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Professors Jun S. Liu Simeng Han

Statistical Methods for Aggregation of Indirect Information

Abstract
How to properly aggregate indirect information is more and more important. In

this dissertation, we will present two aspects of the issue: indirect comparison of

treatment e↵ects and aggregation of ordered-based rank data.

In Chapter 1, we study causal inference via indirect comparison. Comparing the

e�cacy of di↵erent drugs is a very important problem in drug development and health

care industries. Indirect comparison is an e↵ective approach to avoid high costs of

direct comparison via head-to-head trials. A major challenge in indirect comparison,

however, is that the unit populations in di↵erent trials are often di↵erent. When this

happens, we need to match the patient population across the two trials of interest.

However, in practice, it’s very often that only summary statistics, instead of original

individual-level data, are available for some trials. For this challenging scenario, most

classic matching methods fail. Methods based on weighting adjustment can still be

applied, but have to be modified to fit the new challenges. In this dissertation, we

will systematically study statistical issues related to casual inference via indirect com-

parison: assumptions under which the causal e↵ect of interest is estimable, potential

methods to estimate the causal e↵ect, and relative e�ciency of these methods.

In Chapter 2, we studied the problem of ranking aggregation, i.e., combining

several base rankers to get an aggregated ranking function. Most methods in the

literature assume that the base rankers of interest are equally reliable, however, it is
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desirable to distinguish the high quality base rankers from the low quality ones and

treat them di↵erently in the analysis. Some methods achieve this end by assigning pre-

given weights to base rankers. But there are no systematic and principled strategies

for designing a proper weighting scheme for a practical problem. We proposed a

Bayesian approach, called BARD, to overcome this limitation. BARD measures the

reliability of the base rankers in a quantitative way, and makes use of this information

to improve the aggregated ranker. Both simulation studies and real data applications

show that BARD significantly outperforms existing methods when equality of base

rankers varies greatly.
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Chapter 1

Statistical Methods for Indirect

Comparison of Treatment E↵ects

1.1 Introduction

Comparing the e�cacy of di↵erent drugs is a very important problem in drug

development and health care industries. For example, before a new drug DN comes

into the market, evidences must be shown that its performance is better or at least

comparable to well accepted drugs already in the market. A straightforward solution

to this mission is to run a series of head-to-head trials, in each of which the new drug

DN is directly compared to one well accepted drug DO by a randomized experiment.

An obvious limitation of this strategy, however, is that the time and economic costs

of running multiple head-to-head trials are often too expensive.

Indirect comparison is an e↵ective approach to avoid high costs of direct com-

parison via head-to-head trials. For example, if all drugs in the market have been
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compared to a common baseline drug (e.g., a standard placebo) for a common patient

population, by running just one extra head-to-head trial over the common patient

population to measure the performance of the new drug with respect to the common

baseline drug, we can compare the new drug with all conventional drugs indirectly.

It can be showed that under certain conditions, even if the baseline drugs used in dif-

ferent head-to-head trials are di↵erent, indirect comparison is still a proper strategy

to estimate the relative e�cacy among drugs.

A major challenge in indirect comparison, however, is that the unit populations

in di↵erent trials are often di↵erent. When this happens, we need to match the pa-

tient population across the two trials of interest. The formulation of this across-trial

population matching problem is very similar to that of the classic across-arm subpop-

ulation matching problem widely encountered in non-randomized experiments. And,

many popular methods designed for across-arm matching can be naturally extended

to across-trial matching. However, since the data generating mechanism of the two-

trial scenario is di↵erent from that of the one-trial case, at the conceptual level, there

are subtle di↵erences between the across-trial matching and the across-arm matching.

The formulation of indirect comparison can be further complicated when only

summary statistics, instead of complete individual-level data, are available for trials

in which the conventional drugs were compared to baseline drugs. This is a very

common scenario in practical health care studies. Due to space constraints and/or

commercial concerns, detailed individual-level data are often not provided in publica-

tions and technical reports about clinical trials. Although we usually have full control

of the clinical trial for the new drug, and thus, can get access to complete individual-
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level data, the incomplete observations of the old trials will pose great challenges in

casual inference of indirect comparison. Due to the lack of information, most classic

matching methods fail in this scenario; methods based on weighting adjustment can

still be applied, but have to be modified to fit the new challenges.

In this Chapter, we will systematically study statistical issues related to casual in-

ference via indirect comparison: assumptions under which the causal e↵ect of interest

is identifiable, potential methods to estimate the causal e↵ect, and relative e�ciency

of these methods. The following of this chapter is organized as follows. First, we go

over Rubin casual model and the basic elements of casual inference via a head-to-head

trial in Section 1.2. In Section 1.3, we briefly review classic approaches for matching

unit populations across the two arms of a head-to-head trial. The problem of indirect

comparison is formally introduced in Section 1.4, its links to and di↵erences from the

direct comparison are discussed. Section 1.5 deals with a more complicated scenario

of indirect comparison where individual level data are available for just one trial.

Approaches to match unit population across the two trials in this challenging case

are discussed, frequentist approaches to estimate casual e↵ect based on the weighted

samples are proposed. Considering that it may not be wise to match all available

covariates in a practical problem, principles and methods to select covariates to be

matched are given in Section 1.6. Simulation studies are presented in Section 1.7 to

provide numerical evidences for comparing the performances of di↵erent approaches.

Analysis of a real-like data example is illustrated in Section 1.8. Finally, we discuss

and summarize our study in Section 1.9.
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1.2 Elements of Causal Inference

1.2.1 Potential outcomes and causal e↵ects

Potential outcomes. Following the framework of Rubin causal model (Rubin

1974), we use (Y c
i , Y

t
i ) to denote the potential outcomes of an experiment unit (or,

simply a unit) under the treatment condition t and control condition c. In the drug

comparison problem, for example, t is the new drug DN , c is an old drug DO, and

each patient is an experiment unit.

Individual Casual E↵ect. The Individual Casual E↵ect (ICE) of treatment t

with respect to control c for experiment unit i is defined as

ICEi(t, c) , Y t
i � Y c

i . (1.1)

However, only one of the two potential outcomes can be observed: if the i-th unit

receives treatment t, we observe Y t
i ; if the i-th unit receives control c, we observe

Y c
i ; and, (Y

c
i , Y

t
i ) can never be obtained simultaneously. Thus, the ICEi(t, c) is not

estimatable in practice.

Unit population. In practice, we are often more interested in the the casual

e↵ect of the treatments on a population of units instead of a specific unit. Use P

to denote the unit population of interest. The population P can be either a finite

population or an infinite population. Except for the outcomes (Y c
i , Y

t
i ), a unit i 2 P is

often associated with some covariates, which provide background information about

the unit. Use Xi to denote these covariates. Thus, every unit i 2 P associates with
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a vector

(Xi, Y
c
i , Y

t
i ).

Note that (Xi, Y
c
i , Y

t
i ) are the properties of unit i itself and cannot be specified or

controlled by us. The unit population P naturally induces a probability space of

(X, Y c, Y t). In this dissertation, we use ⇡(x, yc, yt) to denote the joint distribution of

(X, Y c, Y t) over the unit population P .

Average Causal E↵ect. Given the unit population P , the Average Causal E↵ect

(ACE) of treatment t with respect to control c on P is defined as the average ICE

over unit population P , i.e.,

ACEP(t, c) , EP(ICEi) = EP(Y
t
i � Y c

i ), (1.2)

where EP denotes the expectation with respect to the unit population P .

It’s easy to check that the value of ACE defined in Eq. (1.2) only depends on the

characteristic distribution ⇡ of population P , i.e.,

ACEP(t, c) = E⇡(Y
t � Y c) ,

Z

ytd⇡(yc)�
Z

ycd⇡(yc),

where ⇡(yc) and ⇡(yt) are marginal distributions of Y c and Y t, respectively.

1.2.2 Causal inference via a randomized experiment

Randomized experiment (RE) is an e↵ective technique to achieve proper estimation

of ACE. In a random experiment, we randomly assign treatment t or control c
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to units randomly sampled from the unit population P . Use Ti to denote the

treatment assignment for unit i (Ti = t or c). The n units involved in the experiment

can be divided into two arms: the control armAc = {i : Ti = c} and the treatment

arm At = {i : Ti = t}. Let nc = #Ac, nt = #At. Let

Y obs
i = Y t

i · I(i 2 At) + Y c
i · I(i 2 Ac)

be the observed response for unit i. Let Yobs = {Y obs
1 , · · · , Y obs

n } be the observed

responses for the n units involved in the experiment.

To claim that an experiment is a randomized experiment, we need two conditions:

(1) Random selection of units: the units involved in the experiment are random

samples from the unit population P , i.e.,

(Xi, Y
c
i , Y

t
i ) ⇠ ⇡(x, yc, yt);

(2) Random assignment of treatment: {Ti}i are independent of each other, and

(Y c
i , Y

t
i ) ? Ti, 8 i 2 Ac [At.

Note that although the random assignment condition is greatly emphasized in the

literature, the random selection condition is often ignored by many researchers.

In practice, however, unless the concrete model of potential outcomes is known,

there is no general way to construct a random experiment other than carrying out

a completely randomized experiment (CRE), in which the treatment assignment is
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purely random and independent of any other factors, and thus, independent of the

potential outcomes (Y c
i , Y

t
i ).

Given the mechanism of a random experiment, the joint distribution of (X, Y c, Y t)

can be extended to a higher dimensional distribution of (X, Y c, Y t, T ) where the

treatment assignment T is also covered. In the following, we will use ⇡ to denote the

either the joint distribution for (X, Y c, Y t, T ) or a marginal distribution of it. The

specific meaning of ⇡ can be determined based on the context.

The most attractive property of a random experiment is that asymptotically the

unit subpopulations in the treatment and control arms are both identical to the target

population P . Thus, we have

ACEP(t, c) = E⇡(Y
t � Y c) = E⇡(Y

obs | T = t)� E⇡(Y
obs | T = c),

which can be asymptotically unbiasedly estimated by

[ACERE =
1

nt

X

i2At

Y obs
i � 1

nc

X

i2Ac

Y obs
i . (1.3)

1.2.3 Non-randomized experiments

In practice, random experiments are often infeasible or imperfectly carried out. A

more realistic scenario is that the treatment assignment T is marginally dependent of

potential outcomes (Y c, Y t), but conditionally independent of (Y c, Y t) given observed

covariates X in the extend joint distribution of (X, Y c, Y t, T ). This condition is

7
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Figure 1.1: A graphical illustration of the relationship among covariates X, po-
tential outcomes (Y t, Y c) and treatment assignment T in typical nonrandomized
experiments.

formally proposed by Rubin (1974) as the assumption of strong ignorability :

(Y t, Y c) ? T | X, and 0 < P (T = t | X) < 1 for all X, (1.4)

which assumes that the randomization is properly carried out within each subpopu-

lation defined by the covariates X.

Let Px , {i : Xi = x} be the stratification of unit population P based on the

value of covariates X. The stratification-level ACE is defined as

ACEPx(t, c) , E⇡(Y
t � Y c | X = x). (1.5)

As long as the treatment assignment is strongly ignorable given covariates X, we have

ACEPx(t, c) = E⇡(Y
obs | X = x, T = t)� E⇡(Y

obs | X = x, T = c),

i.e., ACEPx(t, c) is identifiable on each unit stratification Px.

In fact, {ACEPx}x are basic building bricks of population-level casual e↵ects. For
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example, the average casual e↵ect of the treatment on the sampling unit population

can be organized as

ACEP(t, c) , E⇡(Y
t � Y c) =

Z

ACEPx(t, c)d⇡(x), (1.6)

where ⇡(x) is the marginal distribution of covariates X in population P . Sometimes,

we are interested in the average e↵ect of the treatment on the treated (ATT) that is

defined as

ATTP(t, c) , ACEPt(t, c) =

Z

ACEPx(t, c)d⇡t(x), (1.7)

where ⇡t(x) is the marginal distribution of covariates X in Pt, the unit population of

the treatment arm At. Similarly, we can define the average e↵ect of the treatment on

the controlled (ATC) as

ATCP(t, c) , ACEPc(t, c) =

Z

ACEPx(t, c)d⇡c(x), (1.8)

where ⇡c(x) is the marginal distribution of covariates X in Pc, the unit population of

the treatment arm Ac.

The above equations indicate that a population-level casual e↵ect always can be

estimated by two steps:

(1) estimate ACEPx(t, c) in each stratification Px based on Eq. (1.5),

(2) average out all stratifications according to the unit population of interest to

get the population-level casual e↵ect.
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These equations also indicate that the marginal distribution of covariates is su�cient

to represent a unit population. A major limitation of these equations, however, is

that there are often too many stratifications. For example, if some covariates are

continuous, the number of stratifications is infinite. This fact makes the estimate

based on these equations ine�cient or infeasible in many cases.

1.2.4 Propensity score of treatment assignment

A more e�cient way to estimate ACEP(t, c) is to create stratifications of popula-

tion ⇡ based on propensity score instead of covariates. Formally, propensity score of

treatment assignment T is defined as

e(X) = P (T = t | X). (1.9)

Rosenbaum and Rubin (1983) pointed out that propensity score e(X) has the follow-

ing properties:

(a) e(X) is also a balancing score, i.e., X ? T | e(X);

(b) if the treatment assignment is strongly ignorable given X, then it is strongly

ignorable given e(X), i.e.,

(Y t, Y c) ? T | e(X), and 0 < P (T = 1 | e(X)) < 1 for all e(X),

indicating that the ACE of t with respect to c can be e↵ectively estimated on
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the stratification of e(X), i.e.,

ACEPe(t, c) , E⇡{Y t � Y c | e(X) = e}

= E⇡{Y t | e(X) = e, T = t}� E⇡{Y c | e(X) = e, T = c};(1.10)

(c) The stratification based on e(X) is the finest stratification of experiment units

that satisfies both (a) and (b).

A joint distribution of (e(X), Y c, Y t, T ) can be induced from the joint distribution

of (X, Y c, Y t, T ). Let ⇡(e) is the marginal distribution of propensity score e(X).

Because

ACEP(t, c) , E⇡(Y
t � Y c) =

Z

ACEPe(t, c)d⇡(e), (1.11)

a modified two-step algorithm to estimate ACE⇡(t, c) can be obtained as follows:

(1) estimate ACEPe(t, c) in each stratification Pe based on Eq. (1.10),

(2) get ACEP(t, c) by averaging out all stratifications based on Eq. (1.11).

Compared to the two-step algorithm in the previous subsection, the modified algo-

rithm based on propensity score enjoys a better statistical e�ciency as less stratifi-

cations are created.

In practice, propensity score of treatment assignment e(X) is usually unknown

and needs to be estimated from the observed data. When all covariates involved are

discrete, e(X) can be estimated empirically if the sample size is large enough. When

some of the covariates are continuous, however, e(X) cannot be estimated empirically
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anymore. A popular solution to this problem is to specify a parametric form for

propensity score e(X), e.g., the logistic regression model with unknown parameter �:

e(X) = logisitc(X 0�). (1.12)

1.2.5 Bayesian causal inference

Suppose {Xi, Ti, Y
obs
i }i2AN[AO

are data observed in an experiment. Once the data

generating mechanism is explicitly known, causal inference can be carried out in a

Bayesian fashion (Rubin, 1978). The data generating mechanism usually contains

three components: (1) model for covariates, (2) model for treatment assignment, and

(3) model for potential outcomes. Here, we specify the three components as follows:

Xi ⇠ ⇡✓(x),

Ti | Xi = x ⇠ Bernoulli(e(x)),

Y c
i | Xi = x ⇠ Bernoulli(Rc(x)),

Y t
i | Xi = x ⇠ Bernoulli(Rt(x)),

where ⇡✓ is a parametric distribution with unknown parameter ✓, propensity score

e(x) and the two response surfaces Rc(x) and Rt(x) are specified as logistic and probit
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models respectively:

e(x) = logistic(x0�),

Rc(x) = �(x0↵c),

Rt(x) = �(x0↵t).

The above model lead to the following likelihood for the observed data:

f(X, T, Y obs) =
n
Y

i=1

f(Xi, Ti, Y
obs
i ) =

n
Y

i=1

f(Xi) · f(Ti | Xi) · f(Y obs
i | Xi)

=
n
Y

i=1

⇡✓(Xi) ·
Y

i2At

e�(Xi)Rt(Xi)
Y obs
i [1�Rt(Xi)]

1�Y obs
i

·
Y

i2Ac

[1� e�(Xi)]Rc(Xi)
Y obs
i [1�Rc(Xi)]

1�Y obs
i .

Giving the model parameters (✓, �,↵t,↵c) a proper prior distribution, their posterior

distribution can be derived by standard Bayesian inference techniques. Note that

if (✓, �,↵t,↵c) are independent of each other in the prior distribution, they will be

still independent in the posterior distribution since they are separated in the above

likelihood function.

Because the estimand

ACE⇡✓
(t, c) =

Z

⇥

Rt(x)�Rc(x)
⇤

d⇡✓(x) = h(↵t,↵c, ✓)

is a function of parameters (↵t,↵c, ✓), the posterior distribution of ACE⇡✓
(t, c) can

be naturally derived from the posterior distribution of (↵t,↵c, ✓).
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The above approach needs to be modified when the unit population of interest

(refer to as ⇡⇤) is di↵erent from ⇡✓, the population from which the units are selected.

For example, if ⇡⇤ is a pre-given distribution of X, the estimand becomes

ACE⇡⇤(t, c) =

Z

⇥

Rt(x)�Rc(x)
⇤

d⇡⇤(x) = h(↵t,↵c),

whose posterior distribution only depends on the posterior distribution of (↵t,↵c). If

the average treatment e↵ect on the treated (i.e., ATT) is of interest, we have

⇡⇤(x) = ⇡t(x) = P (X = x | T = t) =
e(x) · ⇡✓(x)
R

e(x)d⇡✓(x)

is a function of (�, ✓). Thus, the posterior distribution of the estimand

ACE⇡⇤(t, c) =

Z

⇥

Rt(x)�Rc(x)
⇤

d⇡t(x) = h(↵t,↵c, �, ✓)

can be derived from the posterior distribution of (↵t,↵c, �, ✓).

This approach can be applied to data collected in a randomized experiment as well.

In a randomized experiment, the treatment assignment T is marginally independent of

the potential outcomes, i.e., (Y c, Y t) ? T . Thus, the model for treatment assignment

is simplified as:

Ti ⇠ Bernoulli(⇢).

Assume that the covariates X are also observed in the randomized experiment, and

the models of potential outcomes (i.e., Y c | X and Y t | X) have the same form, we
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come up with the following simplified likelihood:

f(X, T, Y obs) =
n
Y

i=1

f(Xi, Ti, Y
obs
i ) =

n
Y

i=1

f(Xi)f(Ti)f(Y
obs
i | Xi)

= ⇢nt(1� ⇢)nc ·
n
Y

i=1

⇡✓(Xi) ·
Y

i2At

Rt(Xi)
Y obs
i [1�Rt(Xi)]

1�Y obs
i

·
Y

i2Ac

Rc(Xi)
Y obs
i [1�Rc(Xi)]

1�Y obs
i .

Based on the likelihood, Bayesian inference for ACE⇡✓
(t, c) or ACE⇡⇤(t, c) can be

achieved in a similar way.

Note that Bayesian inference of ACE is robust to the design of the experiment:

Proposition 1 With the following models for covariates and potential outcomes:

Xi ⇠ ⇡✓(x), Y c
i | Xi = x ⇠ Bernoulli(Rc(x)), Y t

i | Xi = x ⇠ Bernoulli(Rt(x)),

given the observed data (X, T, Y obs) from an experiment, if the model parameters are

independent of each other in the prior distribution, the result of Bayesian inference

for ACE⇡✓
(t, c) keeps unchanged no matter we assume the experiment is randomized

or conditionally randomized given the covariates X.
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1.3 A Review of Matching Methods for Direction

Comparison

Let ⇡(x) be the covariate distribution over the unit population of interest. Define

the arm-level covariate distributions as:

⇡t(x) = P (X = x | T = t),

⇡c(x) = P (X = x | T = c).

If the units involved in the experiment are randomly sampled from the target popu-

lation ⇡, and the treatment is randomly assigned to each unit, theoretically we will

expect

⇡t(x) = ⇡c(x) = ⇡(x) for 8 x.

In practice, however, due to randomness of unit sampling and treatment assignment,

the empirical arm-level distributions ⇡̃t and ⇡̃c can be very di↵erent from each other

even in a randomized experiment. The same thing happens, if the experiment of

interet is not randomized at the first place. In either case, directly applying the naive

estimate

[ACERE =
1

nt

X

i2At

Y obs
i � 1

nc

X

i2Ac

Y obs
i

would lead to biased estimation of the causal e↵ect of interest.

Bayesian inference is a good choice for this tricky situation when data generating

mechanism of the experiment is known. When the mechanism is not exactly known,

however, full Bayesian inference becomes infeasible unless untestable assumptions
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are made. Another line in the literature to e↵ectively reduce bias due to unbalanced

covariate distribution is matching. Formally, matching refers to any method that aims

to equate or “balance” the distribution of covariates in the treated and control groups.

Balancing can be achieved by either selecting a subgroup of units that fit the target

distribution, or assigning weights to units to generate properly weighted samples of

the target distribution. Once the covariate distribution is successfully balanced in

the treated and control groups, we essentially convert the original data from a poorly

randomized experiment to equivalent data from a perfectly randomized experiment,

based on which downstream analysis can be easily carried out without worrying the

potential risks caused by unbalanced covariate distribution. From practice point of

view, a major advantage of matching methods is that we can avoid to specify concrete

models for covariates and potential outcomes.

In a well randomized experiment, the covariate distribution is balanced across the

treated and control arms. Thus, we have

E⇡(Y
t) = E⇡(Y

t | T = t) = E⇡(Y
obs | T = t),

E⇡(Y
c) = E⇡(Y

c | T = c) = E⇡(Y
obs | T = c),

which guarantees that [ACERE is a proper estimate of ACEP(t, c). In a conditionaly
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randomized experiment, however, we only have

E⇡(Y
t) =

Z

E(Y t | X)d⇡(x),

E⇡(Y
obs | T = t) = E⇡(Y

t | T = t)

=

Z

E(Y t | X = x, T = t)d⇡(x | T = t)

=

Z

E(Y t | X)d⇡(x | T = t).

Therefore, E⇡(Y t) 6= E⇡(Y obs | T = t) unless ⇡(x) = ⇡(x | T = t) for all x. Similarly,

E⇡(Y c) 6= E⇡(Y obs | T = c) unless ⇡(x) = ⇡(x | T = c) for all x. Therefore, for a

conditionally randomized experiment, a su�cient condition to make [ACERE proper

is

⇡t(x) , ⇡(x | T = t) = ⇡(x | T = c) , ⇡c(x) for 8 x, or, X ? T.

Considering that (Y c, Y t) ? T | X in a conditionally randomized experiment, and

�

(Y c, Y t) ? T | X; X ? T
 

=) (Y c, Y t) ? T,

the e↵ort of matching ⇡t and ⇡c in fact converts data from a conditional randomized

experiment to equivalent data from a perfectly randomized experiment. In this sec-

tion, we will give a brief review of major matching approaches in the literature. A

more comprehensive review can be found in Stuart (2010).
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1.3.1 Nearest neighbor matching

One of the most common and easiest to implement methods is the nearest neighbor

matching (NNM) proposed by Rubin (1973a). In NNM, we select for each treated

unit i its nearest neighbors in the controlled units according to a pre-given distance

Dij to measure the similarity of unit i and unit j. Let Ni be the neighbors of treated

unit i selected from the controlled units, we estimate the individual casual e↵ect on

unit i as

[ICEi(t, c) , Y obs
i � 1

#Ni

X

j2Ni

Y obs
j , (1.13)

based on which the average casual e↵ect of treatment on the treated (i.e., ATT) can

be estimated by

[ATTNNM =
1

nt

X

i2At

[ICEi(t, c). (1.14)

NNM is generally the most e↵ective method for settings where the goal is to select

units for follow-up, since it simply discards all controlled units that are not selected.

This strategy is useful particularly in cases where the controlled arm is much larger

than the treatment arm so that it’s economically infeasible to measure the response

and covariates for all units in the controlled arm. In practice, the estimation in Eq.

(1.13) can be further improved by a weighted version where the selected units in Ni

are weighted based on their distances to treated unit i.

1:1 nearest neighbor matching. In the simplest form of NNM, we only select

one controlled unit for each treated unit i, i.e. #Ni = 1. Algorithmically, the selection

procedure goes as follows:

• Step 1. Randomly arrange the treated units with a certain order.
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• Step 2. Scan through all treated units according to the given order.

• Step 3. For each treated unit i, find from the controlled units that have not

been selected yet the one with the smallest distance to it, and let Ni be the

selected unit.

A common complaint regarding 1 : 1 matching is that it can discard a large

number of observations and thus would apparently lead to reduced power. However,

the reduction in power is often minimal, for two main reasons. First, in a two-

sample comparison of means, the precision is largely driven by the smaller group size

(Cohen, 1988). So if the treatment group stays the same size, and only the control

group decreases in size, the overall power may not actually be reduced very much (Ho

et al., 2007). Second, the power increases when the groups are more similar because

of the reduced extrapolation and higher precision that is obtained when comparing

groups that are similar versus groups that are quite di↵erent (Snedecor and Cochran,

1980).

Another complication of the above method is that the order in which the treated

units are matched may change the quality of the matches. Optimal matching (Rosen-

baum, 2002) avoids this issue by taking into account the overall set of matches when

choosing individual matches, minimizing a global distance measure. Generally, greedy

matching performs poorly when there is intense competition for controls, and per-

forms well when there is little competition (Gu and Rosenbaum, 1993). Gu and

Rosenbaum (1993) find that optimal matching does not in general perform any bet-

ter than greedy matching in terms of creating groups with good balance, but does

do better at reducing the distance within pairs. Thus, if the goal is simply to find
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well-matched groups, greedy matching may be su�cient. However, if the goal is to

create well-matched pairs, then optimal matching may be preferable.

Ratio matching. When there are large numbers of control individuals, it is

sometimes possible to get multiple good matches for each treated individual, called

ratio matching (Smith, 1997; Rubin and Thomas, 2000). Selecting the number of

matches involves a bias-variance trade-o↵. Selecting multiple controls for each treated

individual will generally increase bias since the 2nd, 3rd and 4th closest matches

are, by definition, further away from the treated individual than is the 1st closest

match. On the other hand, utilizing multiple matches can decrease variance due to the

larger matched sample size. Approximations in Rubin and Thomas (1996) can help

determine the best ratio. In settings where the outcome data has yet to be collected

and there are cost constraints, researchers must also balance cost considerations.

More methodological work needs to be done to more formally quantify the trade-o↵s

involved. In addition, k : 1 matching is not optimal since it does not account for

the fact that some treated individuals may have many close matches while others

have very few. A more advanced form of ratio matching, variable ratio matching,

allows the ratio to vary, with di↵erent treated individuals receiving di↵ering numbers

of matches (Ming and Rosenbaum, 2001). Variable ratio matching is related to full

matching, described below.

An additional concern is that, without any restrictions, k : 1 matching can lead to

some poor matches, if, for example, there are no control individuals with propensity

scores similar to a given treated individual. One strategy to avoid poor matches is

to impose a caliper and only select a match if it is within the caliper. This can
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lead to di�culties in interpreting e↵ects if many treated individuals do not receive

a match, but can help avoid poor matches. Rosenbaum and Rubin (1985a) discuss

those trade-o↵s.

Distance measurements. Di↵erent distance measurements can be used to select

the nearest neighbors. In practice, the following four distances are widely used.

Sometimes, these distance measures can also be combined.

1. Exact:

Dij =

8

>

<

>

:

0, if Xi = Xj,

1, if Xi 6= Xj.

2. Mahalanobis:

Dij = (Xi �Xj)
0⌃�1(Xi �Xj),

where ⌃ is the variance covariance matrix of X in the full control group. If X con-

tains categorical variables, they should be converted to a series of binary indicators,

although the distance works best with continuous variables.

3. Propensity score:

Dij = |ei � ej|,

where ek is the propensity score for unit k.

4. Linear propensity score:

Dij = |logit(ei)� logit(ej)|.

Rosenbaum and Rubin (1985b), Rubin and Thomas (1996) and Rubin (2001) have

found that matching on the linear propensity score can be particularly e↵ective in
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terms of reducing bias.

With or without replacement. Another key issue is whether controls can be

used as matches for more than one treated individual: whether the matching should

be done with replacement or without replacement. Matching with replacement can

often decrease bias because controls that look similar to many treated individuals can

be used multiple times. This is particularly helpful in settings where there are few

control individuals comparable to the treated individuals (e.g., Dehejia and Wahba,

1999). Additionally, when matching with replacement, the order in which the treated

individuals are matched does not matter. However, inference becomes more com-

plex when matching with replacement, because the matched controls are no longer

independentsome are in the matched sample more than once and this needs to be ac-

counted for in the outcome analysis, for example, by using frequency weights. When

matching with replacement, it is also possible that the treatment e↵ect estimate will

be based on just a small number of controls; the number of times each control is

matched should be monitored.

1.3.2 Subclassification

Subclassification forms groups of individuals who are similar, for example, as

defined by quintiles of the propensity score distribution. It can estimate either the

ACE or the ATT. One of the first uses of subclassification was Cochran (1968), which

provides analytic expressions for the bias reduction possible using subclassification

on a univariate continuous covariate, showing that using just five subclasses removes

at least 90% of the initial bias due to that covariate. Rosenbaum and Rubin (1985b)
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extended that to show that creating five propensity score subclasses removes at least

90% of the bias in the estimated treatment e↵ect due to all of the covariates that went

into the propensity score. Based on those results, the current convention is to use

510 subclasses. However, with larger sample sizes more subclasses (e.g.,1020) may be

feasible and appropriate (Lunceford and Davidian, 2004).

A more sophisticated form of subclassification named as full matching selects the

number of subclasses automatically (Rosenbaum, 1991; Hansen, 2004; Stuart and

Green, 2008). Full matching creates a series of matched sets, where each matched

set contains at least one treated individual and at least one control individual (and

each matched set may have many from either group). Full matching is optimal in

terms of minimizing the average of the distances between each treated individual and

each control individual within each matched set. Full matching may have appeal

for researchers who are reluctant to discard some of the control individuals but who

want to obtain optimal balance on the propensity score. To achieve e�ciency gains,

Hansen (2004) introduces restricted ratios of the number of treated individuals to the

number of control individuals in each matched set.

1.3.3 Weighting adjustment

In the literature, weighting adjustment matching has been widely discussed in dif-

ferent context ( Czajka et al., 1992; Robins, Hernan and Brumback, 2000; Lunceford

and Davidian, 2004; Hirano, Imbens and Ridder, 2003). Weights that were estimated

by using the inverse of propensity score ei = P (T = t | Xi), were known as inverse
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probability of treatment weighting (IPTW).

ŵi =
1

êi
· I(Ti = t) +

1

1� êi
· I(Ti = c).

The estimated average causal e↵ect becomes:

[ACEWA�PS =
1

P

i2At
ŵi

X

i2At

Y obs
i · 1

êi
� 1
P

i2Ac
ŵi

X

i2Ac

Y obs
i · 1

1� êi
, (1.15)

In the case that ATT was of interest, weights were constructed based on the odds

ratio of treatment assignment,

ŵi = 1 · I(Ti = t) +
êi

1� êi
· I(Ti = c).

And the estimated average e↵ect of the treatment on the treated becomes

[ATTWA�PS =
1

nt

X

i2At

Y obs
i � 1

P

i2Ac
ŵi

X

i2Ac

Y obs
i · êi

1� êi
. (1.16)

As we will show in details in Section 1.5, the major advantage of weighting ad-

justment matching over NNM and subclassification is that it can be applied to the

scenario when individual-level data are not available in one arm. The limitation of

weighting adjustment matching, however, is that it may lead to a large variation of

the estimate sine the weights for some units can be extremely large or small from time

to time. Moreover, accuracy of the propensity score estimates (or the correctness of

the model for propensity score) could be a critical issue when propensity score is used

for weighting adjustment.
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In practice, the above weighting adjustment approach can be modified to fit more

complicated scenarios or improve the e�ciency. For example, we can truncate the

weights above up to a maximum value to avoid the estimate to be dominated by few

data points with very large weights. In the literature, this strategy is called weight

trimming (Potter, 1993; Scharfstein, Rotnitzky and Robins, 1999). Other methods

include the kernel weighting (Imbens, 2000; Imbens, 2004) and doubly-robust methods

(Bang and Robins, 2005).

1.3.4 Another perspective to understand propensity score

weighting

Let ⇡, ⇡t and ⇡c be the covariate distributions of the target population P , treat-

ment population Pt, and control population Pc, respectively. Suppose that ⇡t and ⇡c

share a common support.

It’s easy to check that:

EPt [Y
obs · ⇡(X)

⇡t(X)
| T = t] =

Z

E[Y t · ⇡(x)
⇡t(x)

| X = x, T = t]d⇡t(x)

=

Z

E(Y t | X = x, T = t)d⇡(x)

=

Z

E(Y t | X = x)d⇡(x) = EPY
t,

EPc [Y
obs · ⇡(X)

⇡c(X)
| T = c] =

Z

E[Y c · ⇡(x)

⇡c(x)
| X = x, T = c]d⇡c(x)

=

Z

E(Y c | X = x, T = c)d⇡(x)

=

Z

E(Y c | X = x)d⇡(x) = EPY
c.
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Thus, we have

AECP(t, c) =

Z

E(Y t � Y c | X = x)d⇡(x)

= EPt [Y
obs · ⇡(X)

⇡t(X)
| T = t]� EPc [Y

obs · ⇡(X)

⇡c(X)
| T = c]. (1.17)

Defining weight of unit i as

wi =
⇡(Xi)

⇡t(Xi) · I(Ti = t) + ⇡c(Xi) · I(Ti = c)
,

Eq. (1.17) leads to the following estimate of AEC⇡(t, c)

[ACE
⇤
WA =

1

nt

X

i2At

Y obs
i · wi �

1

nc

X

i2Ac

Y obs
i · wi.

The above estimate can be expressed alternatively in terms of propensity score.

If ATT is of interest, we have ⇡ = ⇡t, and thus wi = 1 for all i 2 At; for i 2 Ac,

however, given its propensity score ei = P (T = t | Xi), we have

wi =
⇡t(Xi)

⇡c(Xi)
=

P (Xi | T = t)

P (Xi | T = c)
=

P (Xi)P (T = t | Xi)/P (Ti = t)

P (Xi)P (T = c | Xi)/P (Ti = c)
=

ei
1� ei

· 1� ↵

↵
,

where ↵ = P (T = t) is the relative proportion of the treatment population over the

pooled population. If ACE is of interest, we have P = Pt [ Pc, and

⇡(x) = ↵ · ⇡t(x) + (1� ↵) · ⇡c(x).
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Thus, for unit i we have

wi =
↵ · ⇡t(Xi) + (1� ↵) · ⇡c(Xi)

⇡t(Xi) · I(Ti = t) + ⇡c(Xi) · I(Ti = c)

=
⇥

↵ + (1� ↵)
⇡c(Xi)

⇡t(Xi)

⇤

· I(Ti = t) +
⇥

↵ · ⇡t(Xi)

⇡c(Xi)
+ (1� ↵)

⇤

· I(Ti = c)

= ↵
⇥

1 +
1� ei
ei

⇤

· I(Ti = t) + (1� ↵)
⇥ ei
1� ei

+ 1
⇤

· I(Ti = c)

=
↵

ei
· I(Ti = t) +

1� ↵

1� ei
· I(Ti = c).

Although start from di↵erent perspective, these provided consistent weights as

shown in Eq. 1.15 and Eq. 1.16 other than a normalizing constant.

In practice, covariate distributions ⇡t, ⇡c and propensity scores {ei}i are usually

unknown, and need to be estimated from the data. Let ⇡̂t and ⇡̂c be proper estimates

of ⇡t and ⇡c, respectively. Weight wi can be estimated by:

ŵi =
⇡(Xi)

⇡̂t(Xi) · I(Ti = t) + ⇡̂c(Xi) · I(Ti = c)
. (1.18)

1.4 Casual Inference via Indirect Comparison

1.4.1 The problem setting

A head-to-head trial is the most straightforward way to compare the e�cacy of

a new drug DN to a well accepted drug DO. With a well designed randomized

experiment on a patient population P , we can e�ciently estimate the relative e�cacy

of DN with respect to DO, which is define as ACEP(DN , DO).

In practice, however, there are often many, say m, well accepted drugs in the
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market. To establish reputation for the new drug, the drug developer must provide

evidences to show that the new drug is better than the m comparator drugs already

in the market. If we choose to achieve this by direct comparison via head-to-head

trials, m trials will be needed, each for one comparator drug. Clearly, this strategy

is economically and timely infeasible when m is large.

In this case, indirect comparison could be a better strategy to achieve the same

purpose. The simplest version of indirect comparison goes as follows: if both the

new drug DN and a traditional drug DO have been compared to a common baseline

drug (e.g., a standard placebo) denoted as B for the target patient population P

in two randomized experiments/trials denoted as TN and TO, we can compare them

indirectly by

ACEP(DN , DO) = ACEP(DN , B)� ACEP(DO, B), (1.19)

since the e↵ect of the common baseline drug B in two trials cancels out.

A more realistic scenarios is: di↵erent baseline drugs, say BN and BO, are used

in the two trials TN and TO. In this setting, we have two trials TN and TO for four

treatments DN , DO, BN and BO, where TN is a randomized experiment for DN

and BN , and TO is a randomized experiment for DO and BO. The observed data

for a patient i in an indirect comparison include (Xi, Ii, Ti, Y
obs
i ), where Xi stands

for the covariates, Ii 2 {TN , TO} is the trial assignment, Ti 2 {DN , DO, BN , BO} is

the treatment assignment, and Y obs
i , which has the same meaning as in the previous

sections, takes values in {Y N
i , Y O

i , Y BN
i , Y BO

i }. There are totally four arms in the two

trials of an indirect comparison, two for each trial. We use the following notations to
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denote the four arms:

A+
N , {i : Ii = TN , Ti = DN}, A+

B , {i : Ii = TN , Ti = BN};

A�
O , {i : Ii = TO, Ti = DO}, A�

B , {i : Ii = TO, Ti = BO}.

And, the sizes of the four arms are denoted as

n+
N = #A+

N , n+
B = #A+

B, n�
O = #A�

O, and n�
B = #A�

B.

In this case, Eq. (1.19) becomes a biased estimator of ACEP(DN , DO), as the

e↵ect of BN and BO cannot naturally cancel out. However, as long as TN and TO

both cover the target population P , we can always put A+
N and A�

O together to

generate an artificial trial for comparing DN and DO. It’s easy to check that the

artificial trial with A+
N as the treatment arm and A�

O as the controlled arm is still a

randomized experiment of DN and DO over the target population P , i.e.,

T ? (Y DN , Y DO).

Based on this fact, ACEP(DN , DO) can be properly identified from the artificial trial

by

[ACEIC =
1

n+
N

X

i2A+
N

Y obs
i � 1

n�
O

X

i2A�
O

Y obs
i . (1.20)

A major challenge in indirect comparison, however, is that the unit population

of trail TN is often di↵erent from that of trial TO. Let PO and PN be the unit
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population of trial TO and TN respectively. When PN 6= PO, the estimator defined

in (1.20) becomes a biased estimator. To remove the bias, we need to match the

patient population of the two trials. We call this type of matching problem as across-

trial matching to distinguish it from the classic across-arm matching problem that

matches covariate distributions of two arms from one trial.

1.4.2 Ignobility of trial assignment

Since both TO and TN are randomized experiments, they satisfy the following

conditions:

(1) Random unit selection within trials: The units in trial TO are i.i.d. samples

from a unit population PO, the units in trial TN are i.i.d. samples from another

unit population PN . Let ⇡O(x) and ⇡N(x) be the covariate distributions of

population PO and PN , respectively. This condition can be formally expressed

as:

Xi ⇠ ⇡O(x) · I(i 2 TO) + ⇡N(x) · I(i 2 TN);

(2) Random treatment assignment within trials: {Ti}i are independent of each

other, and the treatment assignment is ignorable in both trials, i.e.,

(Y DN , Y BN ) ? T | I = TN ,

(Y DO , Y BO) ? T | I = TO.

To achieve across-trial matching, however, we need an extra condition below on

trial assignment:
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(3) Ignorable trial assignment: the trial assignment is strongly ignorable given

the covariants X, i.e.,

(Y DN , Y DO) ? I | X, and

⇡N and ⇡O have the same support as the target population P .

Intuitively, this condition says that the covariates X are su�cient to represent di↵er-

ence between the two patient populations.

To better illustrate the meaning of the condition of “ignorable trial assignment”,

we provide the following example. An old drug DO has been proved to be e↵ective

for asians with respect to a standard placebo B by a randomized clinical trial TO.

Now, we want to check whether a new drug DN is better than the old drug DO for

asians via indirect comparison. However, we cannot find enough asian patients to

carry out a randomized clinical trial to compare the new drug DN to the placebo

B. Instead, we carry out the clinical trial (i.e., TN) for a group of caucasians with a

similar covariate distribution. Assume that four covariates are considered: age (X1),

gender (X2), blood pressure (X3), and income in US dollars (X4). Here, PO is the

population of asians, and PN is the population of caucasians.

Because caucasians are very di↵erent from asians racially and genetically, the

relative e�cacy of the new drug DN for caucasians obtained in TN may have nothing

to do with its relative e�cacy for asians at all. However, if we can somehow argue that

the genetic e↵ect is very marginal here, and the e�cacy of drugs is mainly determined

by the basic body conditions of a patient, which can be well represented by age (X1),

gender (X2) and blood pressure (X3), and his/her living condition, which can be
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surrogated by the income level, we can comfortably extend the results obtained from

the caucasian population to an asian population with a similar covariate distribution.

More precisely, let {PN
x }x be the the unit stratifications defined by the value of

covariates in population PN , and {PO
x }x be the the unit stratifications defined by the

value of covariates in population PO. The assumption of ignorable trial assignment

guarantees that the statistical properties of potential outcomes Y DN and Y DO are

exactly same in PN
x and PO

x for any x. In other words, with respect to Y DN and Y DO

only, we have

PN
x = PO

x = Px for 8 x.

Thus, the covariates X serve as a bridge between the two populations PN and PO,

with which the two populations are comparable at the unit stratification defined by

the value of covariates {Px}x.

In practice, the condition of “random treatment assignment within trials” can be

relaxed to a looser condition below:

(2⇤) Ignorable treatment assignment within trials: {Ti}i are independent of each

other, and the treatment assignment is ignorable in both trials, i.e.,

(Y DN , Y BN ) ? T | (I = TN , X),

(Y DO , Y BO) ? T | (I = TO, X); and

0 < P (T = DO | X, I = TO) < 1 and 0 < P (T = DN | X, I = TN) < 1 for all X.
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For simpleness, however, in this dissertation we always assume that both trials are

perfectly randomized, i.e., within each trial the patient populations in two arms of

the trial are identical.

1.4.3 Across-trial matching vs across-arm matching

The across-trial matching problem looks almost same as the across-arm matching

problem discussed in the previous section: both aim to balance distribution of covari-

ates across two unit subpopulations (arms or trials). However, the two problems do

have some subtle but critical di↵erences.

In the across-arm matching problem, the data are generated in three steps:

• Covariates X: draw X randomly from distribution ⇡ derived from unit popu-

lation P ;

• Potential outcomes (Y c, Y t) | X: potential outcomes are summarized/modeled

at the level of unit stratifications {Px}x, i.e., the following response surfaces

must be specified

EPt
x
(Y t), EPt

x
(Y c), EPc

x
(Y t), EPc

x
(Y c);

• Treatment assignment T | X: treatment T is randomly assigned to units within

each unit stratification Px, thus, satisfies (Y c, Y t) ? T | X, which guaran-

tees the statistical property of potential outcomes in each unit stratification is
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identical across two arms, i.e.,

EPt
x
(Y t) = EPc

x
(Y t) and EPt

x
(Y c) = EPc

x
(Y c) for 8 x.

The variable that defines the two arms, T , is randomly assigned to units within

each unit stratification Px, after involved units are randomly selected from the unit

population P .

In the across-trial matching problem, however, the data are generated in four

steps:

• Trial assignment I: specify number of units in both trials nO and nN .

• Covariates X | I: for unit in trail TN , draw X randomly from distribution ⇡N

derived from unit population PN ; for unit in trail TO, draw X randomly from

distribution ⇡O derived from unit population PO.

• Potential outcomes in two trials (Y DN , Y BN , Y DO , Y BO) | (X, I): potential out-

comes are summarized/modeled at the level of unit stratifications in both trials

{PN
x }x [ {PO

x }x, i.e., the following response surfaces must be specified

EPN
x
(Y DN ), EPN

x
(Y BN ), EPO

x
(Y DO), EPO

x
(Y BO);

and, since (Y DN , Y DO) ? I | X, we have

EPO
x
(Y DN ) = EPN

x
(Y DN ) and EPN

x
(Y DO) = EPO

x
(Y DO) for 8 x.
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• Treatment assignment T | I: treatment T is completely randomly assigned to

units within each trial, thus, satisfies (Y DN , Y BN , Y DO , Y BO) ? T | I = TN .

The variable that defines the two trials, I, is not randomly assigned to units. Instead,

it’s specified before involved units are selected, and actually determines how units are

selected.

Covariates X play a similar role in both problems: create unit stratifications

based on which the two subpopulations of interest (two arms or two trials) can be

compared and matched. However, they function via di↵erent mechanisms in the two

problems. In across-trial matching, because the trial assignment I is specified before

covariates X are sampled, to guarantee that (Y c, Y t) ? I | X, X should cover as

many predicting factors of (Y c, Y t) as possible. In cross-arm matching, however,

since the treatment assignment T can be better controlled, X only needs to contain

variables given which the treatment T is conditionally randomly assigned.

1.4.4 The Bayesian approach

To avoid heavy notations, in this section, we pose the following two extra as-

sumptions for indirect comparison: (1) the baseline drugs in the two trials are same

(i.e., BN = BO = B), and (2) the orignal ignorable trial assignment assumption is

enhanced to a slightly stronger version:

(Y DN , Y DO , Y B) ? I | X.
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With these extra assumptions, the generic model for indirect comparison can be

specified as follows:

X | I ⇠ ⇡✓N (x) · I(I = TN) + ⇡✓O(x) · I(I = TO),

T | I ⇠ Bernoulli(⇢N) · I(I = TN) + Bernoulli(⇢O) · I(I = TO),

Y DN | X = x ⇠ Bernoulli(RN(x)),

Y DO | X = x ⇠ Bernoulli(RO(x)),

Y B | X = x ⇠ Bernoulli(RB(x)),

where ⇡✓ is a parametric distribution with unknown parameter ✓, ⇢N and ⇢O 2 (0, 1),

and the three response surfaces RN(x), RO(x) and RB(x) are specified as probit

models below:

RN(x) = �(x0↵N),

RO(x) = �(x0↵O),

RB(x) = �(x0↵B).
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The above model lead to the following likelihood for the observed data:

f(X, T, Y obs | I) =
Y

i2TN

f(Xi, Ti, Y
obs
i | I = TN) ·

Y

i2TO

f(Xi, Ti, Y
obs
i | I = TO)

=
Y

i2TN

⇡✓N (Xi) ·
Y

i2TO

⇡✓O(Xi) · ⇢
n+
N

N (1� ⇢N)
n+
B · ⇢n

�
O

O (1� ⇢O)
n�
B

·
Y

i2A+
N

RN(Xi)
Y obs
i [1�RN(Xi)]

1�Y obs
i

·
Y

i2A�
O

RO(Xi)
Y obs
i [1�RO(Xi)]

1�Y obs
i

·
Y

i2A+
B[A�

B

RB(Xi)
Y obs
i [1�RB(Xi)]

1�Y obs
i .

Giving the model parameters (✓N , ✓O, ⇢N , ⇢O,↵N ,↵O,↵B) a proper prior distribution,

their posterior distribution can be derived by standard Bayesian inference techniques.

Note that if (✓N , ✓O, ⇢N , ⇢O,↵N ,↵O,↵B) are independent of each other in the prior

distribution, they will be still independent in the posterior distribution since they are

separated in the above likelihood function.

Because the estimand

ACE⇡✓O
(DN , DO) =

Z

⇥

RN(x)�RO(x)
⇤

d⇡✓O(x) = h(↵N , ✓O,↵B)

is a function of parameters (↵N ,↵P , ✓O), the posterior distribution ofACE⇡✓O
(DN , DO)

can be naturally derived from the posterior distribution of (↵N , ✓O,↵B).
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1.4.5 Match unit populations by weighting adjustment

Matching methods developed for balancing the treated and controlled arms of

a non-randomized experiment can be naturally applied to this more complicated

scenarios with two trials and four arms.

Totally, there are six unit populations in the system: two trial-level populations

⇡N and ⇡O for TN and TO, and four arm-level populations ⇡t
N , ⇡

c
N , ⇡

t
O, ⇡

c
O for A+

N ,

A+
P , A�

O and A�
P , respectively. Since we have assumed that both trials TN and TO are

perfectly randomized, we have

⇡t
N = ⇡c

N = ⇡N , ⇡t
O = ⇡c

O = ⇡O.

In the across-trial matching problem, we aim to estimate ACEPO
(DN , DO) by match-

ing the two trial-level populations ⇡N and ⇡O.

By definition, we have

ACEPO
(DN , DO) =

Z

E⇡O
(Y DN | X = x)d⇡O(x)� E⇡O

(Y DO | T = DO).
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Based on the assumptions we make for the across-trial matching problem, we have

Z

E⇡O
(Y DN | X = x)d⇡O(x)

=

Z

E⇡N
(Y DN | X = x) · ⇡O(x)

⇡N(x)
d⇡N(x)

=

Z

E⇡N
(Y DN | X = x, T = t) · ⇡O(x)

⇡N(x)
d⇡N(x)

=

Z

E⇡N
(Y DN · ⇡O(x)

⇡N(x)
| X = x, T = t)d⇡t

N(x)

= E⇡t
N
(Y DN · ⇡O(X)

⇡N(X)
| T = t).

Thus, the following estimate

1

n+
N

X

i2A+
N

Y obs
i · !i �

1

n�
O

X

i2A�
O

Y obs
i (1.21)

is an unbiased estimate of ACEPO
(DN , DO), where

!i =
⇡O(Xi)

⇡N(Xi)
=

P (X = Xi | I = TO)

P (X = Xi | I = TN)
.

Following the spirit of Section 1.3.4, it is easy to check that

!i =
ei

1� ei
· 1� ↵

↵
,

ei =
P (I = TN | X = Xi)

P (I = TN | X = Xi) + P (I = TO | X = Xi)
,

↵ =
P (I = TN)

P (I = TN) + P (I = TO)
.

Here, ei stands for the propensity score of trial assignment.
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1.5 Indirect Comparison without Individual-Level

Data

1.5.1 Problem setting

In practice, the situation can be further complicated as detailed data at patient

level is often available in just one trial. For example, it’s very often that the developer

the new drug DN have a full control for trial TN , but only a limited access to summary

statistics (usually, the first one or two moments) of the old trial TO, which was

carried out by another drug developer who keeps many details confidential due to

various concerns. In this new setting, the observed data contain two components:

(1) detailed data of the new trial {Xi, Ii, Ti, Y
obs
i }i2TN , (2) summary statistics of the

old trial: {X̄TO , STO , n
�
O, n

�
B,m

�
O,m

�
B}, where X̄TO and STO are the sample mean and

sample covariance matrix of the unobserved covariatesX in trial TO, n
�
O = #(A�

O) and

n�
B = #(A�

B) are sizes (numbers of individuals) of A�
O and A�

B, and m�
O =

P

i2A�
O
Y obs
i

and m�
B =

P

i2A�
P
Y obs
i numbers of patients with positive response in A�

O and A�
B.

For this more challenging scenario, most classic matching methods, e.g., the near-

est neighbor matching and substratification, fail due to the lack of detailed data at

patient level.

1.5.2 The Bayesian and semi-Bayesian approaches

A full Bayesian inference of this problem can be achieved by following the frame-

work of Section 1.4.4 and treating the unobserved {Ti, Xi, Y
obs
i }i2TO as missing data.

Samples from posterior distribution of unknown parameters (↵O,↵N , ⇡O, ⇡N) can be
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obtained using the data argumentation strategies (Tanner and Wong, 1987). How-

ever, this sampling strategy su↵ers from slow convergence because little information

is available for parameter ↵O of response surface

RO(x) = �(x0↵O).

To overcome the limitation of Bayesian method, we propose a semi-Bayesian ap-

proach below. In the semi-Bayesian approach, we choose to ignore part of the observed

data to simplify the Bayesian inference. First, we ignore the detailed generating mech-

anism of potential outcome Y DO where the covariates X are involved in, i.e.,

Y DO | X = x ⇠ Bernoulli(RO(x)).

Instead, we directly model the overall statistical property of Y DO in unit population

PO. To be concrete, we assume that for 8 i 2 PO,

Y DO
i ⇠ Bernoulli(rO),

where rO 2 [0, 1] is the overall probability of Y DO = 1 in population PO. Mathemat-

ically, it’s easy to check that

rO =

Z

RO(x)d⇡O(x).

Second, we choose to work on ({Xi}i2TN[TO , {Y obs
i }i2A+

N[A�
O
) only, responses of

baseline drugs {Y obs
i }i2A+

B[A�
B
are ignored as they do not provide useful information
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to the casual e↵ect of interest. Under the simplified model, the generating mechanism

of the selected data becomes:

X | I ⇠ ⇡✓N (x) · I(I = TN) + ⇡✓O(x) · I(I = TO),

U ⇠ N(↵0 + ↵1X1 + · · ·+ ↵pXp, 1),

Y DN = I(U > 0),

Y DO ⇠ Bernoulli(rO).

Given prior ⇡(✓N , ✓O, rO,↵0, · · · ,↵p) to the model parameters, our goal is to draw

samples (via Gibbs sampling) from the posterior below

f(✓N , ✓O, rO,↵0, · · · ,↵p, U | {Xi}i2TN[TO , {Y obs
i }i2A+

N[A�
O
)

/ f({Xi}i2TN[TO , {Y obs
i }i2A+

N[A�
O
, U | ✓N , ✓O, rO,↵0, · · · ,↵p) · ⇡(✓N , ✓O, rO,↵0, · · · ,↵p)

=
Y

i2TN

⇡✓N (Xi) ·
Y

i2TO

⇡✓O(Xi) ·
Y

i2A+
N

f(Y obs
i | Ui)f(Ui | ↵, Xi) · r

m�
B

O (1� rO)
n�
Bm�

B

·⇡(✓N , ✓O, rO,↵0, · · · ,↵p). (1.22)

The details of Gibbs sampling when X follows multivariate Gaussian is given in

Appendix A.1.

1.5.3 The Signorovitch’s method of weighting adjustment

Recently, Signorovitch et al. (2010) proposed Matching Adjusted Indirect Com-

parison (MAIC), a method based on weighting adjustment, to tangle this challenging

43



problem. Recall the result of section 1.4.5:

1

n+
N

X

i2A+
N

Y obs
i · !i �

1

n�
O

X

i2A�
O

Y obs
i

is an unbiased estimate of ACE⇡O
(DN , DO), where

!i =
ei

1� ei
· 1� ↵

↵
,

ei =
P (I = TN | X = Xi)

P (I = TN | X = Xi) + P (I = TO | X = Xi)
,

↵ =
P (I = TN)

P (I = TN) + P (I = TO)
.

Without loss of generality, we assume that trail assignment is balanced, i.e.,

P (I = TN) = P (I = TO), or more specifically, nN = nO.

Thus, we have ↵ = 0.5, and !i only depends on ei. Unfortunately, since only the

first two moments of covariates X are available for arms A�
O and A�

P , conditional

probability P (I = TN | X = x) cannot be directly estimated. Thus, the propensity

score for trial assignment ei is not identifiable until extra assumptions are made.

MAIC proposed by Signorovitch et al. (2010) avoids this dilemma by assuming a

logistic model for the generalized propensity score ei, which leads to the the following

parametric form of the weight !:

!i(�) =
ei

1� ei
= exp(A+ �0xi), (1.23)
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where � = (�1, · · · , �p)0 are parameters to be specified, and A is a normalizing con-

stant satisfying
X

i2A+
N

!i(�) =
X

i2A+
N

exp(A+ �0xi) = n+
N .

Once � is specified, we can calculate the weights {!i}i accordingly, and adjust ⇡N ,

the patient distribution of trial TN , to its weighted version

⇡⇤
N(�) =

��

x,!x(�)
�

: x ⇠ ⇡N

 

.

The authors argue that a proper � should lead to a same mean vector for ⇡O and

⇡⇤
N(�), i.e.,

E⇡O
X = E⇡N

�

X · !X(�)
�

.

With finite samples, the above constrain leads to the following estimation equation

for parameter � = (�1, · · · , �p):

1

nO

X

i2TO

Xi =
1

nN

X

i2TN

�

Xi · !i(�)
�

, (1.24)

which can be solved by iterative methods, such as the Newton-Raphson algorithm.

As � has been specified, {!i}i2A+
N
are fixed numbers. Signorovitch et al. (2010) claim

that the standard error of estimator

r̂N =
1

n+
N

X

i2A+
N

Y obs
i · !i
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can be ”derived by” (estimated by) a sandwich estimator (Liang and Zeger, 1986)

1

(
P

i2AN+ !i)2

X

i2A+
N

!2
i · (Yi � r̂N)

2.

This can be understood as e↵ective sample size of weighted samples {xi,!i(�)}i2A+
N

with respect to the estimate given in (1.21) is
(
P

i2AN+
!i)2

P
i2AN+

!2
i
, based on which the stan-

dard error of the estimate can be easily calculated.

The correctness of the MAIC method can be shown by the following theorem:

Theorem 1 If the logistic model for propensity score of trial assignment, i.e., equa-

tion (1.23), is correct, MAIC gives a consistent and asymptotically unbiased estimate

of ACE⇡O
(t, c) with probability one when both nO and nT go to infinity.

MAIC provides a point estimation of the estimand ACE⇡O
(DN , DO) with a para-

metric assumption on the propensity score of trial assignment. Although the method

is straightforward, it has the following limitations:

• The logistic model for propensity score of trial assignment, i.e., equation (1.23),

cannot be verified in a practical problem.

• The method matches the first moment of covariates across the two trials, but

ignores the potential impact of the correlation structures of these covariates.

• The method, which matches all available covariates, tends to overmatch the

data and lead to loss of statistical e�ciency. For example, if a covariate is

irrelevant to the response or is already balanced across the two trials except for

random noise, matching it will just introduce noise into the system.
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• Solving the estimation equation (1.24) involves numerical iterations, which are

time costuming and may result in no numerical solution in some cases.

• The uncertainty (i.e., variance) of the proposed estimator is not properly evalu-

ated: the e↵ective sample size claimed by the authors is not accurate and may

lead to a wrong variance estimation of the proposed estimator.

1.5.4 A novel approach

To overcome the limitations of Signorovitch’s method, we propose the following

novel approach. In the new approach, we directly estimate the distribution of covari-

ates X in the two trials ⇡O(x) and ⇡N(x), and assign weights to data points from

trial TN based on the estimated covariates distributions. We will show that the new

approach results in a consistent estimator as well, and overcomes many limitations of

the Signorovitch’s method.

To be concrete, we assume that distribution of covariates X in the two trials,

⇡O(x) and ⇡N(x), share the same parametric form ⇡✓(x), i.e.,

⇡O(x) = ⇡✓O(x) and ⇡N(x) = ⇡✓N (x),

where ✓O and ✓N are unknown parameters whose values can be inferred from the data.

Once ✓O and ✓N are specified, it’s straightforward to see that the following weight

assignment to unit i 2 TN leads to a proper weight adjustment mechanism

!i =
⇡✓O(Xi)

⇡✓N (Xi)
. (1.25)
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In practice, ✓N and ✓O are unknown, and need to be estimated from the observed

covariates {Xi}i2TN and summary statistics {X̄TO , STO , n
�
O, n

�
P ,m

�
O,m

�
P}. Let ✓̂O and

✓̂N be proper estimates of ✓O and ✓N . Replacing the unknown ✓O and ✓N with their

estimates ✓̂O and ✓̂N , we get the following estimated weights

!̂i =
⇡✓̂O

(Xi)

⇡✓̂N
(Xi)

, (1.26)

which leads to the estimate below

1

n+
N

X

i2A+
N

Yi · !̂i � ȲA�
O
. (1.27)

It can be showed that (1.27) is a proper estimator under certain conditions.

Theorem 2 If ✓̂O and ✓̂N are consistent estimates of ✓O and ✓N , (1.27) is a consistent

and asymptotically unbiased estimate of ACE⇡O
(t, c).

Theorem 2 requires that consistent estimates of ✓O and ✓N can be obtained from the

observed data for covariates: {Xi}i2TN and {X̄TO , STO , n
�
O, n

�
P ,m

�
O,m

�
P}. For ✓N , this

requirement is easy to satisfy as long as the assumed model ⇡✓ is identifiable, since iid

samples from ⇡✓N , i.e., {Xi}i2TN , are available. For ✓O, however, this requirement is

equivalent to assuming that the underlying distribution ⇡✓ is completely determined

by its first two moments. Therefore, we have the following corollary immediately:

Corollary 1 If the assumed distribution of covariates ⇡✓ cannot be fully determined

by its first two moments, there does not exist a consistent estimate of ✓O, and thus,

no consistent and asymptotically unbiased estimate of ACE⇡O
(t, c) can be obtained
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until more assumptions are made.

To distinguish this novel approach from the original MAIC approach, in the fol-

lowing of this dissertation, we refer to the novel approach as MAICN .

1.5.5 Estimating population distributions ⇡
✓O

and ⇡
✓N

Theorem 2 and Corollary 1 put quite strong constraint on ⇡✓, the model of co-

variates. Fortunately, many widely used distributions (such as normal, lognormal,

exponential, beta, Poisson and so on) do satisfy this constraint. For example, assume

that the covariates X come from a multi-normal distribution, i.e.,

Xi ⇠ N(µN ,⌃N) · I(i 2 TN) +N(µO,⌃O) · I(i 2 TO).

Here, ✓N = (µN ,⌃N) and ✓O = (µO,⌃O). Given the observed data for covariates:

{Xi}i2TN and {X̄TO , STO , n
�
O, n

�
P ,m

�
O,m

�
P}, it’s easy to see that the MLEs of ✓N and

✓O are:

✓̂N = (µ̂N , ⌃̂N) and ✓̂O = (µ̂O, ⌃̂O),
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where

µ̂N = X̄TN =
1

nN

X

i2TN

Xi,

⌃̂N = STN =
1

nN

X

i2TN

(Xi � X̄TN )(Xi � X̄TN )
T ;

µ̂O = X̄TO =
1

nO

X

i2TO

Xi,

⌃̂O = STO =
1

nO

X

i2TO

(Xi � X̄TO)(Xi � X̄TO)
T .

In some cases, for trial TO, the sample covariance matrices STO is not available.

Instead, only the sample variances of covariates, i.e., the diagonal elements of STO ,

are given. In this scenario, we will assume that the covariates X share the same

correlation structure in the two trials TO and TN to avoid the identifiability problem.

Since the variance estimates are orthogonal to the estimate of correlation structure,

we can estimate the common correlation structure based on TN , and plug it into the

trial TO.

In practice, the problem can be further simplified if the p covariates are assumed

to be independent of each other. For example, assume that the p covariates come

from independent Gaussian distributions, i.e., for 8 j 2 {1, · · · , p},

Xi,j ⇠ N(µj, �
2
j ) · I(i 2 TN) +N(⌫j,

2
j) · I(i 2 TO).

Here, ✓N = {µj, �
2
j}

p
j=1 and ✓O = {⌫j,2

j}
p
j=1. Given the observed data for covariates:

{Xi}i2TN and {X̄TO , STO , n
�
O, n

�
P ,m

�
O,m

�
P}, it’s easy to see that the MLEs of ✓N and
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✓O are:

✓̂N = {µ̂j, �̂
2
j}

p
j=1 and ✓̂O = {⌫̂j, ̂2

j}
p
j=1,

where

µ̂j = X̄TN (j) =
1

nN

X

i2TN

Xi,j,

�̂2
j = STN (j, j) =

1

nN

X

i2TN

(Xi,j � µ̂j)
2;

⌫̂j = X̄TO(j) =
1

nO

X

i2TO

Xi,j,

̂2
j = STO(j, j) =

1

nO

X

i2TO

(Xi,j � ⌫̂j)
2.

If covariates X comes from other distributions instead of normal distribution, ✓N

and ✓O can be estimated in a similar way. For cases where MLEs of ✓N and ✓O

are di�cult to get, we can use moment estimation instead. Compared to the MAIC

method, MAICN enjoys the following advantages:

• The model assumption can be (at least partially) verified in a practical problem;

• Both the marginal distributions and the correlation structures of covariates are

considered;

• The computation involved is straightforward.

1.5.6 Variance Estimation via bootstrap

To derive the (asymptotic) variance of the estimate obtained by MAIC or MAICN

theoretically, a joint model for (X, Y DN ) must be specified for units in A+
N to describe
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the dependence structure of X and Y DN . (In general, the weights {!i}i2A+
N
, which

are functions of {Xi}i2A+
N
, are depend of the potent outcomes {Yi}i2A+

N
.) Considering

that in practice, the joint model for (X, Y DN ) is often unknown or di�cult to specify,

we propose to achieve estimate variance using the bootstrap distribution generated

by the the following bootstrap procedure:

Step 1. Resample individual-level data points in trial TN by non-parametric boot-

strap;

Step 2. Regenerate samples of covariates in TO by parametric bootstrap, i.e., draw

nO i.i.d. samples from ⇡✓̂O
, calculate the summary statics (e.g., mean and

covariance matrix) of the resampled data;

Step 3. Run MAIC or MAICN for the resampled data set (individual-level data in

trial TN and summary statics of covariates in trial TO) to get an estimation of

the relative e�cacy of DN with respect to DO;

Step 4. Repeat above steps for K times to get the bootstrap distribution of the

corresponding estimate.

1.5.7 Hybrid Bayesian inference with bootstrap distributions

Another strategy to achieve semi-Bayesian inference is to hybrid Bayesian infer-

ence with bootstrap distributions. The algorithm goes s follows:

• Step 1. Draw M realizations of ✓N and ✓O from the following “posterior distri-
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butions”

f(✓N | {Xi}i2TN ) / ⇡(✓N) · f({Xi}i2TN | ✓N),

f(✓O | X̄TO , STO) / ⇡(✓o) · f(X̄TO , STO | ✓O),

where ⇡(✓N) and ⇡(✓O) are prior distributions.

• Step 2. For the m-th realization of (✓N , ✓O), generate K bootstrap samples for

units inA+
N , denoted as {X(1)

i , Y
(1)
i }n

+
N

i=1, · · · , {X
(K)
i , Y

(K)
i }n

+
N

i=1, by non-parametric

bootstrap. For the k-th bootstrap sample {X(k)
i , Y

(k)
i }n

+
N

i=1, calculate the point

estimate

[ACEk =
1

n+
N

n+
N

X

i=1

Y
(k)
i · ⇡✓N (X

(k)
i )

⇡✓O(X
(k)
i )

. (1.28)

F̂m , {[ACE1, · · · , [ACEK} forms the bootstrap distribution of the estimate for

EPO
Y DN given m-th realization of (✓N , ✓O).

• Step 3. Pool the bootstrap distributions from di↵erent realizations of (✓N , ✓O)

together, i.e., define

F̂ =
M
[

m=1

F̂m. (1.29)

Treat F̂ as the “posterior distribution” of EPO
Y DN .

For many practical problems, Step 1 is not trivial. Appendix A.2 provides the

details of Step 1 when covariates X follows multivariate Gaussian distribution.
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1.6 Selecting Covariates to be Matched

In practice, it’s not wise to match all available covariates across the two trials. For

example, if one of the following two scenarios happens for a covariate Xj, we should

not match it:

Scenario 1. The distribution di↵erence of Xj across the two trials is due to random

noise;

Scenario 2. Xj has no impact to potential outcomes Y t and Y c given the other

covariates.

To exclude scenario 1, we propose the following screening procedure. For each

covariate Xj, test the hypotheses below:

H0 : Xj follows the same distribution in TN and TO,

H1 : Xj follows di↵erent distributions in TN and TO.

IfH0 is rejected forXj for a pre-given significant level (e.g., 0.05), putXj into the can-

didate set for further investigation; otherwise, remove Xj from consideration. When

unit level data are available in both trials, The above hypothesis test can be achieved

parametrically (when parametric model of Xj is known) or non-parametrically (when

parametric model of Xj is unknown). When unit level data are available only in trial

TN , however, non-parametric test becomes di�cult. In this case, we may want to

specify a parametric model for Xj and do parametric test. For example, if Xj follows

Gaussian distribution in both trials, the above test can be achieved by testing (1)
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whether Xj has the same variance across TN and TO, and (2) whether Xj has the

same mean across TN and TO.

Covariates in the candidate set generated in the previous step will be further

investigated to exclude scenario 2. Statistically, this is equivalent to selecting the

smallest subset of covariates from the candidate set given which all other covariates

are independent of Y DN and Y DO . Logistic regression, which models the conditional

distribution of Y DN or Y DO given covariates X, is a popular tool for this purpose.

Based on the data from arm A+
N , a subset of covariates denoted as XN that have

the best prediction power for Y DN can be selected using Best Subset Regression or

Stepwise Regression strategy to minimized AIC (Akaike Information Criteria) or BIC

(Bayesian Information Criteria) score. Similarly, we can select a subset XBN
for Y BN

based on arm A+
B, a subset XBO

for Y BO based on arm A�
B, and a subset XO for Y DO

based on arm A�
O. To properly compare the e�cacy of DN and DO, we only need to

match covariates in XN [ XO.

When individual-level data in A�
O and A�

B are unavailable, however, XO and XBO

cannot be identified. In this case, if it’s acceptable to assume that XO = XN or

XO ✓ XN [ XBN
, we can match covariates in XN or XN [ XBN

instead.

1.6.1 Variable selection via a joint Bayesian analysis

In this subsection, we propose to check the two criteria simultaneously by a joint

Bayesian analysis. To simplify the problem, we assume that XO ✓ XN . Thus, to

judge whether covariate Xj should be matched, we only need to answer the following

two questions:
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Question 1. Whether the distribution di↵erence of Xj across TN and TO is due to

random noise?

Question 2. whether Xj has no impact to Y DN given the other covariates?

Based on answers to the two questions, the p covariates can be divided into four

groups:

• G1: covariates that say No to both question 1 and question 2;

• G2: covariates that say Yes to question 1 but No to question 2;

• G3: covariates that say No to question 1 but Yes to question 2;

• G4: covariates that say Yes to both question 1 and question 2.

Clearly, only covariates in G1 need to be matched.

Let Jj be the group indicator of covariate Xj, where Jj = 1 if Xj 2 G1, Jj = 2 if

Xj 2 G2, Jj = 3 if Xj 2 G3, and Jj = 4 if Xj 2 G4. Assuming that the p covariates

are independent of each, we propose to work on the following likelihood function:

f({Xi}i2TN[TO , {Y obs
i }i2A+

N
| J,⇥)

=
Y

j2G1[G3

h

Y

i2TN

f(Xi,j | ✓N,j)
Y

i2TO

f(Xi,j | ✓O,j)
i

·
Y

j2G2[G4

Y

i2TN[TO

f(Xi,j | ✓j)

·
Y

i2A+
N

f(Y obs
i | �0Xi,G1[G2),
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where the model parameters ⇥ = (✓N , ✓O, ✓, �) are defined as:

✓N = (✓N,1, · · · , ✓N,p) are the TN -specific parameters,

✓O = (✓O,1, · · · , ✓O,p) are the TO-specific parameters,

✓ = (✓1, · · · , ✓p) are the common parameters across two trials,

� = {�0} [ {�j}j2G1[G2 are coe�cients in probit regression of Yi.

Giving (J,⇥) a proper prior distributions ⇡(J,⇥), samples from posterior distribution

below can be obtained by Gibbs sampling

f(J,⇥ | {Xi}i2TN[TO , {Y obs
i }i2A+

N
) / ⇡(J,⇥) · f({Xi}i2TN[TO , {Y obs

i }i2A+
N
| J,⇥).

Note that since the dimension of �, which equals to #(G1 [G2), changes with J , we

need to use advanced MCMC techniques (e.g., reversible jump MCMC ) to guarantee

the convergence of the sampler. A comprehensive review of these techniques can be

found in Liu (2001).

With the same assumption that the p covariates are independent of each, we can

also achieve variable selection by extending the naive Bayes method. To be concrete,
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we propose to the following inverse model of {Xi}i2TN[TO when {Y obs
i }i2A+

N
are given:

f({Xi}i2TN[TO | {Y obs
i }i2A+

N
; J,⇥)

= ·
Y

j2G1

h

Y

i2TO

f(Xi,j | ✓O,j)
Y

i2A+
N

f(Xi,j | ✓N,j)
Y

i2A+
N

f(Xi,j | ✓+j )Y
obs
i f(Xi,j | ✓�j )1�Y obs

i

i

·
Y

j2G2

h

Y

i2TO[A+
N

f(Xi,j | ✓j)
Y

i2A+
N

f(Xi,j | ✓+j )Y
obs
i f(Xi,j | ✓�j )1�Y obs

i

i

·
Y

j2G3

h

Y

i2TO

f(Xi,j | ✓O,j)
Y

i2TN

f(Xi,j | ✓N,j)
i

·
Y

j2G4

Y

i2TO[TN

f(Xi,j | ✓j),

where the model parameters ⇥ = {✓N,j, ✓O,j, ✓
+
j , ✓

�
j , ✓j}j are defined as follows:

✓N,j is the TN -specific parameters for {Xi,j}i2TN ,

✓O,j is the TO-specific parameters for {Xi,j}i2TO ,

✓+j is the (Y obs
i = 1)-specific parameters for {Xi,j}i2A+

N ,Y obs
i =1,

✓�j is the (Y obs
i = 0)-specific parameters for {Xi,j}i2A+

N ,Y obs
i =0,

✓j is the common parameters for {Xi,j}i2TN[TO .

Let ⇥j = (✓N,j, ✓O,j, ✓
+
j , ✓

�
j , ✓j), and define

Lj(Jj,⇥j) = f({Xi,j}i2TN[TO | {Y obs
i }i2A+

N
; Jj,⇥j),

the above model indicates that

f({Xi}i2TN[TO | {Y obs
i }i2A+

N
; J,⇥) =

p
Y

j=1

Lj(Jj,⇥j),
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and Lj(Jj,⇥j) can take four di↵erent values below depending on the status of Jj:

Jj = 1 :
Y

i2TO

f(Xi,j | ✓O,j)
Y

i2A+
B

f(Xi,j | ✓N,j)
Y

i2A+
N

f(Xi,j | ✓+j )Y
obs
i f(Xi,j | ✓�j )1�Y obs

i ,

Jj = 2 :
Y

i2TO[A+
B

f(Xi,j | ✓j)
Y

i2A+
N

f(Xi,j | ✓+j )Y
obs
i f(Xi,j | ✓�j )1�Y obs

i ,

Jj = 3 :
Y

i2TO

f(Xi,j | ✓O,j)
Y

i2TN

f(Xi,j | ✓N,j),

Jj = 4 :
Y

i2TO[TN

f(Xi,j | ✓j).

When Jj jumps from one status to another status, Lj(Jj,⇥j) changes accordingly.

Giving J a non-informative uniform prior on the sampling space {1, 2, 3, 4}p and ⇥j

a prior ⇡(⇥j), the posterior distribution of Jj is completely determined by vector

Lj ,
�

Lj(1), Lj(2), Lj(3), Lj(4)
�

.

where

Lj(Jj) =

Z

Lj(Jj,⇥j)d⇡(⇥j).

When Xij follows normal, and ⇡(⇥j) is the conjugate prior, the value of Lj can be

obtained analytically. In a practical problem, variable selection can be achieved by

specifying J as its the posterior mode.

The Bayesian variable selection approach can also be integrated into the hybrid

Bayesian approach proposed in Section 1.5.7 as follows:

• Step 1. Draw T samples J = {J1, · · · , JT} from the posterior distribution of J .

• Step 2. For each J 2 J , denote the selected covariates in G1 as XJ . Run hybrid
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Bayesian for the selected covariates in XJ to get hybrid-bootstrap samples of

the estimand ACEP(t, c) given J , which is denoted as F̂J .

• Step 3. Pool di↵erent versions of hybrid-bootstrap samples together, we get the

following hybrid-bootstrap samples below

F̂ =
[

J2J

F̂J .

The F̂ obtained in this way contains the uncertainty in variable selection, trial pop-

ulation estimation as well as data point sampling.

1.6.2 Variable screening via SIRI

When there are too many possible variables, the procedure could lead to heavy

computation. In this subsection, we propose a step-wise variable screening strategy

to solve this problem. Logistic regression, which models the conditional distribution

of response Y given predictors X, is not the only solution to our problem. Recently,

Jiang and Liu (2013) proposed a novel method named SIRI (Sliced Inverse Regres-

sion with Interactions) to solve the same problem, but, via inverse modeling (i.e.,

modeling the conditional distribution of predictors X given response Y ). Both simu-

lation studies and theoretical analysis show that SIRI can achieve variable selection

e↵ectively even when interactions among covariates are also considered and greatly

avoids overfitting, which bothers logistic regression a lot.

To be concrete, SIRI partitions the p covariates into two groups G0 and G1, where

the covariates in G0 are independent of Y , while the covariates in G1 are dependent
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of Y . And, for simpleness, SIRI models the conditional distribution of covariates X

given response Y with multi-normal distributions below:

XG0 | Y ⇠ N(µ,⌃), and

XG1 | Y ⇠ N(µ0,⌃0) · I(Y = 0) +N(µ1,⌃1) · I(Y = 1),

where (µ,⌃), (µ0,⌃0) and (µ1,⌃1) are unknown parameters. In practice, the group

partition G0 and G1 are also unknown. Let Jj be the group indictor of covariate Xj,

where Jj = 0 if Xj 2 G0, and Jj = 1 if Xj 2 G1. SIRI aims to get the posterior

distribution of J = (J1, · · · , Jp) given the observed data {Xi, Yi}i.

In practice, when Bayesian inference is too time-consuming, we can simplify SIRI

with a series of screening tests. For example, the selection of XN via SIRI can be

achieved in two steps:

Step1. For each covariate Xj in the candidate set, calculate the p-value Pj of the

hypothesis test below

H0 : Xj is independent of Y
DN in A+

N ,

H1 : Xj is not independent of Y
DN in A+

N .

Rank the p covariates by their p-values decreasingly. Denote the ranked covari-

ates as X(1), X(2), · · · , X(p), and the ranked p-values as P(1), · · · , P(p). Initialize

XN = {X(1)} if P(1) < 0.05, and let XN = ; otherwise.

Step 2. Scan through X(1), X(2), · · · , X(p) until X(p) is processed. If X(k) 2 XN , move
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to X(k+1); otherwise, test the hypotheses below by likelihood ratio test

H0 : X(k) | XN , Y
DN ⇠ N(XN�, �

2);

H1 : X(k) | XN , Y
DN ⇠ N(XN�0, �

2) · I(Y DN = 0) +N(XN�1, �
2) · I(Y DN = 1),

where �0 6= �1.

Let L =
PM1 (X(k)|XN ,Y DN )

PM0 (X(k)|XN ,Y DN )
be the likelihood ratio statistics, it can be showed

that 2L ⇠ �2(q), where q = #XN is the number of covariates already selected.

Update XN with XN [ {X(p)} if H0 is rejected for X(p) .

1.7 Simulation Studies

In this section, we will evaluate the performance of the following methods via

simulation under di↵erent settings:

• BASE: Direct comparison without matching

• MAIC: Signovitch’s matching adjusted indirect comparison method

• MAICB: MAIC with bootstrap

• MAICN : Novel matching adjusted indirect comparison method

• BM: Semi-Bayesian model with independent assumption

• BMIC: Hybrid semi-Bayesian method with bootstrap

For direct comparison without matching, we applied Bayesian model for each trial

separately, assuming the two trials of interest share the same unit population even
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though the actual unit populations are di↵erent.

1.7.1 Simulation 1

In this simulation study, we simulated 10 continuous covariates X = (X1, . . . , X10)

as population characteristics under two scenarios where population structure are same

and di↵erent, respectively.

• Scenario 1A:

– New trial: X1, . . . , X10
i.i.d.⇠ N(0.5, 1)

– Old trial: X1, . . . , X10
i.i.d.⇠ N(0.5, 1)

• Scenario 1B:

– New trial: X1, . . . , X10
i.i.d.⇠ N(0.5, 1)

– Old trial: X1, . . . , X10
i.i.d.⇠ N(�0.5, 1)

Once obtained X, outcome Y was simulated from same probit model for both new

drug trial and old drug:

P (Y DO = 1|X, T ) = P (Y DN = 1|X, T ) = �(�2 +X� + 0.5 · I{T=t}),

where � = (1,�0.5, 0.5, 0, 0, 0, 0, 0, 0, 0)T

Under each scenario above, di↵erent settings of sample size (n) were applied (100,

200, 300, 500). Within each trial, half of individuals were assigned to treatment

arm and control arm, respectively. 1000 data sets were simulated for each setting

of (X, Y, n). All methods were applied to the same 1000 datasets for each setting.
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Table 1.1: Scenario 1A, data generating models for X are the same for both trials,
sample size for each trial varied from 100 to 500.

BASE MAIC MAICB MAICN BM BMIC Sample Size
% coverage [length] 95.5% [0.335] 94.9% [0.388] 98.7% [0.501] 97.6% [0.434] 92.8% [0.303] 98.1% [0.471]

mean (SE) -0.002 (0.087) -0.003 (0.096) -0.002 (0.094) -0.003 (0.093) 0.010 (0.083) -0.005 (0.091) 100
% coverage [length] 94.7% [0.239] 96.9% [0.257] 97.1% [0.269] 97.5% [0.272] 96.4% [0.227] 99.0% [0.304]

mean (SE) -0.002 (0.062) -0.001 (0.060) -0.001 (0.060) -0.001 (0.060) 0.005 (0.055) -0.002 (0.060) 200
% coverage [length] 95.9% [0.197] 97.0% [0.207] 97.9% [0.212] 97.6% [0.214] 97.2% [0.189] 98.6% [0.238]

mean (SE) 0.002 (0.048) 0.002 (0.045) 0.002 (0.045) 0.002 (0.045) 0.004 (0.043) 0.001 (0.046) 300
% coverage [length] 94.2% [0.153] 96.2% [0.157] 96.5% [0.159] 96.4% [0.160] 96.9% [0.148] 97.8% [0.176]

mean (SE) 0.000 (0.040) 0.000 (0.037) 0.000 (0.037) 0.000 (0.037) 0.001 (0.034) -0.001 (0.037) 500

Based on the simulations, we calculate the practical coverage of confidence/credible

intervals (CIs), the average length of CIs, the mean and standard error of the mean

e�cacy estimator. Note that the true e�cacy di↵erence is 0 as the e�cacy simulation

mechanisms are same over the two trials.

The results are summarized in Table 1.1 and Table 1.2. From Table 1.1, we

observed that when the two populations are identical (thus, no matching is needed at

the first place), all methods have comparable performance in terms of coverage and

length. Additionally, as sample size goes larger, all methods provide more accurate

coverage (closer to 95%) with shorter length. When sample size goes to 500, with

and without Bootstrap procedure, MAIC provided almost same coverage and length.

When the two population distributions are di↵erent, MAIC provides lower coverage

than other methods, as shown in Table 1.2,

In both scenarios, BM method consistently provides more accurate coverage with

shorter length. However, this benefit may rely on the fact that the model assumed

by BM (i.e., the probit link function) is identical to the true model we used for

simulation. To avoid this problem, in the following simulation studies, logistic link

function was applied instead.
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Table 1.2: Scenario 1B, data generating models for X are di↵erent for both trials,
sample size for each trial varied from 100-500 .

BASE MAIC MAICB MAICN BM BMIC Sample Size
% coverage [length] 43.2% [0.290] 89.4% [0.509] 88.0% [0.457] 93.4% [0.611] 78.4% [0.330] 88.8% [0.539]

mean (SE) 0.158 (0.074) 0.105 (0.145) 0.122 (0.098) 0.052 (0.157) 0.057 (0.137) 0.045 (0.161) 100
% coverage [length] 14.9% [0.207] 86.2% [0.469] 92.3% [0.426] 90.6% [0.479] 90.9% [0.274] 88.1% [0.447]

mean (SE) 0.159 (0.053) 0.083 (0.139) 0.101 (0.091) 0.045 (0.143) 0.025 (0.079) 0.043 (0.144) 200
% coverage [length] 4.8% [0.170] 82.6% [0.446] 94.0% [0.410] 90.7% [0.405] 93.6% [0.227] 90.7% [0.391]

mean (SE) 0.159 (0.045) 0.073 (0.139) 0.089 (0.090) 0.031 (0.129) 0.017 (0.061) 0.030 (0.129) 300
% coverage [length] 0.3% [0.131] 83.0% [0.443] 96.7% [0.404] 89.0% [0.357] 93.3% [0.175] 89.0% [0.354]

mean (SE) 0.159 (0.034) 0.069 (0.132) 0.080 (0.085) 0.032 (0.120) 0.010 (0.046) 0.034 (0.124) 500

1.7.2 Simulation 2

In this study, we designed a set of simulation to evaluate the impact of correlation

among covariates. The data generating mechanism is as follows:

• New trial: (X1, . . . , X10)⇠MVN(0.5 ·~1,⌃),

• Old trial: (X1, . . . , X10)⇠MVN(�0.5 ·~1,⌃),

where ~1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T , ⌃ = (�i,j), and �ij = 0.5 · Ii 6=j + Ii=j.

Once X was obtained, outcome Y was simulated from same probit model for both

trials:

P (Y DO = 1|X, T ) = P (Y DN = 1|X, T ) = �(�2 +X� + 0.5 · I{T=t}),

where � = (1,�0.5, 0.5, 0, 0, 0, 0, 0, 0, 0)T .

Similar to the previous study, 1000 independent data sets were simulated for

sample size n = 100, 200, 300, and 500, respectively. Again, all methods were applied

to these simulated data sets. In MAICN , the covariance matrix is estimated by

assuming that the two populations share the same correlation structure. And, BM and
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BMIC methods with covariance estimation are referred to as BM-COV and BMIC-

COV, respectively.

We found that MAIC has a lower coverage when sample size is small. After inte-

grating covariance estimation, BM and BMIC outperformed other methods. MAICN

also provided relatively accurate coverage with shorter interval length.

Table 1.3: Data generating models for X are di↵erent for two trials, covariates are
highly correlated. Sample size in each trail varied from 100 to 500.

BASE MAIC MAICB MAICN BM-COV BMIC-COV Sample Size
% coverage [length] 59.3% [0.320] 83.2% [0.527] 98.1% [0.545] 95.1% [0.470] 91.5% [0.323] 92.6% [0.418]

mean (SE) 0.138 (0.084) 0.035 (0.164) 0.068 (0.105) 0.015 (0.104) 0.017 (0.094) 0.007 (0.157) 100
% coverage [length] 13.9% [0.188] 88.4% [0.271] 98.1% [0.369] 95.7% [0.242] 94.3% [0.193] 91.1% [0.227]

mean (SE) 0.145 (0.046) -0.001 (0.079) 0.005 (0.073) 0.002 (0.061) 0.004 (0.050) -0.002 (0.085) 200
% coverage [length] 2.9% [0.145] 92.3% [0.207] 95.3% [0.225] 94.4% [0.192] 93.8% [0.149] 89.7% [0.181]

mean (SE) 0.145 (0.038) 0.004 (0.055) 0.004 (0.054) 0.006 (0.050) 0.003 (0.038) 0.006 (0.073) 300
% coverage [length] 0.0% [0.103] 95.1% [0.140] 93.8% [0.140] 94.9% [0.133] 96.0% [0.106] 89.6% [0.125]

mean (SE) 0.145 (0.025) 0.001 (0.037) 0.001 (0.036) 0.002 (0.034) 0.001 (0.026) 0.001 (0.049) 500

1.7.3 Simulation 3

In this study, we evaluate the influence of the data generating model for Y on

di↵erent methods. From previous simulation study, we found that di↵erent methods

performance significantly di↵erent only when sample size is relative small. Therefore,

in this section, we only focus on the cases where sample size n = 100.

Here, we still simulated 10 continuous covariates (X1, . . . , X10) from the following

distribution:

• New Trial: X1, . . . , X10
i.i.d.⇠ N(0.5, 1),

• Old Trial: X1, . . . , X10
i.i.d.⇠ N(�0.5, 1).
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The link function between X and Y , however, is specified in di↵erent ways as showed

in the table below:

Table 1.4: Model Specification for Y

E↵ective Covariates P (Y DO = 1|X, T ) = P (Y DN = 1|X, T ) �
X1 logistic(�2 + 0.5 · I{T=t} +X�) (1,0,0,0,0,0,0,0,0,0)
X1, X2, X3 logistic(�2 + 0.5 · I{T=t} +X�) (1,-0.5,0.5,0,0,0,0,0,0,0)
X1, X2, X3, X4 ·X5 logistic(�2 + 0.5 · I{T=t} +X� + 0.5X3 ·X4) (1,-0.5,0.5,0,0,0,0,0,0,0)
X1, . . . , X10 logistic(�2 + 0.5 · I{T=t} +X�) (-.1,-.15,-.25,.2,.1,0.2,0.25,0.35,0.45,-.05)

After changing the generating model of Y from probit link to logistic link, BM

method performances worse as showed in Table 1.5. Furthermore, BM method is

more sensitive to the interaction term in the logistic model for Y than the other

methods, as no specific model of Y is assumed by the other methods.

We can also see that MAIC had a comparatively low performance in terms of

coverage and average length of CI. In most cases, incorporating bootstrap procedure

brings benefit of more accurate estimation by bring back the uncertain of the weight

estimation and sample variance. However, sometimes, when MAIC result was not

stable, (say the truth is on the boundary) due to solving high dimensional non-linear

equations, perturbation of MAIC may bring the prediction farther from the truth.

Table 1.5 also shows that incorporating variable selection can indeed reduce the

estimation variance, especially when few covariates were associated with Y . For

example, in the case of only 1 or 3 covariates were associated with Y , the BMIC

method with variable selection (called BMIC-V) provides a shorter CI with a higher

coverage.
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Table 1.5: Data generating models for X are di↵erent for both trials, number of
influential variables varied from 1 to 10.

BASE MAIC MAICB MAICN BM BMIC BMIC-V E↵ective Covariates
% coverage [length] 52.0% [0.316] 85.3% [0.557] 91.3% [0.510] 92.9% [0.697] 84.7% [0.468] 88.8% [0.617] 96.6% [0.664]

mean (SE) 0.153 (0.081) 0.100 (0.171) 0.115 (0.113) 0.048 (0.182) 0.063 (0.164) 0.041 (0.184) 0.050 (0.137) X1

% coverage [length] 58.0% [0.323] 88.8% [0.588] 93.6% [0.518] 93.4% [0.728] 85.3% [0.474] 90.3% [0.647] 96.6% [0.684]
mean (SE) 0.144 (0.081) 0.098 (0.159) 0.109 (0.107) 0.049 (0.184) 0.058 (0.159) 0.043 (0.187) 0.046 (0.145) X1, X2, X3

% coverage [length] 66.4% [0.343] 87.9% [0.616] 95.1% [0.544] 90.5% [0.758] 78.8% [0.445] 87.4% [0.678] 95.7% [0.714]
mean (SE) 0.139 (0.086) 0.067 (0.174) 0.083 (0.122) 0.007 (0.198) -0.042 (0.150) 0.002 (0.201) 0.015 (0.159) X1, X2, X3, X4 ·X5

% coverage [length] 16.2% [0.303] 88.1% [0.532] 80.3% [0.487] 94.0% [0.642] 84.6% [0.367] 90.0% [0.560] 97.3% [0.636]
mean (SE) 0.227 (0.074) 0.135 (0.155) 0.161 (0.101) 0.072 (0.163) 0.044 (0.124) 0.060 (0.165) 0.089 (0.143) X1, . . . , X10

1.7.4 Simulation 4

In order to test the robustness of the normal assumption, we generated covariates

X from distributions other than normal in this study. To be concrete, we simulated

10 continuous covariates (X1, . . . , X10) from relocated t-distributions as follows:

• Scenario 1A:

– New Trial: X1, . . . , X10
i.i.d.⇠ t4 � 0.5

– Old Trial: X1, . . . , X10
i.i.d.⇠ t4 � 0.5

• Scenario 1B:

– New Trial: X1, . . . , X10
i.i.d.⇠ t4 � 0.5

– Old Trial: X1, . . . , X10
i.i.d.⇠ t4 + 0.5

The logistic regression model below was used to simulate outcome Y given X:

P (Y DO = 1|X, T ) = P (Y DN = 1|X, T ) = logistic(X� + 0.5 · I{T=t}),

where � = (2,�1, 1, 0, 0, 0, 0, 0, 0, 0)T .
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Table 1.6: Scenario 4A, data generating models for X are the same for both trials,
sample size for each trial varied from 100 to 500.

BASE MAIC MAICB MAICN BM BMIC Sample Size
% coverage [length] 95.9% [0.376] 94.9% [0.496] 99.7% [0.626] 98.5% [0.714] 95.7% [0.330] 98.1% [0.703]

mean (SE) 0.003 (0.095) 0.004 (0.120) 0.005 (0.108) 0.006 (0.136) 0.009 (0.080) 0.005 (0.146) 100
% coverage [length] 95.1% [0.270] 96.1% [0.304] 97.5% [0.327] 98.3% [0.596] 97.3% [0.246] 98.2% [0.575]

mean (SE) 0.002 (0.070) 0.003 (0.073) 0.004 (0.071) -0.001 (0.112) 0.007 (0.055) -0.002 (0.127) 200
% coverage [length] 94.4% [0.222] 96.4% [0.240] 97.0% [0.247] 98.8% [0.548] 96.8% [0.205] 98.1% [0.518]

mean (SE) 0.004 (0.058) 0.004 (0.061) 0.004 (0.058) 0.009 (0.111) 0.010 (0.046) 0.009 (0.126) 300
% coverage [length] 94.0% [0.172] 97.8% [0.181] 97.4% [0.183] 98.8% [0.509] 97.3% [0.162] 98.2% [0.466]

mean (SE) -0.001 (0.045) 0.000 (0.041) 0.000 (0.041) 0.003 (0.101) 0.006 (0.035) 0.001 (0.117) 500

Table 1.7: Scenario 4B, data generating models for X are di↵erent for both trials,
sample size for each trial varied from 100-500 .

BASE MAIC MAICB MAICN BM BMIC Sample Size
% coverage [length] 34.7% [0.367] 84.0% [0.731] 87.6% [0.619] 97.3% [0.903] 82.7% [0.387] 95.3% [0.834]

mean (SE) -0.226 (0.092) -0.136 (0.196) -0.163 (0.125) -0.115 (0.195) -0.036 (0.139) -0.107 (0.206) 100
% coverage [length] 10.9% [0.263] 83.8% [0.701] 94.0% [0.605] 96.4% [0.780] 93.9% [0.321] 94.2% [0.724]

mean (SE) -0.220 (0.068) -0.083 (0.201) -0.109 (0.128) -0.089 (0.183) -0.018 (0.086) -0.087 (0.197) 200
% coverage [length] 2.6% [0.216] 84.0% [0.700] 95.0% [0.611] 96.0% [0.749] 91.4% [0.273] 94.5% [0.698]

mean (SE) -0.221 (0.057) -0.077 (0.200) -0.097 (0.125) -0.097 (0.171) -0.026 (0.077) -0.094 (0.186) 300
% coverage [length] 0.0% [0.168] 82.7% [0.676] 97.2% [0.609] 97.1% [0.715] 95.2% [0.216] 94.6% [0.656]

mean (SE) -0.220 (0.042) -0.049 (0.203) -0.063 (0.123) -0.080 (0.165) -0.016 (0.052) -0.080 (0.180) 500

We followed exactly the same simulation and data analysis strategies. The results

are summarized in Table 1.6 and Table 1.7, from which we can see that even if

the underlining distribution is not perfect normal, the newly proposed methods still

consistently outperforms MAIC.

1.8 Real-Like Data Example

In this section, we will show the application of the above methods in a pseudo

real data. The pseudo real data were generated by perturbing a real data set without

changing its main structure. The real dataset contains data from two trials, one for

treatment A, one for treatment B. For treatment A, we have the individual level data
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(95 patients for treatment, 108 patients for control/placebo); for treatment B, we only

have the aggregated data from the literature (96 patients for treatment, 112 patients

for control/placebo). There are 4 continuous variables (X1, X2, X3, X4) including age,

BMI, etc., and 7 binary variables (X5, . . . , X11) including gender, race indicator and

so on in both trials.

Figure 1.2 shows histograms of the four continuous variables, from which it is

easy to tell the normal assumption is reasonable for the third and forth variable, but

not for the first two variables. We did a log transformation for X1 and X2. The

histograms of the transformed data are showed in Figure 1.3, which indicates that

the normal assumption becomes reasonable after the transformation. Therefore, we

will assume that X1 and X2 follow log-normal distribution, X3 and X4 follow normal

distribution, and all other covariates follow bernoulli distribution.

In order to incorporate the correlation structure among covariates into analysis,

we assume that under the log scale, the two population distribution share same cor-

relation structure, even though the variances of covariates may be di↵erent.

We applied MAIC, MAICB and MAICN to estimate the e�cacy di↵erence for the

perturbed real data. And, the bootstrap procedure was conducted on the log scale

with consideration of correlation structure. As a sensitivity analysis of the covariance

structure here, the estimation under independent assumption is also reported in the

first column of Table 1.8. From Table 1.8, we can see that all methods provide

consistent results, i.e., treatment A is significantly better than treatment B after

matching. And, because the correlation among covariates are small in this case, we

get similar results with or without considering the covariance structure.
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Figure 1.2: Histogram of continuous variables

1.9 Discussion

In this Chapter we systematically studied the problem of indirect comparison.

The new proposed methods showed advantage over MAIC in terms of higher cover-

age rate and shorter length, especially in the case of sample size was smaller and two

trial distributions were di↵erent which indicated matching adjusted meant was nec-

essary. Additionally, the new proposed methods can incorporate covariance structure

and variable selection scheme which could increase the precision of the estimation.
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Figure 1.3: Histogram of continuous variables after transformation

Table 1.8: E�cacy di↵erence of treatment A versus treatment B.

Independent Correlated
Mean 95% CI Mean 95% CI

MAIC 0.170 (0.023, 0.317) - -
MAICB 0.177 (0.041, 0.309) 0.180 (0.038, 0.312)
MAICN 0.183 (0.016, 0.323) 0.178 (0.024, 0.319)

The simulation study also showed advantage for symmetric X even if the normal

assumption was not perfect satisfied. In the real life, if the distribution is not sym-

metric, such as log normal, MAICN can still handle the problem based on the moment

estimator of the parameters. Or data transformation could be applied before conduct

matching analysis. After transformation, the covariance structure can still be applied

by assuming same correlation structure across trials.
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Chapter 2

Bayesian Aggregation of

Ordered-Based Rank Data

2.1 Introduction

Rank aggregation, whose goal is to generate a “better” aggregated ranking func-

tion (referred to as aggregated ranker) from multiple ranking functions (referred to as

base rankers) of a group of entities, is encountered in many disciplines. The earliest

e↵orts on rank aggregation can be traced back to studies on social choice theory and

political elections in the eighteenth century (Borda, 1781). Since the middle 1990s,

rank aggregation has drawn a lot of attentions with the rise of internet and web

search engines. Score-based rank aggregation methods for meta-search (Shaw and

Fox, 1994; Manmatha et al, 2001; Montague and Aslam, 2001; Manmatha and Sever,

2002), document analysis (Hull et al., 1996; Vogt and Cottrel, 1999), and similarity

search in database (Fagin et al., 2001), which take score information from individual
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base rankers as input to generate an aggregated ranker, form the first wave of modern

rank aggregation studies.

However, considering that usually only order information is available in meta-

search, order-based methods, which need only the order information from base rankers,

became popular quickly. The first generation of order-based methods construct the

aggregated ranking function based on simple statistics of the ranked lists from base

rankers. For example, Van Erp and Schomaker (2000), and Aslam and Montague

(2001) proposed to use a democratic voting procedure called Borda count (i.e., the

average rank across all base rankers) to generate the aggregated rank; while Fa-

gin, Kumar and Sivakumar (2003b) suggested the use of median rank. To strive

for better performance, more complicated methods were proposed later, including

Markov-chain-based methods (Dwork et al, 2001), fuzzy-logic-based method (Ahmad

and Beg, 2002), genetic algorithm (Beg, 2004), and graph-based method (Lam and

Leung, 2004). In addition, as an important special case, the problem of combining

the top-d lists has been given extra attention in Dwork et al. (2001) and Fagin et al.

(2003).

Randa and Straccia (2003) compared the performance of score-based methods

and rank-based methods in the context of meta-search, and found that Markov-

chain-based methods do achieve results comparable to score-based methods, and

significantly outperform methods based on Borda count. The success of Markov-

chain-based methods quickly made Dwork et al. (2001) a classic. These methods

were later applied to bioinformatics problems, and a number of their variants and ex-

tensions were proposed to fit more complicated situations (Sese and Morishita, 2001;
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DeConde et al., 2006; Lin and Ding, 2009). Meanwhile, Freund et al. (2003) proposed

to achieve preference aggregation via boosting with the guidance of “feedback” that

provides information about which pair of entities should be ranked above or below

one another.

In practice, the problem of rank aggregation can become even more challenging

because of the diverse quality of the base rankers. For example, in a meta-search

study, some searching engines are more powerful than others; or, in a meta-analytic

bioinformatic study, some labs collect and/or analyze data in a more e�cient way

than other labs do. In some extreme cases, some base rankers may be noninformative

or even misleading. For example, “paid placement” and “paid inclusion” are very

popular among search engines. These low quality base rankers, referred to as spam

rankers, may disturb the rank aggregation procedure significantly if they are not

treated properly. However, little attention has been given to this point. Giving

di↵erent base rankers di↵erent weights, as mentioned in Aslam and Montague (2001)

and Lin and Ding (2009), is the only method available that takes the diverse quality

of base rankers into consideration. But, a clear disadvantage of this method is that

there are no systematic and principled strategies for designing a proper weighting

scheme for a practical problem. Recently, supervised rank aggregation (Liu et al.,

2007) has been proposed to specify weights to base rankers, but it is achieved at the

price of a set of training data, which may often be unavailable.

In this Chapter, we focus on the order-based rank aggregation problem and pro-

pose a novel Bayesian method to tackle it. By reformulating the original rank ag-

gregation problem into a Bayesian model selection problem and attaching a quality
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parameter to each base ranker, we can estimate the quality of base rankers jointly

with rank aggregation. Compared to existing methods in the literature, our method is

superior in the sense of having an explicit model, being adaptive to the heterogeneity

of base rankers, and achieving a better statistical e�ciency. The remainder of the

article is organized as follows. In Section 2.2, we formally define the rank aggregation

problem, and briefly review the existing methods. In Section 2.3, we propose our

Bayesian approach for rank aggregation. Section 2.4 provides tools for model diagno-

sis. The performance of our method is evaluated via simulations in Section 2.5. Real

data applications are given in Section 2.6 to demonstrate the application potentials

of the new method in practice. We conclude our study with discussions in Section

2.7.

2.2 An Overview of Existing Methods

Let U = {1, 2, · · · , n} be the “universe” (set) of n entities of interest. An ordered

list (or simply, a list) ⌧ with respect to U is a ranking of entities in a subset S ✓ U ,

i.e., ⌧ = [x1 � x2 � · · · � xd], where xt 2 S, “i � j” means that i is ranked higher

than j. Let ⌧(i) be the position or rank of entity i 2 ⌧ (a highly ranked element has

a low-numbered position in the list).

We call ⌧ a full list if it contains all the elements in U ; and a partial list otherwise.

An important special case of partial lists is the top-d lists. For a list ⌧ and a subset

T of the universe U , the projection of ⌧ with respect to T (denoted as ⌧|T ) will be

a new list that contains only entities from T . Note that if ⌧ happens to contain all

elements in T , then ⌧|T is a full list with respect to T . In rank aggregation study, our
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goal is to generate an aggregated list ↵ from a group of full/partial lists {⌧1, · · · , ⌧m}.

2.2.1 Methods based on summary statistics

Many rank aggregation methods are based on simple summary statistics of the m

given base rankers. Let {⌧k(i)}1km be the ranks of entity i in the base rankers, to

determine the rank of entity i in the aggregated list, the arithmetic mean, geometric

mean, or median of {⌧k(i)}1km are often used. In this paper we refer to the above

three methods as AriM, GeoM and MedR, respectively. These naive methods are

straightforward, but easy to be disturbed by spam rankers.

2.2.2 Optimization-based methods and Markov-chain-based

methods

Dwork et al. (2001) propose to report the list that minimizes an objective function

as the aggregated rank list, i.e., let

↵ = arg min
�2AU

d(�; ⌧1, · · · , ⌧m),

where AU is the space of all allowable rankings of entities in U , and the objective

function d can be either the Spearman’s footrule distance (Diaconis and Graham,

1977)

dF (�; ⌧1, · · · , ⌧m) ,
1

m

m
X

k=1

F (�|⌧k , ⌧k),
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where F (�|⌧k , ⌧k) =
P

i2⌧k |�|⌧k(i)� ⌧k(i)|, or the Kendall tau distance (Diaconis, 1988)

dK(�; ⌧1, · · · , ⌧m) ,
1

m

m
X

k=1

K(�|⌧k , ⌧k),

where K(�|⌧k , ⌧k) is the bubble sort distance between �|⌧k and ⌧k. The aggregation

obtained by optimizing the Kendall distance is called Kemeny optimal aggregation,

and the one obtained by optimizing the Spearman’s footrule distance is called footrule

optimal aggregation. In fact, the idea of generating the aggregated ranking by op-

timizing the Kendall distance can go back to the Mallows model in 1950s (Mallows

1957), which is generalized by Fligner and Verducci (1986) and later Meila et al.

(2007).

Considering that it is computationally expensive to solve the above optimization

problems (the Kemeny optimal aggregation is NP-Hard, and the footrule optimal

aggregation needs an expensive polynomial algorithm), Dwork et al. (2001) also

propose a few Markov-chain-based methods as fast alternatives to provide suboptimal

solutions. The basic idea behind these methods is to construct a transition probability

matrix P = {pij}i,j2U based on {⌧1, · · · , ⌧m}, where pij is the transition probability

from entity i to entity j, and use the stationary distribution of P to generate the

aggregated ranked list, i.e., let

↵ = sort(i 2 U by ⇡i #), where ⇡ = (⇡1, · · · , ⇡n) satisfies ⇡P = ⇡,

and the symbol # means that the entities are sorted in descending order. In practice, a

few Markov-chain-based methods have been developed by constructing P in di↵erent
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ways as proposed by Dwork et al. (2001) and Deconde et al. (2006):

MC1: If the current state is entity i, then the next state is chosen uniformly from

the set of all entities that are ranked higher than (or equal to) i by some base

rankers that rank i.

MC2: If the current state is entity i, then the next state is chosen by first picking a

base ranker ⌧ uniformly from all base rankers containing entity i, then picking

a entity j uniformly from the set {j 2 ⌧ : ⌧(j)  ⌧(i)}.

MC3: If the current state is entity i, then the next state is chosen as follows. First

pick base ranker ⌧ uniformly from all base rankers containing entity i, then

uniformly pick an entity j that is ranked by ⌧ . If ⌧(j)  ⌧(i), then go to j;

otherwise, stay in i.

MC4: If the current state is entity i, then the next state is chosen as follows. First,

pick an entity j uniformly from the union of all entities ranked by the base

rankers. If ⌧(j)  ⌧(i) for a majority of the base rankers that rank both i and

j, then go to j; otherwise, stay in i.

MCT : MCT is identical to MC4, except that the move from i to j at the last step

is not a deterministic procedure based on the majority vote, but a stochastic

procedure in which the probability to accept j is proportional to the percentage

of base rankers that rank j higher than i among all base rankers that rank both

i and j.
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2.2.3 Rank aggregation of weighted lists

Considering that the base rankers of interest may not be equally knowledgeable

or reliable in practice, methods based on weighted lists are also proposed. In these

methods, each base ranker ⌧k is assigned a weight wk (0  wk  1 and
P

1km wk =

1), and the base rankers with larger weights play more important roles in generating

the aggregated list. Aslam and Montague (2001) propose to generate the aggregated

list based on the weighted average of the m lists (known as Borda Fuse), i.e., let

↵ = sort
�

i 2 U by
Pm

k=1 wk⌧k(i) #
�

. Lin and Ding (2009) extend the objective

function of Dework et al. (2001) to a weighted fashion, and generated the aggregated

list as follows:

↵ = arg min
�2AU

d(�; ⌧1, · · · , ⌧m;w) = arg min
↵2AU

m
X

k=1

wkd(↵|⌧k , ⌧k),

where d(↵|⌧k , ⌧k) = F (↵|⌧k , ⌧k) or K(↵|⌧k , ⌧k). The authors also propose to use Cross

Entropy Monte Carlo (CEMC) to solve the above optimization problem. (The op-

timization based on Spearman’s footrule distance is denoted as CEMCF , and the

optimization based on Kendall distance is denoted as CEMCK .) CEMC is an itera-

tive algorithm to solve di�cult optimization problems, details of the algorithm can

be found in Rubinstein and Kroese (2004).

Although assigning weights to base rankers is a sensible way of handling the quality

di↵erence among them, it can be quite di�cult to design a proper weight specification

scheme in practice, especially when little or no prior knowledge on base rankers is

available. The supervised rank aggregation (SRA) of Liu et al. (2007) solves this
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problem at the price of extra training data. In SRA, the true relative ranks of some

entities are provided as training data, and the weights {wk}1km, which are treated

as parameters instead of pre-fixed constants in these models, are optimized with the

help of the training data as well as the aggregated list �. A problem of SRA is that

no training data are available in many applications.

2.2.4 Rank aggregation via boosting

Another line of using training data to achieve rank aggregation in the literature is

the RankBoost method of Freund et al. (2003). Similar to SRA, RankBoost assumes

that besides the rank lists {⌧1, · · · , ⌧m}, we also have a feedback function of the form

� : U ⇥ U ! R, where �(i, j) > 0 means that entity i should be ranked above

entity j, �(i, j) < 0 means the opposite, and a value of zero indicates no preference

between i and j. Di↵erent from SRA, RankBoost does not tend to assign weights

to di↵erent rankings themselves. Instead, RankBoost follows the boosting idea to

generate a series of weak rankings from {⌧1, · · · , ⌧m}, and construct the final ranking

by a weighted average of these weak rankings.

2.3 A Bayesian Model for Rank Aggregation

2.3.1 Assumptions and the model

Here we propose a Bayesian approach, called Bayesian Aggregation of Rank Data

(BARD), to tackle the challenging problem of aggregating rankings at di↵erent quality

levels. This section focuses on the rank aggregation of full lists; a more complicated
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scenario where partial lists and training data are also involved will be discussed in the

next section. Our BARD method reformulates the ranking problem as follows. We

assume that the set U is composed of two non-overlapping subsets: set UR representing

relevant entities (with true signals) and set UB representing noisy background entities.

Task of each base ranker is to distinguish the relevant entities from the background

ones. By integrating the rankings from the base rankers, we try to infer the set of

relevant entities.

Let Ii be the group indicator of entity i 2 U , where Ii = 1 if i 2 UR, and Ii = 0 if

i 2 UB. We make the following assumptions for base rankers ⌧1, · · · , ⌧m:

• Given the group indicators of entities I = {Ii}i2U , the rankers ⌧1, · · · , ⌧m are

conditionally independent;

• In each base ranker ⌧k, the relative ranks of background entities ⌧ 0k , ⌧k|UB
is

purely random (i.e., uniformly distributed) in the space of all permutations;

• The relative rank of an entity i 2 UR among the background entities ⌧ 1|0k (i) ,

⌧k|{i}[UB
(i) follows a power law distribution, i.e. P (⌧ 1|0k (i) = t) / t�rk , where a

larger �k (�k > 0) means that ranker ⌧k can better distinguish relevant entities

from the background ones1;

• Given ⌧
1|0
k , {⌧ 1|0k (i)}i2UR

, the relative ranks of background entities ⌧ 1k , ⌧k|UR

is purely random in the space of all allowable values.

Because, the triplet (⌧ 0k , ⌧
1|0
k , ⌧ 1k ) gives an equivalent representation of the infor-

mation in a full list ⌧k when I is given (the equivalency is illustrated in Figure 2.1

1
Note that by requiring that �k > 0, we assume that each base ranker ⌧k is capable of distin-

guishing the relevant entities from the background ones more or less.
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U I
E1 1
E2 1
E3 1
E4 0
E5 0
E6 0
E7 0
E8 0
E9 0
E10 0

⌧k
2
3
5
1
4
6
7
8
9
10

()

⌧ 0k ⌧
1|0
k ⌧ 1k

- 2 1
- 2 2
- 3 3
1 - -
2 - -
3 - -
4 - -
5 - -
6 - -
7 - -

Figure 2.1: An equivalent representation of a full rank list ⌧k via the triplet
(⌧ 0k , ⌧

1|0
k , ⌧ 1k ).

with a toy example), the above assumptions lead to the following likelihood function

immediately:

P (⌧1, · · · , ⌧m | I, �) =
m
Y

k=1

P (⌧k | I, �k)

=
m
Y

k=1

P (⌧ 0k , ⌧
1|0
k , ⌧ 1k | I, �k)

=
m
Y

k=1

P (⌧ 0k | I)⇥ P (⌧ 1|0k | I, �k)⇥ P (⌧ 1k | ⌧ 1|0k ; I), (2.1)

where P (⌧ 0k | I) and P (⌧ 1k | ⌧ 1|0k ; I) are uniform distributions on the corresponding

spaces of allowable configurations, and

P (⌧ 1|0k | I, �k) =
Y

i2UR

P (⌧ 1|0k (i) | I, �k) where P (⌧ 1|0k (i) = t | I, �k) / t��k . (2.2)

In practice, however, both I and � are unknown, and it is our main goal to estimate

them from the observed data {⌧1, · · · , ⌧m}. Letting ⇡(I, �) be the prior distribution,
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the Bayes’ rule leads to the following posterior distribution of (I, �):

P (I, � | ⌧1, · · · , ⌧m) / P (⌧1, · · · , ⌧m | I, �)⇡(I, �).

Since the marginal probability

⇢i , P (Ii = 1 | ⌧1, · · · , ⌧m) (2.3)

is a good measurement of the importance of entity i, we generate the aggregated list

as

↵ = sort(i 2 U by ⇢i #). (2.4)

On the other hand, the posterior mean

�k ,
Z

�kP (�k | ⌧1, · · · , ⌧m)d�k (2.5)

gives the estimation of the quality of base ranker ⌧k.

The identifiability of the BARD model comes from the following intuition. For a

fixed group of n entities, if we have a larger number of independent rankings gener-

ated from the posited model, we will expect a clear gap between the average rank of

a relevant entity (across all rankings) and the average rank of a background entity.

Thus, it will be straightforward to distinguish the relevant entities from the back-

ground entities, which will in turn help us to determine the quality of each ranking,

even though we do not really need this quality information to discover relevant en-

tities in the first place. In a practical problem where m is small, having the quality
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information of di↵erent rankings, however, becomes more useful for discovering rele-

vant entities. Therefore, estimating the group indicators of entities I and estimating

the quality of rankings � can in fact help each other.

2.3.2 Motivations and intuitions behind the model

Compared with the existing methods, BARD is unique in the following features:

(1) partitioning the entities into two groups UR and UB, (2) modeling the relative

rank of a relevant entity among background entities ⌧
1|0
k (i) (i.e., the between-group

rankings) with a power-law distribution, and (3) modeling the within-group rankings

⌧ 1k and ⌧ 0k with the uniform distribution. In this subsection, we explain in details why

we introduce these features and how these features help us better resolve the rank

aggregation problem.

First, the partition of U into UR and UB is directly motivated by the observation

that behind a ranking problem there is often a partitioning problem. For example, in

the page-ranking problem, conceptually there is a binary answer for each web page

whether it is truly relevant to a given search task (e.g., a group of key words) or not.

By ranking the web pages, what we really want to achieve is to better distinguish

the truly relevant web pages from the other web pages. Every year, each grant

committee of NSF or NIH ranks hundreds of grant proposals; but, at the end of

the decision procedure, some top proposals are funded and the others are dismissed

due to the limited resources. Again, ranking is just an intermedia step of the whole

decision procedure whose final goal is to partition the grant proposals into funded

and unfunded groups.
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Second, the power-law model ⌧ 1|0k (i) is a convenient approximation reasonably

reflective of reality. In a real problem, the distribution of ⌧ 1|0k (i) depends on many

factors and can take di↵erent forms in di↵erent problems. But we need to find a

computationally a↵ordable model for ⌧ 1|0k (i). We reason that it needs to satisfy the

following simple requirement: it should give higher probability to a better rank for a

relevant item and be no worse than assigning it a random (uniform) rank. That is, the

probability function should be a monotone decreasing function. Two obvious choices

are exponential or polynomial, of which polynomial is more robust and therefore

chosen here. A large range of numerical investigations also support the adoption of

the power law distribution. For example, we generate each ranker ⌧k as the order of

{Xk,1, · · · , Xk,n}, i.e.,

⌧k = sort(i 2 U by Xk,i #),

where Xk,i is generated from two di↵erent distributions Fk,0 and Fk,1 via the following

mechanism:

Xk,i ⇠ Fk,0 · I(i 2 UB) + Fk,1 · I(i 2 UR), 8 i 2 U.

Figure 2.2 shows that the linear trend in the log-log plot of t versus h(t) = P (⌧ 1|0k (i) =

t | ⌧ 0k ; I, �k) is quite stable across di↵erent specifications of Fk,0 and Fk,1.

Third, by modeling ⌧ 1k and ⌧ 0k with the uniform distribution, BARD ignores the

detailed information on the internal rankings within subset UR and UB, and only

takes the relative rankings between the two subsets into consideration. In other

words, we choose to ignore all information in the data that is irrelevant to distinguish

the relevant entities from the background ones. This strategy greatly reduces the
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Figure 2.2: Log-log plots of relative rank ⌧
1|0
k (i) = t versus the corresponding prob-

ability h(t) = P (⌧ 1|0k (i) = t | I, �k) under di↵erent scenarios. In each plot, we set
|UB| = 1000, thus the range of t is {1, · · · , 1001}. The values of h(t) are calculated
via numerical integration.

model complexity and computation burden while loss only marginal information in

the data. In some scenarios, we can even argue that the internal rankings within the

background group are just noise, and thus, should be ignored to stabilize the analysis.

2.3.3 Details of the Bayesian computation

Let nI =
Pn

i=1 Ii be the number of relevant entities defined by I. Note that the

relative rank order of all background entities, ⌧ 0k , follows the uniform distribution,

i.e.,

P (⌧ 0k = ⌧) =
1

(n� nI)!
. (2.6)

Recall that, for entity i with Ii = 1 (i.e., relevant entity), ⌧ 1|0k (i) denotes the relative

rank of entity i among all the background entities and takes value in 2 {1, 2, · · · , n�

nI + 1}. According to model (2), we have

P (⌧ 1|0k (i) = ti | I, �k) =
t��k
i

C(�k, nI)
,
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and

P (⌧ 1|0k | I, �k) =
Y

i2UR

P (⌧ 1|0k (i) | I, �k) (2.7)

where the normalizing constant C(�k, nI) =
Pn�nI+1

t=1 t��k .

Let AUR
be the space of all allowable rankings of entities in UR. Let AUR

(⌧ 1|0k ) be

the configurations of ⌧ 1k that are compatible with a given ⌧
1|0
k . AUR

(⌧ 1|0k ) is a subset

of AUR
due to the constraints introduced by ⌧

1|0
k . For example, given ⌧

1|0
k = (2, 2, 3)

as shown in Figure 2.1, ⌧ 1k will have only two possible configurations: (1, 2, 3) or

(2, 1, 3), since only the relative position of the first two entities E1 and E2 is not fixed

given ⌧
1|0
k . In general, we have the following assignment based on the “purely random

assumption”:

P (⌧ 1k = ⌧ | ⌧ 1|0k ; I) =
1

Qn�nI+1
t=1 n

1|0
⌧k,t!

· I
�

⌧ 2 AUR
(⌧ 1|0k )

�

, (2.8)

where n
1|0
⌧k,t =

P

i2UR
I(⌧ 1|0k (i) = t).

Putting (2.6), (2.7) and (2.8) together, we have

P (⌧k | I, �k) = P (⌧ 0k | I)⇥ P (⌧ 1|0k | I, �k)⇥ P (⌧ 1k | ⌧ 1|0k ; I)

=
n

(n� nI)!⇥ A⌧k,I ⇥
⇣

C(�k, nI)
⌘nI

⇥
⇣

B⌧k,I

⌘�ko�1

,

where

A⌧k,I ,
n�nI+1
Y

t=1

(n1|0
⌧k,t!) and B⌧k,I ,

Y

i2UR

⌧
1|0
k (i).
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Thus, the joint likelihood of {⌧1, · · · , ⌧m} is

P (⌧1, · · · , ⌧m | I, �) =
h

(n� nI)!
i�m

⇥
m
Y

k=1

n

A⌧k,I ⇥
⇣

C(�k, nI)
⌘nI

⇥
⇣

B⌧k,I

⌘�ko�1

.

(2.9)

We give I an informative prior

⇡(I) / exp� (nI�n·p)2

2�2 ,

where p is the hyperparameter representing the expected percentage of relevant enti-

ties in U , and give �2 is a pre-given hyperparameter (whose default value is �2 = 1p
m).

We let {�k}1km have an independent exponential prior, i.e., ⇡(�) =
Q

1km f(�k),

where f(�k) = �e���k , � is the mean of the exponential distribution. In BARD, we

use � = 1 as the default setting, and allow users to specify the value of � based

on their own judgement for a practical problem. We also tested using a uniform

prior in hyper-cube [0, 10]m for �, which resulted in a very similar performance to the

exponential prior.

Given the above prior distributions, we get the joint posterior distribution of (I, �):

P (I, � | ⌧1, · · · , ⌧m) / ⇡(I)⇡(�)P (⌧1, · · · , ⌧m | I, �)

=
⇡(I)

⇥

(n� nI)!
⇤m ·

m
Y

k=1

f(�k)

A⌧k,I ⇥
⇣

C(�k, nI)
⌘nI

⇥
⇣

B⌧k,I

⌘�k ,(2.10)
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which induces the following conditional distributions:

P (�k | ⌧1, · · · , ⌧m; I, �[�k]) = P (�k | ⌧k; I)

/ e���k ⇥
⇣

C(�k, nI)
⌘�nI

⇥
⇣

B⌧k,I

⌘��k
, (2.11)

P (Ii | ⌧1, · · · , ⌧m; I[�i], �) ⇠ Bernoulli
⇣ qi(�)

qi(�) + 1

⌘

, (2.12)

where

qi(�) =
⇡(I[Ii=1])

⇡(I[Ii=0])
·

m
Y

k=1

P (⌧k | I[Ii=1], �k)

P (⌧k | I[Ii=0], �k)
.

These distributions enable us to draw samples from P (I, � | ⌧1, · · · , ⌧m) via Gibbs

sampling. The posterior probabilities, P (Ii | ⌧1, · · · , ⌧m) and P (�k | ⌧1, · · · , ⌧m), can

be obtained from the Monte Carlo samples and used to generate the aggregated rank

list and reliability measures of base rankers. Since the conditional distribution shown

in (2.11) is not a standard distribution, we use the random-walk Metropolis algorithm

to draw samples from it (see Liu (2001) for a comprehensive review).

2.3.4 Extensions to partial lists and supervised rank aggre-

gation

Since a partial list can be viewed as an incomplete version of a full list, the aggre-

gation of partial lists can be treated as a missing data problem and solved via data

augmentation strategies (Tanner and Wong, 1987). To be precise, we let {⌧P1 , · · · , ⌧Pm}

be the m partial lists of interest, and let {⌧ ⇤1 , · · · , ⌧ ⇤m} be their unobserved underlying
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full lists. We are interested in drawing samples from the following target distribution:

P (I, � | ⌧P1 , · · · , ⌧Pm) / ⇡(I)⇡(�)P (⌧P1 , · · · , ⌧Pm | I, �),

which can be achieved via Gibbs sampling based on the following conditional distri-

butions:

P (⌧ ⇤1 , · · · , ⌧ ⇤m | ⌧P1 , · · · , ⌧Pm; I, �) =
m
Y

k=1

P (⌧ ⇤k | ⌧Pk ; I, �k),

P (I, � | ⌧ ⇤1 , · · · , ⌧ ⇤m) / ⇡(I)⇡(�)
m
Y

k=1

P (⌧ ⇤k | I, �k).

Given that the distribution P (I, � | ⌧ ⇤1 , · · · , ⌧ ⇤m) has been analyzed in the previous

section, we only need to focus on P (⌧ ⇤1 , · · · , ⌧ ⇤m | ⌧P1 , · · · , ⌧Pm; I, �), or more concretely,

P (⌧ ⇤k | ⌧Pk ; I, �k) here. Let ⌦k be the set of full lists that are compatible with ⌧Pk , we

have

P (⌧ ⇤k | ⌧Pk ; I, �k) / P (⌧ ⇤k | I, �k) · I(⌧ ⇤k 2 ⌦k).

Again, we can use random walk Metropolis algorithm to draw samples from this

distribution.

BARD can also be applied to the scenario where training data are available. Let

{⌧1, · · · , ⌧m} be the m lists (full or partial) of interest, and i1 4 i2 4 · · · 4 is be the

training information, which gives the true relative rank of s entities {i1, i2, · · · , is}

in U . In BARD, a natural way to make use of the training information is to put

constraints on I with respect to i1 4 i2 4 · · · 4 is, i.e., if Iit = 1, then Iit0 = 1 for

all t0  t. Incorporating the training data into the analysis may help BARD better
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estimate the quality parameters {�k}1km of the m base rankers, and thus, improve

the final results.

2.4 Model Diagnostics and Remedies

2.4.1 Detecting violation of the independence assumption

Although we will show in Section 2.5 that BARD is reasonably robust to the

violation of the “independent rankers” assumption, it is desirable to detect a severe

violation of the assumption and further improve BARD based on this information.

Standard correlation measures such as the Spearman and the Kendall correlations

do not work here because any pair of informative rankings are inherently correlated

since they are supposed to capture the same signal. This type of correlation is not

what we are interested in. Instead, we want to detect pairs of rankings that are

“over-correlated” relative to their quality levels.

Consider all the ranks {⌧1(i), · · · , ⌧m(i)} entity i received from all the rankers. It

forms a natural distribution on the rank space {1, · · · , n}, denoted as Qi. If entity

i has a strong positive/negative signal, a significant proportion of the rankers would

give it a high/low rank, so that Qi skews towards the left/right tail; if entity i belongs

to the background, Qi should be close to be uniform. To capture these key features

of Qi, we fit Qi with a rescaled Beta distribution:

Qi(t) / dBeta

✓

t

n+ 1
;↵i, �i

◆

· I(t 2 {1, 2, · · · , n}),

where dBeta(x;↵, �) is the density of the Beta distribution with parameters (↵, �).
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Assuming that { ⌧1(i)
n+1 , · · · ,

⌧m(i)
n+1 } are i.i.d draws from distribution Beta(↵i, �i), we

denote the estimated parameters as (↵̂i, �̂i), and the fitted distribution as Q(↵̂i, �̂i)

(Q̂i for short).

For any pair of base rankers ⌧j1 and ⌧j2 , without loss of generality, we assume that

⌧j1(i)  ⌧j2(i). Given the fitted Beta distribution Q̂i, we use the quantity below to

measure excessive correlatedness of them at entity i:

V
(i)
j1j2 ,

X

⌧j1 (i)t⌧j2 (i)

Q(t; ↵̂i, �̂i).

Intuitively, V (i)
j1j2 corresponds to the probability that a random sample from Q̂i falls

into the interval [⌧j1(i), ⌧j2(i)]. A smaller V
(i)
j1j2 means a smaller probability that

the two independent rankers agree with each other by chance at entity i, hence a

stronger evidence of non-independence. Note that V
(i)
j1j2 accounts for not only the

distance between ⌧j1(i) and ⌧j2(i), but also their relative probabilities based on Q̂i.

We can estimate the p-value P (i)
j1j2 , P (Vxy < V

(i)
j1j2) using Monte Carlo simulation, and

summarize the overall evidence for the pair of rankers by the coordination coe�cient :

⇣j1j2 , � 1

n

n
X

i=1

logP (i)
j1j2 .

A larger ⇣j1j2 means that rankers ⌧j1 and ⌧j2 are “over-correlated.” Alternatively, we

can use the method of posterior predictive checking (Rubin 1984) to generate the

Bayesian coordination coe�cient, which will be computationally more demanding.

Under the null hypothesis that the two rankers are independent, we have by the

Central Limit Theorem that ⇣j1j2 follows N(1, 1
n) approximately, which can be used to
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set a threshold for ⇣j1j2 to claim that ⌧j1 and ⌧j2 are not independent. The procedure

for discovering correlated rankings can be summarized as follows:

• For each entity i 2 U , fit a rescaled Beta distribution Q̂i for {⌧1(i), · · · , ⌧m(i)};

• For each ranker pair ⌧j1 and ⌧j2 , calculate the coordination coe�cient ⇣j1j2 based

on {Q̂i}i2U ;

• If ⇣j1j2 is larger than a threshold (e.g., significance level 0.05 with Bon↵eroni

correction), we say that ⌧j1 and ⌧j2 belong to a “block” of correlated rankers.

2.4.2 A hierarchical model for the correlated base rankers

Once the underlying correlation structure among the rankers are detected, we

can modify BARD to avoid the negative impact of the correlation. Assume that the

correlated base rankers fall into M blocks {G1, · · · , GM}, where the rankers within a

block are highly correlated while the rankers from di↵erent blocks are conditionally

independent given the entity membership I. Let G0 be all the other conditionally

independent rankers. To simplify the problem, we assume that every base ranker

provides a complete ranking list in this paper. The more general scenario with partial

lists involved can be solved based on a similar principle.

Let j be the representative ranker of group Gj, and let �j > 0 denote the quality

measure of the ranker block Gj. We modify the BARD model into the following
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hierarchical form:

P (j | I, �j) = P (0
j | I)P (1|0

j | I, �j)P (1
j | I,

1|0
j ),

P (⌧k | j, �j) / exp

⇢

� �j

|Gj|
· d(⌧k,j)

�

.

where �j > 0 measures the average magnitude of correlation between j and base

rankers in group Gj, |Gj| is the number of rankers in group Gj, and d(⌧k,j) is the

Spearman’s footrule distance or Kendall tau distance between ⌧k and j. The joint

likelihood can be weritten as

P (1, · · · ,M ; ⌧1, · · · , ⌧m | I, �j) =
Y

k2G0

P (⌧k | I, �k)·
M
Y

j=1

h

P (j | I, �j)
Y

k2Gj

P (⌧k | j)
i

.

In words, the model assumes that the base rankers within each block Gj are condi-

tionally independent of each other given the common ranker j.

Given the prior distribution

⇡(I, �, �) = ⇡(I)
M
Y

j=1

⇡(�j)⇡(�j),

the joint posterior distribution is

P (I, �, � | ⌧1, · · · , ⌧m) / ⇡(I, �, �)P (⌧1, · · · , ⌧M | I, �, �).

An MCMC sampler for simulating from this distribution can be implemented based

95



on the following conditional distributions:

P (j | I, �j, �j, {⌧k}k2Gj
) / P (j | I, �j)

Y

k2Gj

P (⌧k | j)

= P (0
j | I)P (1|0

j | I, �j)P (1
j | I,

1|0
j ) exp{� �j

mj

X

k2Gj

d(⌧k,j)},

P (�j | j, {⌧k}k2Gj
) / ⇡(�j) exp{�

�j

mj

X

k2Gj

d(⌧k,j)}; and,

P (I, � | 1, · · · ,M) / ⇡(I)⇡(�)
M
Y

j=1

P (j | I, �).

A random walk Metropolis algorithm can be used to sample from P (j | I, �j, �j, {⌧k}k2Gj
).

With a non-informative prior for �j, P (�j | j, {⌧k}k2Gj
) becomes an exponential dis-

tribution. Sampling from distribution P (I, � | 1, · · · ,M) can be achieved by the

technique developed in Section 2.3. In this paper, we use BARDHM to denote this

modification of BARD with hierarchical model.

2.5 Simulation Studies

2.5.1 Simulation under the BARD model

Let U = {1, · · · , n}, of which the first 10% are the relevant entities (i.e., UR =

{1, · · · , [n/10]}). We generate the base rankers {⌧k}1km via the following scheme:

⌧k = sort(i 2 U by Xk,i #) where Xk,i ⇠ N(0, 1) · I(i 2 UB) +N(µk, 1) · I(i 2 UR).
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We examine two scenarios: (A) µk = µ for all k, and (B) µk = µ · I(k  m
2 ). In

scenario A, the base rankers are equally reliable; in scenario B, however, only the first

50% base rankers are informative. The parameter µ controls the signal strength of

the data set (a larger µ means that we have more information to distinguish relevant

entities from irrelevant ones). We generate both full lists and top-d lists (d = 0.2 · n)

for each scenario and test four cases: full lists from scenario A (denoted as AF ), top-d

lists from scenario A (denoted as AP ), full lists from scenario B (denoted as BF ), and

top-20 lists from scenario B (denoted as BP ).

We first evaluate the impact of signal strength � on the performance of BARD.

Fixing n = 100 and m = 10, we tried four di↵erent values of µ (µ = 0.5, 1.0, 1.5

and 2.0) for each of the above four cases. Under each configuration, 1, 000 inde-

pendent datasets were simulated. To each data set, we applied three naive methods

(AriM, GeoM, MedR), four Markov-chain-based methods (MC1, MC2, MC3, MC4),

two optimization-based methods (CEMCF and CEMCK), and BARD with � = 1

under three di↵erent choices of the hyperparameter p (p1 = 0.05, p2 = 0.10, and

p3 = 0.15), respectively. Additionally, we include BARD with the constraint of equal

quality, i.e., �1 = · · · = �m (denoted by BARDC), in the comparison. For each

method, its average coverage rate across the 100 parallel experiments under di↵erent

configurations is calculated to evaluate the performance. (The coverage rate of an

aggregated list is defined as the percentage of true relevant entities covered by the

top-10 entities.)

The results are summarized into Table 2.1, from which we can see that: (1) when

the quality of base rankers is same (i.e., scenario A), BARDC slightly outperforms
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Table 2.1: Average coverage rates of di↵erent rank aggregation methods.

Configuration Naive methods MC-based methods CEMC BARDC BARD
Case m n � AriM GeoM MedR MC1 MC2 MC3 MC4 d = F d = K p1 p2 p3 p1 p2 p3
AF 10 100 0.5 0.48 0.47 0.43 0.11 0.45 0.48 0.28 0.46 0.47 0.46 0.44 0.43 0.41 0.40 0.40
AF 10 100 1.0 0.83 0.82 0.77 0.15 0.79 0.84 0.27 0.78 0.80 0.81 0.80 0.78 0.75 0.74 0.73
AF 10 100 1.5 0.98 0.98 0.94 0.32 0.95 0.98 0.25 0.89 0.90 0.95 0.96 0.96 0.94 0.95 0.94
AF 10 100 2.0 1.00 1.00 1.00 0.71 0.99 1.00 0.25 0.93 0.93 0.98 1.00 0.99 0.98 1.00 0.99
AP 10 100 0.5 0.10 0.13 0.14 0.16 0.15 0.08 0.05 0.38 0.41 0.40 0.41 0.38 0.36 0.37 0.37
AP 10 100 1.0 0.14 0.22 0.22 0.29 0.27 0.18 0.08 0.72 0.75 0.74 0.73 0.72 0.67 0.68 0.69
AP 10 100 1.5 0.25 0.37 0.36 0.55 0.54 0.44 0.20 0.91 0.91 0.92 0.92 0.92 0.89 0.89 0.90
AP 10 100 2.0 0.44 0.58 0.54 0.80 0.80 0.73 0.38 0.96 0.96 0.97 0.99 0.99 0.96 0.98 0.98
BF 10 100 0.5 0.26 0.26 0.24 0.10 0.26 0.26 0.19 0.25 0.25 0.25 0.25 0.24 0.24 0.24 0.24
BF 10 100 1.0 0.45 0.49 0.42 0.11 0.48 0.46 0.26 0.45 0.45 0.47 0.46 0.44 0.51 0.51 0.50
BF 10 100 1.5 0.63 0.70 0.61 0.12 0.70 0.63 0.29 0.63 0.62 0.67 0.65 0.63 0.79 0.79 0.78
BF 10 100 2.0 0.74 0.84 0.74 0.12 0.84 0.75 0.29 0.74 0.73 0.81 0.78 0.74 0.93 0.94 0.93
BP 10 100 0.5 0.11 0.13 0.13 0.12 0.13 0.08 0.06 0.23 0.24 0.24 0.24 0.24 0.22 0.23 0.23
BP 10 100 1.0 0.13 0.17 0.17 0.17 0.17 0.09 0.06 0.43 0.45 0.44 0.43 0.41 0.45 0.45 0.45
BP 10 100 1.5 0.16 0.21 0.23 0.24 0.23 0.15 0.08 0.63 0.65 0.65 0.63 0.61 0.71 0.72 0.71
BP 10 100 2.0 0.19 0.26 0.28 0.29 0.28 0.20 0.10 0.80 0.80 0.80 0.78 0.75 0.88 0.88 0.88

Remark: (1) in CEMC, d = F stands for CEMCF , and d = K stands for CEMCK ; (2) BARDC stands for BARD

with constraint that �1 = · · · = �m; (3) for both BARDC and BARD, we tried 3 values for hyper-parameter p, i.e.,

p1 = 0.05, p2 = 0.10 and p3 = 0.15 with hyper-parameter � = 1.

BARD and achieves a similar performance as CEMC, which is claimed to be “opti-

mal” in this case; (2) when the quality of base rankers varies greatly (i.e., scenario

B), BARD uniformly outperforms all the other methods, and the benefit becomes

larger with the increase of the signal strength µ; (3) both BARDC and BARD are

robust to the choice of the hyperparameter p. Figure 2.3 displays the box-plots of

{�̄k}k obtained by BARD from the 100 parallel runs under di↵erent configurations,

suggesting that BARD is capable of e�ciently estimating the quality of base rankers

when the signal strength is reasonably large (e.g., � � 1.0). We also applied BARD

and BARDC with � = 2 to each of the simulated data set and obtained very consistent

results, indicting that BARD is robust to hyper-parameter �.

Second, we check the impact of data size (i.e., n and m) to the performance of
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Figure 2.3: The box-plots of {�̄k}k estimated by BARD from the 100 parallel runs
under di↵erent configurations when m = 10 and n = 100 with hyper-parameters
p = 0.1 and � = 1.
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Table 2.2: Impact of data size to the performances of di↵erent methods.

Configuration Naive methods MC-based methods CEMC BARDC BARD
Case m n � AriM GeoM MedR MC1 MC2 MC3 MC4 d = F d = K p1 p2 p3 p1 p2 p3
AF 10 200 1.0 0.84 0.83 0.77 0.18 0.79 0.84 0.33 0.83 0.83 0.81 0.80 0.78 0.77 0.76 0.75
AF 10 100 1.0 0.84 0.82 0.78 0.15 0.79 0.84 0.26 0.83 0.84 0.82 0.79 0.78 0.74 0.73 0.73
AF 20 100 1.0 0.96 0.96 0.91 0.10 0.95 0.96 0.32 0.96 0.96 0.94 0.94 0.93 0.89 0.91 0.89
AP 10 200 1.0 0.13 0.22 0.21 0.35 0.32 0.22 0.09 0.74 0.75 0.73 0.73 0.72 0.68 0.69 0.69
AP 10 100 1.0 0.13 0.20 0.21 0.23 0.23 0.14 0.06 0.74 0.74 0.73 0.73 0.72 0.68 0.69 0.69
AP 20 100 1.0 0.17 0.24 0.22 0.64 0.58 0.52 0.20 0.90 0.92 0.90 0.89 0.87 0.84 0.84 0.83
BF 10 200 1.0 0.46 0.51 0.42 0.11 0.50 0.47 0.27 0.44 0.46 0.49 0.48 0.46 0.55 0.55 0.54
BF 10 100 1.0 0.46 0.51 0.42 0.11 0.50 0.47 0.29 0.46 0.46 0.49 0.46 0.45 0.51 0.50 0.49
BF 20 100 1.0 0.63 0.67 0.57 0.10 0.67 0.64 0.33 0.63 0.64 0.63 0.60 0.54 0.69 0.68 0.66
BP 10 200 1.0 0.13 0.18 0.18 0.17 0.15 0.08 0.05 0.43 0.44 0.45 0.44 0.41 0.47 0.48 0.46
BP 10 100 1.0 0.13 0.17 0.17 0.15 0.13 0.08 0.05 0.43 0.44 0.43 0.43 0.41 0.46 0.47 0.45
BP 20 100 1.0 0.15 0.17 0.18 0.43 0.39 0.34 0.15 0.61 0.61 0.59 0.56 0.42 0.62 0.61 0.57

BARD. We fixed the signal strength µ = 1.0, and tried two alternative combinations:

(m,n) = (10, 200) and (m,n) = (20, 100). The results are summarized into Table

2.2, from which we can see that most of methods tested are not sensitive to the

increase of n, although an increase of m does lead to a better performance for most

methods. More importantly, BARD performs quite robust to di↵erent choices of n

and m compared with the other methods.

2.5.2 Robustness of BARD

An important assumption in our model development is the mutual independence

among the rankers in consideration, which can often be violated in real problems. To

test how well our method tolerates the violation of this assumption, we simulated 20

rankings {⌧1, · · · , ⌧20} falling into three groups

G1 = {⌧1, ⌧2, ⌧3, ⌧4}, G2 = {⌧5, ⌧6, ⌧7, ⌧8}, G0 = {⌧9, · · · , ⌧20},
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where the rankings in G0 are independently generated, the rankings in G1 and G2,

however, have very strong within group correlation. More precisely, we let U =

{1, · · · , 100}; let the relevant entities be UR = {1, · · · , 10}, and let the background

entities be composed of two subsets: the “neutral” set UB1 = {11, · · · , 90} and the

“negative” set UB2 = {91, · · · , 100}. We define �i = I(i 2 UR)� I(i 2 UI), implying

that �i = 1 for i 2 UR, 0 for i 2 UB1 , and �1 for i 2 UB2 .

• A ranking ⌧k in G0 is simulated by generating Xk,i ⇠ N(�i · µk, 1), and set-

ting ⌧k = sort(i 2 U by Xk,i #), where µk � 0 represents the quality of ⌧k

since a larger µk means that ⌧k can better distinguish the relevant entities from

background ones;

• The rankings in G1 and G2 were generated via two steps: first, we generated a

common ranking

 = sort(i 2 U by Xj,i #) where Xj,i ⇠ N(�i · µ, 1);

and then, manipulated  with random transpositions to generate a group of

correlated rankings. Let M(·) denote a random transposition operation. The

aforementioned manipulation can be written as ⌧k = Ms(⌧) where s is number

of such operations used. Note that a small s indicates a stronger correlation

among the rankings.

In the simulation, we set µ = µ9 = · · · = µ12 = 0.5, µ13 = · · · = µ16 = 1.0, µ17 =

· · · = µ20 = 1.5, and tried three di↵erent values (20, 60 and 100) for s. We simulated

1,000 data sets for each configuration. Table 2.3 shows a typical data set simulated

101



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.
0

1.
5

3.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
0

1.
5

3.
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.
0

1.
5

3.
0

s = 20

s = 60

s = 100

Figure 2.4: Box-plots of {�̄k}k estimated by BARD from 1,000 parallel runs when
some base rankers are dependent of each other. The data sets are simulated from the
mechanism described in Section 2.5.2, where the 20 rankers belongs to three blocks
G1 = {⌧1, · · · , ⌧4}, G2 = {⌧5, · · · , ⌧8} and G0 = {⌧9, · · · , ⌧20}.

when s = 60, from which we can see that the rankings from G1 or G2 are quite

similar to each other for many entities. We applied BARD, BARDHM as well as other

methods to each of these simulated data sets. The results are summarized in Table 2.4

and Figure 2.4. From Table 2.4, we can see that: (1) BARDHM uniformly outperforms

all other methods; (2) BARD performs reasonably well even when correlations among

the rankers within G1 and G2 are very strong (i.e., s = 20), and approaches the

performance of BARDHM when the correlation is weaker (i.e., s = 60 or 100). These

results are consistent with the information provided by Figure 2.4, from which we

can see that BARD tends to overestimate the quality of the rankers in G1 and G2

when the correlation within G1 and G2 is very strong (i.e., s = 20). All together,

these results indicate that BARDHM is e�cient to deal with correlated rankers, and

BARD is robust to the model assumptions in terms of the average coverage rate.

102



Table 2.3: A typical simulated data set for testing the robustness of BARD.

G1 G2 G0

Entity ⌧1 ⌧2 ⌧3 ⌧4 ⌧5 ⌧6 ⌧7 ⌧8 ⌧9 ⌧10 ⌧11 ⌧12 ⌧13 ⌧14 ⌧15 ⌧16 ⌧17 ⌧18 ⌧19 ⌧20
1 57 57 45 27 56 63 56 31 82 4 5 53 22 4 1 69 44 10 6 29
2 14 100 14 15 31 56 67 56 70 42 89 4 15 11 29 2 1 26 28 7
3 27 55 55 87 94 1 5 1 34 89 36 80 12 9 58 35 22 16 78 12
4 4 17 28 14 90 90 86 90 20 5 2 36 6 2 43 11 21 51 59 16
5 55 85 4 55 86 24 90 50 15 63 32 2 21 36 48 23 20 13 21 31
6 5 5 5 75 49 49 32 99 48 22 53 78 13 6 45 17 58 49 1 60
7 73 15 99 25 17 53 13 73 21 67 19 22 1 46 4 19 3 3 16 10
8 31 52 53 57 76 26 17 17 57 83 23 68 3 1 21 76 8 2 30 18
9 22 92 87 10 73 17 26 72 27 30 3 74 16 77 2 1 10 7 4 2
10 62 10 77 77 7 76 76 29 8 18 63 66 32 20 5 91 41 21 5 34

11 70 24 86 24 6 6 16 26 64 38 66 33 47 56 92 36 39 56 45 62
12 41 88 24 86 34 42 6 22 38 58 49 97 36 40 14 55 54 53 81 33
13 8 76 82 34 30 66 3 89 59 72 38 40 25 43 76 26 86 61 15 54
14 25 68 31 42 11 29 11 30 73 68 100 25 94 92 40 46 59 92 32 43
15 79 82 76 82 81 83 48 94 32 12 46 52 68 96 50 59 81 69 10 55
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

86 78 19 50 78 66 41 63 42 87 41 27 92 100 18 20 33 11 88 50 39
87 83 71 19 51 63 7 66 63 9 8 21 15 29 21 88 27 43 23 22 8
88 19 95 10 8 26 30 39 7 30 76 45 26 14 66 62 5 36 65 63 52
89 13 8 78 83 42 44 45 44 96 57 70 95 48 75 10 24 6 45 39 35
90 42 42 34 4 69 69 69 69 100 95 96 29 27 41 61 87 17 93 46 44

91 9 87 1 76 89 14 85 11 75 100 59 58 81 99 57 49 69 82 47 83
92 94 94 72 94 96 87 89 87 83 29 58 82 97 47 98 86 73 100 86 49
93 72 72 12 72 80 85 50 3 36 36 6 69 54 42 65 74 25 85 95 92
94 23 22 18 23 92 92 7 92 90 98 88 20 66 55 56 64 100 40 100 95
95 77 59 21 84 88 88 87 32 52 59 42 72 72 100 44 100 84 79 12 93
96 84 80 46 95 91 2 10 51 97 50 76 24 95 97 87 88 98 84 82 89
97 49 99 84 22 10 91 91 96 84 21 75 65 99 31 83 99 89 55 84 99
98 95 7 3 49 64 55 79 58 33 77 97 89 90 86 84 62 92 99 80 80
99 74 74 95 74 37 58 55 33 85 79 98 55 24 58 51 95 96 98 74 100
100 39 39 39 39 58 37 58 76 53 16 74 96 46 98 78 66 67 97 97 96

Remark: The 100 entities belongs to three subsets UR = {1, 2, · · · , 10}, UB1 = {11, · · · , 90} and UB2 = {91, · · · , 100}.

The entities in UR have strong positive signal, the entities in UB2 have strong negative signal, the entities in UB1

do not have strong signal. The 20 rankings fall into three blocks G1 = {⌧1, · · · , ⌧4}, G2 = {⌧5, · · · , ⌧8} and G0 =

{⌧9, · · · , ⌧20}. Rankings from di↵erent blocks are generated independently, the rankings in block G0 are generated

independently, while the rankings within G1 or G2 come from a common ranking with random manipulations. The

quality of rankings in G1 and G2 is relatively low, while G0 contains rankings at di↵erent quality levels.
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Table 2.4: BARD is robust to the assumption of “independent rankers.”
Naive methods MC-based methods CEMC BARD BARDHM

s AriM GeoM MedR MC1 MC2 MC3 MC4 d = F d = K p1 p2 p3 p1 p2 p3
20 0.74 0.75 0.66 0.11 0.73 0.74 0.32 0.70 0.71 0.72 0.70 0.65 0.87 0.85 0.84
60 0.78 0.81 0.72 0.10 0.80 0.79 0.32 0.75 0.75 0.83 0.84 0.82 0.87 0.86 0.85
100 0.78 0.81 0.72 0.10 0.81 0.78 0.32 0.75 0.75 0.85 0.85 0.83 0.85 0.85 0.85

2.5.3 Discover highly correlated rankers

Next, we test the performance of the proposed coordination coe�cient. Figure

2.5 shows the empirical distribution as well as the fitted Beta distribution of Qi

for three typical entities from Table 2.3 (entity 1, 11 and 91), suggesting that the

Beta-distribution approximation does e↵ectively capture the key feature of di↵erent

types of entities. We calculated the Spearman correlation matrix, Kendall correla-

tion matrix and coordination coe�cient matrix for the data set shown in Table 2.3,

and summarized the results in Figure 2.6 (b). Similar results for other two data sets

simulated under di↵erent correlation levels (s = 20 and 100) are also shown in Fig-

ure 2.6. We observe that the proposed method based on the coordination coe�cient

worked well in all cases, whereas the correlation coe�cients were e↵ective only when

the dependence is extremely strong.

2.6 Real Data Applications

2.6.1 Aggregating rankings of cancer-related genes

In the first application, we use BARD to aggregate lists of cancer-related genes

found in five prostate cancer studies. The first six columns of Table 2.5 present the

rankings of the top-25 ranked genes that were found in DeConde et al. (2006) to be
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Figure 2.5: The natural distribution of {⌧k(i)}mk=1 and the fitted Beta distribution Q̂i

for three typical entities (i = 1, 11 and 91) in Table 2.3.

upregulated in prostate tumors compared to normal prostate tissues from five studies

(Dhanasekaran et al., 2001; Luo et al., 2001; Welsh et al., 2001; Singh et al., 2002;

True et al., 2006). These five studies rely on di↵erent technologies, and their results

show that they are quite di↵erent in the genes selected to be included in the top-25

list. Lin and Ding (2009) analyzed this dataset, found that the gene list in Luo et al.

(2001) is the least common compared to the other four studies, and downgraded its

weight in their analysis .

Letting U be the 89 genes appeared in the five top-25 lists, and applying BARD

with � = 1 to this dataset, we obtain consistent results under di↵erent choices of the

hyperparameter p (p = 10
89 ,

15
89 , and

20
89). As shown in Table 2.5, the top genes selected

by BARD under di↵erent configurations do reflect the consensus of the base rankers,

and are robust to the choices of p. As illustrated by Figure 2.7, the gene lists from

Welsh et al. (2001) and Dhanasekaran et al. (2001) are relatively reliable, while that

from Luo et al. (2001) does su↵er from low quality. However, the Markov-chain-based

methods (MC1, MC2, MC3, MC4 and MCT ) give very poor results when applied to
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(a) Performance of di↵erent measurements at di↵erent dependence levels

(b) Discovery rate of the coordination-coe�cient based method from 100 simulated data sets
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Figure 2.6: Performance of the coordination-coe�cient based method for simulated data generated

from the mechanism described in section 2.5.2, where the 20 rankings fall into three groups G1 =

{⌧1, ⌧2, ⌧3, ⌧4}, G2 = {⌧5, ⌧6, ⌧7, ⌧8} and G0 = {⌧9, · · · , ⌧20}. The rankings in G0 are independently

generated; the rankings in G1 and G2 have strong within group correlation, since each ranking group

are generated from a common ranking with s random transposition operations. A smaller s means

a stronger within group correlation. We simulated 100 data sets for s = 20, 60 and 100 respectively,

and applied the proposed method based on the coordination coe�cient to each of the 300 simulated

data sets. The pair-level discover rates are summarized into figure (b); detailed comparisons with

Spearman and Kendall correlation measurements for three typical data sets are illustrated in figure

(a). From the figure, we can see that the proposed method works reasonably well for all cases,

while the the Spearman or Kendall correlation coe�cients are e↵ective only when the dependence

is extremely strong.
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this dataset: in all these methods, the stationary distribution ⇡ of the transition

matrix P degenerated to a point mass at gene OGT, i.e., ⇡i = 1 if i =OGT and

⇡i = 0 for all the other genes, indicating that except OGT, all other genes cannot be

e↵ectively distinguished.
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Figure 2.7: Posterior distributions of {�1, · · · , �5} obtained from BARD under di↵er-
ent hyper-parameter p for the dataset of cancer-related genes.

2.6.2 Aggregating rankings of NBA teams

Ranking sports teams has attracted tremendous attention from both sports an-

alysts and academics. Numerous ranking methods have been proposed for di↵erent

sports, including NBA, NFL, MLB, NCAA football, etc. (see Langville and Meyer

2012 for a comprehensive review). Our BARD method produces an aggregated rank-

ing considering the results of any number of ranking methods, which can be used

to provide better predictions of game outcomes and to evaluate the e↵ectiveness of

di↵erent sports statistics in generating rankings.

Here, we use BARD to aggregate power rankings of NBA teams. We collected

6 rankings from professional sports web sites and 28 rankings generated by a small

group of Harvard students for the 30 NBA teams in the 2011-2012 season. The 6

professional rankings are generated in December 2011 after the preseason games of

the 2011-2012 season. The 28 amateur rankings were generated as follows in July

2012 after the 2011-2012 season: we sent out a questionnaire to all graduate students

in the Department of Statistics and a small group of summer school students who

were taking the summer course STAT 100 at Harvard, asking them to select the best

8 NBA teams of the 2011-2012 season and rank them top-down based on his/her

own knowledge or opinion without checking online information or consulting others.
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We also asked each student to classify himself/herself into one of the following four

groups in the survey: (1) “Avid fans” who never missed NBA games, (2) “Fans”

who watched NBA games frequently, (3) “Infrequent watchers” who watched NBA

games occasionally, and (4) the “Not-interested” who never watched NBA games in

the past season. We received 28 responses, amounting to a 47% response rate. The

data are displayed in Table 2.6. We expect BARD to give higher �ks to rankings

from professional web sites and students who paid more attention to NBA games.

Moreover, using the ranking of these teams in 2011-2012 playo↵s as a surrogate of

the unknown “true” power ranking of these teams, we can evaluate the performance

of BARD in a quantitative way.

We applied BARD to the dataset with hyperparameter p = 16
30 and � = 1 to

“predict” which teams can make their appearance in the playo↵s. (Each season, 16

teams enter the playo↵s based on their performances in the regular season.) The

results are summarized into Figure 2.8. From sub-figure (a), we can see that BARD

figures out the quality di↵erence among di↵erent rankers successfully: the boxplots of

�is show a clear decreasing trend with the decrease in knowledge level of the rankers.

We also observed an interesting phenomena from these boxplots: ranker 11 (i.e., S5)

is an outlier in the group of Avid fans, which precisely reflects the fact that S5 gave

high ranks to Warriors and Wizards, two teams that failed to enter the playo↵s.

Moreover, the aggregated ranking does outperform individual rankings in terms of

being closer to the “truth,” even though the amateur rankings from the students con-

tain considerable amount of noise. The aggregated ranking makes only one mistake:

putting Rockets instead of Jazz into the playo↵s list. Among the six professional
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Table 2.6: Power rankings of NBA teams for the 2011-2012 season collected from 6
professional sport-ranking web sites and a survey of 28 Harvard students.

Professional Avid fans Fans Infrequent watchers Not-interested individuals
N.o. Team P1P2P3P4P5P6S1S2S3S4S5S6S7S8S9S10S11S12S13S14S15S16S17S18S19S20S21S22S23S24S25S26S27S28

1 Heat 1 2 1 1 1 1 1 1 2 3 1 3 - 1 2 1 3 1 3 1 4 1 4 2 1 2 - 4 - - 1 1 1 2
2 Thunder 3 3 2 3 2 3 2 2 3 2 - 2 - - 4 2 7 4 - - - 2 - - 2 - - - - 2 - - - -
3 Spurs 7 1011 5 8 7 6 5 5 5 - 6 - 6 5 4 - - 5 - 8 6 3 6 - - - - - - - - - -
4 Celtics 5 1110 9 9 5 4 8 1 4 2 5 2 3 1 3 4 3 - 4 2 3 2 - 4 4 - 2 - - - 2 - -
5 Clippers 8 5 6 10 5 6 - 6 - 8 - 7 - - - - - - - - - - - - - - 2 - - - - - 4 -
6 Lakers 6 7 7 6 6 8 3 7 6 1 3 1 1 2 7 7 1 2 1 2 1 4 5 1 3 1 5 1 - - 8 4 2 -
7 Pacers 141314141312 8 - - - - - - - - - - - - - - - - - - - 6 - - - 5 8 - -
8 76ers 151613151515 - - - - - - - 4 - - 8 6 - - - - - 5 6 - 7 6 6 4 3 3 - -
9 Mavericks 2 1 3 2 4 4 - - 7 7 - 8 - - 8 6 6 5 - 8 3 - 1 - - - 3 - - - 4 - 5 -
10 Bulls 4 4 4 4 3 2 5 4 8 6 4 4 3 - 3 - - 8 4 - - - - - - 3 - 3 3 5 - 5 - 1
11 Knicks 9 6 9 8 7 13 - 3 4 - 5 - - - - - 2 - - - - - - 4 7 8 - - 2 8 - 7 7 6
12 Grizzlies 10 8 8 7 1110 - - - - - - - - - - - - - - - - - - - - - - 8 - - - - -
13 Nuggets 19 9 5 1310 9 - - - - 8 - - - - - - - - - - - 7 - - - - - - - - - 8 -
14 Magic 111217111411 - - - - - - 6 - - - - - - 5 - - - - 5 - 4 - - - 6 6 - -
15 Hawks 121812181218 7 - - - - - - - - 5 - - - - - - - - 8 7 - - 5 - - - - 8
16 Jazz 182326272819 - - - - - - 8 - - - - - - - - - - - - - - - - - - - - 3
17 TrailBlazers 131415121614 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
18 Rockets 211516161717 - - - - - - 5 7 6 - - - 2 6 - - - 3 - 5 - 5 - 3 - - - 7
19 Bucks 161720172016 - - - - - - - - - - - - - 3 - - - - - - - - - 6 - - - -
20 Suns 202219211921 - - - - - - - 8 - - - - 7 7 6 8 8 - - - - - - - 7 - - -
21 Nets 171924202423 - - - - - - - - - - 5 - - - - - - - - - - - 7 - - - 3 5
22 Warriors 222123192220 - - - - 6 - - - - - - - 6 - - - - - - - 1 - - - - - - -
23 Timberwolves 232022222324 - - - - - - - - - - - - - - 7 7 - - - - - - 4 7 - - - 4
24 Hornets 272818231825 - - - - - - 7 - - - - - - - - - - - - - - - - - - - - -
25 Pistons 252525242522 - - - - - - - - - - - - - - - - - 8 - - - 8 - - 2 - - -
26 Kings 292421262126 - - - - - - 4 5 - - - - 8 - 5 5 - - - - - - 1 - - - - -
27 Wizards 282728252727 - - - - 7 - - - - - - - - - - - - 7 - - - 7 - - - - 6 -
28 Raptors 242629283028 - - - - - - - - - 8 - - - - - - - - - - 8 - - 1 - - - -
29 Cavaliers 262927292629 - - - - - - - - - - - 7 - - - - - - - 6 - - - - - - - -
30 Bobcats 303030302930 - - - - - - - - - - - - - - - - 6 - - - - - - - - - - -

Remark: The 30 NBA teams are arranged in the table based on their performance in the playo↵s of the season,

i.e., the top 16 teams reached the playo↵s, the top 8 teams survived the first round of the playo↵s, and so on. The

6 professional power rankings (P1, · · · , P6) are downloaded from FOXSports.com, ESPN.com, SI.com, NBA.com,

midwestsportsfans.com, and jsonline.com, respectively. They are based on the preseason games before the the regular

2011-2012 season. (More details about these professional power rankings are listed in the Appendix A.3.) The 28

rankings by Harvard students (S1, · · · , S28) are collected by a survey after the 2011-2012 season was finished, in

which each student was asked to select the best 8 NBA teams in the 2011-2012 season and rank them top-down

based on his/her own knowledge without checking online information or consulting others. To collect information

about how much the students followed NBA games in the 2011-2012 season, we also asked every student to classify

himself/herself into one of the following four groups in the survey: (1) “Avid fans” who never missed NBA games, (2)

“Fans” who watched NBA games frequently, (3) “Infrequent watchers” who watched NBA games occasionally, and

(4) the “Not-interested” who never watched NBA games in the past season. In addition, we encouraged the students

to do random guess if they really have no ideas about these teams.
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Figure 2.8: Results from BARD for aggregating 34 rankings of 30 NBA teams in
season 2011-2012.

rankings, however, only P5 achieves the same result as the aggregated ranking; the

other five rankings make two mistakes: P1 misses Nuggets and Jazz, P3 misses Magic

and Jazz, P2, P4 and P6 miss Hawkes and Jazz.

2.7 Discussion

In this chapter, we propose the Bayesian rank aggregation (BARD) method for

the rank aggregation problem. By giving each base ranker a specific quality parame-

ter and estimating these parameters using the data, BARD measures the reliability of
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the base rankers in a quantitative way and makes use of this information to improve

the aggregated rank list. Compared to the methods in the literature, BARD works

significantly better when the equality of base rankers varies greatly. Both simula-

tion studies and real data applications demonstrate the usefulness and superiority of

BARD.

BARD assumes that (1) the entities involved can potentially be divided into two

subsets, the relevant entities UR and the background entities UB; (2) given the group

indicators of entities I = {Ii}i2U , the rankers ⌧1, · · · , ⌧m are conditionally indepen-

dent; (3) in each base ranker ⌧k, the internal ranks of the relevant/background entities

are assigned randomly, the rank of a relevant entity among the background entities,

however, follows a power law distribution. To apply BARD to a practical problem,

we need to check whether the above assumptions (especially, the first two) hold ap-

proximately. BARD is reasonably robust if the dependence among base rankers is not

strong. However, if the dependence is very strong, BARD may report biased result.

The methods developed in Section 2.4 provide diagnosis tools for this critical issue.

Facing a practical problem, we should try to understand the mechanism behind the

base rankers as much as we can to make a good judgement whether the base rankers

work independently or not.

BARD also requires that all base rankers involved have a common objective, that

is to distinguish the relevant entities from the background entities by giving the former

ones higher ranks than the later ones. If the data collected in practice do not satisfy

this requirement (e.g., the rankings from di↵erent base rankers have di↵erent goals,

or are purely based on the opinion of the rankers themselves), BARD may not be an
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appropriate tool to use.

In general, BARD is robust to di↵erent choices of p, the expected percentage of

relevant entities in U , when p comes from a proper range (e.g., [0.01, 0.2]). In some

practical problems, the choice of p is obvious. If not, we need to try di↵erent choices

of p from a proper range and check how robust the results are before a conclusion can

be made.

The framework of BARD supports us to deal with full rankings, partial rankings

and rankings with ties as well. It is possible to further extend this framework to

problems with more complicated structures. For example, if some covariates of the

entities of interest are also observed, which can potentially influence the rankings of

some base rankers, it will be desirable to link these covariates to the quality param-

eters of corresponding base rankers to achieve a better performance.

Remark: this Chapter is based on a published paper:

Deng K., Han S., Li J.K., and Liu J.S. Bayesian Aggregation of Order-Based Rank

Data. (2014) JASA. Published online: Jan 14, 2014. DOI: 10.1080/01621459.2013.878660.
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Appendix A

Appendix

A.1 Technical Details of the Semi-Bayesian Ap-

proach for Indirect Comparison without Individual-

Level Data

When both ⇡✓N and ⇡✓O are multivariate Gaussian distributions, the following

conditional distributions can be derived from the posterior distribution (1.22) Gibbs

sampler:

UTN
i | others ⇠ N(↵0 + ↵1X

TN
1 + · · ·+ ↵pX

TN
p , 1) ·

⇥

I(Y TN
i , Ui > 0) + I(Y TN

i = 0, Ui  0)
⇤

↵j | others ⇠ N
⇣

P

XTN
ij (Ui �XTN

i[�j]↵[�j])
P

(XTN
ij )2

,
1

P

(XTN
ij )2

⌘

✓O | others /
Y

i2A�
O

⇡✓O(Xi) · ⇡(✓O) Population estimation can be found in Appendix A.2
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E⇡O
E[Y TN | XTN , T = t] = E⇡O

[g1(↵0 + ↵1X
TN
1 + · · ·+ ↵pX

TN
p )]

= E⇡O
[�(↵0 + ↵1X

TN
1 + · · ·+ ↵pX

TN
p )]

=

Z

⇡O

�(↵0 + ↵1X
TN
1 + · · ·+ ↵pX

TN
p )dx

Procedures:

• Get one sample for all the parameters ↵0,↵1, · · · ,↵p,⇥1,⇥2

• For each sample, calculate
R

⇡2
�(↵1X

TN
1 + · · ·+ ↵pX

TN
p + ↵)dx by Monte Carlo

integration, i.e.,

1. Sample 1,000 X from ⇡O(X | ⇥2)

2. Calculate �(↵0 + ↵1X1 + · · ·+ ↵pXp) for each sample

3. Take the average of above quantity

• Repeat above steps 1,000 times to get 1,000 samples from the posterior distri-

bution of estimand E⇡O
E[Y TN | X, T = t]

A.2 Estimation of Population Distribution

A.2.1 Independence Assumption

At the first stage, we assume covariates are independent of each other. We will in-

fer the underlying distribution (posterior distribution of parameters) of each covariate

in both trials based on the summary statistics. And posterior of propensity weights

can be calculated based on the distribution of covariates in both trials. Therefore the
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posterior distribution of adjusted e�cacy can be inferenced. Assume all the covariates

are independent of each other, and follow the following model:

XTN
ij ⇠ N(µTN

j , [�TN
j ]2), i = 1, . . . , nN j = 1, . . . , p

XTO
ij ⇠ N(µTO

j , [�TO
j ]2), i = 1, . . . , nO j = 1, . . . , p

XTN
ij ⇠ Bern(cTNj ), i = 1, . . . , nN j = p+ 1, . . . , p+ pd

XTO
ij ⇠ Bern(cTOj ), i = 1, . . . , nO j = p+ 1, . . . , p+ pd

(A.1)

Given non-informative prior f(µ, �2) / ��2, f(c) ⇠ Beta(↵, �), because sample

mean and sample variance are su�cient statistics for normal distribution It is easy

to get the posterior distribution: (T = TN , TO)

[�(T )
j ]2|X(T )

j=1,...,p ⇠ Inv � �2(nN � 1,
Pp

j=1((x
(T )
ij � x̄

(T )
·j )2)/(nN � 1) j = 1, . . . , p

µ
(T )
j |[�(T )

j ]2, X(T )
j=1,...,p ⇠ N(x̄(T )

·j , [�(T )
j ]2/nN) j = 1, . . . , p

c
(T )
j |X(T )

p+1,...,p+pd
⇠ Beta(↵ +

P

i x
(T )
ij , � +

P

i(1� x
(T )
ij )) j = p+ 1, . . . , p+ pd

(A.2)

A.2.2 Correlation Matrix is same in both population for con-

tinuous covariates

In the previous method, all variables are assumed independently. However, in

most of the cases, the covariance matrix may not be the identity matrix. Since full

observation is only available in one of the two population, how to model the covariance

matrix is a question to us.

As we all know that in the problem of matching, covariates in two distributions
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are same, the correlation between variables shouldn’t be changed a lot. Therefore, a

reasonable assumption will be made here: Correlation matrix for both distributions

are identical.

XTN
i |µ,⌃ ⇠ N(µ,⌃) j = 1, . . . , p

XTO
i |D, ⌘,⌃ ⇠ N(⌘, D

1
2⌃D

1
2 ) j = 1, . . . , p

⌃ ⇠ Inv �Wishart(⇤0)

µ|⌃ ⇠ N(µ0,⌃/0)

⌘|⌃, D ⇠ N(⌘0, D
1
2⌃D

1
2/0)

(A.3)

Where D = diag(r21, r
2
2, . . . , r

2
p).

Given flat prior

f(µ,⌃, ⌘, D) / |⌃|�
v0+p+1

2 exp[�1

2
tr(⇤0⌃

�1)]

|⌃/0|�1/2 exp[�1

2
(µ� µ0)

T (⌃/0)
�1(µ� µ0)]

|D 1
2⌃D

1
2/0|�1/2 exp[�1

2
(⌘ � ⌘0)

T (D
1
2⌃D

1
2/0)

�1(⌘ � ⌘0)]

|D|�1

Therefore, for j = 1, . . . , p

⌃|D,XTN
j , XTO

j ⇠ Inv �Wishart(nN + nO + v0,⇤�1
n )

f(rk|r[�k],⌃, X
TN
j , XTO

j ) / (r2k)
�nO+1

2 exp[�1
2(

AkkBkk

r2l
+ 2

P

l 6=k
AklBklp

r2l

1p
r2k
)]

µ|⌃, XTN
j , XTO

j / N(
nN X̄TN+0µ0

nN+0
,⌃/(nN + 0))

⌘|D,⌃, XTN
j , XTO

j / N(
nOX̄TO+0⌘0

nO+0
, D

1
2⌃D

1
2/(nN + 0))

(A.4)
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Where,

⇤n = STN + ⇤0 +
nN0

nN + 0
(X̄TN � µ0)(X̄TN � µ0)

T

+D� 1
2 (STO +

nO0

nO + 0
(X̄TO � ⌘0)(X̄TO � ⌘))

T )D� 1
2 )

STN =
X

i2TN

(XTN
i � X̄TN )((X

TN
i � X̄TN ))

T

STO =
X

i2TO

(XTO
i � X̄TO)((X

TO
i � X̄TO))

T

A = ⌃�1

B = STO +
nO0

nO + 0
(X̄TO � ⌘0)(X̄TO � ⌘0))

T

How to derive STO

In the above equations, everything can be easily derived except STO . As we know

that

However, STO is not observed. But because of BASU theorem, sample correlation

is independent of sample mean and sample variance, XTO is easily imputed from

N(⌘, D
1
2⌃D

1
2 ) and then resealed to match the sample mean and sample variance.

STO can be easily computed via the imputed data.
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A.3 Detailed information about the professional

rankings of NBA teams used in Section 2.6.2.

Ranking Provider Link
P1 FOXSports.com http://msn.foxsports.com/nba/powerRankings/2011-2012/PRE
P2 ESPN.com http://espn.go.com/nba/powerrankings/ /week/0
P3 SI.com http://sportsillustrated.cnn.com/2011/writers/britt robson/12/20/preseason.power.

rankings/index.html
P4 NBA.com http://www.nba.com/2011/news/powerrankings/12/21/preseason/index.html
P5 midwestsportsfans.com http://www.midwestsportsfans.com/2011/12/nba-power-rankings-preseason-edition/
P6 jsonline.com http://www.jsonline.com/sports/136175388.html
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