome guided approach (left), reads are first 
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aligned to the genome. The aligned regions and spliced reads are then used to reconstruct a transcript 

graph that is then parsed into isoforms annotations. In a genome independent approach the transcripts are 

divided into short k-mers that are used to generate a de Bruijn graph structure which is in turn parsed to 

transcript annotations. If a genome is available these can then be aligned to the genome to generate gene 

annotations. (b) A transcript graph can be parsed to a maximal set (left) of transcripts which corresponds 

to all possible transcripts which are consistent with the spliced reads, or different minimal sets (right) that 

can explain all the spliced reads by only 2 transcripts. 
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1.3 lincRNA identification and classification 

 

Classes of lncRNAs by genomic features 

 

Since not much is known about lncRNAs and their functional classes, one approach of bringing 

order is dissecting them to subsets based on their genomic features. Since it is likely that 

mechanistic themes are shared across the genes in a set, this classification may facilitate further 

hypothesis driven functional investigation. These include: (1) natural antisense transcripts, (2) 

intronic transcripts, (3) pseudogenes, (4) divergently transcribed transcripts and promoter 

associated transcripts (5) enhancer RNAs and (6) lincRNAs (Figure 1.3).  

 

Natural antisense transcripts (NATs) are those transcribed in the antisense direction and overlap 

exons of another known gene (usually an mRNA) and are frequently enriched around the 3’ or 5’ 

of the sense transcript [89-91]. Examples include the imprinting ncRNAs Kcnq1ot1 and Air, as 

well as Xist/Tsix. Long intronic RNA are those transcribed from the intron of a known gene in 

either sense or antisense direction  [92], such as COLDAIR, a lncRNA expressed from the first 

intron of the FLC locus, which is involved in regulating plant flowering time [93].  

 

Pseudogenes are relics of genes that lost their coding potential by nonsense, frame shift or other 

types of mutations [94]. They are usually incorporated randomly throughout the genome by 

transposition or duplication, and as many as 20% were shown to be transcribed. Recently, studies 

presented evidence supporting a model in which transcribed pseudogenes serve as microRNA 

sinks, thus fine tuning microRNA repression targeting their parent gene [95]. 

 

Gene promoters were described to transcribe a group of short and long transcripts in addition to 

and divergent to the gene they control in a phenomena known as divergent transcription [96-99]. 

These include a set of short transcripts (20-2500nts) that transcribed upstream and downstream 

divergently relative to the transcription start site mainly bounded by pausing sites of RNA Pol-II. 

Upstream antisense RNA (uaRNA) or promoter upstream transcripts (PROMPTS) are short, low 

abundant and usually unstable. In some cases such divergent transcription results in more stable 

and spliced transcripts often referred as divergent lincRNAs [100, 101]. Divergent transcription 
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also occurs at distal enhancers resulting in enhancers RNAs (eRNAs) [102, 103]. These are 

usually short and unspliced and were recently shown to contribute to the enhancer function in 

activating genes in proximity [104, 105].   

 

Large intergenic (or originally intervening) noncoding RNAs (lincRNAs) are the subset of 

lncRNA that are capped, poly-adenylated and frequently spliced, encoded in intergenic region. 

That is, they do not overlap the genomic exonic regions encoding protein coding genes and other 

known types of non-coding transcripts (e.g. microRNAs). The distinction between lncRNAs and 

lincRNAs was mainly motivated by the need to facilitate the interpretation of sequence 

conservation and perturbation outcomes, which are first means in screening for functional 

candidates. This distinction, however, does not imply any differences in the functional 

mechanism between intergenic and non intergenic lncRNAs, which probably comprise a range of 

different mechanistic activities (discussed in Section 1.4). 

 

 

 

Figure 1.3| Classes of lncRNAs by genomic features. Inspired by [106]. Enhancer RNAs are short and 

transcribed divergently from an enhancer (peach). Divergent lincRNA (green) which are processed and 

spliced are transcribed upstream and in the antisense direction from a gene’s (blue) promoter. They do not 

overlap any other exonic sequence. Intronic lncRNAs (red) are transcribed from the intron of a gene in the 

sense or antisense direction and do not overlap exonic sequence. Antisense transcripts (yellow) are 

transcribed antisense and share some exonic sequence of the corresponding gene. Promoter associated 

transcripts (pink) are very short and can be transcribed bidirectionaly upstream and antisense or 

downstream and sense from a gene’s promoter. Pseudogenes (light blue) can be found in the spliced form 

(as shown here) or the unspliced form of the parent gene and go through mutations such that they lose 

their coding ability.  
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Annotation of lincRNAs 

 

While new transcripts are constantly being identified, the next challenge is to systematically 

classify them into classes to facilitate their selection for further functional investigation. This 

process includes two main steps: (1) identification of full length transcript models; and (2) 

evaluation of coding potential. To date catalogs of lincRNAs are available for human, mouse, 

zebrafish, frog, nematode, Arabidopsis, maize and Plasmodium (see [107] for review). These 

catalogs vary in the input data and the computational methods used for classification, which may 

be constrained by cost and their availability for the specific species at the time generated. 

 

As previously described, catalogs of lncRNAs transcripts are based on 3 types of data: (1) tiling 

arrays, which are no longer used due to their low resolution and accuracy; (2) cDNA full length 

sequencing, which currently provides the most reliable full transcript models, but is costly and 

may be limited in coverage; (3) RNA-Seq, which has high coverage but is somewhat limited in 

its ability to correctly reconstruct very low abundant transcripts due to low frequency of reads 

(especially spliced) spanning these loci. This, however, can be improved by sequencing higher 

numbers of longer reads. More recently, RNA-Seq based transcripts model are refined by 

integrating other sequencing based approach that define the transcript’s 3’ and 5’ boundaries in 

the transcript reconstruction process (such as Capped Analysis of Gene Expression (CAGE) 

[108]  and 3P-Seq, a method to annotate polyadenylation sites [109, 110]).    

  

As of 2014, cDNA based lncRNA catalog generated by annotation groups such as RIKEN [46, 

111], REFSEQ [112], GENCODE, HAVANA (Human and Vertebrate Analysis and Annotation) 

and Ensembl [113], are available for human and mouse and are quite comprehensive. However, 

it is still difficult to recover from the data in the form it is currently provided in what context 

each transcript is expressed.  This was still lucking back at 2009 when we started our work in 

generating the first comprehensive RNA-Seq based lincRNA catalog in human, and thus 

motivated it. 
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Distinguishing between protein coding and noncoding genes 

A second challenge and perhaps a more difficult one is determining whether a novel transcript 

encodes a protein [107]. Methods that approach such task usually rely on one or several of the 

following premises: (1) long noncoding sequence are unlikely to randomly contain ORFs longer 

than 200 bp ( 200 bp is approximately two standard deviations above the average length of an 

ORFs found in 500 bp of random sequence ; [114]);  (2) The nucleotide sequence of functional 

ORFs is constrained by non-random codon usage [115]; (3) Evolutionary conserved ORFs are 

characterized by relaxation of constrain on the third position of codons; (4) Coding sequence 

usually comprise known protein coding domains documented in protein database; (5) Coding 

transcripts are bound by the ribosome when translated.   

 

Most of the cDNA based lncRNA catalogs available are manually curated based on ORF length 

cutoffs, conservation estimates such as those from CRITICA [116], and other characteristics of 

the ORF [68, 70, 117, 118]. In species that are less explored from a genomic perspective, ORF 

length cutoffs are mainly used (Arabidopsis [119], Maize [120], Plasmodium falciparum [121]). 

Many of the available RNA-Seq based catalogs apply an automated procedure such as the coding 

potential calculator (CPC) [101, 110, 122]. CPC is a support vector machine algorithm that 

estimates coding potential by evaluating features on transcript and ORF length as well as 

similarity to sequences in known protein databases but without using any measure of 

evolutionary conservation [123]. Coding Potential Assessment Tool (CPAT) takes a similar 

approach and uses an alignment free logistic regression model on different transcript features 

[124]. 

 

Other work, including ours, applied a combination of searches against protein domain databases 

and coding potential estimates by phyloCSF [125], a supervised method to evaluate the 

conservation of ORFs based on multiple sequence alignment across large clades (such as 

mammals) [83, 100, 126] . RNAcode is another similar but unsupervised approach that has been 

used for annotation [127] [122].  The latter approaches are more sensitive to detect short 

conserved ORFs that may encode peptides (such as in [128]), while the former approaches are 

more likely to detect long and newly evolving ORFs. More recently, a lincRNA classification 

also included analysis of ribosome profiling and polysome association data that provide an 
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estimate of the transcript being translated by the ribosome [122]. Such data, however, should be 

analyzed with care as discussed in Section 1.5. 
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1.4 Functional mechanism of lncRNAs: lessons from case studies 

 

While the vast majority of lincRNA catalogs still remain unexplored, there is a rapidly growing 

number of studies describing the involvement of individual lncRNAs in diverse biological 

systems, development and disease. Their mechanism of action, however, is still mostly un-

deciphered. While much of the early work mainly suggested the involvement of lncRNAs in 

chromatin regulation, it is now becoming clear that the set of genes currently classified as 

lncRNAs comprise multiple subsets with diverse functions. Overall their potential mechanisms 

can largely be divided to 3 groups: (1) those that rely on the act of their own transcription or their 

nascent transcript, (2) those that require the mature transcript but depend on their site of 

transcription, (3) and those that are independent from their site of transcription. Transcripts in the 

first two groups are considered as acting in cis, as they act at their site of transcription, while the 

third act in trans.  Here, I will briefly survey the main mechanistic themes that were 

demonstrated through studies of specific examples to date. As all three mechanisms can affect 

the same type of process (e.g. epigenetic regulation), I will discuss these examples by the main 

processes lncRNAs were demonstrated to affect. For a more comprehensive surveys please refer 

to [106, 129-131]. 

 

lncRNAs as epigenetic modulators 

 

The first mechanistic themes of lncRNAs function were discovered through early studies of 

XIST that was shown to coat the inactive X allele from which it was also transcribed, as well as 

affect its chromatin state [131, 132]. In addition, early work demonstrated that single stranded 

RNA (ssRNA) is required for heterochromatin formation mediated by the repressive chromatin 

modifying complex HP1 [133]. Members of the Polycomb family of chromatin modifiers were 

shown to bind ssRNA, and ssRNA but not ssDNA was required for the maintenance of the 

repressive histone modification H3K27me3 and H3K9me3 controlled by these modifiers [134]. 

This and the lack of a definitive consensus Polycomb binding sequence in mammals, akin to the 

Polycomb response elements in fruit flies [135], supported the hypothesis that Polycomb 

recruitment in mammals might be directed by RNA [136, 137]. Taken together these studies 
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suggested that other lncRNAs are involved in epigenetic regulation, and perhaps guided the next 

early studies to investigate lncRNA function from that perspective [129]. 

 

HOTAIR from the HOXC cluster, which represses HOXD genes and affects their repressed 

chromatin state, was the first lncRNA shown to bind the Polycmb repressive complex PRC2 

[42]. This pioneering work introduced the idea that a lncRNA can be involved in epigenetic 

regulation while acting in trans. Soon after, the mechanistic aspects of an RNA’s effect on PRC2 

activity started to be uncovered, when Xist and its short isoform repeat A (RepA) were also 

shown to bind PRC2 [138]. 

 

A current working model suggests that in the initiation of XIC, RepA is first transcribed from the 

Xist first exon, recruits PRC2 to the Xist promoter and induces its transcription [132, 138]. Full 

length Xist then binds PRC2 through its repeat A and recruits it to the rest of the inactive X 

chromosome. The RepA/Xist PRC2 interaction can be competitively inhibited by the binding of 

antisense transcript Tsix to PRC2, as happens on the active X. The spreading of the Xist-PRC2 

complex across the XI involves the binding of Xist through its repetitive binding domain RepC 

to another polycomb protein YY1 that tethers Xist co-transcriptionally to a ‘nucleation center’ in 

the XI [139]. The following spreading to the distal regions is then midiated by the 3 dimensional 

conformation of the genome that brings secondary nucleation centers in proximity to the primary 

one and enable the deposition of PRC2 along the XI [140].   

 

Notably, several steps of this model are still debated, as some of studies in-vivo and in human 

systems describe different behaviors of Xist, RepA and their recruitment of PRC2 [131, 141]. 

For example, using mouse genetics it was shown that while not being able to repress the XI, 

XIST can still associate with chromatin and spread when the RepA repeat is deleted (which is 

not consistent with the necessity of RepA for loading) [142]. Indeed, the large body of work that 

investigates “the mother of all lncRNAs” over two decades tells that deciphering the mechanism 

of one lncRNA may be very puzzling. 

 

lncRNAs were reported to bind many other types of chromatin modifiers, including activating 

modifiers, and were shown to affect their activity based on the fact that a knockdown of the 
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lncRNA had a negative effect on the binding of a chromatin modulator or the deposition of the 

corresponding chromatin mark on a target locus. These lncRNA-chromatin modulator pairs 

include: Air and G9a [143], ANRIL and CBX7 [144], Anril and Suz12 [145], Mistral and MLL1 

[146], HOTAIR and the LSD1/CoREST/REST complex [147], HOTTIP and WDR5 [148], and a 

few activating lncRNAs with Mediator [149]. Other interactions were reported between 

Kcnq1ot1 and G9a and PRC2 [150], SRA RNA with CTCF [151] as well as interactions of 30% 

of expressed mouse embryonic stem cells (mES) lincRNA with at least one of 11 chromatin 

modifiers [63]. Large scale and genome wide studies further showed that numerous lncRNAs 

bind PRC2 and other repressive modifiers [62, 152, 153]. However, the extent to which many of 

these RNA-protein interactions are direct and specific is still controversial [141, 154].   

 

One suggestive model for the involvement of lncRNAs in chromatin state regulation is that 

lncRNAs provide target specificity to the unspecific and ubiquitous chromatin modifiers by 

binding them and recruiting them to their target genomic loci (Figure 1.4) [129]. This target 

recognition may either be primarily encoded in the primary RNA sequence, that can base pair or 

form a triplex with the targeted DNA, or on features of the RNA secondary or tertiary structure. 

The chromatin state regulation model is specifically appealing if lncRNAs are acting in 

proximity to their site of transcription as it provides a possible explanation for how the target 

DNA is being recognized by the non-specific chromatin modulators (for example by the nascent 

transcript tethering the modifying complex as happens in fission yeast [155]). 

 

In principle, lncRNAs can also guide chromatin modifiers to distal targets through indirect 

interactions such as base pairing with nascent transcripts or binding to DNA-binding proteins 

(Figure 1.4) [107]. Indeed, these are concordant with a broader model that suggests that lncRNA 

can act as molecular scaffolds that bring into proximity several components to form a unique 

functional complex by their binding to distinct domains on the RNA (Figure 1.4) [156, 157]. 

This model is also consistent with a patchy conservation pattern of lncRNAs [83, 110] (discussed 

in Section 1.4), as domains across the molecules can in principle be swapped, while preserving 

function. This model was proposed to describe yeast telomerase RNA, when it was shown that 

protein binding domains can be moved to three distinct locations on the RNA with retention of 

telomerase function in vivo [157]. More recent studies propose that the cis and trans model can 
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be reconciled, by showing that some lincRNAs use the three dimensional structure of the 

genome to bring distal sites and on other chromosomes into proximity [140, 158]. These studies 

show that the trans sites (i.e. not in the locus transcribing the lncRNA) bound by the lncRNA are 

in fact proximal to the transcribing locus as demonstrated by genome-wide chromosome 

conformation capture (Hi-C) [140, 159] or by RNA-FISH [158].     

 

lincRNAs as transcriptional regulators 

 

In addition to regulating gene expression by interacting with epigenetic factors, lncRNAs can 

influence transcription directly. Models have been proposed for how lncRNAs can prevent 

transcription factors (TFs) from binding to their DNA targets, including:  (1) by acting as decoys 

of the DNA binding element and binding the DNA binding domain of the TF directly thus 

sequestering it from its targets (Figure 1.4), or (2) competitively inhibiting the TF by binding the 

targeted DNA elements [106]. The first model was proposed to explain how the binding of 

lncRNA GAS5 to Glucocorticoid Receptors prevents them from binding their responsive genes 

[160], and how the lncRNA PANDA which binds the TF NF-YA sequesters it away of its pro-

apoptotic targets [161]. This model is also demonstrated in the case of the cytoplasmic lncRNA 

NRON that binds the TF NFAT and retains it in a cytoplasmic ribonucleic complex. This 

complex in turn induces NFAT’s phosphorylated form thus preventing it from shuttling into the 

nucleus (as only the un-phosphorylated form is imported to the nucleus) [40, 162]. 

 

lncRNAs can also directly interfere with the activity of RNA-Polymerase II (Pol II). This was 

demonstrated by studies showing that RNA transcribed from a SINE family of transposable 

element, and in specific Alu elements in humans and B2 elements in mouse, can act in trans 

during a heat shock response and bind Pol II. This prevents the formation of the pre initiation 

complex at promoters thus making it transcriptionally inert [163, 164] [165].  lncRNAs can also 

act as co-activators [166] or co-repressors [167]. For example, the SRA RNA is a bi-functional 

transcript (i.e. has a ncRNA isoform and a protein coding mRNA) that serves as a co-activator of 

a number of steroid hormone receptors and is present in co-regulator ribonucleoprotein 

complexes [166, 168]. 
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lncRNAs as post transcriptional regulators 

 

Being a key and dynamic organelle the nucleus includes several membraneless compartments, 

commonly referred to as nuclear bodies. These nuclear-bodies were implicated in a variety of 

functions, including: sequestration and modification of proteins, RNA processing, 

ribonucleoprotein complex assembly, as well as epigenetic regulation [169]. Localization to such 

nuclear bodies is perhaps the most prominent feature of the highly abundant and early discovered 

lncRNAs NEAT1 and NEAT2 (MALAT1) [170]. 

 

NEAT1 interacts with paraspeckles proteins such as p54/NONO and PSP and is required for the 

formation and stability of paraspeckles [171-174], nuclear bodies involved in the retention of 

mRNAs that undergo Adenosine-to-Inosine editing, possibly by relying on NEAT1’s continued 

transcription [175]. MALAT1, neighboring NEAT1, localizes to nuclear speckles, and is 

involved in regulation of context specific alternative splicing by binding and distributing 

serine/arginine (SR) splicing factors to transcription sites and by regulating their phosphorylation 

[176].  

 

Malat1 and another lncRNA Tug1 were also shown to participate in trafficking genes between 

silencing (Polycomb bodies) and activating (interchromatin granules) nuclear compartments by 

binding to the PRC1 component Cbx4/Pc2 in its un-methylated or methylated forms, 

respectively [177]. In addition, Xist and Kcnq1ot1 were shown to localize their targets, the XI 

and Kcnq1ot1 imprinted domain to the perinucleolar compartment to maintain their silencing 

[150, 178]. Taken together, lncRNAs can regulate the localization of genes and proteins to 

specific compartments. Yet, it should be noted that the given examples are of lncRNAs that are 

an order of magnitude more expressed than the average lncRNA and therefore involvement in 

such global processes may be less common among lowly expressed lncRNAs. 

 

As with other RNA such as small RNAs, lncRNA can regulate mRNA processing and stability 

by base pairing recognition. Alternative splicing may be regulated by transcription of antisense 

transcripts such as NATs that bind to a complementary sense strand to form a duplex and mask a 

splice site [91]. lncRNAs can also affect splicing by binding components of the splicing 
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machinery and hindering spliceosome formation, as in the case of MIAT that sequesters the 

splicing factor SF1 [179] .  

 

lncRNA can also be involved in the destabilization of mRNAs in the cytoplasm. One such 

example are the half-STAU1-binding site RNAs (1/2 sbsRNA) that are lncRNAs containing 

complementary Alu elements that base pair with Alu elements on the 3’ UTRs of mRNAs targets 

of a decay process mediated by STAU1 and are necessary for the process [180]. lncRNAs were 

also described as repressing microRNA function, either by binding to the mRNA target and 

masking the microRNA binding site [91], or by binding the microRNA itself and sequestering it 

from its targets, as has been proposed for a number of expressed pseudogenes and competing 

endogenous RNAs [181, 182].  While the expression levels of pseudogenes is relatively low in 

order to have a fine tuning regulatory effect on microRNA regulation [183], such a role of a 

‘microRNA sponge’ was suggested as more plausible for the thousands of recently discovered 

circular mRNAs which are highly expressed in the cytoplasm and are more resistant to 

degradation due to their circular form [184, 185]. 

 

 

 

Figure 1.4| Models for lncRNA mechanisms. Adapted with permission from Rinn and Chang[129].(a) 

lncRNAs can act as decoys that titer a protein (e.g. a transcription factor) away from binding its target 

(e.g. DNA binding site). (b) lncRNAs can act as scaffolds that bring several protein complexes into 

proximity. (c) lncRNA can act as guides that bring a protein complex to its target DNA site. The lncRNA 

can bund the DNA directly or bind an adaptor that specifically binds the target site. lncRNA (red), DNA 

(gray helix), proteins (blue/green). 
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1.5 Challenges in studying lncRNAs  

 

After providing an historical view of the “birth” of the lncRNA field, how were they cataloged 

initially and some of their suggested mechanisms of their action, I will now summarize the key 

areas of discussion and investigation with respect to lncRNAs as a functional class. While some 

points may seem obscure, these have been guiding the focus on how lncRNAs’ functions are 

being investigated by the wide community. 

 

Many lncRNAs have low abundance.  While the most well-studied lncRNAs are substantially 

expressed, the vast majority of lncRNAs have low abundance (on average approximately an 

order of magnitude less than coding genes, [100]). This poses a challenge to models suggesting 

that lncRNAs can act as trans guides of chromatin modifiers to their targets or as competitors of 

microRNA targets, as it is unclear how their low concentration will be sufficient to find their 

binding partner and impose a real effect from a stoichiometric perspective. A reconciling 

hypothesis suggests that lincRNAs expression only appears low when measured in bulk and that 

there is actually substantial expression in a sub population of cells [186]. Alternatively, a model 

in which many of the low abundance lncRNAs work in cis near their site of transcription may 

explain how a transcript can pursue its function and find its interacting partners, while having 

only one or few copies per cell. One such example is the lincRNA HOTTIP that transcribed at 1-

5 copies per cell and regulates the chromatin state of its nearby loci [148]. Moreover, a 

seemingly trans effect may be in fact activity proximal to the transcription site if three 

dimensional chromosome architecture is taken into consideration. This model was suggested to 

explain previous observations on XIST [140] and the lncRNA FIRRE [158]. 

 

Evolutionary conservation. The second common concern that dismisses lncRNAs as a 

functional class is that unlike other types of functional RNA (e.g. tRNA, rRNA, snoRNA, 

microRNA) they demonstrate low rate of cross-species conservation.  Yet, multiple studies on 

the subsets of lncRAs that resemble mRNA (i.e. capped, poly adenylated and spliced) found  

evidence of purifying selection acting on lncRNAs exons and promoters relative to a neutral 

substitution rate [58, 70, 117]. The extent of this conservation was debated for some time [71], 

but overall it suggested these subsets included functional molecules.  Later analysis of 
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lincRNAs’ exons showed that their overall conservation rates mostly relied on short patches of 

conserved sequence [83].  

 

With the growing availability of lncRNA catalogs across species this focus shifted with the 

realization that a very small fraction of the lncRNA transcripts in one species have a transcribed 

orthologous transcript in another species [100, 110, 187]. Since BLAST is not sensitive enough 

to detect homology between lncRNAs [107], we and others have used syntenic mapping to map 

corresponding loci between genomes of two species based on conserved gene order (synteny). 

While the level of sequence homology was relatively low, the existence of syntenic orthologs has 

been demonstrated to be a useful criterion to prioritize candidates for functional studies [158, 

188]  and was demonstrated as a successful criterion in discovering functional lincRNAs with 

conserved function in-vivo from zebrafish to mammals [110] . 

 

One possible explanation of the overall low conservation of lncRNAs, is that the studied sets are 

burdened by a large fraction of non-functional transcripts. Alternatively, lncRNA might be under 

pressure to conserve structure rather than sequence and current methods used to evaluate their 

conservation are not tailored to detect such constraints as they focus on primary sequence 

similarity. Even the functional and conserved repeats within XIST are interspersed within poorly 

conserved sequence, resulting in overall low conservation scores [189]. Overall, future 

understanding of the selective pressures acting on lncRNAs will enable the development of 

methods to estimate conservation levels that are tailored for this gene type, and those in turn will 

provide a better understanding on how lncRNAs evolve.   

 

Cis vs. trans activity.  As noted above, an early debate was on whether most functional lncRNA 

are acting in cis or trans [190]. While most other class of RNA (e.g. TERC, snoRNAs, RnaseP, 

microRNA etc’) act in trans, the early examples of XIST and other lncRNAs involved in 

imprinting repeatedly demonstrated activity in cis, that is, in proximal to their transcription site. 

This and other characteristics noted above supported the idea that many other lincRNAs are also 

acting in cis. While several studies tried to address this [117, 191] to conclusively distinguish 

between the two, it is necessary to apply both loss-of-function and rescue gain-of-function 

perturbations. Other approaches such as single molecule imaging [192] and chromatin 
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localization of RNA [140, 193, 194] can also be revealing  as they can provide information for 

where the transcript is localized relative to its site of transcription and therefore guide following 

studies (as in [139, 158, 195, 196]).  

 

Act of transcription or functional molecules? Another debate that relates to lncRNAs being 

low abundant and lowly conserved is the possibility that the act of transcription rather than the 

transcript itself serves as the functional unit. This is also consistent with the high number of 

isoforms observed for some of these transcripts. To distinguish between the two possibilities one 

may show that hindering the mature transcript (such as inserting transcription termination signal 

downstream to the promoter as in [197]) while maintaining transcription has a phenotypic 

outcome, or by showing that a genetic perturbation can be rescued in trans by a transgene [198].  

 

Sub-cellular localization of lncRNAs.  It is currently not settled whether lncRNAs are primarily 

localized to the nucleus or cytoplasm [107, 118]. Localization of their majority to the nucleus 

may relax the concerns that many of these encode peptides or newly evolving protein coding 

genes [199, 200] . RNA-Seq from specific cellular fractions (e.g., nuclear, cytoplasmic, 

chromatin) was previously used to approach this question, however, since this data provide 

enrichments relative to different population of RNA in each fraction it cannot be interpreted 

conclusively [107, 118]. One possibility to resolve this is by using single molecule RNA-FISH 

that provides absolute rather than relative estimates of counts.  

  

Newly evolving protein coding gene?  Recent application of ribosome profiling, an assay in 

which the RNA sequences bound and protected by ribosomes is isolated and sequenced by RNA-

Seq, suggest that some of the currently annotated lncRNAs may encode small peptides and 

newly evolving proteins [199, 200] . Specifically, one study suggested that a large fraction on 

mES lincRNAs are bound by the ribosome and are perhaps coding. However, this should be 

interpreted with care as only ~20% of mES were abundant enough to be evaluated in this study, 

and since both H19 and MALAT1, well studied lnRNAs that function in the nucleus, were also 

detected on the ribosome. lncRNAs may bind ribosomes either purposely to regulate translation 

activity, or accidently as they contain all the recognition features of mRNAs. They can even 

encode a peptide that may not be functional. Alternatively, some may encode small functional 
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peptides [128]. Yet, in a collaboration with the Saghatelian lab we evaluated proteomics data 

enriched for small peptides from K562 cells, which suggested that less than 0.5% of lincRNAs 

expressed in that cell may encode peptides [201]. Overall, it seems that ribosome profiling can 

be useful for the task of noncoding classification only when coupled to the proper computational 

analysis [202, 203] or when accounting for codon periodicity [204].    

     

Are lncRNA essential genes?  Only recently, the function of several lncRNAs was evaluated by 

classic genetic knockout studies using animal models. Surprisingly, neither knockout of 

MALAT1 nor NEAT1, two of the most highly abundant and functionally characterized 

lncRNAs, appeared to have a distinguishing robust phenotype in mice [205, 206].  However, 

other studies showed that the loss of each of 15 different lncRNAs can cause developmental 

defects in either zebrafish, chicken or mouse (reviewed at [130]), including a recent study of 18 

lincRNA knockout mice, three of which (~13%) were required for proper development or life 

[207].  
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1.6 Single molecule imaging as a tool for studying lncRNAs’ function 

 

Single molecule RNA-FISH 

 

Our current understanding of lncRNAs expression mostly relies on high-throughput bulk 

measurements using microarrays technologies or cDNA sequencing. More recently, single cell 

polymerase chain reaction (PCR) based measurements and single cell RNA-Seq provide the 

opportunity to explore the population heterogeneity of individual transcripts [208]. These 

methods, however, still suffer from low sensitivity in targeting low abundance transcripts such as 

lncRNAs [209]. Single molecule RNA fluorescent in situ hybridization (FISH) provides an 

alternative in which one can simultaneously obtain single cell quantitative and spatial 

measurements of a transcript [192].  

 

RNA FISH is an imaging based technique to detect and localize single RNA transcripts in fixed 

cells based on the Watson-Crick hybridization of complementary nucleic acid labeled probes 

[210]. First, cells are fixed and permeabilized, then soaked with an excess of labeled probe(s) 

targeting the transcript of interest, unbound probes are then washed away, and cells are imaged. 

RNA-FISH protocols mostly differ in the nucleic acid used to generate probes and the type of 

labeling scheme used to detect the probe via microscopy. The development of florescence based 

techniques for probe labeling [211, 212] was a significant advancement to the original in situ 

hybridization (ISH) methods that targeted DNA  [213] and RNA [214] using radioactively 

labeled probes. In traditional FISH, fluorophores are coupled to oligonucleotides by enzymatic 

means such as nick translation or in-vitro transcription [215] which result in a random 

distribution of the fluorescent dye along the probe. While eliminating the challenges in the 

handling and the stability of radioactively labeled probes, traditional FISH methods still suffer 

from low spatial resolution due to cellular auto fluorescence as well as low consistency of 

labeling across experiments and do not provide single molecule resolution [192, 210].  

 

Improvements in probe designs, imaging technology and image processing software enabled the 

development of single molecule RNA-FISH (smRNA-FISH) [216, 217]. The key improvement 

was the replacement of a single randomly labeled long probe with a set of consistently labeled 



28 
 

short probes (first with a few 50 pb probes labeled with 3-5 fluorophores [216], and later with 

32-48 single label 20bp probes [217]). The binding of multiple probes localizes a sufficient 

number of fluorophores to the target RNA such that a single RNA molecule is reliably visible as 

a fluorescent spot via fluorescent microscopy [216, 217]. This provides higher sensitivity as it is 

unlikely that all of the oligonucleotides target inaccessible regions of the transcript. Using 

multiple short probes also provide higher specificity since off-target binding of a single 

oligonucleotide in the probe pool will either be undetectable or clearly distinguishable relative to 

brighter spots corresponding to the true RNA [217].   

 

Current methods for RNA-FISH can be broadly divided to two main classes: those which 

measure the signal directly and those which rely on signal amplification. In the direct methods 

the probe itself is labeled [216, 217].  These direct methods face specificity challenges when the 

target is too short as well as a limitation of low signal when the total number of targeting 

fluorophores is small. Later methods try to improve low signal by using more stable 

oligonucleotides or signal amplification strategies [218-220].  

 

To increase target specificity, a recent approach uses branched DNA (bDNA) technology to 

enhance sm-FISH [221]. In bDNA smRNA-FISH, signal is detected and amplified only when a 

pair of consecutive oligonucleotides binds the target of interest thus eliminating the possibility of 

signal detected from a single or few non-paired oligonucleotides binding to an off-target. In 

brief, primary pairs of unlabeled oligonucleotides bind the target, a long preamplifier DNA 

molecule binds such pairs and serves as a trunk to which several fluorescently labeled amplifier 

probes bind. The bDNA smRNA-FISH multi-step protocol was recently compared [221] to the 

traditional smRNA-FISH [216] and was shown to significantly enhance the signal-to-noise ratio 

resulting with clearer signal with similar detection accuracy [221]. While offering significant 

advancement in automated high-throughput and image analysis in the same levels of accuracy, 

sm-bDNA FISH still suffers from limited detection of nuclear transcripts (due to low yield in 

entrance of the long (>100bp) trunk probes to the nucleus)  and its current state offers only 

simultaneous imaging of four different RNA molecules [221]. 
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Other recent variations of smRNA-FISH use combinatorial labeling of the probe directly to 

detect multiple transcripts at a time. These include iceFISH which detects up to 20 transcripts at 

a time and was used to measure gene expression and chromosome structure at once [222] as well 

as the coupling of smRNA-FISH with optical super-resolution microscopy (SRM) to detect and 

measure up to 32 genes simultaneously [223]. Another finer resolution approach is SNP-FISH 

which can detect a specific allele by coupling simultaneous imaging of multiple fluorescent dyes 

with image analysis of co-localized spots [224]. Taken together, these advances are poising 

smRNA-FISH to become a high-throughput tool to study gene expression in a single cell with 

spatial resolution.  

 

RNA-FISH: a tool for understanding lncRNA functions 

 

One area of research that is less explored is the application of smRNA-FISH to detect less 

abundant transcripts such lncRNAs. Indeed, RNA-FISH was instrumental in detecting the more 

abundant and well-studied lncRNAs, including XIST, MALAT1, NEAT1, MIAT, and GAS5, 

uncovering their unique cellular localization patterns and deciphering their interaction with other 

molecules and its effect on their localization [160, 170, 225, 226]. Offering higher resolution and 

sensitivity smRNA-FISH was also applied to detect low abundance lncRNAs [62, 158, 195, 196, 

227-230] as well as to estimate the population abundance of lncRNAs that are expressed on 

average at one or less copies per cell (as in HOTTIP [148]).  

 

Besides the detection of individual molecules, sm-FISH can be used to address broader open 

questions in a systems level. Specifically, if applied to a large and representative set of lncRNAs 

it can in principle: (1) uncover their cellular localization patterns and reveal common themes, (2) 

provide an absolute measure to whether lncRNAs are predominantly in the nucleus, an open 

question that was so far addressed only by relative measurements of RNA-Seq on cellular 

compartments [118], (3) reveal localization patterns during specific cell states such as mitosis, or 

in response to perturbation, (4) illuminate on the interaction of lncRNAs with their neighboring 

gene by detecting them simultaneously. 
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Simultaneous analysis of lincRNAs and other molecules may help address the on-going debate 

of whether lncRNAs that appear to be involved in epigenetic regulation (based on their 

interaction with chromatin modifiers) are acting in cis or in trans. Indeed, using multi-color 

smRNA- FISH, perturbations and single cell correlation analysis, lincHox-a1 was recently 

shown to repress its neighbor Hoxa1 in cis [196]. Moreover, using perturbation and RNA-FISH, 

Jpx, a neighbor of Xist, was shown to activate Xist expression, surprisingly, in trans [195].  

 

Taken together sm-FISH has a great potential to advance studies of lncRNAs biology, especially 

in the early steps of investigating a new gene. Yet, it is still not routinely applied to study new 

lncRNA and a comprehensive survey of the cellular patterns of lncRNAs is still not available.    
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1.7 Research objectives 

 

Application of emerging technologies has a great impact on the discovery and understanding of 

lncRNAs biology. In this thesis I present two studies in which I applied an emerging technology 

for the first time to systematically study human lncRNAs and addressed a key need by our 

community at a given time. I have the following specific objectives: 

 

1. Annotate, characterize and catalog human lincRNAs using a large compendium of RNA-

Seq. In chapter 2 I describe my work to develop and apply an integrative approach to annotate 

over 8000 lincRNAs using ab initio transcript reconstruction from RNA-Seq of 20 different 

tissue and cell types. I then cataloged and characterized these lincRNAs by over 30 properties, 

revealing their striking tissue specificity and additional traits.  

 

2. Characterize the localization patterns and cell-to-cell variability of human lncRNAs in a 

single cell and single molecule resolution using smRNA-FISH.  In chapter 3 I describe my 

work in which I used smRNA-FISH to survey 61 lncRNAs and catalog their abundance and 

cellular localization patterns in three human cell types. This reveals diverse localization patterns 

of lncRNAs as well as a bias toward nuclear localization. In addition, this highlighted the 

challenges with applying this technology on the specific class of lncRNA and presented a 

strategy to approach these challenges. 
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Abstract 

Large intergenic non-coding RNAs (lincRNAs) are emerging as key regulators of diverse 

cellular processes. Determining the function of individual lincRNAs remains a challenge. Recent 

advances in RNA sequencing (RNA-Seq) and computational methods allow for an 

unprecedented analysis of such transcripts. Here, we present an integrative approach to define a 

reference catalogue of over 8,000 human lincRNAs. Our catalogue unifies previously existing 

annotation sources with transcripts we assembled from RNA-Seq data collected from ~4 billion 

RNA-Seq reads across 24 tissues and cell types.  We characterize each lincRNA by a panorama 

of more than 30 properties, including sequence, structural, transcriptional, and orthology 

features. We find that lincRNA expression is strikingly tissue specific compared to coding genes, 

and that they are typically co-expressed with their neighboring genes, albeit to a similar extent to 

that of pairs of neighboring protein-coding genes. We distinguish an additional sub-set of 

transcripts that have high evolutionary conservation but may include short open reading frames, 

and may serve either as lincRNAs or as small peptides. Our integrated, comprehensive, yet 

conservative reference catalogue of human lincRNAs reveals the global properties of lincRNAs 

and will facilitate experimental studies and further functional classification of these genes.  

 

Authors’ contributions 

MNC, AR and JLR designed the study. MNC performed the analysis with the help of CT and LG 

and with the guidance of AR and JLR. CT and LG introduced the tissue specificity score. LG, 

MK and BTV performed experiments. MNC wrote the manuscript and all authors reviewed and 

revised it.  
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2.1 Introduction 

 

A few dozen long non-coding RNAs (lncRNA) are known to play important regulatory roles in 

diverse processes, such as X-inactivation (XIST) [2], imprinting (H19; Kcnq1ot1) [3, 4], and 

development (HOTAIR, COLDAIR) [5, 6]. Recent genomic studies have shown that a substantial 

portion of the mammalian genome may be transcribed [7], suggesting the presence of many more 

non-coding transcripts, and spurring efforts to catalogue them [7, 8], using data collected with 

tiling microarrays [9, 10], shotgun sequencing of expressed sequence tags (ESTs) and cloned 

cDNA [7, 11], and maps of histone modification patterns [12]. In particular, recent studies have 

focused on large intergenic non-coding RNAs (lincRNAs) [12-15], which do not overlap 

annotated protein-coding regions, as this facilitates experimental manipulation and 

computational analysis.  

 

Recent work has suggested various functions and molecular mechanisms for lincRNAs [16, 17], 

including the regulation of epigenetic marks and gene expression [2, 4, 5, 14, 18-20].  Other 

studies have inferred and tested the functional role of lincRNAs in processes such as 

pluripotency and p53 response pathways, by associating the expression of lincRNAs to those of 

protein-coding genes [12, 21-23] .  More globally, a recent comprehensive screen identified 

dozens of lincRNAs required to maintain pluripotency and suggested that these lincRNAs work 

in trans [24]. Another class of ‘enhancer RNAs’ may be either by-products of transcription [25, 

26] or serve to activate gene expression in cis [15, 27].  Despite these intriguing studies of 

individual lincRNAs, generalizing these findings to thousands of lincRNAs remains a substantial 

challenge. Collectively, lincRNAs are likely to reflect different families with distinct roles.  

 

A first requirement towards functional categorization is a systematic catalogue of lincRNAs 

transcripts and their expression across tissues. In practice, however, researchers studying human 

lincRNAs are faced with an excessive set of non-coding transcripts of varying or unknown 

reliability, which may be not-well-defined [14] and have little or no expression data [8], or with 

very small sets of experimentally-validated ones [28].  Transcripts in current annotations of the 

human transcriptome from the GENCODE/ HAVANA [8] or UCSC Genome Browser [29] are 
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valuable resources, but, it is hard to evaluate their biological characteristics in the absence of 

expression levels and further processing. 

 

Recent advances in RNA-Seq [30] and computational methods for transcriptome reconstruction 

[31-33] now provide an opportunity to comprehensively annotate and characterize lincRNA 

transcripts. Indeed, an initial application of this approach in three mouse cell types characterized 

the gene-structure of over a thousand mouse lincRNAs, most of which were not previously 

identified [31].   

  

Here, we present an integrative approach to define a reference set of lincRNAs that unifies 

existing annotation sources with transcripts reconstructed from over 4 billion RNA-Seq reads 

collected across 24 human tissues and cell types. We developed a conservative, broadly-

applicable, pipeline to identify transcripts that are sufficiently expressed and have a negligible 

potential to encode proteins. We identified 8,195 putative lincRNAs, of which 4,662 (57%) form 

a ‘stringent’ set. We characterized each lincRNA in the catalogue by a panorama of structural, 

sequence and expression features, as an initial step towards fine categorization.  

 

We used these features to test some of the proposed roles and characteristics of lincRNAs in a 

global and systematic way. For example, we find that lincRNAs – at all expression levels – are 

expressed in a highly tissue specific manner, much more so than protein coding genes. We 

observe no significant enrichment of correlated co-expression between lincRNAs and their 

neighboring genes beyond that expected for any two neighboring protein-coding genes. We 

identified expressed orthologous transcripts in another vertebrate species for 993 (12%) of 

human lincRNAs. An additional set of 2,305 other transcripts with high evolutionary 

conservation but ambiguous coding potential may function as non-coding RNAs or as small 

peptides. Finally, we highlight 414 lincRNAs that reside within intergenic regions previously 

associated with specific diseases/traits by genome wide association studies, as candidates for 

future disease-focused studies. Our reference catalogue will facilitate future experimental and 

computational studies to uncover lincRNA functions.  
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2.2 Results 

 

A computational approach for comprehensive annotation of lincRNAs  

 

To comprehensively identify human lincRNAs we developed a computational approach that 

integrates RNA-Seq data with available annotation resources (Figure 2.1a) and consists of 4 key 

steps (2.4 Methods). (1) transcriptome reconstruction of each sample from RNA-Seq data using 

two transcript assemblers, Cufflinks [32] and Scripture [31]; (2) compilation of all non-coding 

and unclassified transcripts previously annotated; (3) integration of RNA-Seq reconstructions 

with all annotation resources, using Cuffcompare [32], to determine a unique set of isoforms for 

each transcript locus; and (4) processing of the collected transcripts to identify lincRNAs, 

defined as transcripts that are reliably expressed, large, multi-exonic, non-coding and intergenic.  

 

There are two main challenges in applying this integrative approach to annotate lincRNA gene 

loci: (i) distinguishing lowly expressed lincRNAs [31] from the tens of thousands of lowly 

expressed, single-exon, unreliable fragments assembled from RNA-Seq; and (ii) distinguishing 

novel transcripts encoding proteins or short peptides from bona fide non-coding ones. To address 

the first challenge, we remove unreliable lowly expressed transcripts using a learned read 

coverage threshold (2.4 Methods) and focus only on multi-exonic transcripts.  To address the 

second challenge, we evaluated the coding potential of each of the remaining putative lincRNAs 

using two methods. First, we removed any putative open reading frames (ORFs) that are 

evolutionarily constrained to preserve synonymous amino-acid content, as reflected by a positive 

Phylogenetic Codon Substitution Frequency (PhyloCSF) metric [34], calculated for each locus 

across 29 mammals (2.4 Methods). Second, we scanned each transcript, in all three reading 

frames, to exclude transcripts that encode any of the 31,912 protein domains cataloged in the 

protein family database Pfam [35].  

 

An annotated human lincRNA catalogue 

 

To generate a human lincRNA catalogue, we applied our pipeline to poly adenylated RNA-Seq 

data collected from 24 human tissues and cell lines. These included both single- and paired- end 
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reads that are 50 or 75 bases long, sequenced on Illumina platforms (~4 billion reads total; ~175 

million reads per sample on average; 2.4 Methods). We integrated those with annotations from 

RefSeq [36], the UCSC Genome Browser [29], and GENCODE (version 4) [8] that were 

processed through our pipeline. We eliminated all annotated non-lincRNA transcripts (e.g., 

annotated protein-coding genes, microRNAs, tRNAs, pseudogenes). 

 

The initial catalogue consists of a provisional set of 8,195 intergenic transcripts (Figure 2.1b). 

Although many of the previously annotated transcripts are also captured by the ones assembled 

from the sequencing data (Figure 2.1b-c, 1,864 lincRNAs identified by both), most (4,816) 

novel lincRNAs were only identified using RNA-Seq. Based on the three samples for which we 

had 2 biological replicates (brain, testes and lung fibroblasts), the reconstructed transcripts are 

highly reproducible: 70%-80% of assembled transcripts in the lower-coverage replicate are also 

assembled in the higher-coverage replicate (Supplementary Table 1.1; 2.4 Methods).  

 

Despite the high correspondence between protein-coding transcripts reconstructed by Cufflinks 

and Scripture (~85% of coding genes; 2.4 Methods; Supplementary Figure 1.1a), there were 

larger differences between the non-coding transcripts assembled by the two methods, due to the 

differences in how each assembler reconstructs low-abundance transcripts (Supplementary 

Figure 1.1.1b, ~43% of the putative lincRNAs were identified by only one source ). This is 

comparable to previously observed discrepancies in reconstruction of lowly-expressed protein 

coding genes (Garber et al. 2011) and is handled below.   

 

We annotated each putative lincRNA in the provisional catalogue with a comprehensive ‘profile’ 

listing dozens of traits such as its chromatin state, maximal expression level, proximity to coding 

genes, and evolutionary conservation (2.4 Methods, Supplementary Dataset 1-2). Below, we 

use these features to define particular criteria by which we focus our analysis. Future users may 

leverage the annotated catalogue through criteria of their choosing.  
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Figure 2.1|  LincRNA catalog generation. (a) An integrative computational pipeline to map, reconstruct 

and determine the coding potential of lincRNAs based on known annotations and computational methods 

and its application to human lincRNAs. The pipeline takes as input RNA seq data (top, red) and existing 

annotation sources (top, RefSeq NR, Gencode and UCSC annotation for human). RNA-Seq data is 

assembled by two assemblers – Cufflinks (gold) and Scripture (blue). Transcripts from all inputs are 

filtered by known annotations, presence of a Pfam domain, and positive coding potential. Transcripts 

annotated by RefSeq NR (*) where not filtered by the Pfam domain scan and the coding potential score. 

Finally, only multi-exonic transcripts larger than 200 base pairs (bp) are retained. (b) The number of 

lincRNA loci identified and their overlap with other annotation sources. The Venn diagram shows the 

overlap between transcripts from RNA-Seq assembly (red), GENCODE and UCSC (purple) and Refseq 

(green). (c) A representative example of a noncoding transcript that was reconstructed by Cufflinks and 

Scripture and was also curated in GENCODE and UCSC. Top: the human genomic locus of the human 

lincRNAs (red) and its protein-coding neighbors (black, arrowhead: direction of transcription). Bottom: 

magnified view of the lincRNA locus showing the coverage of RNA-Seq reads from the testes (red) and 

the transcripts identified by each source (black). Abbreviations: iso = isoform.   

 

A stringent set of 4,662 human lincRNAs 

 

We defined a stringent lincRNA set that includes those loci for which at least one lincRNA 

isoform was reconstructed in at least two different tissues, or by two assemblers in the same 

tissue (2.4 Methods). This leverages the unique benefits of each assembler, while in principle 

removing transcripts with insufficient coverage. The stringent set includes 4,662 lincRNA loci 

(14,353 transcripts), 2,798 of which (~60%) were not identified by RefSeq, UCSC and 

GENCODE.  We focused on the characteristics of this stringent set.  
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LincRNAs are alternatively spliced and preferentially proximal to developmental 

regulators 

 

We characterized the basic features of lincRNAs, comparing them to protein-coding genes, when 

appropriate. First, the size of lincRNAs is smaller than that of protein-coding transcripts and 

they have fewer exons (on average, 2.9 exons and a transcript length of ~1 kilobase (kb) for 

lincRNAs vs. 10.7 exons and ~2.9 kb for protein-coding transcripts; Supplementary Figure 

1.2a-b). Notably, we may under-estimate the length and exons of lincRNAs, since their lower 

abundance may result in incomplete assembly. Second, lincRNAs are alternatively spliced (on 

average, ~2.3 isoforms per lincRNA locus, Supplementary Figure 1.2c). Third, lincRNA loci 

are located from a few bases to over 3 megabase from a protein-coding locus, with 28% within 

10 kb of their coding neighbor (median = ~40 kb; Supplementary Figure 1.2d). Finally, protein 

coding genes proximal (<= 10 kb) to lincRNAs are enriched for those associated with 

development and transcriptional regulation (e.g., GATA2, GZF1, and NEUROG all have 

lincRNA neighbors, Supplementary Figure 1.3), consistent with previous reports [12, 37].  

 

Many lincRNAs are characterized by K4-K36 domains  

 

We next explored the chromatin features of lincRNA loci as reflected in chromatin state maps 

from the 9 ENCODE cell lines and other cells [14, 38]. We examined each locus for the presence 

of a ‘K4-K36 domain’, a chromatin signature of actively transcribed genes, which we previously 

used to identify lincRNAs [12]. This domain consists of histone 3 lysine 4 tri-methylation 

(H3K4me3) at the promoter followed by histone 3 lysine 36 tri-methylation (H3K36me3) along 

the transcribed region. Despite the lack of paired matched samples of histone modifications and 

RNA-Seq, 24% of the lincRNAs in our catalogue have previously-defined chromatin K4-K36 

domains, and ~ 40% have such domains when using less stringent criteria (with the remaining 

exhibiting partial signatures;  Supplementary Figure 1.4, 2.4 Methods).  
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lincRNA genes are no more likely to overlap enhancers than protein coding genes  

 

Recent studies reported short transcripts derived from enhancer elements, termed eRNAs, that 

are most likely not poly-adenylated [25].  While this suggests that eRNAs and lincRNAs come 

from different classes, it is possible that longer poly adenylated transcripts may also be derived  

from enhancer elements, and hence be related to eRNAs. To test this possibility, we examined 

the overlap between lincRNAs’ exons and two recent annotations of human enhancers based on 

genome-wide chromatin state maps. 27% of our lincRNAs and 44% of coding genes overlap 

111,362 genomic regions previously suggested to function as enhancers [38] in 9 ENCODE cell 

lines (each overlap P <0.001, permutation test, 2.4 Methods). When considering a more stringent 

subset of regions that are more likely to function only as enhancers (2.4 Methods), ~10% and 

14% of lincRNAs and coding genes overlap such regions (both P <0.001), respectively. Both 

lincRNAs and protein-coding genes have even lower overlaps (both <3%, P<0.001) to an 

enhancer set from human embryonic stem (ES) cells [39], possibly due to the lack of biological 

correspondence between the cell types and the tissue-specific nature of both lincRNAs and 

enhancers. Notably, this low overlap persists even when comparing more closely matched 

samples. Thus, only 15% of lincRNAs defined in mouse ES cells [31]  overlap enhancers defined 

in mouse ES cells  ([40]; 2.4 Methods), and less than 1% of lincRNA defined in mouse neuronal 

progenitor cells [31] overlap enhancer elements that express eRNAs in mouse cortical neurons 

([25] ; 2.4 Methods). Taken together, this data suggests that lincRNAs and eRNAs  represent 

different subtypes of lncRNAs.   

 

LincRNAs are expressed in a more tissue specific manner than protein coding genes 

 

The maximal expression levels of lincRNAs are lower than those of protein coding genes, across 

the 24 samples (Figure 2.2a), with a ~10-fold lower median maximal expression level (Figure 

2.2b, expression estimated with Cufflinks [32], 2.4 Methods).  Importantly, lincRNAs identified 

by RefSeq annotations were similarly lowly expressed relative to coding genes (~10 fold lower; 

Supplementary Figure 1.5). These lower expression levels are consistent with previous reports 

[31, 41], suggesting a general property of lincRNAs.   
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The vast majority of lincRNAs exhibit tissue specific expression patterns, more so than protein 

coding genes, based on unsupervised clustering of expression profiles (Figure 2.2a).  We further 

calculated a Tissue Specificity Score for each transcript, using an entropy-based metric, which 

relies on Jansen-Shannon (JS) divergence (2.4 Methods). This specificity metric (ranging from 0 

to 1) quantifies the similarity between a transcript’s expression pattern across tissues and another 

predefined pattern that represents the extreme case in which a transcript is expressed only in one 

tissue.   

 

Based on this measure, the majority of lincRNAs (78%) are tissue specific, relative to only ~19% 

of coding genes (P < 10
-300

, Fisher exact test, Figure 2.2c and Supplementary Figure 1.6). 

These differences are not the result of the low expression levels of lincRNAs and hold true for 

lincRNAs and protein coding genes expressed at similar levels (Figure 2.2b-c, Supplementary 

Figure 1.6). This was particularly true for the 35% of more highly expressed lincRNAs (and 

comparably expressed protein coding genes, each with a maximal expression level of 3 to 20 

FPKM (fragments per kilobase of exons per million fragments mapped)). Thus, lincRNAs 

exhibit more tissue specificity than protein coding genes at different expression ranges. 

 

Approximately a third of our lincRNAs are specific to testes. Very few (<2%) of those overlap 

with a previously defined set of testes-specific small piRNAs (~30 nucleotides long, [42]. Thus, 

testes-specific lincRNAs may define a new class of RNAs in this organ. Testes-specific 

lincRNAs do not bias the global transcriptional characteristics above: lincRNAs that are not 

testes-specific are also lowly expressed and tissue specific (presenting a qualitatively similar 

distribution with only moderately reduced tissue specificity scores; Supplementary Figure 1.5 

and 6a).  

 

Finally, we predicted putative functions for our lincRNAs based on the known functions of 

protein-coding genes with similar expression patterns. We clustered lincRNAs and protein-

coding genes using k-means clustering of the tissue specificity distance measure (2.4 Methods), 

and annotated each cluster with enriched functions of the protein-coding gene members. Clusters 

of tissue-specific lincRNAs and protein-coding genes are enriched for processes specific to that 

tissue or its differentiation (e.g: a liver-specific cluster is enriched with functional terms such as 
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cholesterol and lipid transport and homeostasis, Supplementary Figure 1.7, Supplementary 

Dataset 2-3). 

   

 

Figure 2.2| Tissue specificity of lincRNAs and coding genes.  (a) Abundance of 4273 lincRNA (rows, 

left panel) and 28,803 protein-coding genes (rows, right panel) across tissues (columns). Rows and 

columns are ordered based on a k-means clustering of lincRNAs and protein coding genes. Color intensity 

represents the fractional density across the row of log normalized FPKM counts as estimated by Cufflinks 

(saturating less than 4% of the top normalized expression values, 2.4 Methods). (b) lincRNAs are more 

lowly expressed than protein coding genes. Maximal expression abundance (log2 normalized FPKM 

counts as estimated by Cufflinks) of each lincRNA (left panel, blue) and coding (left panel, black) 

transcripts across tissues, Right panel shows the expression levels of 1508 lincRNAs (top right) and 8906 

coding genes (bottom right) that have a maximal expression level within the range bounded by the dashed 

segments on the left panel ([1.6-4.3] log2 FPKM; see 2.4 Methods). Heat maps are clustered and 

visualized as in (a).  (c) Tissue specific expression. Shown are distributions of maximal tissue specificity 

scores calculated for each transcript across the tissues from the data in panel a, for coding genes (black), 

lincRNAs (blue) and the 1508 highly expressed lincRNAs (pink; as in panel b). Examples of the tissue 

specificity score of coding genes with known tissue specific patterns are marked by gray dots. 
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LincRNAs are co-expressed with neighboring coding genes at levels similar to those 

expected for any pair of chromosomal neighbors 

 

The enrichment of specific gene functions in protein-coding genes neighboring lincRNAs and 

the presence of some pairs of neighboring lincRNA:protein-coding genes within expression 

clusters raise the hypothesis that such organization may be important for the regulatory function 

of lincRNAs. In particular, recent studies suggested that some lincRNAs may act in cis and 

affect the gene expression of their chromosomal neighborhood [15, 37].  

 

One expectation from this hypothesis is that the expression of lincRNAs and their neighboring 

gene loci would be correlated across our samples. To test this hypothesis, we focused on the 

expression patterns of 1,361 (28%) of our stringent lincRNAs that are located within 10kb from a 

coding gene. Indeed, these lincRNAs and their coding neighbors were more correlated to each 

other than random gene pairs (P < 5*10
-46

,
 
KS-test; P < 10

-307
, Student t-test, effect size = 0.86; 

Figure 2.3a, 2.4 Methods).  

 

We must interpret this result with care, since the co-expression between a lincRNA and its 

protein-coding neighbor may result from either (i) a true cis effect of lincRNAs on its neighbor, 

or (ii)  proximal transcriptional activity in the surrounding open chromatin [43], since co-

expression of chromosomal protein-coding gene neighbors was previously shown across 

eukaryotes [44, 45]. Supporting the second possibility, pairs of neighboring protein-coding genes 

were also more correlated to each other than random pairs (P < 3.4*10
-159

,
 
 Kolomogorv-Smirnov 

(KS) test ; Figure 2.3a). Furthermore, the correlation between lincRNA:Protein-coding gene 

neighbors was only modestly higher than between Protein-coding gene:Protein-coding gene 

neighbors of a similar distance (effect size = 0.23, P < 4.3*10
-7

,
 
KS-test; P < 6.9*10

-7
, Student t-

test; Figure 2.3a).  

 

To further distinguish between these two possibilities, we focused on those protein-coding genes 

that had a lincRNA neighbor on one side and a coding neighbor on the other side, and used a 

paired test to compare the correlation between each protein-coding gene and its lincRNA 

neighbor, to that between the same protein-coding gene and its protein-coding gene neighbor. 
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This paired comparison showed a weak opposite trend, where pairs of coding gene neighbors are 

slightly more correlated to each other than neighboring lincRNA:protein-coding gene pairs (P < 

0.001 paired Student t-test; effect size = 0.23), thus favoring option (ii) an effect  of gene 

proximity.   

 

Taken together, this analysis suggests that overall lincRNAs are not more correlated to their 

protein-coding gene neighbors than expected for a pair of neighboring protein coding gene loci. 

Yet, the ultimate test of cis or trans regulatory mechanisms for lincRNAs requires experimental 

gain- or loss- of function data.  

 

Divergently Transcribed lincRNAs 

 

Unstable, likely non-coding, transcripts can also be derived from divergent (bi-directional) 

transcription, in both yeast and mammals [46-48] . These may be either byproducts of chromatin 

remodeling and recruitment of the transcription machinery to the neighboring gene’s promoter or 

functional transcripts. Due to limited read length and computational methods, previous studies 

did not determine whether these transcripts are spliced. Interestingly, several functionally studied 

lincRNAs, including Tug1 [49], HOTAIR [5], and HOTTIP [27], are divergent transcripts. We 

therefore hypothesized that other divergently transcribed transcripts may be spliced and 

polyadenylated lincRNAs.  

 

Indeed, 588 (~13 %) of our stringent lincRNAs are spliced transcripts divergently transcribed 

within 10 kb of a coding gene promoter, with a majority (~65%) that initiate within 1 kb of a 

coding gene’s annotated transcription start site (Supplementary Figure 1.8). Furthermore, 

~35% of the 588 pairs share a H3K4me3 domain (a hallmark of active promoters) based on the 

ENCODE chromatin state maps (2.4 Methods), although we cannot definitively determine if 

these divergently encoded pairs are also divergently transcribed from the same promoter. These 

divergent coding genes neighbors are enriched for developmental and metabolic processes 

(Supplementary Figure 1.3b). Focusing on the 68% that are spliced in the tissue where they are 

maximally transcribed (2.4 Methods: “Estimating expression abundance”), there is only a 

slightly higher correlation between divergent lincRNAs and neighboring coding genes than for 
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divergent coding gene pairs (effect size =0.27, P < 0.008 KS-test; P < 0.009, Student t-test; 

Figure 2.3b).  Furthermore, while ~49% of the divergently transcribed lincRNAs are tissue 

specific, for approximately half of those, the neighboring gene is ubiquitously expressed (Figure 

2.3c).  Thus, although there are clearly bidirectionally transcribed, spliced lincRNAs in our 

catalogue, we found no clear additional distinguishing features for this set. 

 

 

Figure 2.3| Chromosomal domains of gene expression. (a) Correlation of expression patterns between 

pairs of neighboring genes. Shown are distributions of Pearson correlation coefficient in expression levels 

across the tissues in Figure 2a between either 6524 pairs of coding gene neighbors (black), 497 pairs of 

lincRNAs and their neighboring coding gene (blue), or 10,000 random pairs of protein coding genes 

(gray; null model) *. (b) Shown are distributions of Pearson correlation coefficients calculated as in (a) 

but only for 223 pairs of divergently transcribed pairs of lincRNA and protein-coding gene (blue) or 1575 

pairs of divergently transcribed protein-coding genes *. (c) Expression patterns of pairs of divergently 

expressed genes. Shown are expression patterns (presented as in Figure 2a) for pairs of divergently 

transcribed lincRNA (rows, top left) and protein coding genes (rows, top right), or pairs of divergently 

transcribed protein-coding genes (rows, bottom left and right panels) *. (*) Only lincRNAs that have 

spliced read support when maximally expressed and that are not testes-specific are presented (refer to 

Supplementary Note “Estimating expression abundance” for further detail). 
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Expressed syntenic orthologs of human lincRNAs in mammals and vertebrates 

 

We and others have previously reported evidence for purifying selection at different sets of 

mammalian lincRNAs [12, 13, 15]. A recent study has also identified expressed orthologs of a 

few highly-conserved and brain-expressed mouse lncRNAs in species as distant as opossum and 

chicken [50]. However, the number of human lincRNAs that have an orthologous, actively 

expressed, transcript in other species remains unknown.  

 

To identify human lincRNAs with orthologous expressed transcripts in other species (supported 

by experimental evidence), we surveyed a catalogue of mammalian and non-mammalian 

vertebrate transcripts that were syntenicaly mapped to the human genome by TransMap [51], a 

cross-species mRNA alignment method. TransMap maps all known transcripts (e.g., full-length 

cDNAs and others in RefSeq or UCSC) and ESTs across vertebrate species using syntenic 

BLASTZ alignments [52] that use conserved gene order (synteny). Since EST coverage varies 

between species (Supplementary Table 1.2), TransMap can only provide a lower-bound 

estimate of orthologous transcripts.    

 

Of the 8,195 lincRNAs, 993 are syntenically paired with an orthologous transcript (Figure 2.4a-

d), comprising a Trans-mapped lincRNA set (~135 expected by random permutations; 2.4 

Methods; 2.4 Methods). 702 of the Trans-mapped lincRNAs are in the stringent lincRNA set 

(~15% of stringent lincRNAs). The majority (53%) of the Trans-mapped lincRNAs were not 

previously annotated in the human transcriptome (GENCODE, RefSeq or UCSC; 

Supplementary Figure 1.9a). Trans-mapped lincRNAs have tissue specificity and low 

expression comparable to that of all other lincRNAs (Supplementary Figures 1.6a and 1.9b-c). 

59% of the Trans-mapped lincRNAs were mapped to annotated transcripts that had evidence 

beyond ESTs. Supporting our non-coding classification scheme, only 18% of the 641 lincRNAs 

with Trans-mapped orthologous transcripts in mouse were classified as coding in mouse and 

only ~11% have a positive PhyloCSF score (Supplementary Figure 1.9a; 2.4 Methods). Trans-

mapped lincRNAs have orthologs in species from mouse to fish, with closer species with more 

transcriptome data showing more orthologs than distant ones (Figure 2.4d).  
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Orthologous lincRNAs exhibit modest sequence homology  

 

We evaluated the degree of sequence similarity between the Trans-mapped transcripts. We 

measured the portion of each lincRNA transcript’s length that is aligned to the orthologous 

transcript. The majority of trans-mapped lincRNAs are only moderately spanned by an 

orthologous mapped transcript (a median of 21% and 56% of their transcript or genomic locus 

aligned, respectively; Figure 2.4e). In loci where lincRNAs are Trans-mapped to mouse coding 

transcripts, a larger portion of the human locus but a smaller portion of the mouse transcript 

aligns between the species (Figure 2.4e, Supplementary Figures 1.10a-b). This may be due to 

either cryptic small peptides in the human transcript or the evolution of a non-coding transcript 

from a coding one. The available data is insufficient to distinguish between these hypotheses, 

which can be tested as paired cross species RNA-Seq samples are collected.  

  

We next compared the fraction of identical bases aligned between the lincRNAs and their 

orthologs to that of random sequence pairs, randomly selected syntenic blocks, or orthologous 

coding genes. Trans-mapped lincRNAs and their orthologous transcripts show similar sequence 

identity to that of randomly selected syntenic blocks, which is lower than pairs of orthologous 

protein coding genes and higher than for random pairs of genomic regions of similar size 

(Figure 2.4f, Supplementary Figures 1.10c-d; 2.4 Methods). With only 34% of the human 

genome syntenically mapped to the mouse genome [53], the resemblance of Trans-mapped 

lincRNAs to random syntenic blocks still implies evolutionary constraint to preserve sequence 

elements.   
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Figure 2.4|  Orthologous transcripts of human lincRNAs in mammals and other vertebrates. (a) A 

human lincRNA with syntenic TransMap mappings to mouse and cow. Shown are UCSC browser [54] 

tracks showing two isoforms of the human lincRNA (black, top tracks), the mouse and cow transcripts 

(green, middle tracks) that were Trans-mapped to its human locus, and the base-wise conservation 

calculated by PhyloP at this locus (red-blue, bottom track). (b) Syntenic Trans-Mapping to XIST. Tracks 

presented as in (a). (c) Syntenic Trans-Mapping to p53. (d) Species distribution of 993 human lincRNAs 

with trans-mapped orthologs (columns) and the species in which the trans-mapped transcripts were found 

(rows, purple). (e) Characteristics of trans-mapping to human lincRNAs. Boxplots of the fraction of the 

human lincRNA transcript that is aligned to an ortholog (1
st
 and 2

nd
 boxes), and the fraction of the 

lincRNAs genomic locus covered by the syntenic mapping of the ortholog (3
rd 

and 4
th
 boxes), for all trans-

mapped lincRNAs (1
st
 and 3

rd
 boxes) or only for those lincRNAs that were mapped to mouse coding 

transcripts (2
nd

 and 4
th
 boxes). Gray square, star and circle represent XIST, HOTAIR and the lincRNA 

shown in panel 4a, respectively. (f) Distribution of the percentage of identical bases across the FSA [55] 

pair-wise alignments between human and mouse trans-mapped transcript pairs. Blue: lincRNAs and their 

mouse orthologs, Black:  human coding genes and their mouse orthologs, Green: randomly selected 1 

kilobase human and mouse syntenic blocks. Gray: random pairing of human lincRNAs and mouse 

transcripts (from the set marked in blue).  All statistics presented in this figure were calculated at the 

locus level (i.e each lincRNA loci was accounted once, rather than accounting for all of its isoforms). 
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Novel transcripts with potential coding capacity 

 

While our stringent lincRNA classification strategy focused on non-coding transcripts, we also 

characterized 2,305 transcripts that were excluded by our coding potential criteria (a Pfam 

domain, a positive PhyloCSF score, or previously annotated as pseudogenes) and termed them 

the transcripts of uncertain coding potential (TUCP) set (2.4 Methods). These may include 

lincRNAs as well as other transcripts. The majority (1,533; ~66%) were previously annotated as 

pseudogenes which, due to our focus on multi-exonic transcripts, are probably not retro-

transposed spliced mRNAs that were integrated back to the genome (Figure 2.5a). Similar to the 

stringent set, TUCP transcripts are expressed at lower and more tissue-specific patterns than 

protein-coding genes (Figures 2.5b-c).  

 

The coding potential of most of these transcripts was very low compared to known coding genes, 

and only 32% (757) exceeded our PhyloCSF score criteria (Figures 2.5a,d; 2.4 Methods). The 

evolutionary-constrained ORFs in these transcripts are mostly short (51% are less than 70 amino 

acids long) and cover a small portion of the transcript (53% cover less than 25%, Figures 2.5e-

f).   Thus, some of these transcripts may encode small functional peptides [56], whereas others 

may function as non-coding RNA.     

 

TUCP transcripts are under stronger purifying selection than stringent lincRNAs. First, the 

exonic sequence in TUCP transcripts is more highly conserved than that of stringent lincRNAs 

(P <10 
-116

, effect size = 0.77; Supplementary Figure 1.11; 2.4 Methods), even when excluding 

pseudogenes (Supplementary Figure 1.11). Second, a larger fraction of them have a Trans-

mapped syntenic ortholog (~36% (838) or ~34% when excluding pseudogenes, compared with 

~15% (702) of stringent lincRNAs), and the syntenic alignments cover a slightly larger portion 

of the transcript (Supplementary Figure 1.12).  Third, 74% of the Trans-mapped transcripts 

have an ortholog in a species more distant than mouse (vs. 37% of the Trans-mapped lincRNAs; 

~67% when excluding TUCP pseudogenes; Figure 2.5g).  
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Figure 2.5|  Novel transcripts with potential coding capacity. (a) Characteristics of TUCP transcripts. 

Shown is a Venn diagram of the 2305 TUCP set transcripts annotated as pseudogenes (purple), containing 

a Pfam domain (green), having a PhyloCSF score higher than the pipelines set criteria (pink), or 

combinations thereof. (b) Expression levels of TUCP transcripts. Shown are distributions of maximal 

expression abundance (log normalized FPKM counts as estimated by Cufflinks) in TUCP (red), stringent 

set lincRNA (blue), and coding (black) transcripts. (c) Tissue specificity of TUCP transcripts. Shown are 

distributions of maximal tissue specificity scores calculated for each transcript in the TUCP set (red), 

stringent lincRNA set (blue), coding (black), and higher expressed lincRNAs (magenta, transcripts 

defined as in Figure 2c).  (d) PhyloCSF scores of TUCP transcripts. Shown is the distribution of 

PhyloCSF scores of the TUCP transcripts (red), all non coding genes in Refseq (blue) or the subset of 

Refseq classified as lincRNA by our pipeline (light blue).  Inset: the corresponding distribution for 
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protein coding genes, which spans a much wider range of positive scores. (e,f) Putative ORFs in TUCP 

transcripts. Shown are scatter plots of the fraction of each transcript spanned by an ORF (e, X- axis) or of 

the ORF size (f, in nucleotides, X axis) vs. the PhyloCSF score of that ORF (Y axis), for the 1404 TUCP 

transcripts that had a PhyloCSF score greater than 0. (g) Orthologs for TUCP transcripts. Shown are 838 

TUCP transcripts (columns) with trans-mapped orthologs and the species in which the trans-mapped 

transcripts were found (rows, purple).  

 

 

lincRNAs in disease-associated regions 

 

Although genome wide association studies (GWAS) have identified thousands of common 

genetic variants related to specific traits or disease phenotypes, many of these variants (~43% 

[57]) lie in intergenic regions and hence remain largely unexplained. We identified 414 

lincRNAs from our comprehensive catalogue (215 of the stringent set) that are located within 

1,146 disease- or trait- associated regions from the Published GWAS Catalogue [57] that do not 

contain annotated coding genes (2.4 Methods; Supplementary Dataset 2). Notably, 30 and 81 

of those lincRNAs overlap a common variant that was associated with a disease phenotype 

within their exon or their intron, respectively (both tag and imputed SNPs). Another 76 

intergenic disease/trait regions overlap 84 TUCP transcripts (Supplementary Dataset 6).  

 

The 215 stringent lincRNAs in these regions are typically expressed in a tissue–specific manner, 

which in a few cases directly corresponds to the tissue relevant to the associated disease 

(Supplementary Table 1.3). For example, a lincRNA positioned ~3 kb downstream of a thyroid 

cancer associated SNP in chromosome 14q13.3 (rs944289, OR = 1.37; P = 2.0*10
-9

 ;[58] is 

strongly expressed specifically in the thyroid (~5.4 log2 FPKM). The ‘tag SNP’ and the proximal 

lincRNA are within a 249 kb linkage disequilibrium (LD) region that does not contain any 

known genes. rs944289 is ~3.5 kb upstream to the transcription start site of the thyroid specific 

lincRNA. rs944289[T] is predicted to be part of a binding motif for C/EBP-alpha (2.4 Methods; 

Supplementary Figure 1.13), and may affect the lincRNA’s expression. The LD region is ~250 

kb upstream to the gene NKX2-1 (TTF1), a transcription factor with a prominent role in thyroid 

development, and a previously suggested candidate gene for this SNP association. The lincRNA 

may be an additional candidate playing a role in thyroid-specific processes (possibly in 

coordination with the neighboring NKX2-1) and in thyroid cancer.  
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2.3 Discussion 

 

We have generated a reference catalogue of 8,195 human lincRNAs based on integrating RNA-

Seq data from 24 tissues and cell types with publically available transcript annotations. 58% of 

the transcripts in our catalogue are novel and are now identified for the first time using RNA-

Seq. We have annotated each lincRNA with a broad range of structural, expression and 

evolutionary features, shedding new light on their global properties, and testing or generalizing 

previous hypotheses.  

 

lincRNAs are remarkably tissue specific compared to protein coding genes. This possibility was 

previously raised [16, 17] based on differential expression patterns in specific biological systems 

and has several implications. First, researchers studying a particular system may benefit from 

RNA-Seq profiling followed by de-novo assembly in that system. Second, it is consistent with 

the hypothesis that some lincRNAs interact with chromatin modulators and provide their target 

specificity. Third, it may indicate that lincRNAs could serve as specific fine tuners. Fourth, the 

low level of lincRNAs expression in a complex tissue, such as brain, may in fact be a by-product 

of their expression only in few specific cells.  Future targeted perturbations of tissue specific 

lincRNAs defined in our study may elucidate their role in tissue specific processes. 

 

 

 Could many lincRNAs act as enhancer elements promoting the transcription of their 

neighboring coding genes? Recent studies have demonstrated that several lincRNAs have 

enhancer like functions [15, 27]. While our co-expression analysis is consistent with this notion, 

it is insufficient to suggest a global trend in which lincRNAs act as enhancers of their neighbors 

since neighboring coding genes exhibit similar co-expression patterns. Further systematic 

perturbation studies in individual systems (as in [15]) may help assess the scope of this function. 

Notably, a very recent study that systematically perturbed 150 lincRNAs expressed in mouse 

embryonic stem cells suggested that lincRNAs primarily affect gene expression in trans [24]. 

Collectively, this suggests that some lincRNAs can work in cis while others in trans.    
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993 lincRNAs have an orthologous transcript expressed from a syntenic region in another 

species, ~50% of which were identified for the first time in this study.  These lincRNAs had only 

moderate sequence identity and alignment to their orthologs. This moderate conservation may 

indicate the importance of transcription from a specific genomic location, or the reduced 

selective pressure on the primary sequence of non-coding RNAs [2, 59], or the rapid evolution of 

new functions. It may also be due to alignment to orthologous ESTs that are incomplete 

transcripts. Our analysis was limited by available transcript data in other species; and will be 

enhanced as more transcriptomes are sequenced in other organisms.  

 

TUCP intergenic transcripts did not pass our stringent classification criteria as lincRNA, due to 

evidence of possible protein-coding potential. These transcripts have similar expression levels 

and tissue specificity as the stringent lincRNA set, but significantly higher level of sequence 

conservation. Many could encode small peptides, similar to those that function in D. 

Melanogaster embryogenesis [56]. Another 1,533 TUCP transcripts are classified as 

pseudogenes, and may represent pseudogenes that have evolved to function as non-coding 

regulatory agents. Ribosome profiling [60] and mass spectrometry of small peptides will help to 

resolve which of the TUCP transcripts are more likely to be coding.  

 

Substantial progress has been recently made towards the essential goal of annotating long non-

coding RNA loci.  Our work presents an integrative yet conservative computational approach to 

mapping lincRNA transcripts that can be used for mapping new transcripts in other species. This 

is critical to overcome major barriers for future experiments (e.g. cloning, expression profiling 

and gain- and loss- of function), as well as for the interpretation of genetic association studies. 

Indeed, 414 lincRNAs in our catalogue stand out as located within intergenic regions associated 

with common disease. Future work will be necessary to identify RNA sequence domains that 

relate to function [2], and to further classify lincRNAs into families. Our panorama of lincRNA 

properties will greatly advance these goals.     
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2.4 Methods  

 

RNA-Seq data sets 

We used two datasets of RNA-Seq for transcriptome reconstruction. The first includes poly-

adenylated RNA samples from 16 tissues that were sequenced using Illumina HiSeq 2000 as part 

of the Human Body Map 2 project (235 million reads per sample on average; Supplementary 

Table 1.4). The second dataset included 8 additional tissues and cell-lines each sequenced the 

Illumina Genome Analyzer II (GAII) (54 million reads per sample on average; Supplementary 

Table 1.4). The Human Body Map 2 data is accessible from ArrayExpress, ArrayExpress 

accession: E-MTAB-513:http://www.ebi.ac.uk/arrayexpress/browse.html?keywords=E-MTAB-

513&expandefo=on. The 8 additional tissues and cell-lines are available at GEO accession 

GSE30554 (See Supplementary Table 1.4). 

 

Publically available annotations 

All known annotations that were used for the analysis of this paper are specified in 

Supplementary Table 1.5.  

 

Library preparation protocol. 

RNA was extracted from in-house cultured cell lines (lung and foreskin fibroblasts) using TRIzol 

(Invitrogen) following the manufacturer instructions. After extraction a DNAse treatment was 

applied using Turbo DNAse (Ambion) and a second RNA extraction with TRIzol was 

performed. Human tissue total RNA samples were obtained from Ambion.  

 

All samples were sequenced using a standard Illumina mRNA-Seq Protocol. The standard 

mRNA-seq library preparations for both the 16 individual tissues and the 8 additional samples, 

was done using the “Illumina mRNA-Seq Sample Prep Kit” (Part #RS-100-0801). Briefly, poly 

A+ RNA was purified from 100ng of total RNA with oligo-dT beads. Purified mRNA was then 

fragmented with divalent cations under elevated temperature. First strand cDNA synthesis was 

performed with random hexamers and reverse transcriptase. Second strand cDNA synthesis was 

performed using RNAseH and DNA PolI.  Following cDNA synthesis, the double stranded 

products were end repaired, a single “A” base was added, and Illumina PE adaptors were ligated 
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onto the cDNA products. The ligation products were purified using gel electrophoresis.  The 

target size range on the gel for these libraries was ~300 bp for the Human Body Map samples 

and ~350-500 for the 8 additional samples, such that the final library for sequencing would have 

cDNA inserts with sizes of ~200 bp or 160-380 bp long, respectively .  Following gel 

purification, the adapter ligated cDNA was then amplified with 15 cycles of PCR for the Human 

Body Map samples and 14 cycles for the 8 additional samples.  

 

RNA-Seq read mapping  

All sequenced reads were aligned to the human genome (NCBI 37, Hg19) using the spliced read aligner 

TopHat version V1.1.4 [62]. Briefly, using a two step mapping processes, TopHat first uses Bowtie [63] 

to align reads that are directly mapped to the genome (with no gaps). It then determines the possible 

location of gaps in the alignment based on canonical and non-canonical splice sites flanking the aligned 

reads. Finally, it uses gapped alignments to align the reads that were not aligned by Bowtie in the first 

step.  

For this analysis, we used 2 iterations of TopHat alignments to maximize the use of splice site 

information derived across all samples. To this end, the reads from each sample were first 

aligned using the paired-end alignment option when possible (default parameters and ‘min-

anchor=5’,  ‘min-isoform-fraction =0’). Next, we generated a pooled splice-sites (or “junctions”) 

file by combining all predicted splice sites across all alignments. We then re-aligned each sample 

using the pooled splice-sites file (using ‘raw-juncs’  and ‘no-novel-juncs’  parameters).   

 

RNA-Seq transcriptome assembly 

The transcriptome of each sample was assembled from the mapped reads separately by both 

Scripture [31] and Cufflinks [32]. Briefly, Cufflinks and Scripture are ab-initio transcriptome 

assemblers that reconstruct the transcriptome based on RNA-Seq reads that were aligned to the 

genome using a spliced read aligner (e.g. TopHat) [64]. Both methods use spliced read 

information to determine exons connectivity, but with two different approaches. Scripture uses a 

statistical segmentation model to distinguish expressed loci from experimental noise and uses 

spliced reads to assemble expressed segments. It reports all statistically significantly expressed 

isoforms in a given locus. Cufflinks uses a probabilistic model to simultaneously assemble and 

quantify the expression level of a minimal set of isoforms that provides a maximum likelihood 

explanation of the expression data in a given locus.   
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The main difference between the output of the two methods results from the different approach 

each assembler uses when reconstructing low abundant transcripts [33].  Whereas Scripture 

employs a significance threshold on expression levels to filter out transcripts and reports all 

significantly expressed isoforms [31], Cufflinks will report a minimal set of isoforms that 

explains the expression of a given locus without employing such a threshold [32].  The observed 

discrepancy across lincRNA loci is comparable to that previously observed for low expressed 

protein-coding genes reconstructed by these assemblers [33]. 

 

To obtain transcriptome assemblies from the read alignments, Cufflinks version V1.0.0 was run 

using default parameters  (and ‘min-frags-per-transfrag=0’) and Scripture version 1.0 was run 

with default parameters, but without using paired-end information (to avoid conflicts that 

occurred while running Cufflinks abundance estimation mode in later steps). In case several 

lanes were available per sample the corresponding aligned reads were pooled to a single source 

file prior to running the assemblers.  

 

lincRNA classification pipeline 

After obtaining a unique set of assembled isoforms from all processed tissue assemblies and 

known annotations we ran the set through the following filters:  

 

(1)Size selection. We excluded single exon transcripts and ones smaller than 200 bases. 

 

(2)Minimal read coverage threshold. We ran Cufflinks with its transcript abundance calculation 

mode to estimate the read coverage of each transcript across the 24 tissues and cell types. We 

eliminated transcripts with a maximal coverage below 3 reads per base. This coverage threshold 

was set by optimizing the sensitivity and specificity of identifying full length vs. partial length 

transcripts of protein coding genes annotated in Refseq or non-coding genes annotated in UCSC. 

To this end, we calculated the number of full length and partial length transcripts identified at 

each coverage threshold (considering the maximal coverage threshold in which a transcript was 

identified across all tissues). We used area under the curve (AUC) calculations to determine the 

optimal threshold for the coding and non-coding sets and took their average as the final 

threshold.    
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(3)Filter of known non-lincRNAs annotations. We eliminated all transcripts that had an exon 

overlapping a transcript from any of the following sets: (a) coding genes annotated in RefSeq, 

UCSC or GENCODE 4, (b) microRNA, tRNAs, snoRNAs, rRNAs annotated in Ensembl, (c) 

pseudogenes. See Supplementary Table 1.5 for specific details on each annotation set.  

 

(4)Positive coding potential threshold. We estimated for each transcripts the degree of 

evolutionary pressure on sequence substitutions acting to preserve an open reading frame. To this 

end, we scored the coding potential of all remaining transcripts using PhyloCSF (phylogenetic 

codon substitution frequency) [34]. Briefly, PhyloCSF determines whether a multi-species 

nucleotide sequence alignment in a specific locus is more likely to represent a protein coding 

than a non-coding transcript.  To do so it applies a probabilistic model that examines the over-

representation of evolutionary signatures characteristic of alignments of conserved coding 

regions, such as the high frequencies of synonymous codon substitutions and conservative amino 

acid substitutions.  We ran PhyloCSF using a multiple sequence alignment of 29 mammalian 

genomes (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/) to obtain the best 

scoring ORF greater than 29 amino acids across all three reading frames. We excluded from our 

catalog all transcripts that contained such an open reading frame with a PhyloCSF score greater 

than 100. The PhyloCSF score threshold was determined to optimize the specificity and 

sensitivity in correctly classifying coding and noncoding transcripts annotated in RefSeq (RefSeq 

coding and RefSeq lincRNAs; see below and in Supplementary Table 1.5). PhyloCSF =100 

corresponds to a false negative rate of 6% for coding genes (6% of coding genes are classified as 

non-coding) and a false positive rate of ~10% (9.5% of noncoding transcripts are classified as 

coding).  

 

(5)Known protein domain filter. We evaluated which of the remaining transcripts contained a 

known protein coding domain. To this end, we translated each transcripts in all three possible 

frames and used HMMER-3 [65] to identify occurrence of any of the 31,912 known protein 

family domains documented in the Pfam database (release 24; used both PfamA and PfamB ; 

[35]). Briefly, HMMER-3 uses hidden Markov models (HMMs) to scan each amino acid 

sequence and classify whether it resembles any of the known domains in the database.  We have 

excluded transcripts with a Pfam hit that was declared significant.    
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(6)Intergenic classification. We classified all the remaining transcripts that did not overlap the 

genomic region of a known non-lincRNA annotation as potential lincRNAs.  All transcripts that 

passed all the filters above are available in Supplementary Dataset 1. 

  

To derive a unique set of lincRNAs that includes previous annotations we used Cuffcompare to 

integrate the RNA-Seq derived lincRNAs with the predetermined set of lincRNAs previously 

annotated by RefSeq, UCSC or GENCODE 4. The publically available lincRNA sets were 

derived by running specific steps of our lincRNA classification pipeline on the transcripts 

annotated in the public datasets (Figure 2.1a, See Supplementary Table 1.5 for specific 

details).  

 

Notably, there were 364 loci (4 %) for which the number of isoforms identified by Scripture was 

over 10 (and often over few dozens or hundreds). Such complexity of isoform makes it 

impossible to estimate abundance in our downstream analysis. We therefore considered only the 

isoforms identified by Cufflinks and public annotations for these loci and provide the additional 

possible isoforms at http://www.broadinstitute.org/genome_bio/human_lincrnas.  

 

Stringent set classification 

We defined a stringent lincRNA set that includes transcripts loci for which at least one lincRNA 

isoform:  (i) was reconstructed in at least two tissues, or (ii) was reconstructed by two assemblers 

in the same tissue. An isoform was considered as reconstructed by two sources in case an exact 

sub-sequence of exon-intron boundaries was identified in the isoforms from the two sources. 

That is, at least two neighboring exons were independently assembled by two sources.  This 

criterion can still be sensitive to errors in the alignments as both assembly approaches use the 

same input alignments.  

 

 

Classification of Transcripts of Uncertain Coding Potential (TUCP) 

We defined the Transcripts of Uncertain Coding Potential  (TUCP) set as the set of transcripts 

that passed the size and abundance filters of our pipeline but were either: (i) classified as 

pseudogenes by Vega [66], (ii) had a PhyloCSF score that exceeded our determined threshold, or 
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(iii) had a Pfam domain hit.  We included only the maximum likelihood isoforms reconstructed 

by cufflinks for this set to decrease the isoform complexity in each locus.   

 

While our abundance estimation for pseudogenes may be biased by incorrect read mapping to 

corresponding paralogous loci, our results estimating global characteristics of expression levels 

and tissue specificity were similar regardless of whether pseudogene transcripts were included or 

excluded from the TUCP set (data not shown).    

 

Assembly performance estimation on protein coding genes 

We estimated the number of protein coding transcripts annotated in RefSeq that were correctly 

assembled by Cufflinks, Scripture or both by counting how many of the known transcripts had a 

partially compatible or fully compatible transcript (Supplementary Figure 1.1a) assembled 

from any of our 24 tissues and cell-lines.  A transcript was considered as having a fully 

compatible assembled isoform if the exact exon-intron chain was recovered in the assembled 

transcript, and partially compatible if at least 2 exact exons and their connecting intron were 

recovered in the assembled transcript (Supplementary Figure 1.1a).  

 

lincRNAs catalog and annotation  

The complete lincRNA catalog (including the TUCP transcripts) as well as all RNA-Seq 

alignments and transcriptome reconstruction are available at: 

http://www.broadinstitute.org/genome_bio/human_lincrnas. Specific description of all 

characterization fields are provided on the site. All Supplementary Datasets are available 

through the site. 

 

Chromatin state of actively transcribed genes  

We screened for evidence of a chromatin signature of histone 3 lysine 4 tri methylation 

(H3K4me3) across the promoter followed by a H3K36me3 along the transcribed region (K4-K36 

domains) across lincRNAs loci. To this end, we used publically available segmentations of K4 

and K36 chromatin domains detected from ChIP-Seq (chromatin immunoprecipitation followed 

by sequencing) data across 9 ENCODE cell lines [38]. These cell lines (with the one exception 

of lung fibroblast), are not included in our 24 tissue/cell line compendium. We identified all 
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lincRNAs that had an enrichment of H3K4me3 within +/- 2 KB of the transcript start site and 

enrichment of H3K36me3 somewhere along the transcripts genomic region in the same cell type.  

We defined lincRNAs with such overlap as K4-K36 lincRNAs whenever neither the K4 nor the 

K36 chromatin domains were also overlapping a coding gene.  We also included in the K4K36 

lincRNA set those lincRNAs that overlapped genomic regions previously classified as 

transcribing human lincRNAs based on similar chromatin state maps [14]. Details of the random 

model generation are specified below.    

 

Chromatin state of enhancers 

To evaluate the number of lincRNAs that coincide with enhancers we examined genomic regions 

previously classified as containing a chromatin domain characterizing enhancers [38]. In brief, 

Ernest et al. applied a multivariate hidden Markov model to classify the chromatin state of 200 

base windows along the genome across 9 encode cell lines based on the combinatorial patterns of 

9 chromatin marks. We enumerated the number of lincRNAs that had an exon overlap with a 

region that was classified as a strong enhancer (state #4) at any of the 9 cell types.  Since the 

chromatin state classification were assigned to just a sub region of the transcript and such sub 

region may have been classified as having different states in different cell type, we also applied a 

more stringent criteria to define potential enhancer regions. In this criterion, we now focused on 

the 200 bases windows in which an enhancer state was classified in the majority of cells in which 

the chromatin state classification was different than heterochromatin (state #13).  This includes 

all regions that were classified as enhancer in only one or few tissues and not by other alternative 

states (such as: promoters, transcription elongation etc’).  

 

Enhancers sets used for the comparison with mouse lincRNAs from a same/similar cell types 

were obtained as following. Enhancers that were defined in mouse embryonic stem cells based 

on regions bound by CHD7 and p300 and also enriched with H3K4me1 and H3K27ac were 

obtained from [40]. Intergenic enhancer elements that produce eRNA in mouse cortical neurons 

based on binding to p300/CBP, enrichment in H3K4me1 and RNA-Seq support ( > 7 reads) were 

obtained from [25].  
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Estimating expression abundance and normalization 

We estimated the expression abundance of all lincRNAs and protein coding genes by running 

Cufflinks in its expression abundance estimation mode across our 24 samples [32]. We have 

used the complete non-coding transcripts catalog and all coding transcripts annotated in UCSC 

for a comprehensive representation of transcripts along the genome while performing abundance 

estimation. FPKM calls were log2 normalized (after addition of ε=0.05). The HeLa and liver 

samples from the 8 samples set were eliminated from further expression analysis due to low 

coverage and a lower expression range in comparison to other samples.  

 

Estimating expression abundance: note 

In some cases, the abundance estimation does not represent a specific isoform of interest but 

rather a different transcript. This is due to cases when there is read coverage across the exons but 

no spliced reads supporting the specific transcript of interest (as displayed using the Integrative 

Genome Viewer [69] in Supplementary Figure 1.14).  This problem will affect any transcript 

abundance estimation method that doesn’t explicitly constrain requirements for spliced read 

support of a specific isoform. To the best of our knowledge such method is not yet available.   To 

address this issue, we flagged each transcript in the catalog that did not have spliced read support 

in the tissue where it is maximally expressed and excluded these transcripts from the neighbor 

correlation analysis (below).   

 

Normalization of expression vectors for tissue specificity calculation   

To calculate the tissue specificity scores of a transcript we needed to convert the transcript’s 

expression vector to an abundance density (as the JS metric is applied on discrete probability 

distributions). To this end, we added a pseudo-count of 1 to the raw FPKM expression vector of 

each transcript and applied a log 2 normalization to obtain a non-negative expression vector. We 

then normalized this expression vector to a density vector by dividing by the total expression 

counts.  Formally:  

(1)     
         

∑            
   

   , where             is the original raw FPKM abundance 

estimation of the transcript and V’ is the new normalized density vector.  

 

 



70 
 

Tissue Specificity Score 

To evaluate the tissue specificity of a transcript we relied on [32] and devised an entropy-based 

measure that quantifies the similarity between a transcript’s expression pattern and another 

predefined pattern that represent an extreme case in which a transcript is expressed only in one 

tissue  . This specificity measure relies on the Jensen-Shannon (JS) divergence. The JS 

divergence of 2 discrete probability distributions  𝑝  𝑝   is defined to be:  

(2)    𝑝  𝑝      (
     

 
)   

 (  )      

 
     

where H is the entropy of a discrete probability distribution  

𝑝   𝑝  𝑝    𝑝     𝑝        ∑𝑝 

 

   

   

(3)   𝑝     ∑ 𝑝 
 
        𝑝    

Relying on the theorem that the square root of the JS divergence is a metric [61], we define the 

distance between two tissue expression patterns                
       

   as 

(4)         
       √          

The tissue specificity of a transcript’s expression pattern    across n tissues with respect to tissue 

t can then be defined as: 

(5)        |               
     

where    is a predefined expression pattern that represents the extreme case in which a transcript 

is expressed in only one tissue. Formally:    =    
       

           
    

                    
                  

  . 

Finally, we define the tissue specificity score of a transcript as the maximal tissue specificity 

score across all n tissues of the transcripts expression pattern e:   

(6)                        |          

 

K- means clustering of tissue expression patterns  

We applied K-means clustering with random seeds to obtain clusters of lincRNAs and protein 

coding genes using the         (2.4 Methods) as a distance metric. Applying the JS distance 

metric allowed better separation of heterogeneous clusters to tissue specific clusters as compared 

to using a Euclidean distance or Pearson correlation as a distance metric. For the clusters 

presented in this paper we used K=30 after optimizing the selection of K to minimize the 
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distances of data within clusters while maximizing the distance between clusters using a 

Silhouette function [70] (Supplementary Figure 1.15). Briefly, we used K-means clustering 

with 31 values of K (k=20,25,30,…,80) . For each run, we calculated the Sillhouette function on 

each transcript’s expression pattern   :    

(7)   (  )   
 (  )      

      (  )       
  

where 

(8)   (  )   (    (     ) |                 , where    is the cluster to which    

was assigned. 

(9)  (  )        (    (     ) |                       

That is, a(e
i
) is the average distance of a sample to all other samples in its cluster and b(e

i
) is the 

minimal average distance of a sample from all other clusters. 

We then calculated two summary statistics: 

(i) the mean silhouette value across all transcripts:     (  (  ))          

(ii) the mean of mean cluster Silhouette scores across m clusters :  

(10)      (           
  )           

(11)   where,              
      (  (  )|       ) 

K=30 obtained a maximal Sillhouette score according to both statistics and was chosen for our 

analysis. 

 

Random permutation model of intergenic transcripts 

We used the following random permutation model to calculate the enrichment of our lincRNA 

set with different genomic features (e.g. K4K36 domains, enhancer regions). For each 

calculation we generated a 1,000 random sets that preserved the same transcript structures 

distribution of our original lincRNA set but were uniformly sampled from the un-annotated 

fraction of the genome.  Thus, given our transcript set we have randomly re-positioned each 

transcript in the un-annotated fraction of the genome. An enrichment P-vale was estimated by the 

number of times the number of overlaps between a random set and the genomic feature of 

interest exceeded that of our lincRNA set.  We defined the un-annotated fraction of the genome 

by removing centromer regions and all regions that were annotated with a transcript by 

GENCODE 4.        
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Functional enrichment analysis of coding gene sets 

We estimated the enrichment of different coding gene sets with Gene Ontology (GO) [67]  

functional terms using the David Bioinformatics Tool [68] and reported the results for GO-FAT 

biological process terms. GO-FAT are a sub-set of the GO annotation set derived by David by 

eliminating broad GO-terms that are high in the GO-term tree hierarchy.  This is designed to 

avoid redundancy of annotation sets and overshadowing of the broad terms when applying 

multiple testing corrections.  

  

Expression correlation of lincRNAs and their neighboring genes 

We estimated the expression correlation between the expression pattern of a lincRNA and its 

closest coding gene neighbor by calculating the Pearson correlation coefficient between their 

density-normalized expression vectors (as described above).  Density normalization was applied 

in order to compare vectors of similar magnitudes (as the expression levels of coding genes is 10 

orders of magnitude higher than that of lincRNAs).   

   

Identification of Trans-mapped syntenic orthologs of human lincRNAs 

We have downloaded all available TransMap mappings of expressed transcripts to the human 

genome (NCBI39/Hg19) from the UCSC Genome Browser (http://genome.ucsc.edu/ ;[51].  The 

TransMap methodology maps all annotated transcripts of one species to the other by using the 

syntenic BLASTZ alignments between two species [52].  First, it aligns all mRNA sequences of 

species a to its own genome. Then it uses the syntenic alignment between species a and b to 

project the mRNA sequence of a to the genome of b and finally refines this mapping.  We have 

crossed all UCSC, Refseq, mRNAs and ESTs transcripts Trans-mapped to human with our 

lincRNA set and included every lincRNA that had an exon overlap with a Trans-mapped 

transcript in the Trans-mapped lincRNA set. We have used the UCSC classification of coding 

and non-coding transcripts applied on human and mouse transcripts known to UCSC (and 

downloaded from the UCSC genome browser ; [29]). 

   

 

 

http://genome.ucsc.edu/index.html
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Refined alignment of human lincRNAs and their mouse orthologs 

To assess the alignment quality of the TransMap lincRNAs and their syntenic orthologs we 

realigned the transcript sequence of all human lincRNAs and their mouse orthologs using the 

Fast Statistical Alignment algorithm with default parameters [55].  We compared the fraction of 

aligned bases and fraction of identical bases with respect the human reference sequence across 4 

sets:  (a) human lincRNAs and their mouse orthologs, (b) random sequence pairs, (c) randomly 

selected syntenic blocks and (d) orthologous coding genes known to Refseq (Figure 4f and 

Supplementary Figure 1.10c-d).  The random sequence pairs were obtained by shuffling the 

human lincRNAs and mouse ortholog pairs.  Randomly selected syntenic block were obtained by 

uniformly sampling 1 KB blocks from the un-annotated fraction of the genome that is also 

syntenicaly mapped to mouse.   

 

Sequence conservation level estimation in novel transcripts with potential coding capacity 

We used the SiPhy algorithm and software package  

(http://www.broadinstitute.org/genome_bio/siphy/ ;[71]) to estimate ω, which quantifies how 

well a sequence substitution pattern across a multiple sequence alignment fits a neutral selection 

model, or is constrained by purifying selection. Specifically, ω represents the deviation 

('contraction' or 'extension') of the phylogenetic tree’s branch length in a specific position in the 

genome sequence compared to the neutral tree, based on the total number of substitutions 

estimated from the alignment of the region of interest across 20 placental mammals (build Hg18, 

http://hgdownload.cse.ucsc.edu/goldenPath/hg18/multiz44way/). We estimated ω across the 

exons of: (1) coding genes annotated in RefSeq, (2) TUCP transcripts after excluding 

pseudogenes, (3) Trans-Mapped lincRNAs, (4) the stringent set lincRNAs, (5) intronic segments 

that were size-matched to their neighboring coding exon and were randomly selected from the 

intron, and (6) ancestral repeats of human and mouse. The human-mouse ancestral repeats were 

downloaded from the UCSC Genome Browser [54] and a subset of 3000 repeats was uniformly 

sampled and used for this analysis.    

   

lincRNAs in disease associated regions 

We downloaded a list of disease-associated SNPs (P <5*10
-5

) from the National Human Genome 

Research Institute (NHGRI) catalog of published genome wide association studies [57] . We then 

http://www.broadinstitute.org/genome_bio/siphy/
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extracted regions which are in linkage disequilibrium (LD) with each of the SNPs by first finding 

the left-most and right-most SNPs that are in LD (R
2
 > 0.5) with the aforementioned SNP and 

then finding the closet recombination hotspots as described in [72].  We than crossed our 

lincRNAs and TUCP sets with disease/trait associated LD regions. The results are reported in 

Supplementary Dataset 2 and 6.   

 

Transcription factor binding motif were first identified using AliBaba 2.1 through TRANSFAC 

[73] and then scanned to determine whether the motif is conserved by running SiPhy [71] in 

comparison to 5000 randomly chosen coding gene promoter regions (+/- 2KB from transcription 

start site).   
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Chapter 3 |  Localization and Abundance Analysis of Human 

lncRNAs at Single Cell and Single Molecule Resolution 
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Abstract 

Long noncoding RNAs (lncRNAs) have emerged as key players in different cellular processes 

and are required for diverse functions in vivo. However, fundamental aspects of lncRNA biology 

remain poorly characterized, including their subcellular localization, abundance and expression 

variability from cell to cell.  Here, we used single molecule, single-cell RNA fluorescence in situ 

hybridization (RNA FISH) to survey 61 lncRNAs, chosen by properties such as conservation, 

tissue specific expression, and expression abundance, cataloging their abundance and cellular 

localization patterns in three human cell types. These lncRNAs displayed diverse sub-cellular 

localization patterns ranging from strictly nuclear localization to almost exclusively cytoplasmic 

localization, with the majority localized primarily in the nucleus. The low abundance of these 

lncRNAs as measured in bulk cell populations cannot be explained by high expression in a small 

subset of ‘jackpot’ cells. Simultaneous analysis of lncRNAs and mRNAs from corresponding 

divergently transcribed loci showed that divergent lncRNAs do not present a distinct localization 

pattern and are not always co-regulated with their neighbor. Overall, our study highlights 

important differences and similarities between lncRNAs and mRNAs in terms of abundance, 

localization and cell-to-cell variability. The rich set of localization patterns we observe are 

consistent with a broad range of potential functions for lncRNA, and will guide the formulation 

of hypotheses for further mechanistic studies. 
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3.1 Introduction 

 

Thousands of lncRNAs expressed from mammalian genomes await functional characterization 

[1]. A plethora of studies now demonstrate that dozens of these lncRNAs can regulate diverse 

cellular processes involved in development and disease onset and progression [2, 3]. While the 

regulatory roles and mechanism of action of several individual lncRNAs were elucidated, it is 

still unclear how general these roles and mechanisms are [4]. 

 

Many fundamental aspects of lncRNA biology that could provide important insights into their 

potential mechanism of action are yet to be characterized, including their subcellular localization 

patterns and even their abundance within single cells.  For instance, if a lncRNA resides 

primarily in the nucleus near its site of transcription it may suggest a transcriptional regulatory 

function in cis [5-11].  Moreover, quantifying lncRNA abundance in single cells can help resolve 

whether the generally low abundance of lncRNAs in bulk assays is a result of uniformly low 

abundance per cell or due to a small proportion of cells that highly express the lncRNA.  Such 

questions cannot be addressed by current lncRNA profiles using bulk population assays. 

 

RNA fluorescence in situ hybridization (RNA FISH) [12, 13] can be powerfully deployed to 

address these questions to study lncRNA mechanism of action.  For example, early studies of the 

lncRNA XIST [14, 15], a key regulator of X inactivation and a paradigm for studying chromatin 

regulation by lncRNAs [16], used RNA FISH to demonstrate that XIST is located on the inactive 

X-chromosome, suggesting that it may be involved in chromosome architecture regulation [8, 

11].  More recently, RNA FISH in combination with immunofluorescence revealed that the 

lncRNAs MALAT1, NEAT 1 and MIAT co-localize with different speckle-like structures in the 

nucleus [5, 17-20]. RNA FISH also demonstrated how the lncRNA GAS5 changes its 

localization in response to stimulus [6]. These examples are, however, amongst the mostly highly 

abundant RNAs in the cell, whereas the vast majority of lncRNAs are considerably less 

abundant, precluding the use of conventional RNA FISH techniques that have relatively low 

sensitivity. 
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More recently, single molecule RNA FISH techniques, based on hybridization of multiple short, 

fluorescently labeled, oligonucleotide probes [21, 22], were used to estimate the absolute level 

and subcellular localization of even low abundance lncRNAs [7, 9, 10, 23-28].  Some studies 

assessed the correlation between a lncRNA and its putative mRNA target (simultaneously 

monitored with two differently colored fluorescent dyes) to reveal potential regulatory 

interactions [10, 25]. For example, combining multicolor correlations with subcellular analysis 

revealed that lincHOXA1 represses the neighboring Hoxa1 in cis in a subpopulation of cells [9].  

Apart from an early study that surveyed in situ hybridization data to brain tissue and at low 

resolution [29], no study has systematically applied single molecule RNA FISH to explore 

lncRNAs from cDNA and RNA-seq catalogs [30-36], where thousands of transcripts await 

functional characterization.  Furthermore, no study has tackled the unique challenges posed by 

lncRNAs, which are shorter, lower abundance and more likely to contain repeats than mRNA 

[30, 37]. 

 

Here, we used single molecule, single-cell RNA-FISH to characterize the abundance and sub-

cellular localization patterns of 61 lncRNAs across three human cell types. We focused on the 

subclass of intergenic lncRNAs (lincRNAs) [38] from our well-annotated Human lincRNA 

Catalog [30], and selected a subset spanning a wide range of tissue specificity and expression 

level and encompassing both syntenically orthologous lincRNAs [30, 35] and divergently 

transcribed lincRNAs [30, 33, 39-41]. We show that lncRNA FISH is more prone to artifacts and 

established a pipeline that controls for these by rigorously validating single molecule RNA FISH 

probe sets.  Using validated probe sets we demonstrate that sub-cellular localization patterns vary 

across lncRNAs, but are consistent across cell types, typically with most exhibiting a much 

stronger nuclear localization than mRNA. In mitotic cells, lncRNAs do not associate with 

chromatin, showing that (at least for the examined cases) retention to specific regulatory regions 

through mitosis is likely not a mechanism of mitotic inheritance.  We also measured cell-to-cell 

variability in abundance, showing that many lncRNAs are in fact quite homogenous across cells, 

and overall no different than mRNA in their heterogeneity levels. Finally, simultaneous analysis 

of matching pairs of divergently transcribed lncRNAs and mRNAs shows that these are not 

always co-regulated and that the localization patterns of divergently transcribed lncRNA do not 

differ from those of other lncRNAs.   
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3.2 Results 

 

A single molecule, single cell RNA FISH survey of lncRNAs in 3 human cell types 

 

To characterize the abundance and localization patterns of lncRNAs in the three different cell 

types, we studied 61 lncRNAs selected to span a range of parameters (Figure 3.1a) using single 

molecule RNA-FISH.  We used a two-step approach to validate the single molecule RNA-FISH 

signals (Figure 3.1a): first, we imaged each lncRNA using a complete probe set to identify the 

lncRNAs for which we obtained an RNA FISH signal, and second, we relabeled the individual 

oligonucleotides comprising our probe sets to validate the signals we observed as being specific 

to the target (a ‘two-color co-localization’ step, below). For those probe sets that did validate, we 

analyzed the characteristics of the associated lncRNAs. 

 

Specifically, we manually curated a candidate set of 61 lncRNA for screening (Figure 3.1b-c; 

3.4 Methods; Supplementary Dataset 1; Supplementary Table 2.1), such that:  (1) the 

lncRNAs in our set are significantly expressed in at least one of human foreskin fibroblasts 

(hFF), human lung fibroblasts (hLF) or HeLa cells, the target cell lines for our study; (2) the 

lncRNAs span a wide range of expression levels and tissue specificity (Supplementary Figure 

2.2.1);  (3) the set includes a subset of 43 lncRNAs that have an expressed syntenic ortholog in 

mouse; (4) the set includes a subset of 16 lincRNAs that are transcribed divergently to a 

neighboring mRNA (within 10 KB). These criteria and subsets are not mutually exclusive 

(Figure 3.1b). Finally, we included 16 “classic” previously studied lncRNAs as a point of 

reference (Supplementary Table 2.2). These “classic” lncRNAs are generally far more 

abundant than the other lincRNAs in our survey.  We used three types of mRNA controls 

(Supplementary dataset 1.4-1.5; 34 in total): (1) 9 mRNAs transcribed divergently to those 

‘divergent lncRNAs’ in this study; (2) CCNA2, a cyclin simultaneously imaged with all other 

lncRNAs; and (3) 24 mRNAs that span a wide range of expression levels in hFF (Padovan and 

Raj, personal communication).  

 

To visualize single lncRNA molecules, we used an established protocol for single molecule RNA 

FISH [22], where we design 10-48 complementary DNA oligonucleotides, each 20 bases long 
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and labeled with a single fluorophore at its 3’ end (Figure 3.1a). When these probes hybridize to 

a single RNA molecule, the packing of so many fluorophores to a single location renders the 

RNA molecule detectable by fluorescence microscopy. This method is typically also highly 

specific as only hybridization of a large fraction of the probe set yields a detectable signal [22].  

We successfully designed probe sets and screened 61 lncRNAs in hFF, hLF and HeLa cells (3.4 

Methods; Supplementary Dataset 1.6), 53 of which presented a detectable signal in at least one 

cell type. 

 

Since lncRNAs are, on average, more lowly expressed and have higher repeat content [37] than 

protein coding mRNAs (for which single molecule RNA-FISH is commonly applied; 

Supplementary Figure 2.1), they are more prone to off-target signals.  In particular, a single 

oligonucleotide binding to a highly abundant, well localized off-target transcript (such as those 

generated from repetitive sequences) can create a spurious signal.  For mRNA targets, such 

signals are readily distinguishable from the dispersed, diffraction-limited spots corresponding to 

individual mRNA, but several lncRNAs, such as the cis-bound lncRNAs XIST or KCNQ1OT1 

[8, 26], may actually display such signals legitimately. Indeed, we detected a few intriguing 

staining patterns in our pilot imaging screen that we nevertheless suspected to reflect off-target 

hybridization of one or a few oligonucleotides (Supplementary Figure 2.2). For instance, by 

aligning the probe sets’ oligonucleotides to the transcriptome, we were able to identify for one 

such probe set (XLOC_010514) one specific oligonucleotide that was hybridizing to a highly 

abundant and highly localized RNA (MALAT1) by only 15 nucleotides, yet resulting in a 

significant detectable signal (Supplementary Figure 2.2a; 3.4 Methods).  

 

To control for these and other possible off-target effects, we used a two-color co-localization 

approach [21, 22] in which we analyze each lncRNA after partitioning each probe set into two 

subsets (‘even’ and ‘odd’ oligonucleotides), each labeled with a differently colored fluorophore 

(Figure 3.1a, Supplementary Figure 2.2b-c). For a valid probe set, the signals from these two 

subsets should largely colocalize with each other, with the number of colocalized spots roughly 

equaling those obtained with the full probe set (‘quantitative consistency’).  Should a single 

oligonucleotide hybridize to a highly abundant incorrect ‘off’ target, this would manifest itself as 

a non-colocalized signal visible in only the odd or even channel (‘qualitative inconsistency’). 
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Alternatively, if some other form of non-specific background is present, it can result in a large 

difference between the number of spots identified with the full probe set and the number of 

colocalized spots (quantitative inconsistency). Using this validation step, we eliminated 19 probe 

sets from further analysis, as they had major qualitative or quantitative differences in the two 

color co-localization assay, underscoring the importance of testing for off target effects for 

lncRNA-FISH (Supplementary Figure 2.2d-e; Supplementary Dataset 2; Supplementary 

Table 2.3). Another 8 probe sets had no discernible signal. We were unable to attribute the cases 

of no detectable signal or co-localization inconsistencies to low number of oligonucleotides and 

observed a very slight bias toward lower abundance lncRNAs (Kruskal-Wallis one way analysis 

of variance P< 8.4X10
-3

; Supplementary Figure 2.3). Overall, we proceeded with 34 lncRNAs 

for which we had a valid detectable signal. 

 

We further evaluated each of the remaining 34 probe sets in each of the screened cell types to 

ensure the molecule count distribution obtained from the two color co-localization assay and the 

corresponding single color full probe set assay were quantitatively similar (3.4 Methods; Figure 

3.1a; Supplementary Figure 2.2e ; Supplementary Figure 2.18 ; Supplementary Dataset 2). 

This resulted in a set of 70 lncRNA-cell type pairs with valid signal, corresponding to 34 unique 

lncRNAs; Supplementary Dataset 2; Supplementary Figure 2.19). Note that probe validation 

in each cell type is essential as some probes were valid in one cell type but not in another 

(Supplementary Figure 2.4).  Altogether, we acquired over 2,000 images overall in 3-5 separate 

fluorescence channels, with 2-3 biological replicates per gene-cell pair (the final analysis 

included 80, 24 and 28 cells per gene on average, for HeLa, hLF and hFF, respectively).  
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Figure 3.1|  An RNA-FISH survey of lncRNAs  

(a) Study workflow. (b) Key features of 61 lincRNAs for which probe sets were successfully designed 

and were imaged in the study. Shown are for each of 61 lincRNA (column) the following features from 

top to bottom: whether it has a syntenic ortholog (black: has ortholog) or a divergently transcribed mRNA 

neighbor (black: has such neighbor), the extent of tissue specificity across 23 tissues (blue color intensity: 

maximal tissue specificity score as in [30] across the tissues presented in the figure; white to blue color 

bar), its expression level as measured by RNA-Seq (red intensity: the fractional density across the row of 

log2(FPKM) as estimated by Cufflinks; white to red color bar) in each of 23 tissues (heatmap rows; 

Supplementary Dataset 4 ;), and the extent of analysis performed (black: lncRNAs with valid probe set 

that were included in the final analysis; white: lncRNAs showing no signal; gray: lncRNAs with an 

invalid probe based on the two-color co-localization assay). 
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Most lncRNAs are located primarily in the nucleus 

 

The 70 lncRNA-cell type pairs examined (Figure 3.2; Supplementary Figure 2.5) span a range 

of localization patterns which we classified as type: (I) 1-2 large foci in the nucleus (9 pairs); (II) 

large nuclear foci and single molecules scattered through the nucleus (11 pairs); (III) 

predominantly nuclear, without foci (18 pairs); (IV) cytoplasmic and nuclear (28 pairs); and (V) 

predominantly cytoplasmic (4 pairs). Validating our approach, 11 of the 12 lncRNA that were 

previously imaged by RNA-FISH [6, 8, 19, 23, 42-49] showed patterns that are consistent with 

previous reports (Supplementary Dataset 1.3). These include the large nuclear foci previously 

observed for XIST and Kcnq1ot1 [8, 11, 44], localization of GAS5 to both the nucleus and 

cytoplasm [6] and the speckle and para-speckle structures of MALAT1 and NEAT1, respectively 

[19, 42].  

 

The majority of lncRNAs (55% classified as class I-III; 38 lncRNA-cell type pairs) are 

predominantly in the nucleus (Figure 3.3a-b; 3.4 Methods; compared to 1/49 of mRNAs using 

the I-III classification criteria of more than 65% of molecules in the nucleus), with ~13% of 

lncRNA-cell type pairs mainly located in 1-2 large foci (type I). This bias toward nuclear 

localization was significant compared to localization of mRNAs (67% of lncRNAs vs. 10% of 

mRNAs have more than 50% of their RNA in the nucleus; Kolmogorov Smirnov (KS) P < 

13X10
-11

; Figure 3.3a-b). Within the lncRNA set, divergent lncRNAs presented a slightly higher 

bias toward nuclear localization (KS P < 2.12X10
-2

; Figure 3.3c) while syntenic orthologs did 

not present such bias over the lncRNA background distribution. The latter set does, however, 

exhibit a slight bias toward higher expression (KS P < 3.25X10
-3

; Figure 3.3d).   

    

In the vast majority (85%) of cases, the lncRNA localization pattern was consistent across the 

cell types where data was available.  The notable exceptions were 5 lncRNAs (lincFOXF1, 

TERC, XLOC_005764, GAS5, XLOC_002746) that displayed distinct patterns in at least two 

cell types.  These differences, however, appeared mostly to result from changes in overall 

expression leading to the appearance of additional bright foci in the nucleus (Figure 3.2, 

magenta stars, Supplementary Figure 2.6-8; Supplementary Dataset 3.2).  For example, we 
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identified large lncRNA foci for TERC and XLOC_005764 in HeLa (type II), where they are 

more abundant (~81 and ~22 molecules per cell, respectively) than in hFF (type III, ~17 and  ~4 

molecule per cell, respectively), where these foci are missing. Similarly, GAS has dominant 

nuclear foci in HeLa (type II, ~195 molecules per cell), and less frequent foci in fibroblasts, 

where its expression is lower (type VI, ~75 molecules per cell). In other cases, higher abundance 

was associated with the appearance in the cytoplasm as well. For example, lincFOXF1 is more 

abundant in fibroblasts, where it more frequently appears in the cytoplasm (type VI in fibroblasts 

vs. type II in HeLa). 

 

Focal lncRNAs do not persist in their nuclear foci during mitosis 

   

The appearance of bright nuclear foci of specific lncRNAs raised the question of whether these 

foci persist through mitosis; if they are involved in transcription regulation, then persistence at 

the target locus through mitosis could suggest a potential mechanism for the maintenance of 

epigenetic states through cell division. To address this question we examined the staining in 

mitotic cells of six such lncRNA (~50% of such cases), including XIST. None of the examined 

cases presented nuclear foci in cell undergoing mitosis. (The potential foci we observed in ~1/3 

of ANRIL mitotic cells were not validated when using 2-color co-localization; Figure 3.3e; 

Supplementary Dataset 3.3; Supplementary Table 2.4). Notably, for five of the lncRNAs, 

including XIST, we observed some molecules spread throughout the cytoplasm during mitosis 

(consistent with previous observations for XIST [8]). In the case of XLOC_001515 we did not 

observe any lncRNA molecules whatsoever during mitosis.  

 

We also checked whether any of our lncRNAs had evidence for G1 or S/G2 dependent 

expression by simultaneously measuring the cyclin CCNA2 transcript in every image we 

obtained.  CCNA2 expresses exclusively in the S, G2 and M phases of the cell cycle, making its 

mRNA abundance a marker for cell cycle phase [50, 51]. We identified two lncRNAs that 

positively correlated in their expression with CCNA2 (lincSFPQ and XLOC_001226), and one 

negatively correlated (XLOC_011185), irrespective of cell volume (Padovan and Raj, personal 

communication; Supplementary Dataset 3.4; Supplementary Table 2.5; Supplementary 
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Figure 2.9; 3.4 Methods). This suggests that expression of these lncRNAs is regulated through 

the cell cycle. 
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Figure 3.2| lncRNAs exhibit a variety of cellular localization patterns.  See legend below. 
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Figure 3.3| Nuclear localization of lncRNAs. See legend below. 

 



90 
 

Figure 3.2| lncRNAs exhibit a variety of cellular localization patterns. Florescence micrographs of 

representative expressing cells for each of 34 lncRNAs with a validated probe set. LncRNA-cell pairs are 

classified to cellular localization types I-V as described in the 3.4 Methods (marked by their border 

color). Magenta stars mark five lncRNAs that are presented in two different cell types and two different 

classes (see same row for comparison). Scale bar, 5 µm; when a scale bar is not specified, reference the 

scale bar within the top left image. Top panel: fraction of each classification for each type across the full 

set of 70 valid lncRNA-cell pairs imaged. 

 

Figure 3.3| Most lincRNAs are predominantly localized to the nucleus 

(a) Boxplots describing the distribution of the fraction of molecules localized to the nucleus (Y axis) for 

each validated lncRNA-cell pair (X axis, orange: HeLa, blue: hFF, purple: hLF). Red bar: medians. 

Whiskers are is 1.5* the inner quartile range. (b) Scatter plot of the relationship between expression level 

(X axis; median number of molecules per cell) and nuclear localization (Y axis, median fraction of 

nuclear spots across all expressing cells). Each data point is one gene-cell pair and is colored by its 

classification to the localization classes I-V (3.4 Methods) of Figure 2. mRNA sets 1-2 (yellow) serve as 

a reference. Histograms on top and right are the distribution of all lncRNAs- (black) and mRNA- (yellow) 

cell pairs.  (c) Scatter and histograms as in (b) but for lncRNA with (red) or without (black) a divergently 

transcribed mRNA counterpart. (d) Scatter and histograms as (b) but for lncRNA with (red) or without 

(black) a syntenic ortholog. (e) Representative image of mitotic cells (marked with white arrows) lacking 

foci that are seen in interphase cells (marked with yellow arrows). Scale bar, 5 µm. 

 

 

 

The extent of cell-to-cell variability in lncRNA expression is not markedly greater than that 

of mRNAs 

 

When measured in bulk cell populations, lncRNAs are typically expressed at low levels 

compared to mRNAs [1, 30]. Several studies have hypothesized that these bulk measurements 

may obscure an extreme cell-to-cell heterogeneity, such that lncRNA are expressed very highly 

in a small fraction of cells, but lowly or not at all in most others cells, resulting in average low 

expression [52, 53]. We tested this hypothesis by quantifying the cell-to-cell variability of the 

lncRNAs in our panel.  

 

We first confirmed that the average (cell population) expression level estimates for our lncRNAs 

are generally consistent between RNA-FISH and RNA-Seq (Pearson  = 0.52; P-value < 4.3X10
-

6
; 3.4 Methods), with the discrepancies possibly due to the high variability in RNA-Seq 

abundance estimates for some of the examined transcripts (Supplementary Figure 2.10). The 

distribution of single cell counts demonstrated the relatively low expression of lncRNAs across 

cells, with 43% of lncRNA-cell pairs having 10 or less molecules per cell on average and with a 

median of 14 molecules across all gene-cell pair distribution medians ( vs. 36 for the 49 mRNA-

cell pairs we examined; Figure 3.4a). 
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In most cases, cell-to-cell variability in lncRNA levels did not reveal the presence of low 

frequency, highly expressing cells, and is similar to that of protein coding mRNAs expressed at 

comparable average levels (3.4 Methods; Figure 3.4c). In particular, with one notable exception 

(described below), the mean and the median molecule counts were similar, highlighting the lack 

of outlier cells in the single cell distributions (3.4 Methods; Figure 3.4b; Supplementary 

Figure 2.15; Pearson  = 0.98, P-value <2.5X10
-39

). 

 

Since we only obtained a few dozen cells for most of the lncRNA-cell line pairs examined (due 

to limited imaging throughput), we cannot rule out the possibility of a particularly rare cell with 

extraordinarily high expression levels.  To increase our power, we imaged 500-700 cells for each 

of 4 lncRNA in HeLa cells (Supplementary Figure 2.12), including XLOC_004456 that 

displayed no signal in HeLa in our initial assessment (Supplementary Figure 2.3).  None of 

these images revealed the presence of any highly expressing outlier cells.  With a sample size of 

n=500 cells, we can place an upper bound of 0.6% of cells that may be outliers with a statistical 

power of 0.95 (3.4 Methods). 

The one case we found of clear ‘jackpot’ outlier cells is the tissue specific lncRNA 

XLOC_003526 (Figure 3.4d-e): it is lowly expressed on average (FPKM <1 in a population of 

hLF RNA-Seq, with few, if any, spliced reads; Supplementary Figure 2.11), but in RNA-FISH 

~25% of the cells express it highly (107 +/- 26 molecules on average), whereas the other cells 

express it very lowly (9 +/- 1.2 molecules on average). Moreover, cells highly expressing 

XLOC_003526 presented a distinct non-random localization pattern reminiscent of MEG3.   

XLOC_003526 has no known expressed orthologs and is encoded in a poorly conserved 900 Kb 

gene desert. Expression of XLOC_003526 does not correlate with a specific phase of the cell 

cycle (as defined by CCNA2 expression in the same cells; above). Indeed, the distinct 

localization pattern of XLOC_003526 was not observed in any of the 12 mitotic hLF cells we 

examined (Supplementary dataset 3.3). 
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Figure 3.4 | Cell-to-cell variability does not appear to explain the low abundance of the lncRNAs in 

our survey. See legend below. 
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Figure 3.4 | Cell-to-cell variability does not appear to explain the low abundance of the lncRNAs in 

our survey 

(a) Distribution of RNA single molecules counts (bins, columns; Red color intensity: fractional density of 

molecule counts across the population) for the 64 lncRNA-cell pair in the validated set that are 

quantitative (rows, 3.4 Methods). Cell type is color coded in left column (orange: HeLa orange; blue: 

hFF; purple: hLF). Values from 0-50 molecules are in bins sized 3 (left); values 50-300 are in bins sized 

10 (right) with the last bin for all cells with more than 300 molecules. One lncRNA (XLOC_003526) has 

heterogeneous expression across cells, and one with homogenous expression (XLOC_006922), are 

pointed by black arrows and referenced in figures b-c. (b,c) The relationship between the mean molecule 

count (X axis) vs. median molecule count (Y axis, b) or vs. variability in molecule counts (Y axis, 

coefficient of variation, c) for the 64 lncRNA-cell pairs in the quantitative validated set (red), mRNA set 

1 (green circles; 3.4 Methods) and mRNA set2 (green diamonds; 3.4 Methods). A linear regression line 

in b (black) supports the consistency of the majority of transcript-cell pairs with a unimodal distribution 

(Y=0.87X-1.25,  Pearson ρ = 0.96). Dotted line is Y=X. Black curve in (c) is the theoretic Poisson 

distribution. Four transcripts marked (1-4) are analyzed further in d-e.  LncRNA pairs with mean > 170 

(less than 10% of all pairs) are not presented, but show a similar pattern on a log scale. (d) Fluorescence 

micrographs of single molecule RNA FISH of a homogenously expressed lncRNA (1-XLOC_006922; 

top left) and mRNA (2-FOXF1; top right) and of a heterogeneously expressed lncRNA (3- 

XLOC_003526; bottom left) and mRNA (4 – CCNA2; bottom right).  XLOC_003526 and CCNA2 are 

both heterogeneous but do not correlate with each other based on co-staining in two colors. Scale bar, 5 

µm. (e) Molecule count distributions for each of the example transcript 1-4. 

 

 

Cellular localization of divergently transcribed lncRNA-mRNA transcript pairs  

 

We have previously distinguished a subset of lincRNAs that are transcribed divergently from 

protein coding genes’ promoters (~500, ~13% of human lincRNAs [30, 33]; Figure 3.5b). These 

may be related to the widespread phenomena of divergent transcription [39-41, 54, 55], but are 

distinguished by the fact that the resulting transcripts are stable, processed and spliced. While not 

much is known about the function of this subset and their site of action, one hypothesis is that 

divergent lncRNAs are co-regulated with their neighbors and possibly have a regulatory effect 

on their neighbor at the transcription site [33, 56]. Several studies using bulk assays observed 

that divergent transcripts are usually co-expressed [33, 40, 41, 56]; To look for such correlations 

at the single cell level, we co-stained cells for divergent lncRNA and their mRNA neighbor, 

looking for any correlations in single cell abundances as well as any distinctive spatial 

localization patterns that might indicate local regulation (such as localization to one or few foci 

such as for the cis acting XIST/KCNQ1OT1 (Figure 3.2).   
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We therefore used two-color RNA-FISH to analyze eight of the nine candidate divergent 

lncRNAs for which we had valid probe sets along with their neighboring mRNA (Figure 3.5; 

Supplementary dataset 3.6). We observed that in most cases (7/8) the bi-directionally promoted 

lncRNAs were not simply localized at one or few foci (characteristics of type I; likely to be the 

site of transcription), but rather were localized throughout the cell (Figure 3.5a-b; 

Supplementary Figure 2.13). For example, XLOC_011950 and XLOC_010514 have a 

substantial cytoplasmic fraction and no nuclear foci (type VI). NR_029435, TUG1 and 

XLOC_009233 are mostly nuclear but with no apparent foci (type III). Lastly, while lincMKLN1 

(type II), lincFOXF1 and GAS5 (type II and VI) all present nuclear foci in some cell types, 

lincFOXF1 and GAS5 are also substantially expressed outside these foci and in the cytoplasm.  

Together, the different subcellular localizations displayed by divergent lncRNAs were distinct 

from each other, and were not qualitatively different from those of the other lncRNAs in our 

survey. 

 

We also observed a spectrum of correlation and expression levels of the lncRNA and its 

neighboring protein coding gene (Figure 3.5b). lincFOXF1 and  its neighbor are both tightly 

correlated (Pearson ρ =0.91) in hLF and expressed at similar expression levels (~121 and 158 

molecules per cell on average, respectively).  XLOC_010514 and its neighbor are also tightly 

correlated in hLF (Pearson ρ =0.84), but the lncRNA is an order of magnitude more lowly 

expressed (~256 and 7 molecules per cell on average, respectively).  XLOC_011950 and its 

neighbor are positively correlated and expressed in a similar range in HeLa, but do not correlate 

in hFF, where they are still expressed to the same extent on average (Figure 3.5c; 

Supplementary Figure 2.14). NR_029435 and GAS5 are positively correlated with their 

neighbors in HeLa (Pearson ρ= 0.4 and 0.43, respectively) and expressed to a higher extent than 

their coding neighbor (2 fold and 30 fold increase, respectively), although it is unclear whether 

these relatively mild correlations result from a generic correlation with cellular volume (Padovan 

and Raj, personal communication).  We note that there was no correspondence between the 

existence of an expression correlation between the lncRNA and its neighbor and a particular 

subcellular localization pattern. Taken together, while divergent lncRNA in this study share a 

common genomic layout, they do not have the same localization pattern, expression levels nor 

co-expression levels with their neighboring coding gene.  
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Figure 3.5 | Cellular localization of divergent lincRNAs and their neighbors  

(a) Two-color overlay micrograph presenting florescence probes targeting the lincRNA (green) and 

coding neighbor (red). Co-localized spots are marked yellow. The lincRNA and cell type are marked on 

the image. Scale bar, 5 µm; marked on the left most image. Top: illustration of the positional genomic 

orientation of a divergent lincRNA and its coding gene neighbor. (b) Representative fluorescence 

micrographs as shown in Figure 2 for the lincRNAs in a.  Scale bar, 5 µm. (c) Scatter plots of the 

relationship in each cell between the expression level of the lincRNA (X axis, molecule count) and that of 
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its neighboring coding gene (Y axis). Pearson correlation coefficients (ρ) after removal of outliers (3.4 

Methods) are denoted on top. Data in (a-c) is presented for 8 of the 9 lincRNA-gene neighbor pairs for 

which a valid probe set and fluorescence signal is available.  
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3.3 Discussion  

 

In this study we have applied single molecule RNA-FISH to quantitatively characterize the 

expression and localization of 34 lncRNAs, chosen to span diverse characteristics, in individual 

cells in three human cell types (overall, 70 gene-cell pairs). Our systematic analysis optimized 

new experimental and computational techniques for the unique challenges posed by lncRNAs, 

addressed several open questions in lncRNA biology, and shed new light on their putative 

function.  

 

While single molecule RNA-FISH has a high success rate when applied to mRNAs [21, 22], our 

screen highlighted specific challenges in the context of lncRNAs. First, lncRNAs are shorter 

than mRNAs and have a higher repeat content: ~75% of our lncRNA candidate set contains a 

repeat element vs. only 1 of the mRNAs in this study [37]. Since probes targeting repetitive 

sequences are associated with a higher background, this greatly constrained our probe design, 

typically resulting in smaller probe sets. Thus, while we originally attempted to design probes for 

87 lncRNAs, only 61 yielded designs with greater than 10 oligonucleotides. Second, lncRNAs 

appear hybridize to off-targets at a higher frequency than mRNAs, likely due to smaller probe 

sets, lower sequence specificity of individual oligonucleotides, and higher abundance of off 

target hybridization sites relative to the target. Our two-color co-localization step was essential to 

control for these, by revealing quantitative and qualitative inconsistencies for 20 lncRNAs 

(~33% of lncRNAs vs. 1 of 11 mRNAs (9%) that had no signal in this screen). Third, unlike 

mRNAs, legitimate lncRNA signals can appear as bright nuclear foci, whereas such signals are 

rarely if ever observed for mRNAs, where foci are readily discarded as false positives. Yet, such 

type of false positives are common for lncRNAs but cannot be automatically dismissed. For 

example, there are 8 cases of large foci in HeLa appearing in only one channel (e.g., Figure 3.1a) 

that might represent a highly expressed and localized off target (presumably of repetitive 

sequence or perhaps the transcription site of another gene). Finally, it is essential to separately 

validate probes in every cell type under investigation, because a probe may show discrepancies 

only in some cell types (Supplementary Figure 2.4).  Such confounding probes can be detected 

experimentally and specific oligonucleotides can be eliminated as we applied for XLOC_010514 



98 
 

(3.4 Methods; Supplementary Figure 2.2a). However, we did not apply this detection and 

elimination process to all invalid probe sets due to scalability constrains.  

  

LncRNAs have diverse sub-cellular localization patterns, with a bias toward primary localization 

to the nucleus (55%), followed with localization both to the cytoplasm and the nucleus (40%), 

whereas only few lncRNAs were predominantly cytoplasmic. In contrast, mRNAs were 

primarily localized to the cytoplasm, with only a minority of the transcripts of any mRNA 

species (on average 23 %) localized in the nucleus (equivalent to our classification to type V 

which includes ~ 5% of our set). Overall, fully 95% of our lncRNAs display a nuclear bias, as 

compared to mRNA. This bias toward nuclear localization is consistent with previous analysis 

that relied on relative RNA-Seq measurements of subcellular fractions [31, 57], but suggests 

more conclusive evidence as it relies on absolute measurements  (see [1] for discussion).     

 

We observe bright nuclear foci for ~30% of the lncRNA we examined, but no bright cytoplasmic 

foci for any of them. These foci may be consistent with a role for these lncRNAs in chromatin 

regulation [4], such as previously demonstrated for XIST [8], KCNQOT1[44], AIR [58] and 

other lncRNA involved in imprinting [59]. The absence of nuclear foci in mitotic cells for five of 

six lncRNAs that present such foci during interphase strongly suggests that a putative association 

with specific regulatory regions is likely not a mechanism of mitotic inheritance in these cases. 

We distinguish two classes of bright nuclear foci. Tight spatially localized foci are in a 

diffraction limit spot, as for single RNA molecules, such as ANRIL and XLOC_006922. These 

are likely localized to the transcription site itself, potentially during transcriptional bursts [60]. 

Conversely, foci with spatially extended localization, such as MALAT1 and XIST, could either 

represent spreading of the lncRNA over a broad area of chromatin (e.g., XIST) or localization to 

a particular nuclear region, such as speckles for MALAT1. Of note, we also observed distinct 

non-random localization pattern throughout the nucleus for MEG3 and XLOC_003526 

reminiscent of MALAT1 (Figure 3.2) and possibly consistent with localization to a specific 

nuclear body [61].  

    

Our single cell analysis suggests that – at least for our set – the low abundance of lncRNAs in 

bulk cell population is most likely not a result of high expression in a small subset of ‘jackpot’ 
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cells as previously hypothesized [52, 53]. Overall, the extent of cell-to-cell variability of 

lncRNAs resembled that of mRNA expressed at similar levels.  Although in some cases the 

number of imaged cells is low, we nevertheless observe a relatively homogenous expression of 

few molecules per cell, and the average expression from RNA-FISH and (bulk) RNA-Seq are 

fairly correlated (Supplementary Figure 2.8). Furthermore, this conclusion is strongly 

supported when we analyzed hundreds of cells for a few representative lncRNAs. We cannot rule 

out the possibility that a few very rare “jackpot” cells exist (which could be discovered by even 

deeper imaging studies), but those are not necessary to explain the average expression in bulk 

assays.  

 

There are a few important exceptions to this general rule. First, a striking exception is 

XLOC_003562, a lncRNA that is very lowly expressed based on bulk estimates (<1 FPKM), but 

is expressed at ~110 molecules per cell in ~25% of the cells in our analysis, and has intriguing 

non-random localization pattern reminiscent of MEG3 and MALAT1 (Figure 3.4d). Second, 

two rare daughter cells, which probably result from asymmetric division of HeLa cells, express 

NR_029435 very highly and uniquely (Supplementary Figure 2.16).  Finally, three of the 

lncRNA in our set may oscillate with the cell cycle, based on correlation analysis with CCNA2, 

one of which (XLOC_001185) possibly down regulated in proliferating cells. Thus, some 

lncRNAs show more substantial cell-to-cell variability. Nevertheless, this is within the range of 

phenomena also observed for mRNAs, and the frequency of positive cells is not particularly low.   

 

While the vast of divergent transcription results with short unstable transcripts [39-41, 54, 55] , 

we and others reported over 500 lincRNAs that are transcribed divergently to protein coding 

genes [30, 33, 56]. It was recently suggested that these more stable transcripts evolve by 

“strengthening the U1-PAS axis”, such that a gain in U1 binding sites coupled with loss of poly-

adenylation(A) sites (PAS) promotes transcription of elongated and spliced transcripts upstream 

of promoters through evolution [55]. 

 

We selected 16 pairs of divergently transcribed lncRNAs to analyze the relationship between 

their localization or expression levels to that of their neighboring gene mRNA. We detected a 

valid signal for 9 of them (a success rate similar to other types of lncRNAs in this study) but this 
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did not significantly correlate with properties associated with higher stability (transcript length, 

number of exons or maximal expression).  Most divergently transcribed lncRNAs correlated in 

their expression with their neighbor across individual cells, with varying correlations possibly 

owing to different stability of the lncRNA and the mRNA. Our divergent lncRNAs did not share 

a common localization pattern. Two of the divergently transcribed lncRNAs (GAS5 and 

lincFOXF1) were highly expressed (~120-200 molecule per cell on average), and two were 

substantially elevated compared to their neighbor (GAS5 and NR_029435). Only 3/8 divergently 

transcribed lncRNAs had one or few strong foci, a pattern expected if the transcribed lncRNA is 

directly or indirectly involved in transcription regulation around its site of transcription. One of 

these 3 linRNAs is lncMKLN1 (PINT), a potential tumor suppressor lncRNA, regulated by P53, 

whose mouse syntenic ortholog was previously shown to bind PRC2 [62]. The vast majority of 

the examined cases (7/8) spread-out through the nucleus and also appeared in the cytoplasm. 

Overall, while sharing a genomic layout, divergent lncRNAs in this study did not share a 

common localization and expression pattern.  

 

In summary, our study highlights important differences and similarities between lncRNAs and 

mRNAs, and provides a workflow for applying single molecule FISH to study lncRNA. The rich 

set of localization patterns we observe suggest a broad range of potential functions for lncRNA 

and highlights specific lncRNAs for future hypothesis driven mechanistic studies. 
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3.4 Methods 

 

Selection of candidate lncRNA set 

We manually selected the lncRNAs candidate set from our human lincRNA catalog [30] to 

represent different features: (1) tissue specificity, (2) evolutionary conservation by an expressed 

mouse syntenic ortholog, and (3) divergent transcription from coding genes’ promoters. We 

selected the set such that it can be divided to a positive and a negative subset with respect to each 

trait so we can study teach feature with respect to other features (e.g., expression level, nuclear 

localization, etc.). These subsets were not mutually exclusive across these three features (Figure 

3.1b). We also ensured that the set includes transcripts expressed in at least one of the three cell 

types we studied (hLF, hFF or HeLa), and represent a wide range of expression levels (as we did 

not have an estimate for the minimal expression level required for detection by RNA-FISH).  

 

Features of each lncRNA were extracted from our human lincRNA catalog and were evaluated 

as previously described [30]. Briefly, to evaluate tissue specificity we use a tissue specificity 

score (ranging from 0 to 1) that is calculated by an entropy based metric. We consider transcripts 

with a score greater than 0.4 as tissue specific. Divergent lncRNAs are those that are bi-

directionally transcribed within 10 KB from a protein-coding gene promoter (illustrated in 

Figure 3.1a). Orthologous lncRNAs in this study are those for which there is an annotated 

expressed transcript in their syntenically mapped genomic region in mouse (mapped by the 

TransMap algorithm [63]).     

 

The selection process was performed by the following steps. (1) we selected only the lincRNAs 

that were is the stringent set and were significantly expressed in foreskin or lung fibroblasts. We 

determined significant expression based on a scan statistic [30, 38]. (2) We divided the set from 

(1) to two subsets according to the presence of a mouse syntenic ortholog. (3) We sorted each of 

the two subsets by (a) expression level, (b) tissue specificity, (c) transcript length, (d) the 

presence of a chromatin signature of actively transcribed genes [30, 38], and (e) being a 

divergent transcript. (3) We then screened the sorted subsets top-down manually selecting those 

lincRNAs that had an isoform that was clearly supported by RNA-Seq spliced read based on 

visual inspection of the RNA-Seq read alignments and the reconstructed transcripts. (4) We 



102 
 

partitioned these candidates to three expression bins and balanced the subsets sizes by 

eliminating transcripts from the top two bins, giving preference to divergent transcripts, tissue 

specific transcripts, and then to longer transcripts that have a chromatin signature of actively 

transcribed genes and a low number of isoforms. (5) We repeated steps 1-4 using the transcripts 

expressed in HeLa cells. All selection criteria were based on previously estimated features that 

are available through the human lincRNA catalog table ( [30] ; 

http://www.broadinstitute.org/genome_bio/human_lincrnas/). Finally, we included 16 previously 

studied lncRNAs curated from the literature (Supplementary dataset 1.3; Supplementary 

Table 2.2). 

 

Selection of control mRNA sets 

We selected two sets of mRNA controls (Supplementary dataset 1.4-1.5). Set 1 is comprised of 

mRNAs transcribed divergently to our ‘divergent lncRNAs’ and CCNA2, a cyclin 

simultaneously imaged in all images. Set two consists of mRNAs selected to span a wide range 

of expression levels in human foreskin fibroblasts (Padovan and Raj, personal communication).    

 

Design and synthesis of RNA FISH probe sets  

We designed oligonucleotides sets using software available through Stellaris Probe Designer 

(http://www.biosearchtech.com/stellarisdesigner/). Since the software avoids sequence elements 

deemed to cause high levels of background, it can sometimes result in only a limited number of 

potential oligonucleotides targeting a particular RNA. As a conservative choice, we only 

included in the actual screen those lncRNAs for which we had at least 10 designed 

oligonucleotides. Supplementary dataset 1.6 contains all the oligonucleotide sequences used in 

this study. 

 

We ordered all Stellaris™-type oligonucleotides from Biosearch Technologies, but instead of a 

dye on the 3’ end of the oligonucleotide, we ordered oligonucleotides with an amine group on 

the 3’ end, to which we coupled either Alexa Fluor 594 (Life Technologies), Cy3 (GE 

Healthcare) or Atto 647N (Atto-Tec). After coupling, we removed the unlabeled 

oligonucleotides via HPLC purification. For the data using full probe sets, we labeled the 

lncRNA oligonucleotides with Alexa Fluor 594, the coding neighbor mRNA oligonucleotides 

http://www.biosearchtech.com/stellarisdesigner/
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(when applicable) with Cy3, and Cyclin A2 mRNA oligonucleotides with Atto 647N. When 

validating the lncRNA oligonucleotides via co-localization, we labeled the even numbered 

oligonucleotides in Alexa Fluor 594 and the odd numbered oligonucleotides with Cy3. 

 

Cell culture and RNA FISH  

We cultured human foreskin fibroblasts (CRL-2097, ATCC), human lung fibroblasts (IMR-90, 

ATCC), and HeLa cells (gift from the lab of Phillip Sharp, MIT) in Dulbecco's modified Eagle's 

medium with Glutamax (DMEM, Life Technologies), supplemented with 10% fetal bovine 

serum, Penicillin and Streptomycin. We grew the cells in 2-well chambered coverglass (Lab 

Tek). We washed cells with 1x phosphate buffered saline (PBS) and then fixed them in 3.7% 

formaldehyde in 1x PBS for 10 minutes at room temperature. After fixation, we washed the cells 

twice with 1x PBS and then permeabilized them in 70% ethanol at 4C at least overnight or until 

we performed FISH staining. 

 

We performed RNA FISH staining as previously described [22, 64]. Briefly, we washed cells 

with a solution of 10% formamide in 2x sodium citrate buffer (SSC), then applied the 

appropriate amount of probe in a hybridization solution containing 10% formamide, 2x SSC, and 

10% dextran sulfate (w/v). Hybridization was allowed to occur overnight in a humid chamber at 

37C. Cells were then washed twice for 30 minutes at 37C with 10% formamide in 2x SSC. 

DAPI was applied during the second wash. Cells were then rinsed twice with 2x SSC before 

imaging. 

 

Imaging 

After performing RNA FISH, we imaged the cells on a Nikon Ti-E inverted fluorescence 

microscope using a Plan Apochromat 100x objective and a cooled CCD camera. We acquired 

around 25-30 optical slices at 0.3µm intervals, thereby covering the entire vertical extent of the 

cell. As described previously, we used bandpass filters specifically for these channels that have 

essentially no signal crossover [51], and acquired successive image stacks for DAPI (nuclear 

stain), each fluorescence channel targeted with an RNA FISH probe. We also acquired images in 

a fluorescence channel with a 488nm excitation (similar to fluorescein/Alexa 488); this channel 

has no probe in it, and thus reveals the degree of autofluorescent background in the sample. 
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Image analysis 

Image analysis was performed using custom software written in Matlab (The Mathworks, Natick, 

MA) as previously described [22]. Briefly, images were first manually segmented to define 

cellular boundaries by using a custom user interface. Images were then processed with a linear 

filter akin to a Laplacian-of-Gaussian to remove non-uniform background and to enhance 

particulate signals. RNA particles in each channel were then identified in a semi-automated 

manner by selecting an intensity threshold above which a spot is considered an RNA particle.  

Specifically, the threshold was computationally estimated (and then manually confirmed or 

adjusted) by identifying a plateau in the graph comparing the intensity threshold (X axis) and 

total particles above that threshold (Y axis; Supplementary Figure 2.16). We then determined 

each spot’s intensity by fitting a two-dimensional Gaussian to the spot signal and obtaining 

amplitude.  Finally, we determined which spots co-localize across channels following the 

methods outlined in Levesque et al. [65] in a two stage process: first, we find spots that 

colocalize within a relatively large spatial window, then we use those colocalized spots to 

register the two images (correcting for any shifts between channels) and run the colocalization 

again, but this time with a smaller window.  We ignored spots that co-localized with spots 

identified in the GFP channel (which represent auto-fluorescent background). Details regarding 

subsequent analysis steps are described in the following sections. 

 

Single molecule count correction 

We applied the following heuristic to estimate the number of molecules within a large focus.  For 

each lncRNA, we divided the total integrated signal in a single detectable spot (focus) by the 

median signal of the spots within the same cell. The final spot count xi for a spot pi  was  xi = max 

(1, floor(si/ci)), where si is the total intensity of spot pi,  and ci is the median intensity of across 

all the spots within the same cell as pi. ci was used to estimate the signal intensity from 

hybridization to a single molecule. Application of this correction affected on average 5% +/- 

0.5% STDV of the originally-detected spots, causing on average an increase of 12% +/- 1.7% in 

the mean spot counts (Supplementary Figure 2.17).  Following this calculation, the spot count 

estimations of XIST, MALAT1, and NEAT1 were outliers in that the corrected counts resulted in 

over an order of magnitude higher estimate than the other cases. Moreover, shorter exposure time 
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was required in these three cases in order to obtain a clear image, as molecules in these cases are 

clumped together posing a challenge to resolve single spots. Therefore, we consider the spot 

count estimation of XIST, MALAT1, and NEAT1 as not quantitative and eliminate these from 

the quantitative parts of the analysis. Five other lncRNAs (Anril, GAS5, NR_029435, 

lincFOXF1, and TERC) included outlier cells (<4 cells per lncRNA) for which the fitting 

algorithm yielded an implausibly large value for a specific spot, as verified by eye (resulting in a 

total spot count a 15 IQR (inter quartile range) higher than the median count across all imaged 

cells for that gene). These specific cells were eliminated from the analysis (visual inspection 

confirmed these were not “jackpot cells”; Supplementary dataset 2.4). 

 

Identification of off-target hybridization of an XLOC_010514 probe to MALAT1 

To identify candidate oligonucleotides of the XLOC_010514 lncRNA that potentially hybridize 

to other RNAs in the cell we aligned the sequences against the Refseq [66] transcriptome using 

BLAST [67] (with default parameters for short read alignments; word size =7, match score =1 

mismatch score = -3). We then ranked the next best hits based on their expression levels by 

RNA-Seq. Elimination of oligonucleotide #5 that is predicted to have 15 exact matches with 

MALAT1 and reimaging resulted with elimination of the localization pattern that was similar to 

MALAT1.   

 

Validation of probe sets by two-color co-localization 

To validate each probe set we used a two-color co-localization approach similar to that 

previously described [21, 22]. Briefly, we partitioned each probe set to the even- and odd- 

numbered oligonucleotides and coupled each subset with a different fluorophore (evens with 

Alexa594, odds with Cy3). We then hybridized the two probe sets and imaged each color.  

 

To determine the total number of RNA particles above background signal in each color we 

pursued the following procedure. First, we determined the total number of particles imaged in 

each cell using the full probe set coupled to Alexa 594 (termed the ‘single-colored probe set’), 

using the previously described, semi-automated procedure [22] employed in Image Analysis, 

above (Supplementary Figure 2.16). We also estimated the distribution of particle counts for 

the single-colored probe set and its mean mi.  Next, for every cell in the two-color co-localization 
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dataset we selected the xi particles with the highest signal for each of the even-numbered and 

odd-numbered probe subsets, where xi = max (50, 5*mi). We then calculated the number of co-

localized spots among these xi spots from each color in every cell. Finally, we determined the 

distribution of the number of co-localized spots for each probe set across cells. We only consider 

the co-localized spots as representing a true mRNA particle in each channel when we analyze 

images acquired in the two-color assay. 

 

We applied this analysis to every probe set in each of the three cell types (HeLa, hLF, hFF) in 

which it displayed a signal. A probe set was considered invalid in a specific cell type if there was 

either (Figure 3.1a, Supplementary Figure 2.2d): (1) a qualitative difference between the 

localization pattern obtained using one color channel vs. the other; or (2) a quantitative 

difference defined as a statistically significant difference in the distribution of the number of co-

localized particles and the single-color probe set particles (P < 0.05, Mann-Whitney U ranksum 

test). The remaining cell-probe set pairs were considered valid and images acquired with the full-

single-colored probe set were used for all subsequent analyses. Manual examination recovered 

14 additional borderline cases in which the clear pattern seen in one cell type was similar to that 

in a different cell type for which the two color and single color assays were consistent. The 

specific classifications and distribution comparisons are specified in Supplementary dataset 

2.1, Supplementary Table 2.3, and Supplementary Figure 2.18. 

 

For many of the two-color experiments it was impossible to robustly determine the total number 

of mRNA particles in each channel using the plateau method [22] used for the single-colored 

probe set (Supplementary Figure 2.16b). This is likely due to the smaller number of 

oligonucleotides that actually hybridize to the target when using only half the probe set, resulting 

in a lower contrast between the real signal and background [22] . The approach we used above to 

evaluate the number of co-localized spots does not rely on the plateau method and is not 

sensitive to the selection of an intensity threshold. 
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Localization to the nucleus 

Nuclear localization of a spot was heuristically determined based on co-localization with DAPI 

after considering the maximal signal across all z-stacks. We determined nuclear localization by 

two approaches that yielded similar results: (1) the percent of spots across the entire cell 

population localized to the nucleus (‘molecule level’); or (2) the percent of cells in which more 

than 50% of the spots were localized to the nucleus (‘cell level’). Classification of a gene as 

predominantly nuclear was estimated based on the ‘cell level’ approach by calculating the 

fraction of nuclear spots for each cell, and then taking the median across this distribution. 

 

Each lncRNA:cell-type pair was assigned to one of the following classes: (I) 1-2 large foci, (II) 

both large foci and single molecules scattered through the nucleus, (III) predominantly nuclear 

(without foci), (VI) cytoplasmic and nuclear, and (V) predominantly cytoplasmic.  

 

Assignment was performed with the following steps:  (1) For each lncRNA-cell pair we 

calculated the fraction of nuclear spots for each cell, and then determined the median of that 

distribution. (2) LncRNA-cell pairs with a median fraction of nuclear spots > 0.65 were then 

manually assigned to classes I, II, or III, by manual inspection of the images and visual 

recognition of large foci. (3) LncRNA-cell pairs with a median fraction of nuclear spots < 0.35 

and an average spot count > 20 were classified as V. The selection of a spot count threshold was 

made in order to be conservative when classifying to V. (4) All other cases were classified as IV.  

(5) Finally, we reassigned two borderline cases to IV (lincFOXf1-hFF and XLOC_011950-hFF, 

median nuclear fraction of 0.67, 0.35 respectively), since we were unable to manually identify 

specific cells that support a predominant localization to either compartment. Assignments to 

localization patterns are specified at Supplementary dataset 3.2. 

 

Estimation of population expression abundance based on RNA-Seq 

We estimated the expression abundance of all lncRNAs and protein-coding genes by running 

Cuffdiff2 (non-diff mode) [68] across a set of  HeLa, hLF and hFF samples as well as a second 

set that included these samples in addition to a previously published RNA-Seq human tissue 

compendium ( [30, 37]; Supplementary Dataset 4). RNA-Seq libraries were aligned to Hg19 

using Tophat [69]. We used our entire human noncoding transcripts catalog [30] complemented 
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with additional lncRNAs added in this screen and all coding transcripts annotated in the UCSC 

Browser [70] for a comprehensive representation of transcripts along the genome, while 

performing abundance estimation (Supplementary Dataset 4). FPKM calls were log2-

transformed (after addition of ε = 0.05). Expression matrices and other information related to the 

RNA-Seq analysis are provided in Supplementary dataset 4. 

 

Identification of lncRNAs with extreme heterogeneity 

XLOC_003526 was first detected as having a subpopulation of highly expressing cells based on 

visual inspection of the data. We have attempted to identify other such cases systematically by 

two other approaches: (1) detecting outliers in the regression line fitting the samples’ mean and 

median. This detects only XLOC_003526. (2) Fitting a Poisson to the mean vs. CV plot and 

detecting outliers with a mean value outside the confidence intervals around the estimated mean. 

None of the candidates identified by the latter approach appeared to present a distinguished 

subset of expressing cells based on visual examination. Other attempts to fit a Gaussian or a 

mixture of Gaussians to model bimodality in the data failed due to small sample size. 

  

Selection of lncRNAs for a large sample size imaging survey 

We examined the lncRNAs that have a low average molecule count relative to their estimated 

expression based on RNA-Seq (by looking at off-diagonal data points in Supplementary Figure 

2.8) in HeLa cells (to enable higher throughput). We selected XLOC_L2_008203, 

XLOC_008174 and XLOC_004456, as they matched these criteria. We also included 

NR_029435 since we initially observed one rare case of a highly expressing cell and wanted to 

further estimate the frequency such case occurs.  

 

Rare cell power calculation  

We performed the following power calculation to determine the probability of not observing eve 

one ‘jackpot’ cell (defined informally as max (100, 10*IQR(v)+mean(v)) , where v is the count 

vector and IQR is the inner quartile range) among n samples cells. Let p be the probability of a 

jackpot cell. Then the probability of not finding any jackpot cell among n sampled cell is (1-p)
n
. 

Therefore, the probability of finding at least one jackpot cell is 1-(1-p)
n
. In our studies, we 
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measured at least n=500 cells without observing a jackpot cell. Setting our desired statistical 

power to 0.95, we achieve p < 0.006. 

 

Correlation with cell cycle phase 

To determine whether the expression of any of the lncRNAs in our study is correlated with 

phases of the cell cycle, we simultaneously measured in every image we acquired the cyclin 

CCNA2, which is exclusively expressed in the S, G2 and M phases of the cell cycle. We then 

applied several approaches to determine if a lncRNA’s expression is cell cycle dependent. (1) 

For every lncRNA – cell type pair we calculated the Pearson correlation coefficient (r) between 

CCNA2 and the lncRNA molecule counts. We consider |r|>0.4 as indication of cell cycle 

associated expression.  For those associated cases, we estimate if the observed correlation was 

dependent on cell volume by fitting a linear regression model to predict the lncRNA molecule 

counts by using the cell area and CCNA2 levels as predictors (using the Matlab function
 

LinearModel.fit). We then evaluated if CCNA2 was a significant predictor (P<0.05). (2) We 

estimated a threshold on CCNA2 levels for each cell type that distinguished cells in G1 from all 

other phases. We derived this threshold by plotting the distributions of levels of CCNA2 in all 

the cells we imaged from a specific cell type. The resulting distributions are bimodal, allowing 

us to determine a threshold t=0 for HeLa cells and t=20 for fibroblasts. For each lncRNA in 

every cell type we then split the population of cells by these thresholds and compared differences 

in the distributions of molecule counts using a KS test. Finally, we followed by a visual 

examination of the candidates that were significant based on these two criteria as a final 

conformation step. 

 

Divergent neighbor correlation analysis 

The presented Pearson correlation values between lncRNA-mRNA divergent pairs were 

calculated after removal of outliers. Outliers were defined as those that are three standard 

deviations over the mean of any one of the two variables. Correlation values before and after the 

removal of outliers are specified in Supplementary Dataset 3.5.   
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Catalog access  

Our linc-FISH catalog can be accessed at 

http://www.broadinstitute.org/genome_bio/human_lincrnas/ (select lincRNA-FISH catalog on 

the left menu). All Supplementary Datasets as well as raw image data can be downloaded from 

the website. Individual images can be viewed through an image database linked to the website.   

(please login with the following credentials : username-reviewers password –p@55w0rd). 
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Chapter 4 |  Discussion 
 

4.1 Contributions 

 

Integrative annotation of human lincRNAs reveals global properties and specific subclasses 

 

When I initiated my studies, our understanding of lncRNA biology was very rudimentary. Yet, 

several groups had described evidence for evolutionary constrains acting on lncRNA sequences, 

which implied potential function [1-4]. This was ground breaking as it suggested that, similar to 

the microRNA field, a whole new layer of regulatory processes was about to be discovered. At 

the time, while evolutionary conservation, as an indicator of function was a guiding theme, we 

did not have the means to explore how many of these newly discovered mouse lincRNAs 

actually have an expressed human ortholog and what was the meaning of these partially 

conserved sequences. 

 

At that time the main annotation groups were curating growing numbers of cDNA clones 

classified as unknown transcripts in human and mouse [2, 5, 6]. However, these were yet to be 

assembled into a characterized collection of lncRNAs, and even when the first efforts started, it 

was unclear in which tissues and context the transcripts were expressed and how comprehensive 

were these sets. As early evidence suggested that lncRNAs were tissue specific [7-9], a 

comprehensive catalog detailing where lncRNAs are expressed and what their characteristics are 

was needed, as it could serve as a guiding map for the emerging community that had a growing 

interest in lincRNA biology. 

 

The emergence of RNA-Seq and the development of ab initio transcriptome assemblers 

presented a unique opportunity to generate such a catalog at single nucleotide resolution in a cost 

effective manner and unprecedented scale. Our goal was to generate, for the first time, a detailed 

lincRNA catalog describing a large set of properties such as conservation, expression patterns, 

tissue specificity and chromatin state, to facilitate the generation of testable functional 

hypotheses. For example, we identified a set of 215 lincRNAs located in gene deserts genetically 

associated with disease in genome wide association studies (GWAS). This included a thyroid 
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specific lincRNA located in a gene desert associated with thyroid cancer, which was 

subsequently shown by an independent study to be differentially expressed in thyroid cancer 

patient samples. As we predicted, this differential expression was influenced by a single 

nucleotide polymorphism (SNP) in a transcription factor binding site at the promoter [10].    

 

One of the main advantages of our tissue compendium is that it allowed us to conclusively show 

that lincRNAs are more tissue specific compared to protein coding genes across a broad range of 

expression levels. This had both theoretical and practical implications. First, it supported the 

hypothesis that lincRNAs may be involved in processes that determine cell identity. Second, it 

made it clear that when studying lincRNAs in a new system, one greatly benefits from 

reconstructing its unique transcriptome from RNA-Seq data as it likely includes important 

transcripts not documented in available catalogs. Indeed, when using similar approaches tissue 

specificity was later demonstrated during zebrafish development [11] and across mammals [12, 

13]. Interestingly, tissue specificity was shown to be conserved, such that expression of a 

lincRNA that has an ortholog is likely to be specific to the same tissue in different species [12].    

 

Another key point introduced in our study was that evolutionary conservation was not evaluated 

based on cross species sequence homology, but rather by looking for an expressed syntenic 

ortholog. This was important since weak evidence of sequence homology is meaningless with 

respect to the transcript’s function if an ortholog is not being expressed. We identified ~1,000 

human lincRNAs that had an expressed syntenic ortholog, ~700 of which were part of our 

stringent set. Since at the time of our study a parallel dataset of mouse tissues was not available, 

we could only provide a lower bound estimate for the number of lincRNAs that have a syntenic 

expressed ortholog based on publically available catalogs from other species. Surprisingly, our 

initial estimate of ~13-15% did not significantly increase when we later compared lincRNAs 

expressed from similar tissues in human and mouse (e.g: human and mouse lung fibroblasts and 

embryonic stem cells; MNC unpublished data). Moreover, a recent study comparing human 

lincRNAs to expressed orthologs in 5 different mammals report ~700 syntenic orthologs in the 

mouse, similar to our initial report [12].  Overall, the moderate but existing conservation of a 

subset of lincRNA expressing loci is consistent with the view of RNA as a more evolvable 

molecule, in which structure rather than sequence has a primary effect on function [14]. 
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Our study also highlighted a subset of ~500 divergent promoters that produce stable and long 

divergent spliced transcripts. These were recently suggested to evolve by a process termed 

“strengthening of the U1-PAS axis” in which a gain in U1 binding sites coupled with loss of 

poly-adenylation(A) sites (PAS) through evolution promotes transcription of elongated and 

spliced transcripts upstream of promoters [15]. Interestingly, we noticed that for 30% of 

divergent lincRNA loci, the loci was expressing a spliced divergent transcript only in tissues that 

are different than where divergent-non-spliced transcripts were most abundant. In addition, while 

overall we observed co-expression of divergent lincRNAs and their neighbors (which was only 

slightly higher than for divergent coding gene pairs), about 25% of these divergent lincRNAs are 

tissue specific whereas their coding neighbor is ubiquitously expressed. 

 

While the vast majority of divergent transcripts are co-expressed with their neighbors [16-19], a 

few studies using RNA-FISH, including ours, highlighted exceptions to this rule [20, 21]. These 

provide examples by which one can explore a recently proposed model suggesting that divergent 

transcription can serve as a mean to evolve new genes with a function that is independent of their 

neighbor [22].   

 

We also distinguished a subset of transcripts of uncertain coding potential (TUCPs), which are 

transcripts that we could not definitively classify as non-coding, as they included some evidence 

for conserved open reading frames (ORFs) or protein domains. This set of transcripts might be of 

particular interest as it includes specific genes with higher sequence conservation, which are 

more likely to be functional. In a following collaboration, we demonstrated that less than 0.5% of 

lincRNAs and TUCPs have evidence for potentially encoding small peptides based on mass-

spectrometry data that was enriched for small peptides [23]. This suggests that some of the 

lncRNAs found to be enriched in poly-ribosome fractions might be doing something different 

than encoding small peptides [24, 25]. Alternatively, some of these transcripts may be ‘proto-

genes’, non-genic sequences that are randomly translated to generate a pool that may result in  

de-novo gene birth over time, a model supported by studies in yeast [26]. Indeed, Pri and more 

recently Toddler/Elabela are examples of unknown genes with short ORFs that do encode short 

peptides essential for development [27-30].      
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Localization and abundance analysis of human lncRNAs at single cell and single molecule 

resolution 

 

Our first study provided a map that enabled us to understand some of the global properties of 

lincRNAs. Still, a key step toward understanding function is to track the subcellular localization 

of these RNAs. Importantly, the low abundance and cell/tissue specificity of lincRNAs raise the 

possibility that they may only function in a small fraction of high expressing cells amongst the 

bulk population.  Currently, neither single molecule imaging nor single cell based analyses are 

routinely used to study lncRNAs functions. These would greatly benefit the community and 

serve as an early guide for mechanistic studies targeting a novel gene.  

 

With this in mind, we have systematically applied single-cell single-molecule RNA-FISH to 

dozens of lncRNAs and in this process tackled specific challenges in applying this technique to 

study this class of molecules. One such challenge involves target specificity, since we found in a 

number of cases that signal resulting from hybridization to highly concentrated off-target appears 

similar to the patterns we found legitimate for other lncRNA. To control this, we used a two 

color co-localization step to validate each probe set and introduced a computational approach to 

assess probe set validity from this data (i.e. comparison of the distribution of co-localized spots 

rather than the fraction of co-localized spots). Based on our survey of 61 lncRNAs, we show that 

this strategy is essential for FISH analyses of lincRNAs, since inconsistencies were found for 

approximately a third of our probe sets and specific types of invalid signals were distinguished.  

 

While we were only able to survey a limited set, our study demonstrates the great benefit of 

applying RNA-FISH at an early step when studying the function of novel lncRNAs. We 

demonstrated that lncRNAs have a range of localization patterns and are biased toward the 

nucleus. To date, small interfering RNA (siRNA) perturbation and RNA affinity purifications are 

routinely used as initial steps to determine which genes may be targeted by a lincRNA and with 

which proteins it interacts. However, using RNA-FISH Maamar et al. demonstrated that 

targeting a nuclear lncRNA using siRNA vs. perturbation through locked nucleic acid (LNA; 

which specifically act in the nucleus) has different phenotypic outcomes [20]. In addition, the 

interpretation of recently-introduced chromatin localization assays [31-33], will be influenced by 
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the RNA’s localization shown in situ. For example, single molecule RNA-FISH sowed that the 

lincRNA Firre is localized in one main foci around its transcription start site, but a chromatin 

localization assay also indicated it binds trans sites [34]. This latter finding guided subsequent 

RNA-FISH experiments that corroborated a proposed model suggesting that the trans sites are in 

fact proximal to the focus in three dimensions. Thus, together with our study, this highlights the 

importance to determine whether a lincRNA is predominantly nuclear and what type of 

localization pattern it has prior to deciding which assays to use. 

 

Our single cell data suggests that in the majority of examined cases, it is unlikely that a rare 

subset of high expressing cells explain the overall low abundance measured across the 

population. Yet, we do demonstrate this possibility with XLOC_003526, a lincRNA that has 

extremely low abundance based on RNA-Seq, but is in fact expressed highly and in a very 

striking pattern in only ~22% of fibroblast cells. This localization pattern is reminiscent of 

MALAT1, a lncRNA localized to nuclear speckles and involved in alternative splicing regulation 

by distributing serine/arginine (SR) splicing factors to transcription sites [35]. The discovery of 

MALAT1 striking localization pattern very early on was what guided following studies leading 

to its function [36]. We also demonstrated a similar pattern for MEG3, an imprinted lncRNA 

with an unknown mechanism of action that was shown to act as a tumor suppressor in several 

cancers [37]. Our findings suggest the testable hypothesis that MEG3 and XLOC_003526 may 

localize to specific nuclear bodies and are involved in the processes specific to these 

compartments (e.g. involved in alternative splicing in similar to MALAT1).  

 

Overall, using systematic RNA-Seq and FISH-based surveys we uncovered key properties of 

lincRNAs including their tissue specificity, levels of syntenic orthology as well as their diverse 

cellular localization patterns. We applied new technologies, which were timely to our 

understanding of novel genes, highlighted challenges when applying them to lncRNAs and 

proposed strategies to overcome these challenges. Finally, we generated publically available 

catalogs that provide detailed information for each studied lncRNA. These will benefit the 

scientific community when generating testable mechanistic hypotheses to elucidate the function 

of lncRNAs.  
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 4.2 Future directions  

 

Our lncRNA-FISH survey revealed interesting non-random nuclear localization patterns for 

several novel lincRNAs (e.g. XLOC_005764, MEG3, XLOC_006922, XLOC_005151). These 

are promising candidates for chromatin localization assays in which one can detect the genomic 

regions where an RNA is localized by affinity capture of a target RNA from fixed cells and 

sequencing bound DNA [32-33]. Another interesting candidate for follow-up experiments is the 

lincRNA XLOC_003526, which is highly expressed in only 22% of lung fibroblast cells. One 

possible approach to learn more about this gene is to perform single cell RNA-Seq on ~100 

human lung fibroblasts followed by differential gene expression analysis between the sub-

population that expresses the lincRNA (expected to be ~20%) and the one which does not. One 

can then use a guilt-by-association strategy to learn which other pathways are specifically 

expressed in the same sub-population of cells and generate testable hypotheses on possible 

functions for this lincRNA. In parallel, one can apply simultaneously RNA-FISH and 

immunoflorescence targeting proteins markers of specific nuclear bodies, to learn if 

XLOC_003526, or MEG3 localize to specific nuclear compartments similarly to MALAT1 and 

NEAT1 (as suggested by their localization patterns).  

   

One future avenue that I find particularly interesting is understanding to what extent syntenic 

orthologous lincRNAs have similar functions. We found that while their position is conserved, 

syntenic orthologous lincRNAs in human and mouse share moderate sequence identity (lower 

than coding genes, higher than random regions and similar to randomly chosen syntenic regions). 

This suggests that while having similar transcriptional regulation across species, some syntenic 

orthologs, such as those transcribed divergently from a coding gene promoter for example, may 

have evolved to perform different functions. An important study in zebrafish demonstrated that 

two syntenically orthologous lincRNAs from human and mouse were able to rescue a 

developmental phenotype caused by knocking down their zebrafish ortholog [38]. Yet, we are 

still waiting with great anticipation to learn whether these mammalian orthologs have similar 

developmental roles in mouse and human. 
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A possible approach to screen for additional candidate orthologs is to systematically select 

orthologous lincRNAs that are substantially expressed in similar cell systems in human and 

mouse (or other species pairs that can be more easily manipulated in vivo) and perform single 

molecule RNA-FISH to learn if these have similar expression and localization patterns. One can 

then follow with perturbation, RNA affinity purification assays or other approaches to learn the 

function in one species and then use genetics to learn which sequence is essential for these 

interactions. Similar experiments in the other species’ cell system and a comparison of the 

affected/interacting genes/proteins can provide a mean to estimate the similarity across species. 

If these are similar, one should then test if the ortholog from one species can complement the 

lack of its counterpart in the other species. For example, would a knockout of a trans acting 

mouse lincRNA be rescued by overexpressing its human ortholog. Another approach to gain 

insight on conserved function is to apply recent tools which combine structure-dependent 

chemical probing and RNA-Seq to predict the secondary structure of each species’ molecule and 

then evaluate how conserved are these predicted structures [39-41]. 

 

Another intriguing avenue is to learn whether divergent lincRNAs have an independent function 

away from their transcription site. We have tried to approach this systematically by selecting all 

divergent lincRNAs expressed in foreskin fibroblasts (spliced, long and significantly expressed 

transcripts) and imaging them simultaneously with their neighbors. While we did find a few that 

are localized away from their transcription site or that were not correlated with their neighbors, 

our set was too small to suggest any general properties. 

 

One of the difficulties in studying divergent transcripts is that localization away from the 

transcription site can only suggest a potential for trans action, but does not eliminate the 

possibility of cis activity. In addition, co-expression doesn’t imply a regulatory effect between 

the neighbors. Most importantly, to study the independent function of the lincRNA one would 

ideally want to perturb the nascent divergent lincRNA transcript at the transcription site  and 

would preferably avoid genetic manipulation of the genomic loci, as this might have an effect on 

the neighbors’ promoter (as these are shared). Such a tool is currently unavailable and currently 

this question can only be addressed by combining different approaches of genome editing (e.g. 
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examining outcome after: (1) gene deletion, (2) an insertion of early termination site and (3) 

replacement of the gene sequence with a reporter). 

 

One possibility to screen for such targets would be to apply a single-cell variation of native 

elongating transcript (NET)-Seq [42] or global run on (GRO)-Seq [18] that would provide an 

estimate for how many divergent lincRNAs are not co-expressed with their neighbor in a given 

cell (as in [20]). Single molecule RNA-FISH can then be used to learn the localization patterns 

of such divergent lincRNA/coding genes pairs. One can then select specific lincRNA targets that 

localize to the transcription site and ones that do not, and use perturbation to start understanding 

their functions. 
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4.3 Perspective and concluding remark  

 

After the initial discovery of lncRNAs and their recognition by a wider community, the field is 

now “marching toward mechanism”. The emergence of RNA-Seq and the plethora of assays 

based on its power enabled the discovery of lncRNAs, the characterization of their global 

properties and their detection across biological systems. The early attempts to understand 

mechanism suffered from difficulties in effectively applying available molecular assays on 

lncRNAs. For example, it is very hard to obtain 80% knockdown of nuclear lncRNAs and while 

different approaches can be applied to detect protein binding partners it is not always clear what 

the proper controls are.  Yet, systematic studies carried in the past few years provided the 

community with a better understanding of the strengths and weaknesses of available tools. 

 

The recent and rapid developments of the CRISPR-Cas9 system to edit, regulate and target 

specific genomic loci seems like a promising avenue to efficiently and effectively target 

lncRNAs, a much needed tool by our community [43]. This approach is especially appealing as 

variations of the CRISPR-Cas9 system enables genomic editing as well as perturbing 

transcription (epigenetically or post-transcriptionally) while leaving the genome intact. This may 

be adapted in the future to generate an ideal tool that will target a nascent RNA for degradation 

while tethered to the transcription site. Such a tool will enable the distinction between the 

lncRNA causing an effect, the missing DNA element or the act of transcription. Still, we should 

adopt this new tool with caution, as off-target effects caused by this system are not fully 

appreciated at this early time point and strategies to improve its specificity are still evolving [43]. 

It would also be important to systematically understand if there are any additional challenges 

specific to particular types of lncRNA genes (due to higher prevalence of transposable element 

sequence, for example [44]).  

 

 

In the near future, our field will mostly benefit from detailed mechanistic understanding of 

specific examples by combining classic genetics and biochemistry with new emerging tools. The 

current literature suggests that lncRNAs have different mechanisms of action and do not only act 

on chromatin [45]. Yet, XIST remains one of the only well characterized models, which acts on 
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chromatin in cis. Moreover, applying RNA-FISH as an integral part of every study would be key 

to understanding the function of unknown lncRNAs. As it’s been done routinely in studies of 

XIST, MALAT1 and NEAT1, this should be integrated early in studies to understand where the 

lncRNA is localized and how consistent it is across cells and after perturbations. Another general 

approach that will greatly advance our understanding of lincRNA mechanisms would be to gain 

knowledge on RNA secondary or tertiary structures by combining structure-dependent chemical 

probing and RNA-Seq to better predict the shape of the molecule and which sequence elements 

may be important for its function [39-41]. 

 

Having a better mechanistic understanding of more lincRNAs will provide us with models on 

which we can test novel high throughput molecular tools. We will then be able to apply those 

systematically and understand lincRNA characteristics on a class level. Evidently, this is an 

iterative process and the first round of systematic studies provided a much better perspective 

going into the next round of mechanistic studies. It has been an exciting time to witness the birth 

of the lincRNA field and to be part of a growing community that is trying to decipher the 

function of a new and challenging class of genes. I am looking forward to see all the new 

discoveries on lincRNAs in the coming years. The stage is now set, lncRNAs are marching 

toward mechanism.  
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Supplementary Figures and Tables of Chapter 2 
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Supplementary Figure 1.1| Evaluation of lincRNA Transcript Structures. (a) Performance of de-novo 

assemblers on protein coding genes. Top: Illustration of compatibility between transcript isoforms.  In 

fully compatible transcript (right) both isoforms have the same exact set of introns and at most differ only 

in the 5’ and 3’ boundaries of their 5’ and 3’ exons, respectively. Partially compatible transcripts (left) 

have a subset (at least 2 sequential exons) of their exon-intron chain that is identical in both transcripts.  

Bottom: Shown are the fractions of protein coding transcripts annotated in Refseq (24,717 transcripts) 

that were partially recovered or fully recovered by Cufflinks (blue) Scripture (red) or by the unique union 

of both assemblers (green), after assembling the 24 tissues and cell-lines used for our analysis. Partial 

recovery corresponds to all Refseq transcripts for which a transcript with at least 2 correctly connected 

exons was assembled (87%, 86%, 88% for Cufflinks, Scripture and the union, respectively).  Fully 

recovered corresponds to all Refseq transcripts for which an exact gene structure was assembled  (the 

same exact exon-intron chain without accounting for the exact 5’ and 3’ boundaries of the 5’ and 3’ 

exons, respectively;  64%, 67%, 70% for Cufflinks, Scripture and the union, respectively). (b) A 

schematic Venn diagram describing the partition of the provisional lincRNA loci with respect to the 

annotation resources that identified a transcript as a lincRNA.    
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Supplementary Figure 1.2|  Structural characteristics of lincRNAs in comparison to protein-coding 

transcripts. (a) Transcript length. Shown are cumulative distributions of transcript length for the 

‘conservative lincRNAs’ (blue), conservative lincRNAs with K4-K36 support (green), conservative 

lincRNAs that are divergently expressed (red), lincRNAs annotated in RefSeq NR (yellow) and protein-

coding genes (black). Data is shown after eliminating the top 5% of coding genes which are larger than 

8KB. To control for the varying number isoforms across a transcript locus, only a single isoform with the 

maximal number of exons was selected to represent each lincRNA or coding gene locus.  (b) Analysis of 

lincRNA Exon number. Shown is the distribution of exon number for different sets of lincRNAs and 

coding genes, defined and color coded as in (a). Only a single isoform with the maximal exon number 

was selected in each locus. Data is shown after eliminating the top 15% of coding genes that have more 

than 20 exons. (c) Number of isoforms. Shown is the distribution of the number of isoforms identified per 

lincRNA locus. (d) Distance from neighboring coding locus. Shown is the cumulative distribution of the 

distance (in kilobase) of a lincRNA from its closest coding neighbor. 
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Supplementary Figure 1.3|  Functional enrichment in neighbors of lincRNAs.  Shown are 

enrichments (-log10 P value, Fisher exact test, X axis) of Gene Ontology (GO) [1] terms that are 

significantly enriched among lincRNA neighboring coding genes that are within 10 kilobase (a) or the 

subset of those that are divergent (b).  Only terms that passed a false discovery rate (FDR) correction 

smaller than 10% are shown (calculated by the David functional annotation tool [2]). Of the 959 

neighboring coding genes that were also annotated by GO-FAT (a more focused sub-set of GO [2]), 284 

(~28%) were included in at least one of the enriched functional sets. A full list of enriched functional sets 

is provided in Supplementary Dataset 4. 
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Supplementary Figure 1.4| Evidence for K4-K36 chromatin domains across the conservative set 

lincRNAs loci. Distribution of the 4662 conservative lincRNA loci with respect to evidence of a 

chromatin signature of actively transcribed genes (histone 3 lysine 4 tri-methylation (H3K4me3) across 

the promoter region , followed by H3K36me3 along the transcribed region; K4K36 domain) across the 

transcripts loci. 15% (701, green) of the lincRNAs loci overlap with a lincRNAs region identified by the 

K4K36 domain in a previous study [3].  9% (425, blue) were supported by a K4-K36 domain identified in 

at least one of 9 cell lines analyzed as part of the Encode project (Encode level 1; 2.4 Methods ) and that 

is not shared with a coding gene. An additional 17% (772) were also supported by a K4-K36 domain from 

the Encode cell-lines, however, this time the K4-K36 domain may also overlap a known coding gene 

(purple ; 2.4 Methods).  A lincRNA was considered as having a K4-K436 domain in the Encode set if it 

overlapped a H3K4me3 peak within +/- 2 KB from its start site, and also overlapped a H3K36me3 pick 

across the transcribed region. 
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Supplementary Figure 1.5| Maximal expression levels of lincRNAs. (a) Shown are distributions of 

maximal expression abundance across all tissues (log2 normalized FPKM counts as estimated by 

Cufflinks) of conservative lincRNAs (blue), conservative lincRNAs with K4-K36 support (green, 2.4 

Methods), lincRNAs which are not testes-specific (cyan), lincRNAs known to RefSeq (red; RefSeq NR) 

and coding genes (black). (b) Mean and median of maximal expression scores for each of the transcript 

sets presented in (a).  
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Supplementary Figure 1.6|  Tissue specificity of lincRNAs expression. (a) Shown are distributions of 

maximal tissue specificity scores calculated for each transcript across all tissues, for coding genes (black), 

different sets of lincRNAs (blue, green, and cyan, defined as in Supplementary Figure 1.5), as well as 

lincRNAs that are divergently transcribed (red) and trans-mapped lincRNAs (magenta).   (b) Comparison 

of distribution of tissue specificity scores between lincRNAs and coding genes at three levels of maximal 

expression ranges.  Transcripts in each panel have a maximal expression level within the range specified 

on top of the panel: low expression (left panel) ranges between (-1.5) -1.5 log2 FPKM, moderate 

expression (middle panel) ranges from 1.5-3.5 log2 FPKM and high expression (right panel) ranges from 

3.5-5.5 log2 FPKM.  
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Supplementary Figure 1.7| Functional enrichment of tissue specific expression clusters. 

Representative Gene Ontology (GO) terms that are significantly enriched among protein coding genes 

assigned to tissue specific clusters as was calculated by David functional annotation tool [2]. Shown are 

the nominal P-values calculated by a Fisher exact test (FDR < 10%). A full list of enriched functional sets 

is provided in Supplementary Dataset 3.  
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Supplementary Figure 1.8|  Distance between divergent lincRNAs and their coding neighbors. 

Shown is the distribution of base pair distance between the transcription start site of 588 lincRNAs and 

coding genes that are divergently transcribed. 
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Supplementary Figure 1.9|  Trans-mapped lincRNAs. (a) 533 of the 993 Trans-mapped lincRNAs 

(53%, dark grey) are designated as novel, such that they are not included in the public annotation 

resources used for this study and were only identified using RNA-Seq. (b) 641 (64%, dark grey) of the 

trans-mapped lincRNAs are mapped to mouse (and possibly to other species), while the rest are mapped 

only to species other than mouse (light grey). (c) Of the 641 lincRNAs that have a mouse syntenic 

ortholog, only 118 (18%, light grey) of their orthologs are classified as protein coding genes in the UCSC 

classification. (d) Expression patterns of 647 lincRNA that are in the conservative set and are trans-

mapped. Shown are the expression patterns of the 647 lincRNAs (rows) across the tissues (columns, data 

presented as in Figure 2a). Color intensity is the fractional density across the row of log normalized 

FPKM counts as estimated by Cufflinks (saturating less than 4% of the top normalized expression 

values). (e) Distributions of maximal expression abundance of each lincRNA (blue), Trans-mapped 

lincRNAs (pink) and coding (black) transcripts across tissues.  Expression levels are log2 normalized 

FPKM counts as estimated by Cufflinks. 
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Supplementary Figure 1.10| Alignments of trans-mapped lincRNAs to orthologous transcripts. (a,b) 

Shown are scatter plots comparing the PhyloCSF score (coding potential) in 614 pairs of human Trans-

mapped lincRNAs (X axis) and their syntenic mouse orthologs (Y axis). Dots are colored either by the 

fraction of the human lincRNA transcript that is covered by the mapping to a mouse syntenic ortholog (a) 

or by the fraction of the mouse orthologous transcript that is covered by the mapping (b). Mouse 

transcripts with a positive PhyloCSF have a significantly smaller region covered by a human ortholog (P 

< 0.04, K-S test). (c-d) Distribution of % identity (c) and % alignment (including gaps and mismatches, d) 

of the human transcript in either trans-mapped pairs of lincRNAs and its orthologous transcript (red), 

random sequence pairs (black), randomly selected pairs of syntenic blocks (blue), and pairs of 

orthologous coding genes (green) (2.4 Methods). 
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Supplementary Figure 1.11| Exon sequences of TUCP transcripts are under stronger evolutionary 

conservation.  Shown is the cumulative distribution of conservation levels across 29 mammals (omega 

[4]) in the exons of protein coding genes (red), TUCP transcripts (magenta), Trans-mapped 

lincRNAs(green), conservative lincRNAs (blue) , introns of coding genes (yellow) and ancestral repeats 

(black) .  Only transcripts with a sufficient cross-species alignment support (branch length > 0.5) are 

included in the plot, corresponding to over than 80% of each set, except for the ancestral repeats for 

which only 40% had sufficient alignment support.  The ancestral repeats serve as a null model of neutral 

selection. The intron set was created by uniformly sampling a size matched intronic fragment from the 

intron neighboring each coding exon. Pseudogenes were excluded from the TUCP transcripts to avoid 

bias in the conservation estimate caused by alignments to the paralog gene of the pseudogenes. 
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Supplementary Figure 1.12|  Evaluation of Trans-mapped TUCP transcripts. Shown are boxplots 

representing the fraction of the human transcript that is syntenicaly aligned to an ortholog (1
st
 and 2

nd
 

boxes) and the fraction of the lincRNAs genomic locus covered by the syntenic mapping of the ortholog 

(3
rd 

and 4
th
 boxes) for lincRNAs (1

st
 and 3

rd
 boxes) or TUCP transcripts (2

nd
 and 4

th
 boxes).  Both fraction 

of transcript mapped and fraction of genomic region mapped are significantly different between 

conservative lincRNAs and TUCP transcripts (P<3.3*10
-4

 and P<1.8*10
-4

, respectively, KS test), but with 

small effect sizes (24% and 18%, respectively). 
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Supplementary Figure 1.13| A thyroid specific lincRNA within an intergenic region associated with 

thyroid cancer. Top: Shown are UCSC genome browser (Kent et al. 2002) tracks showing the log odds 

(LOD, blue (low) to red (high)) scores between SNPs from the CEU HapMap population and the relative 

location of coding genes (blue) and lincRNAs (black) in a region spanning a thyroid cancer associated 

SNP (rs944289, green), based on the UCSC Genome Browser, build 36.  Bottom: a magnified view of the 

9 nucleotide surrounding the SNP (rs944289; marked by blue box) and the Logo view of the C/EBPalpha 

binding motif that overlaps the SNP.  
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Supplementary Figure 1.14| Caveats of transcript abundance estimation approach. Shown is a 

snapshot from the Integrative Genome Viewer  (Robinson et al. 2011) describing a lincRNA that is 

maximally expressed in brain according to Cufflinks’ abundance information, although there are no 

spliced RNA-Seq reads that support the expression of this specific spliced isoform ( in comparison to the 

colon where there are spliced reads supporting the exon).  Upper panel:  transcripts structure (blue). 

Middle panel: RNA-Seq coverage (red) and reads (gray*) in brain. Bottom panel: RNA-Seq coverage 

(green) and reads (gray*) in colon. * RNA-Seq read are represented as gray rectangles while light blue 

lines mark gaps across the read alignment. 
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Supplementary Figure 1.15| Optimizing the selection of the number of clusters (K) for K-means 

clustering. Shown is the distribution of Silhouette (Si) scores (y-axis) across different values of K (x-

axis), the number of clusters used to obtain tissue specific clusters of lincRNAs and coding genes. 

Average Silhouette score was calculated by the mean Si across all data samples (blue), or by taking the 

average of each cluster’s average Si (red). Higher Si implies a better clustering of the data.  

 

 

 

 

 
 

 

Supplementary Table 1.1|  Transcript reconstruction comparison between biological 

replicates. 

 
 Human Lung Fibroblast Brain Testes 

% of stringent set 

transcript loci from the 

low coverage sample 

that were identified by a 

matching multi-exon or 

single-exon isoform in 

the high coverage 

sample 

 

69% 74.5% 81.6% 
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Supplementary Table 1.2| Number of transcripts across species 

 

Species 

Species name Number of transcripts 

trans-mapped across 

species 

Number of 

ESTs 

Number 

of RefSeq 

genes 

Mouse Mus musculus 2313560 4367822 28539 

Zebra fish Danio rerio 792572 1646898 16158 

Cow Bos Taurus 685264 1621863 13964 

Rat Rattus norvegicus 424072 1121086 17172 

Madka fish Oryzias latipes 389820 703843 584 

Chicken Gallus gallus 258332 618531 5468 

Dog Canis familiaris 121789 399902 1212 

Tetraodon Tetraodon nigroviridis 103162   

Rhesus Macaca mulatta 34270 68320 2566 

Orangutan Pongo pygmaeus abelii 29657 46027 3555 

Zebra finch Taeniopygia guttata 27017 92700 170 

Horse Equus caballus 15803 37539 996 

Rabbit Oryctolagus cuniculus 13561 36332 1334 

Stickleback fish Gasterosteus aculeatus 9042 301622  

Opossum Monodelphis domestica 1712 459 467 

Platypus Ornithorhynchus anatinus 486 47782 383 
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Supplementary Table 1.3|  Disease associated intergenic regions containing a lincRNA that is 

expressed in a disease related tissue. 

Disease/trait SNP P value; 

OR/ beta 

lincRNAs Tissue Reference Note 

Thyroid cancer rs944289 2E-9
 

;1.37 

XLOC_010996 Thyroid [5] Strikingly 

high 

expression in 

the thyroid 

Waist-hip ratio rs1055144  9.9E-25
  
; 

0.04 

XLOC_006016 Adipose [6] Ortholog 

transcript in 

cow, some 

EST support 

LDL 

cholesterol 

rs2126259 7E-12; 

0.02 

XLOC_006706 Liver [7] Transcript 

identified by 

GENCODE 

with support 

by RNA-Seq.  

Bipolar 

disorder 

rs472913 2E-7;  

1.18 

XLOC_000856 Brain [8] Partial isoform 

identified by 

GENCODE 

Prostate cancer rs9284813 5E-9 XLOC_002726 Prostate [9] Partial isoform 

identified by 

GENCODE 
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Supplementary Table 1.4|  RNA-Seq datasets. 

 

Tissue/ Cell type Dataset  Sequencing 

platform 

Read length  Number of 

aligned reads  

Human lung 

fibroblasts (hLF) 

Rinn lab Illumina genome 

analyzer II (GAII) 

75 base pairs (bp), 

paired ends (PE) 

33849576 

hLF2 Rinn lab GAII 75 pb, PE (2 lanes) 136310398 

Foreskin 

fibroblasts 

Rinn lab GAII 75 pb, PE 58787488 

Brain  Rinn lab GAII 75 pb, PE 50661137 

HeLa   Rinn lab GAII 75 pb, PE 30134104 

Liver  Rinn lab GAII 75 pb, PE 32132725 

Placenta Rinn lab GAII 75 pb, PE 47384953 

Testes  Rinn lab GAII 75 pb, PE 49171324 

Adipose  Illumina Human 

Body Map2 

High-Seq 75 pb single end (SE), 

50 bp , PE 

221715491 

Adrenal gland Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 218793183 

Brain  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 204772783 

Breast  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 219398164 

Colon  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 244916925 

Heart  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 246232044 

Kidney  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 229699125 

Liver  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 239123970 

Lung  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 240042489 

Lymph Node  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 249015289 

Ovary  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 241958761 

Prostate  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 251395450 

Skeletal Muscle  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 242833112 

White Blood 

Cells  

Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 248288643 

Testes  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 241527185 

Thyroid  Illumina Human 

Body Map2 

High-Seq 75 pb SE, 50 bp  PE 235187522 
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Supplementary Table 1.5.  Publically available annotations used for this study. 

 

Dataset name Downloaded from 

(date) 

refs # of 

transcript

s 

Note 

Protein coding 

transcripts known 

to RefSeq 

The UCSC genome 

browser ; 

NCBI37/Hg19 (July 

2010) 

[10] 31911 Extracted only transcripts with 

an identifier beginning with 

NM_ 

microRNA and 

snoRNAs set1 

The UCSC genome 

browser; 

NCBI37/Hg19 

(November 2010) 

[11, 12] 1341 Data was collected from 

miRBASE and snoRNABase 

databases. 

miRNA, 

miRNA_pseudoge

ne, rRNA, 

scoRNA, snoRna, 

tRNAs 

Biomart Ensembl ; 

NCBI37/Hg19 

(November 2010; 

Ensembl Release 60)  

[13] 6219 Based on Ensembl annotation  

Pseudogenes set1 

– Vertebrate 

Genome 

Annotation (Vega) 

pseudogenes 

The UCSC genome 

browser 

NCBI37/Hg19; (July 

2010; Vega Release 

38)  

[14] 9534 Classification scheme:  

http://vega.sanger.ac.uk/info/ab

out/gene_and_transcript_types.

html 

 

Eliminated the ones that 

overlapped a Refseq NR_ 

Pseudogenes set2 -   

Yale Gerstein 

Group 

Pseudogenes 

From : 

http://pseudogenes.or

g/ (July 2010 ; build 

37)  

 

[15] 16363  

UCSC coding 

genes 

The UCSC genome 

browser 

NCBI37/Hg19 

(November 2010); 

The kgTxInfo 

primary table  

[16, 17] 69201 Extracted transcripts annotated 

as coding  (ref classification 

2008 ;  

http://genome.ucsc.edu/cgi-

bin/hgGene?hgg_do_kgMethod

=1,  http://genome.ucsc.edu/cgi-

bin/hgGene?hgg_do_txInfoDes

cription=1) 

GENCODE 

coding genes   

 GENCODE Version 

4, from : 

ftp://ftp.sanger.ac.uk/

pub/gencode/ 

Nov 2010  

[18] 29782 Downloaded file :  

GENCODE_v4.annotation.GR

Ch37.gtf.gz 

Extracted genes that were 

manually annotated ( level 1-2) 

with the types :  gene_type = 

"protein_coding" ,  

transcript_status = "KNOWN"  

Noncoding 

transcripts known 

to Refseq  

The UCSC genome 

browser ; 

NCBI37/Hg19 (July 

2010) 

[10] 4883 Extracted only transcripts with 

an identifier beginning with 

NR_ 
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Non coding 

transcripts known 

to UCSC 

The UCSC genome 

browser 

NCBI37/Hg19 

(November 2010); 

The kgTxInfo 

primary table 

[16, 17] 7673 Extracted transcripts annotated 

as non-coding (ref classification 

2008) 

Non coding 

transcripts known 

to GENCODE  

GENCODE Relese 4 

From : 

ftp://ftp.sanger.ac.uk/

pub/GENCODE/ 

Nov 2010 

[18] 14598 Extracted genes that were 

annotated with the types :  

gene_type = 

"processed_transcript", or  

"lincRNA", or  "non_coding"; 

transcript_status =  

"processed_transcript", or 

"lincRNA" , or "non_coding", 

or "misc_RNA"; 

 

Based on the Havana annotation 

guidelines :  

http://www.sanger.ac.uk/researc

h/projects/vertebrategenome/ha

vana/assets/guidelines.pdf 

  

RefSeq derived 

lincRNAs 

   Run “non coding transcripts 

known to Refseq”  set through 

steps 1,3,6 of our lincRNA 

classification pipeline 

GENCODE 

derived lincRNAs 

   Run “non coding transcripts 

known to GENCODE”  set 

through steps 1,3,4,5,6 of our 

lincRNA classification pipeline 

UCSC derived 

lincRNAs 

   Run “non coding transcripts 

known to UCSC”  set through 

steps 1,3,4,5,6 of our lincRNA 

classification pipeline 
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Supplementary Figures and Tables of Chapter 3 
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Supplementary Figure 2.1| LncRNA expression. Shown are the distribution of (bulk) expression 

abundance estimates (log2(FPKM) as estimated by Cuffdiff2[19]) of all expressed lncRNAs (green), 

coding genes (blue) and the 61 selected lncRNAs for this study (red) in HeLa (top), human foreskin 

fibroblasts (middle) and human lung fibroblasts (bottom). 
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Supplementary Figure 2.2 | Two color co-localization approach for RNA-FISH probe set validation. 
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Supplementary Figure 2.2 | Two color co-localization approach for RNA-FISH probe set validation 

(a) Florescence micrograph of the original probe set (left) targeting XLOC_010514 and the validated 

probe set after eliminating one oligonucleotide in hFF (right; 3.4 Methods).  (b) Top: Illustration of the 

two color labeling of even and odd numbered oligonucleotides within a probe set for the co-localization 

probe validation assay. Bottom:  Florescence micrographs of the NR_029435 probe set in HeLa of the 

even numbered oligonucleotides (left, green; Alexa 594), odd numbered oligonucleotides (middle, 

orange; Cy3) and co-localized spots over the even numbered set micrograph (right, yellow over white; 

Alexa 594). (c) Examples of qualitative and quantitative inconsistencies. Top: qualitative inconsistency 

between the localization pattern of MIAT in HeLa cells as determined by odd numbered oligonucleotides 

(left), even numbered (middle) and full probe set (right). The pattern matches between odd and full set, 

but not evens. Bottom: quantitative inconsistency between the distribution of RNA molecule counts (Box 

plots) based on the full probe set (left) and based on the number of co-localized spots when imaging in 

two colors (right). Red bar: medians. Whiskers are is 1.5* the inner quartile range. (d) Examples of 

qualitative and quantitative consistencies. As in c but for the valid probe set for NR_029435 in HeLa 

cells, which is both qualitatively (top) and quantitatively (bottom) consistent. 
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Supplementary Figure 2.3 | Dependency of probe set success on the number of oligonucleotides and 

lncRNA expression 

Scatter plot showing the relationship between the population average expression level as measured by 

RNA-Seq (X-axis, maximal log2(FPKM) across HeLa/hLF/hFF) and the number of oligonucleotides 

designed to target each lncRNA (Y-axis). Data points are colored by their classification to valid probe set 

included in the analysis (green), probe failed in the co-localization assay (red) or hybridization resulted 

with no signal (blue).  
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Supplementary Figure 2.4 | Qualitative inconsistency of the XLOC_009702 probe set in one cell 

type but not another 

Shown are micrographs for XLOC_009702 imaged with the full probe set (top) in either HeLa (top left) 

or hFF (top right), or with the odds and even probe sets in HeLa (bottom left and right, respectively). The 

probe set is valid in hFF but fails the two-color co-localization assay in HeLa cells. 
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Supplementary Figure 2.5 | Cellular localization patterns 

Shown are representative whole image fields for selected examples from each pattern type I-V, as defined 

in Figure 2. Scale bar, 5 µm. 
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Supplementary Figure 2.6 | Presence of nuclear foci for the same lincRNA in one cell type but not 

another 

Images demonstrating a pattern switch for TERC (top), XLOC_005764 (middle) and GAS5 (bottom) 

between HeLa cells (left), where expression is higher and nuclear foci are identified, and hFF (right), 

where foci are absent. Scale bar, 5 µm.  
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Supplementary Figure 2.7 | Presence of cytoplasmic transcripts for the same lincRNA in one cell 

type but not another 

Images demonstrating a pattern switch for lincFOXF1 (top) and XLOC_002746 (bottom) between 

fibroblasts (right), where expression is higher and cytoplasmic transcripts are identified, and HeLa cells 

(left) where only nuclear expression is detected. Scale bar, 5 µm. 
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Supplementary Figure 2.8 | Summary of features for each lncRNA in the study 

For each lncRNA in the validated and quantitative probe set (rows) shown are from left to right: 

abundance in HeLa, hLF and hFF (top to bottom sub rows, respectively; presented as fractional density of 

single molecule counts as in Figure 4a); classification to I-V localization type as in Figure 2; having a 

mouse orthologs or being divergently transcribed; and the median fraction of spots localized to the 

nucleus in expressing cells. Cell types for which the probe set is not valid are blanked. Positive 

classifications are marked black in the three right most panels.   
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Supplementary Figure 2.9 | lncRNAs with cell-cycle correlated expression 
For each of three lncRNAs found to be significantly correlated with CCNA2, irrespective of cell volume, 

shown are a scatter plot (left) comparing the estimated molecule counts of the lncRNA (X-axis) and 

CCNA2 (Y-axis) in each (Pearson correlation ρ is noted on top) and histograms (right) of the molecule 

count distribution of the lncRNA in cells in G1 (black) or G2/S/M (red) (number of cells is in top right; P-

value of testing whether the distributions differ using a Kolmogorov-Smirnov test is on top). Cells were 

classified as G1 or G2/S/M based on a threshold on CCNA2 levels as specified in the 3.4 Methods. (a) 

XLOC_011185 in hLF. (b) XLOC_011226 in HeLa. (c) lincSFPQ  in HeLa. lincSFPQ did not have any 

cells in G1. 
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Supplementary Figure 2.10 | Correlation between mean (bulk) expression and single cell average  
Shown is a scatter plot comparing for each of the lncRNAs its expression level estimate in a bulk 

population from RNA-Seq (X-axis, log2(FPKM) from Cuffdiff2) and the mean number of mRNA 

molecule identified by single molecule RNA-FISH (Y-axis, log2 scale). Error bars correspond to a 95% 

confidence interval. Regression line Y = 4.42X+2.86 (blue line; Pearson ρ=0.52). 
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Supplementary Figure 2.11 | low RNA-Seq read coverage across the XLOC_003526 locus  

A Sashimi plot [20] (as displayed by IGV [21]), describing XLOC_003526 transcript reconstruction by 

Cufflinks [22]. hLF RNA-Seq read alignment across the XLOC_003526 locus (top) from two replicates 

(red and blue coverage tracks) show the aggregate coverage of both spliced and un-spliced reads. Exon 

junctions spanned by the spliced reads are marked by bow curves. The number on top of the bow curve 

specifies how many spliced reads support this specific junction. There are only very few spliced reads in 

this data and these are all essential for reconstruction of the correct transcript (bottom). 
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Supplementary Figure 2.12 | Transcript abundance distributions across large numbers of cells 

Shown are the distributions of number of molecules per cell detected when imaging many (n>498) cells 

for each of four different lncRNAs. The lncRNA ID, cell type and sample size (n) are specified on top. 
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Supplementary Figure 2.13 | Divergently transcribed lncRNAs do not strongly co-localize with their 

neighboring mRNAs 

For each lncRNA-cell pair (X axis), shown is a Box plot of the distribution of the fraction of divergent 

lncRNA molecules that co-localize with their neighboring mRNA molecule across the imaged cells. 
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Supplementary Figure 2.14 | Correlation of expression between lncRNAs and their divergently 

transcribed mRNA neighbors  

For each lncRNA:mRNA:cell-type combination included in the analysis for divergent transcripts shown 

are scatter plots of the relation between the expression level in each cell of a lncRNA (X-axis, molecule 

count) and its cognate, divergently transcribed, mRNA (Y axis, molecule count). Pearson correlation 

coefficient (ρ) after removal of outliers (3.4 Methods) is denoted on top. 
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Supplementary Figure 2.15 | Two rare daughter HeLa cells express NR_029436 highly  
Shown are micrographs of NR_029436 with two rare, highly expressing, daughter HeLa cells (157 and 41 

molecules per cell for the top and bottom images, respectively). Scale bar, 5 µm. 
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Supplementary Figure 2.16 | Determining a spot intensity threshold (X) to detect valid RNA spots 

Shown are illustration plots of the number of detected spots (Y axis) above each detection threshold (X-

axis log2(intensity)) in (a) a case where a detection threshold can be determined by identifying a plateau 

in the graph; and (b) a case where a plateau is not identifiable. The latter is common for lncRNA images 

acquired with half of the probe set in the two-color co-localization assay. 
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Supplementary Figure 2.17 | Single molecule count correction 
Scatter plot of the mean (red) and median (blue) total spot count before (X-axis) and after (Y-axis) spot 

count correction. Error bars (gray) are the standard error of the mean. Black line Y=X. (b-c) Scatter plots 

of the mean spot count before correction (X axis) vs. either the percent increase in the mean after applying 

the correction (b) or the mean percent of spots that were affected by the correction across the cells (c). 

Data points are colored by classification to I-V class types, as in Figure 2 (noted here as C1-C5, 

respectively). Top 10% (n=6) highest data points exhibit similar behavior and are excluded from this 

figure for resolution purposes.  Each data point describes the population of cells expressing a specific 

lncRNA in a specific cell type. 
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Supplementary Figure 2.18 | Probe set validation by two color co-localization. See following pages.  

Each row present three panels describing the same lncRNA in the three cell types assayed in this study. 

Each panel compares for that lincRNA:cell type pair, the count distribution as estimated by the full probe 

(full, s1) or by the spots that co-localize in the two-color assay (Co-loc, s2) by their: descriptive statistics 

(left), Box plots (middle), and quantile-quantile (QQ) plots (right).  The descriptive statistics report from 

top to bottom: P-value of a Mann Whitney U test when comparing the two count distributions; 

ro=U/s1*s2, where U is the ranksum statistic, and si is the sample size in each set, provides an estimate 

from 0 to 1 of the extent of overlap between the two distributions, where ro=0.5 represents perfect 

similarity; sample set sizes for s1 and s2; and E, the log2FPKM expression estimate from RNA-Seq.  

Some panels are marked by a colored box on the top left with the following color code: yellow- 

quantitatively or qualitatively inconsistent signal (classification 2.1-2.3); purple – insufficient data due to 

technical reasons (classification 2.4-2.7); orange – no signal in either the full probe set or the two-color 

assay (classification 3); red -  valid after manual recovery. A borderline case with a pattern that is similar 

to a valid pattern of the gene in another cell type (classification 1.5). Panels where a box is absent are 

valid sets. Classifications are specified in Supplementary Dataset 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



168 
 

 
Supplementary Figure 2.18a | Probe set validation by two color co-localization. See legend above.  
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Supplementary Figure 2.18b | Probe set validation by two color co-localization. See legend above.  
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Supplementary Figure 2.18c | Probe set validation by two color co-localization. See legend above.  



171 
 

 
Supplementary Figure 2.18d | Probe set validation by two color co-localization. See legend above.  
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Supplementary Figure 2.18e | Probe set validation by two color co-localization. See legend above.  
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Supplementary Figure 2.19a | Molecule count distributions  

For each lincRNA (row) and each cell type (column) from the validated lincRNA:cell type set shown is a 

distribution of the molecule counts . The lncRNA and cell type as well as the total number of cells are 

noted on top of each distribution.  
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Supplementary Figure 2.19b | Molecule count distributions  

For each lincRNA (row) and each cell type (column) from the validated lincRNA:cell type set shown is a 

distribution of the molecule counts . The lncRNA and cell type as well as the total number of cells are 

noted on top of each distribution.  
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Supplementary Figure 2.19c | Molecule count distributions  

For each lincRNA (row) and each cell type (column) from the validated lincRNA:cell type set shown is a 

distribution of the molecule counts . The lncRNA and cell type as well as the total number of cells are 

noted on top of each distribution.  
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Supplementary Table 2.1| lncRNA-FISH candidate set characteristics. “ValidSignal?” Indices : 1-yes 

2-failed co-loc 3-nosignal. 

 

Screen ID 

Valid 

Signal?  #Oligos Ortholog Divergent 

Number 

Of 

Exons 

Transcript 

Len (bp) 

Tissue 

Specificity 

ANCR 1 18 1 0 3 855 0.087 

ANRIL 1 30 1 0 19 3834 0.098 

GAS5 1 14 1 1 12 632 0.097 

h19 2 32 1 0 5 2308 0.129 

KCNQ1OT1 1 48 1 0 1 91671 0.175 

lincFOXF1 1 43 1 1 6 6662 0.195 

lincGARS 2 45 0 1 7 3871 0.087 

lincMKLN1 1 37 1 1 4 2948 0.107 

lincSFPQ 1 40 1 0 3 2670 0.087 

MALAT1 1 48 1 0 1 8707 0.086 

MEG3 1 32 1 0 8 1722 0.162 

MIAT 2 48 1 0 4 9982 0.105 

NEAT1 1 48 1 0 1 3735 0.088 

NR_024412 1 15 1 0 3 1127 0.089 

NR_029435 1 32 1 1 4 2442 0.079 

NRON 2 48 1 0 1 2730 0.287 

TERC 1 10 1 0 1 451 0.236 

TUG1 1 37 1 1 3 7104 0.079 

XIST 1 48 1 0 6 19553 0.179 

XLOC_000304 2 24 1 1 4 952 0.098 

XLOC_002094 1 12 0 0 4 717 0.834 

XLOC_002263 2 25 1 0 8 1619 0.096 

XLOC_002408 1 14 1 0 3 1058 0.131 

XLOC_002746 1 24 1 0 7 9656 0.112 

XLOC_003526 1 22 0 0 5 990 0.417 

XLOC_004122 2 14 1 1 3 1194 0.166 

XLOC_004198 2 11 0 0 4 1771 0.394 

XLOC_004456 1 18 1 1 4 730 0.091 

XLOC_004803 1 48 0 0 2 3120 0.133 

XLOC_005151 1 48 0 0 3 3047 0.654 

XLOC_005764 1 48 1 0 4 2933 0.155 

XLOC_006198 2 17 0 0 5 1091 0.317 

XLOC_006922 1 24 1 0 3 1218 0.131 

XLOC_008174 1 16 0 0 4 2886 0.083 

XLOC_008583 2 12 0 0 3 988 0.102 

XLOC_009233 1 11 1 1 3 673 0.091 

XLOC_009447 3 24 1 0 2 3206 0.234 

XLOC_009474 2 48 1 0 2 3710 0.087            
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XLOC_009662 2 44 0 0 3 2716 0.443 

XLOC_009702 1 26 0 0 5 1895 0.228 

XLOC_010017 1 30 0 0 7 2207 0.135 

XLOC_010202 2 17 1 1 2 1454 0.084 

XLOC_010263 3 32 1 1 3 6207 0.172 

XLOC_010514 1 23 0 1 2 1985 0.162 

XLOC_010556 2 25 1 0 5 1589 0.224 

XLOC_010709 2 11 0 1 2 1083 0.133 

XLOC_010853 3 40 1 0 4 863 0.360 

XLOC_011185 1 30 0 0 3 4496 0.114 

XLOC_011226 1 20 1 0 5 8974 0.084 

XLOC_011264 2 25 0 0 3 2516 0.208 

XLOC_011950 1 14 1 1 5 2768 0.123 

XLOC_012187 2 20 1 0 2 3690 0.218 

XLOC_012192 2 13 1 0 4 3169 0.090 

XLOC_012197 3 12 0 0 4 1304 0.209 

XLOC_012564 3 15 1 0 5 7748 0.499 

XLOC_012599 1 32 1 0 5 2455 0.149 

XLOC_012980 3 10 0 0 2 342 0.083 

XLOC_013841 2 30 1 1 2 2794 0.234 

XLOC_014160 3 11 1 0 8 1958 0.353 

XLOC_L2_008203 1 16 1 0 2 793 0.099 

XLOC_L2_010926 3 31 1 0 3 2603 0.083 
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Supplementary Table 2.2| “classic” lncRNAs imaged in this study. A previous reverence that included 

RNA-FISH of the corresponding gene, is specified if available.  

 

Name 

 

Previous publication with 

RNAFISH 

Pubmed ID 

 

Cell type in 

previous study 

Consistent? 

 

DANCR NA 

  

NA 

ANRIL 

Yap et al. Mol Cell. 2010 

[23] PMID: 20541999 

prostate cancer 

cell 

Signal in previous 

paper is not 

punctate. Single 

molecules cannot 

be defined 

GAS5 

Kino et al. Sci. Signal. 2010 

[24] PMID: 20124551 HeLa yes 

KCNQ1OT1 

Terranova et al. Mol. Cell 

2008 [25] PMID: 18848501 

mouse 

trophectodermal 

stem (TS) cells yes 

lincFOXF1 Khalil et al. PNAS 2009 [3] PMID: 19571010  hFF yes 

lincMKLN1 Khalil et al. PNAS 2009[3] PMID: 19571010  hFF yes 

lincSFPQ Khalil et al. PNAS 2009[3] PMID: 19571010  hFF yes 

MALAT1 Tripathi et al. Cell 2010 [26] PMID: 20797886 HeLa yes 

MEG33  NA  

 

NA 

MIAT 

Tsuiji et al. Genes to Cells 

2011 [27] PMID: 21463453 

DF1 HeLa and 

chicken spinal 

cord cells 

failed probe in 

our screen 

NEAT1 

Clemson et al. Mol Cell  

2009 [28] PMID: 19217333  HeLa yes 

TERC Zhu et al. 2004 [29] PMID: 14528011 HeLa HFF-Bjs Overall yes 

TUG1 

Yang et al. cell 2011 [30]; 

Khalil et al. PNAS 2009 [3] 

PMID: 22078878 

;PMID: 

19571010  HeLa;hFF yes; yes 

XIST 

Clemson et al. JCB 1996 

[31]; Brown et al. Cell 1992 

[32] 

PMID: 8636206; 

PMID: 1423611 

normal human 

fibrblasts yes 

lincGARS NA 

  

no signal in our 

study 

NRON NA 

  

no signal in our 

study 

H19 

Jouvenot et al. Curr. Bio. 

2009 [33] PMID: 10531031 

mouse :E13.5 

fetal liver  

no signal in our 

study 
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Supplementary Table 2.3| Probe set two-color co-localization validation results. 

(a) Validation score index. (b) Validation score results. 

 

(a) Validation score index. 

Subclass 

number 
Class type 

1 Valid 

1.5 
Valid after manual recovery: a borderline case with a pattern 

similar to a valid pattern of the gene in another cell type 

2.1 
Invalid: qualitative due to foci found in one channel and not the 

other 

2.2 Invalid : quantitative 

2.3 

Invalid: qualitative; a conservative classification of a borderline 

case in manual examination identifies clear spots in one channel in 

the two color assay. 

2.4 Not enough data 

2.5 Single color image not available – technical reasons 

2.6 
2 color image not available but signal is very consistent with the 

gene’s signal in a valid cell type 

2.7 2 color image not available due to technical reasons 

3 No signal in single color image 

 

(b) Validation score results. 

 

screenID FinalStatus HeLa  hFF hLF 

ANCR 1.0 1.5 1 2.6 

Anril 1.0 1.5 1 3 

GAS5 1.0 1 1 1 

KCNQIOT1 1.0 3 1 1 

lincFOXF1 1.0 1 1 1 

lincMKLN1_A1 1.0 1 1 2.7 

lincSFPQ 1.0 1 1 2.4 

MALAT1 1.0 1 1 1 

MEG3 1.0 3 2.6 1 

NEAT1 1.0 1 2.6 2.6 

NR_024412 1.0 1.5 1 2.3 

NR_029435 1.0 1 1.5 1.5 

TERC 1.0 1.5 1 2.2 

TUG1 1.0 1.5 2.2 2.2 

XIST 1.0 3 2.5 1 

XLOC_002094 1.0 3 3 1 

XLOC_002408 1.0 2.3 3 1.5 

XLOC_002746 1.0 1 2.2 1 
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XLOC_003526 1.0 2.2 1 1 

XLOC_004456 1.0 2.4 2.4 1 

XLOC_004803 1.0 2.2 1 1 

XLOC_005151 1.0 1 3 2.2 

XLOC_005764 1.0 1 1 1 

XLOC_006922 1.0 1 1.5 1.5 

XLOC_008174 1.0 1.5 1.5 1 

XLOC_009233 1.0 2.2 1.5 1 

XLOC_009702 1.0 2.1 1 1 

XLOC_010017 1.0 1 1 1 

XLOC_010514 1.0 3 1 1 

XLOC_011185 1.0 3 1 1 

XLOC_011226 1.0 1.5 2.6 2.6 

XLOC_011950 1.0 1 1 3 

XLOC_012599 1.0 1 1 2.6 

XLOC_L2_008203 1.0 1 1 1 

h19 2.0 2 3 3 

lincGARS 2.0 2.3 2.2 2.4 

MIAT 2.0 2.2 2.2 2.4 

NRON 2.0 2 3 3 

XLOC_000304 2.0 2.3 2.5 2.3 

XLOC_002263 2.0 2.1 3 3 

XLOC_004122 2.0 2.3 2.3 2.3 

XLOC_004198 2.0 2.3 2.2 2.3 

XLOC_006198 2.0 2.7 2.7 2.7 

XLOC_008583 2.0 2.2 2.2 2.2 

XLOC_009474 2.0 2.1 3 3 

XLOC_009662 2.0 2.3 2.2 2.5 

XLOC_010202 2.0 2.1 3 3 

XLOC_010556 2.0 2.1 3 3 

XLOC_011264 2.0 2.1 2.7 2.7 

XLOC_012187 2.0 3 3 2.1 

XLOC_012192 2.0 2.1 3 3 

XLOC_013841 2.0 2.1 3 3 

XLOC_009447 3.0 3 3 3 

XLOC_010263 3.0 3 3 3 

XLOC_010853 3.0 3 3 3 

XLOC_012197 3.0 3 3 3 

XLOC_012564 3.0 3 3 3 

XLOC_012980 3.0 3 3 3 

XLOC_014160 3.0 3 3 3 

XLOC_l2_010926 3.0 3 3 3 

XLOC_010709 2.0 2.7 2.7 2.7 
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Supplementary Table 2.4| Mitotic cells analysis. 

 

lincRNA name 

 

Localization 

pattern 

Cell type 

 

# of mitotic 

cells 

# of mitotic cells with 

foci on chromosomes 

XLOC_005764  II HeLa 7 0 

XLOC_005151  I HeLa 12 0 

XLOC_006922  I HeLa 6 0 

XIST I hLF 18 0 

ANRIL I HeLa 15 5 

MEG3 II HeLa 10 0 

XLOC_003526  III hLF 12 0 

 

Supplementary Table 2.5| Correlation analysis of lncRNAs with CCNA2. Presented are lncRNA that 

had a significant score in at least one of the test described in 3.4 Methods. Pearson ρ specifies the 

correlation between the lncRNA and CCNA2 that are imaged simultaneously. The mean number of spots 

per cell is specified for the lncRNA and CCNA2. Kolmogorov-Smirnov (KS) test p-value is calculated 

between the distributions of lncRNA counts after splitting G1 and G2/S/M by a threshold on CCNA2 

counts. (#) refers to the numbers of lncRNA cells in each sub population (G1 or G2/S/M). Regression P-

value is the significance of CCNA2 as a predictor in a linear regression to predict the lncRNA level using 

CCNA2 and cell area as predictors. Cases that were finally considered as significant are marked red. 

 

Name cell #Cellls 

Pearson 

ρ 

lncRNA 

spots 

CCNA2 

spots 

KS 

P_val 

# 

G1  

# 

G2/S/M  

Regression 

Pval 

lincSFPQ Hela 25 0.68 33.10 147.00 NA 0 25 2.31E-03 

XLOC_011226 Hela 137 0.66 25.90 105.00 

1.73E-

03 13 124 1.00E-10 

TUG1 Hela 30 0.58 29.70 82.90 

4.18E-

01 8 22 

 

XLOC_003526 hLF 24 0.55 6.88 6.50 

1.36E-

01 23 1 

 

XLOC_006922 hLF 11 0.53 10.00 8.91 

8.70E-

01 10 1 

 

GAS5 Hela 117 0.46 118.00 79.80 

4.10E-

03 20 97 7.09E-01 

XLOC_011950 Hela 126 0.45 23.00 80.60 

4.62E-

01 35 91 

 

lincSFPQ hFF 7 0.40 20.10 72.30 

1.58E-

01 2 5 

 

NR_024412 Hela 122 0.37 12.20 66.50 

1.40E-

01 54 68 

 MEG3 hLF 20 0.35 136.00 5.75 NA 20 0 

 

NR_029435 Imr90 23 -0.36 9.35 15.00 

9.40E-

02 18 5 

 

XLOC_011185 hFF 20 -0.44 5.20 16.40 

6.30E-

02 14 6 5.02E-02 
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