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Abstract

The scientific interface between atomic, molecular and optical (AMO) physics,
condensed matter, and quantum information science has recently led to the development of
new insights and tools that bridge the gap between macroscopic quantum behavior and
detailed microscopic intuition. While the dialogue between these fields has sharpened our
understanding of quantum theory, it has also raised a bevy of new questions regarding the
out-of-equilibrium dynamics and control of many-body systems. This thesis is motivated
by experimental advances that make it possible to produce and probe isolated, strongly
interacting ensembles of disordered particles, as found in systems ranging from trapped
ions and Rydberg atoms to ultracold polar molecules and spin defects in the solid state.
The presence of strong interactions in these systems underlies their potential for exploring
correlated many-body physics and this thesis presents recent results on realizing
fractionalization and localization. From a complementary perspective, the controlled
manipulation of individual quanta can also enable the bottom-up construction of quantum
devices. To this end, this thesis also describes blueprints for a room-temperature quantum

computer, quantum credit cards and nanoscale quantum thermometry.
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Chapter 1

Introduction

1.1  Quantum many-body physics

Our modern understanding of quantum physics reduces to two flavors of questions: the
one-body problem and the many-body problem. This is because, technically speaking, the
two-body problem reduces to the one body case, while the three-body problem is already
generally intractable [1]. The research of this thesis clusters around the relatively new field
of controlled quantum many-body physics [2]. Typically, we think of many-body
phenomena as both complex and difficult to probe. Indeed, isolating a particular effect or
signal remains the most basic challenge in most condensed matter experiments; these
signals are often swamped by noise, manifest only on sub-nanometer length scales, or occur
imperceptibly fast. However, owing to recent experimental advances, it has become possible
to assemble individual quantum mechanical building blocks into many-body systems. This
approach has the virtue of enabling one to choose which elements of complexity to put in.
Some of the most striking physics which can be accessed by such techniques involve the
non-equilibrium behavior of isolated, or almost isolated, many-body systems [2].

It is fitting, then, that chapter 2 of this thesis explores one of the central assumptions in

statistical mechanics. The assumption that an isolated, many-body quantum system,



Figure 1: One, two, many-body theory [1].

establishes local equilibrium through interactions between its constituent particles . This
notion underlies conventional kinetic and transport theories and governs our macroscopic
intuition for heat and electrical flows. This ergodic hypothesis, however, was recently
shown to fail in a class of disordered interacting systems [3—22]. Strong enough disorder
can give rise to a many-body localized (MBL) phase, in which transport is absent and the
system cannot act as a heat bath for its constituent parts. Although the MBL phase
resembles a conventional, noninteracting Anderson insulator in that diffusion is absent, it
has very different dynamical properties. Specifically, interactions between particles in the
MBL phase can cause dephasing and generate long-range entanglement, leading to the slow
growth of entanglement entropy [10, 11, 13-15]. Here, we will begin with a short

introduction to localization, both at the single particle and many-body level.

1.1.1 Localization: from Anderson to Many-body

The story of localization begins with a seemingly simple and natural question: what is the
role of disorder in the objects we see around us? We are taught to think of solids as
ordered arrangements of atoms and molecules, but pick up any solid-state textbook, and
one will find nuanced descriptions of countless lattice defects: interstitials, line defects,

vacancies, substitutions, etc. In condensed matter physics, the importance of disorder was
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Figure 2: Schematic for Anderson localization

brought to the forefront by the seminal work of P. W. Anderson [23], who was able to show
that the quantum mechanical wavefunction of a non-interacting particle is exponentially
localized at all energies for sufficiently strong but finite disorder. As localized states do not
carry currents over macroscopic length scales, this has dramatic consequences for the
transport properties of a material.

The simplest schematic Hamiltonian for single-particle Anderson localization is,
H = Z tijCl-LCj + h.c. + Z,umz (11)
(i5) i

where ¢;; describes the hopping of a quantum particle in a background potential set by
{p:}. The intuition for Anderson localization lies in the simple schematic depicted in

Fig. 2. The hopping amplitude between adjacent sites is not strong enough to hybridize
two nearest-neighbor sites. To consider this more formally, let us take u; to be independent
random variables in a box distribution of width W. For W = 0, there is no disorder, the
eigenmodes of the Hamiltonian are simple Bloch waves and the system is metallic. Now, in
the opposite limit, for t = 0, the eigenmodes are simply delta functions localized at each

site. In the limit W > ¢, one can estimate the effect of ¢ by utilizing perturbation theory,

t
Hi— g

where eigenmodes take the form [i) + 3. |7). Anderson was able to show that this



perturbation theory converges in the thermodynamic limit, and hence, that there exists a
regime where the eigenstates are localized (e.g. have wavefunctions that fall off in real
space as e"/¢ for some localization length ¢) and the system has vanishing DC
conductivity at T = 0. Most interestingly, for sufficiently strong disorder, the entire band
of eigenstates will all be localized.

The question of many body localization is what occurs when generic quartic operators
are added to the original single-particle Hamiltonian. This more general question, was in
fact, the goal of Anderson’s original 1958 manuscript and has remained both open and
controversial. The question of many-body localization received a jolt in 2005 when Basko,
Aleiner and Altshuler published a calculation that purported to show localization even in
the presence of interactions at finite energy density. Working in the basis of single-particle

localized states they consider the effect of a generic quartic interaction,

H= Zc&ca + Z Va,g,%(gclc%cvc(;. (1.2)
e o,B,7,0

Employing a self-consistent Born approximation, they calculate the explicit mixing
between one-particle excitations and many-body states, ultimately finding a convergent
perturbation theory. Follow-up numerical work by Huse, Oganesyan and Pal confirmed
that a many-body localization transition seemed to be present in e.g. the spectral statistics
of certain interacting 1D spin chains. In chapter 2, we describe a class of possible
experimental realizations for MBL as well as methods for probing the localized phase.

Finally, we ask the basic question: is disorder essential for MBL?

1.1.2 Fractional Chern Insulators

The development of ultra-cold atomic and molecular gases has raised the possibility of
studying topological phases in out-of-equilibrium spin systems. Unlike traditional

condensed matter systems, one cannot simply cool into a desired topological ground state



by decreasing the temperature of a surrounding bath. Rather, preparation must proceed
coherently, e.g. by exploiting the quantum adiabatic theorem. This necessitates a detailed
knowledge of the phase transitions separating topological states from their
short-range-entangled neighbors. As such transitions are beyond the standard
Ginzburg-Laudau paradigm, it is important to develop tools to characterize them. This
requires understanding the interplay between topology, lattice symmetries and
out-of-equilibrium dynamics. One particular context where lattice and topology meet is in
the notion of fractional Chern insulators (FCI) — exotic phases, which arise when strongly
interacting particles inhabit a flat topological bandstructure [24-31]. Particles injected into
these exotic states of matter fractionalize into multiple independently propagating pieces,
each of which carries a fraction of the original particle s quantum numbers. While similar
effects underpin the fractional quantum Hall effect observed in continuum two dimensional
electron gases [32, 33], fractional Chern insulators, by contrast, are lattice dominated.
They have an extremely high density of correlated particles whose collective excitations can
transform non-trivially under lattice symmetries. Chapter 3 of this thesis is devoted to
describing the realization of a ¥ = 1/2 fractional Chern insulator in ultracold polar
molecules.

Since the FCI state generally competes with superfluid and crystalline orders, the
resulting phase diagram exhibits both conventional and topological phases. The extent to
which these neighboring phases enable the actual experimental preparation of the v = 1/2
fractional Chern insulator is an open question that is explored in the latter half of chapter
3. In particular, the adiabatic preparation of the FCI state from a superfluid requires that
the boundary separating these phases is second order. Indeed, a first order transition
would imply an exponentially small gap, suggesting that any adiabatic ramp would either
need to be prohibitively slow or run the risk of generating a high density of quench defects.
The final portion of chapter 3 postulates the idea that lattice symmetries, such as

inversion, could protect a continuous transition.



1.1.3 Spins on a superconductor

Chapters 2 and 3 of this thesis focused on the quantum control of spin degrees of freedom.
These controlled spins provide a remarkable platform for realizing exotic condensed matter
phenomena such as many-body localization and fractional Chern insulators. However,
uncontrolled spins often have a less desirable effect by contributing to magnetic noise. This
is especially true in mesoscopic superconducting devices, where both the nature and origin
of such noise remain a mystery. To this end, understanding the interactions between
magnetic impurities on a superconductor is question of both fundamental and practical
importance. Chapter 4 addresses this question in the context of Yu-Shiba-Rusinov bound
states, where one finds that superconductivity induces a strong 1/r? anti-ferromagnetic
interaction that can dominate over conventional RKKY.

In this section, we introduce the basic theory behind Yu-Shiba-Rusinov bound states. To
start we consider a single magnetic impurity on the surface of an S-wave superconductor.
The impurity creates a local magnetic potential which scatters nearby conduction electrons

via the usual s-d interaction,

1
Hsd = W kklzﬂ J(l{? — k/)cl]::,ao-aﬁck'ﬂ -S (13)

where J(k — k') characterizes the exchange interaction, ¢ is a Pauli matrix acting on the
electron’s spin degree of freedom and S is the impurity spin. Perturbatively, this type of
s-d interaction mediates an indirect exchange between two neighboring magnetic
impurities, the so-called RKKY interaction [34—36]. Intuitively, the first impurity S;
scatters a conduction electron, while the second impurity Sy sees the density of the
scattered electron via its own s-d interaction. At second order, this generates an effective
exchange interaction Jrxiy St - S2 where one can imagine Jri iy as being composed of
two contributions. At distances r < & (the superconducting coherence length), one does

not see the effects of superconductivity and hence, in this limit, Jrxxy must reduce to the



same form as for a normal metal,

1
——J2 psvg cos(2k;r) (1.4)

JRKKY(T) = Q3 e

where J, is the strength of the exchange interaction, p; is the density of states at the
Fermi energy, v, is the volume per lattice site and k; is the Fermi momentum. Meanwhile,
at distances r 2 &, the RKKY interaction obtains a superconducting correction and is
expressed as,

1 —r
Jpsery () = Wc’iﬂf”& cos(2ksr)e "% (1.5)

The fact that the superconductor is gapped enters in the exponential decay as well as the
€2 term of the denominator. It is worth it to point out that at r < £, the normal metal
contribution wins by a factor of (£/7)? as expected. Plugging in for impurities on the
surface of typical superconductors such as Niobium or Aluminum, one finds that at
r ~ Inm, the impurities interact with strength Jgrxxy ~ 100MHz —1GHz. This indirect
exchange is stronger than the bare magnetic dipolar interaction, but it decays just as
rapidly within the coherence window and exponentially outside the window.

Working beyond the perturbative RKKY exchange, we now consider the appearance of
bound mid-gap Shiba states in the superconductor [37-39]. Let us begin by recalling the

Hamiltonian for an unperturbed BCS s-wave superconductor,

Ho = Z ekc,lack,a + A Z[CLTC]L—k¢ + C,]QC]@]. (16)
k,a k

As a road map, we will be utilizing the T-matrix formalism to derive the perturbed Green’s
function (in the presence of classical magnetic impurities) and will ultimately obtain the
energy and spatial wavefunction of the Shiba bound state [38]. Since the magnetic moment
of the impurity spin is allowed to orient in any direction, we will work with 4-component

spinors (Nambu-Gor’kov representation), Wy = (¢pp, c_gy, CLT, cik i)T, wherein H, can be



re-expressed as,

H() = Z \I/L(EkTg -+ AkTQO'Q)‘I;k. (17)
k

Both 723 and 04 2 3 are Pauli matrices, but they are associated with different pieces of the
Hilbert space. In particular, 7 acts on the so-called particle-hole space spanned by

{ckt, " i L}’ while o acts on the spin degree of freedom. By writing down the equations of
motion (in the absence of impurities), one obtains the usual unperturbed single-particle

BCS Green’s function
1

iw — €Ty — NpToos

Golk,w) = (1.8)

We can now solve for the new Green’s function in the presence of an isolated magnetic
impurity by using the usual T-matrix,
Gk, K, w) = Go(k,w)o(k — k') + Go(k,w)T(k, k',w)Go(k',w). For simplicity, let us assume
that our magnetic potential is isotropic and spherically symmetric with J(k — k') = J.,. In

this particular case, the T-matrix reduces to a simple form

1 (87ew/2)°90(w)

T = _ 1.9
W N T (@S e 2P o
where go(w) = 1/N )", Go(k,w) is the local Green’s function and S is the spin of the
impurity. Summing over k yields,
w + ATy0 (1.10)

go(w) = —Wﬂfﬁ-

To obtain the energies of the Shiba bound states (e.g. |Ey| < A), we need to find the poles
of the T-matrix. This can be done analytically, by directly solving for the eigenvalues and
determining the energies w = Ej that correspond to poles; in particular, one finds that

setting the denominator of the eigenvalues to zero,



A (=14 7(JS/2)?p}) — (w + wr?(JS/2)?py)? = 0, yields

1 —n2(JS/2)%p}
L+ 72(JS/2)%p}

E,=A (1.11)

One can check two very simple limits: (i) in the case where J., — 0, E, — A and there
does not exist an intra-gap state, (ii) in the case where J., — 00, E, — —A and the new

“ground state” actually corresponds to an occupied Shiba state.

1.1.4 Quantum Primitives with Nitrogen-Vacancy Defects

The final four chapters of this thesis have a common theme in that they are motivated by
recent experimental advances in the quantum control of Nitrogen-Vacancy defects in
diamond. Nitrogen-Vacancy color centers stand out among other promising qubit
implementations [40-43] in that their electronic spins can be individually polarized,
manipulated and optically detected under room-temperature conditions. Each NV center
constitutes an individual two-qubit quantum register as it also contains a localized nuclear
spin. The nuclear spin, which has an extremely long coherence time, can serve as a
memory qubit, storing quantum information, while the electronic spin can be used to
initialize, read out, and mediate coupling between nuclear spins of adjacent registers.
Magnetic dipole interactions allow for coherent coupling between NV centers spatially
separated by tens of nanometers.

Single NV registers contain a spin triplet electronic ground state (S = 1) and can be
optically pumped and initialized to the |0), spin state, which has no magnetic dipole
coupling with other NV registers or impurities. After optical initialization, the electronic
spin of each register remains in the |0), state, unless coherently transferred to the |1), state
by a resonant microwave (MW) pulse [44-47]. The nuclear spin associated with Nitrogen
atoms (I = 1/2 for 'N) possesses an extremely long coherence time (*C nuclear spins

could also in principle be utilized); manipulation of the nuclear spin is accomplished with



RF pulses [48]. The Hamiltonian governing the electronic and nuclear spins of the NV
register is

He,n = AOSE + MeBSz + ,unB[z + ASZ[Z7 (112)

with zero-field splitting Ag = 2.87GHz, electronic spin gyromagnetic ratio
te = —2.8MHz/Gauss, nuclear spin gyromagnetic ratio u, = —0.43 kHz/Gauss, and
hyperfine coupling A = 3.0 MHz [44]. The application of a magnetic field along the
NV-axis (2) ensures full addressability of the two-qubit system and a universal set of
two-qubit quantum operations can easily be achieved with only MW and RF controls [48].
Chapter 5 of this thesis describes a variety of mechanisms to achieve robust quantum
gates between spatially separated quantum registers. This is especially important for
Nitrogen-Vacancy based primitives since the bare interaction distance (e.g. tens of
nanometers) is well below the optical wavelength used for initialization and read-out.
Utilizing the techniques described in chapter 5, we propose a scalable architecture for a
room-temperature NV quantum computer in chapter 6. The key challenge in realizing such
a quantum processor is the inevitable presence of disorder in the NV diamond lattice. Such
disorder typically causes localization which limits the fidelity of two-qubit quantum logic.
Thus, in chapter 7, we propose to overcome disorder by implementing a topologically
protected spin chain data bus that is robust to disorder. Finally, in chapter 8, we present a
variety of other primitives enabled by the NV’s long room temperature coherence

properties such as quantum credit cards, atomic clocks, and spin squeezed metrology.
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Chapter 2

Many-body localization

2.1 Realizing many-body localization with dipoles

Statistical mechanics is the framework that connects thermodynamics to the microscopic
world. It hinges on the assumption of equilibration; when equilibration fails, so does much
of our understanding. In isolated quantum systems, this breakdown is captured by the
phenomenon known as many-body localization (MBL) [3-8, 10-23, 49-52]. Many-body
localized phases conduct neither matter, charge nor heat. Moreover, they can exhibit
symmetry breaking and topological order in dimensions normally forbidden by
Mermin-Wagner-type arguments [16, 22]. To date, none of these phenomena has been
observed in experiments, in part because of the isolation required to avoid thermalization.

In this section, we investigate dilute dipolar systems as a platform for realizing MBL
phases and studying the associated localization phase transition. Our work is motivated by
recent experimental advances that make it possible to produce and probe isolated, strongly
interacting ensembles of disordered particles, as found in systems ranging from trapped
ions [53] and Rydberg atoms [54, 55] to ultracold polar molecules [56, 57] and spin defects
in solid state systems [44, 58-60]. The presence of strong interactions in these systems

underlies their potential for exploring physics beyond that of single particle Anderson
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Figure 3: (a) Schematic of four spin resonance structure. Each pair of (red) spins at separation
R forms a pseudospin (blue) with level structure shown below. (b) A pseudospin at the origin
resonates with another pseudospin in a shell R/ < r < 2R’.

localization [23]. However, the power law decay of those interactions immediately raises the
question: can localization persist in the presence of such long-range interactions? Indeed,
Anderson observed in his seminal paper that long-ranged hopping ¢ ~ 1/r* delocalizes any
putatively localized single-particle states for a < d, with d, the dimension of space. In
what follows, we consider the generalization of Anderson’s criterion to the interacting
power-law regime and produce a necessary condition for localization with such interactions
[51]. To support these considerations, we carry out extensive numerical analysis of power
law interacting systems in d = 1 spatial dimension. With this criterion in hand, we analyze
the feasibility of observing MBL states in two complementary ultracold polar molecule
proposals, wherein the power laws, interaction scales and dimensionality may be tuned.
Finally, we generalize our analysis to solid-state systems where localization can be studied

in the quantum dynamics of magnetic spin impurities.

2.1.1 Conditions for localization

In localized systems, injections of energy propagate at most a finite distance even after
infinite time. This is obviously inconsistent with the proliferation of long-range resonances
through which energy may be transported. In the following, we identify resonant degrees of

freedom and ask whether the number of such resonances diverges at large scales; such
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Table 2.1.1: Critical dimensions for MBL with power laws

Unmixed | Anisotropic Isotropic
= 3 [51] f<a f <«
Hopping d< « d < « d < «
Small Pairs d<p d<p d<f+2
Extended Pairs | d<pB/2 | d<2& | d<2@2
Iterated Pairs | d < (/2 d<p/2 |d<(8+4+2)/2

divergence suggests the existence of a percolating network which conducts energy [51]. We

consider a general two-body Hamiltonian of spin 1/2 particles with conserved total S?,

H= ZEZSZ Z |7“

(SFS; + h.c.) +Z Y ges:

S (2.1)

where ¢; is a site dependent disorder field of bandwidth W, while o and § are the exponents
governing the power law decay of spin flip-flops and spin interactions, respectively; we
assume 5 < « consistent with all physical realizations of which we are aware. Clearly, the
analysis applies to general long-range interacting two-level systems with a conserved charge.

We identify resonant pairs of spins as those for which |e; — €;| < t;;/|7;|%; the expected
number of resonant spins at a distance Ry < |r;;| < 2R; from a central spin is

t/ Ry

Ni(Rq) ~ i

(pRY) -

(2.2)

where p is the density of spins. If Ni(R;) diverges as R; — oo, that is, if d > «, then any
spin resonates with arbitrarily distant spins and localization is impossible; this is precisely
Anderson’s criterion for single-particle localization. In the critical case, d = «, a detailed
renormalization group treatment confirms subdiffusive but delocalized behavior for the
non-interacting case [23, 61, 62].

As shown in Fig. 3a, the two strongly-hybridized central levels of a resonant pair define a

new pseudo-spin degree of freedom (blue arrows) with local splittings § ~ ¢/ R.
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Figure 4: Finite size scaling of the long-time dynamic polarization for Eq. (A.13) in d = 1 (with
units t = 1,V =2) witha) a==1,b) a==3/2,¢c) a==2,and d) a« = = 3. The lack
of flow reversal in (a) suggests delocalization at all disorders. The sharpening of the crossover as
a function of increasing system size in (d) suggests the existence of a phase transition at approxi-
mately W, &~ 10 into an MBL phase. The flow at intermediate power-laws (b) is inconclusive.

Pseudospins can exchange energy through the interaction V' since the operators S* have
spin-flip matrix elements between the two pseudospin states [51]. Two pseudo-spins
separated by Rs resonate if 01,09 > V(Rs) 2 |01 — d2|. The number of such resonances
available in a shell from distance Ry to 2R, around a fixed pseudospin (Fig. 3b) is

V/R;

Ns(Ry, Ry) ~ (n1(R1)R3) - R

(2.3)

where ny = pV; is the density of pseudo-spins. As before, if Ny diverges as Ry — oo, large
scale pseudo-spin resonances induce delocalization [51]. There are two limits. The simplest
case occurs when one holds the pair size R, fixed as Ry diverges; this “small pairs”

condition yields a localization criterion d < . The second case requires optimizing R, as

Ry grows in order to saturate the probability of pseudo-spin resonance. More precisely, one

8 8
should replace ‘t///g‘; — min][l, ‘t///g‘;] in Eq. (A.15). The optimum arises for Ry ~ RS/ “
yielding a more stringent “extended pairs” condition, d < ;‘—fﬁ

It is clear that one can continue iterating the construction of pair resonances. However,
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the resulting criteria for MBL saturate after the third level [63],

V/R]
V/R}

N3(R1, RQ, Rg) ~ (n2(R1, Rg)Rg) . (24)

where ny = n1 N, is the density of pseudo-pseudo-spins. There are three limits as R3
diverges. Holding R;, R» fixed reproduces the small pairs criterion. Holding R; fixed but
optimizing Ry ~ Rj (to saturate the probability of resonance in Eq. (A.8)) yields a new,
“iterated pairs” criterion d < /2. Finally, optimizing both R; ~ Rg/ “and Ry ~ R3
reproduces the extended pairs criterion.

The above results hold for generic anisotropic distributions of ¢;;, Vi; (first two columns
of Table 2.1.1). In cases where the hoppings and interactions are isotropic, the effective
matrix elements that arise in the four-spin construction cancel at leading order. This can
be interpreted within a multipole expansion (for Ry < Rs) which amounts to replacing
v/ Rg — VR?/ R’SH for Ny and analogously for subsequent iterations (last column of
Table 2.1.1).

A few comments are in order. (1) In the anisotropic and unmixed (o = f3) cases, the
iterated pairs criterion d < (/2 is always most stringent, a result first derived in [51]. (2)
In the isotropic case, for a < § + 4, the extended pairs criterion is most stringent, while for
a > [+ 4 the iterated pairs criterion dominates. (3) The case of an Anderson insulator
with Coulomb interactions corresponds to the a — oo limit of the isotropic case, giving an
upper critical dimension of d. = 1.5. (4) The case of interacting dipoles with a = 8 =3
also gives d. = 1.5. Interestingly, the orientation dependence of the dipolar interaction is
sufficiently isotopic to enable a multipole expansion. Thus, in experiments that can realize
a =6, 8 =3 (as will be later discussed), d. ~ 2.3.

Ultimately, all of the resonance arguments described above rely upon the analysis of
finite subsets of spins. While providing useful insights, such arguments must be viewed as

heuristic. To supplement, we have performed extensive exact diagonalization studies of
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Eq. (A.13)ind =1 for « = = 1,3/2,2,3. We consider periodic systems up to size L = 14
at filling fraction v = 1/2. The random fields are drawn from a uniform distribution of
width W, the interaction V;; = V' = 2 and hopping ¢;; = ¢ = 1. The presence of a
many-body localized phase may be detected by the finite size flow of the dynamic
polarization D, a measure of spin transport across the 1D system at infinite temperature
[8]. We perturb each eigenstate with a small (long-wavelength) inhomogeneous spin
modulation of the form F =" ;Szem/T and measure the relaxation of this
inhomogeneous polarization at infinite time. For each disorder realization n and eigenstate

k, the dynamic polarization is given by

DE=1- (kL E k) (KL k) (2.5)
(K|FTE[E)

We then define D as the infinite temperature disorder average of Df;. As L — 00, in the
ergodic phase, one expects D — 1 since the initial inhomogeneity relaxes away; in the MBL
phase, one expects D — 0 since there is no transport.

The results are shown in Fig. 4. For all exponents, we find that the finite-size flow of D
is consistent with delocalization at weak disorder. At strong disorder, for o = 2, 3 there are
signs of flow reversal, consistent with a transition into an MBL phase, while for a = 1 the
flow remains toward delocalization for all disorder strengths. Owing to the small sizes
accessible to exact diagonalization, flow reversal does not prove the existence of a
transition; however, for a = 3 the combination of relatively clear flow and the previous
theoretical argument suggests the existence of an MBL phase. The strong disorder flow at
intermediate exponents o = 3/2 is inconclusive. Accordingly, for d = 1, we numerically
bound the critical power-law with 1 < a. < 3, noting that the extended pairs criterion
gives a, = 2. The difficulty of investigating an MBL transition in small size numerics

emphasizes the importance of controlled experiments.
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Figure 5: a) Schematic of the one-dimensional tube geometry with strong confinement in the g
and Z directions and hopping in the & direction. b) Dipolar molecules in each 1D tube are sub-
ject to an optical speckle pattern which generates an effective random on-site chemical potential
for the hopping molecules. ¢) Schematic of the dipolar ‘spin’ hopping model. Molecules pinned
with dilution in deep optical lattice may exchange rotational excitations. d) Effective rotational
level structure of a polar molecule, with |1) = |1,1),]}) = |0,0) shown for the « = 5 = 3 rotor
model. e) Level structure of two polar molecules for the @ = 6 rotor model, wherein hopping is
mediated by a second order dipolar process.

2.1.2 Experimental realizations

We next analyze two classes of experimentally accessible systems in which MBL phases
may be realized. First, we consider an array of polar molecules confined to a
one-dimensional tube geometry (via an optical lattice) as depicted in Fig. 5a,b [56]. The
optical lattice is strongly confining along the y and Z axes, but molecules can tunnel with
nearest-neighbor hopping strength ¢ along the tube in the Z direction (o« — 00). The
molecules are prepared in their rovibrational ground state and subject to a static electric
field F perpendicular to the tube direction. The applied electric field weakly aligns the
molecules along the field direction, inducing a finite dipole moment d and a long-range
electric dipole-dipole interaction between the molecules V' ~ d?/R? (3 = 3). By ensuring
that the dipolar interaction strength is much weaker than the rotational splitting B

(Fig. 5d), all molecules remain in the rovibrational ground state. Finally, an optical speckle
field may be superimposed on top of the underlying lattice introducing on-site potential

disorder with strength W controlled by the laser intensity (Fig. 5b) [64].
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The magnitude of the electric field tunes the strength of the dipolar interaction V' ~ d2.
In the limit £ — 0, the interaction strength V' — 0, and the resulting nearest-neighbor
Hamiltonian can be fermionized. This non-interacting model is completely Anderson
localized in the presence of any disorder. With the addition of local interactions, the
existence of an MBL phase has been established both theoretically and numerically
[3-6, 8]. According to the criterion in Table I, the MBL phase ought to also survive the
introduction of long-range dipolar interactions. To confirm this expectation and further
establish an experimentally relevant phase diagram, we perform exact diagonalization for
molecular filling fractions v = 1/2,1/3,1/4 up to system sizes of L = 16, 18,20 respectively
(Fig. 6a). As depicted in Fig. 6b, we obtain the MBL phase diagram as a function of
interaction strength, filling fraction, and speckle intensity [64].

We next consider disordered arrays of interacting molecules with fixed center of mass
position and focus on the dynamics of rotational excitations (Fig. 5¢). In the deep lattice
limit, the orbital motion of the molecules is pinned and the residual rotational degree of
freedom is governed by an effective Hamiltonian, H,, = BJ? — d*E [65]. A combination of
electric and magnetic fields allows us to isolate an effective two-level system:

l}) =1J =0,m; =0) and |1) = |J = 1,m; = 1) (Fig. 5d) [66]. The rotors interact via
electric dipole-dipole interactions with Hamiltonian, Hy; = % > oy w, where d is
the dipole moment operator. Projecting Hgyy onto the two level subspace {|}),|T)} and
keeping only secular terms yields the Hamiltonian of Eq. (A.13) with effective on-site fields
sda

given by ¢; = Z#i Ldos o =B =3 and d,, =

Tij

1|d?[1)%(0|d?|0 . : .
W. Assuming Poissonian

(uncorrelated) dilution, the fields ¢; become random variables with standard deviation

W~ e

: v(1 — v), where ag is the lattice spacing. We expect the weak correlations of

the random fields to leave the previous numerical phase diagrams in d = 1 qualitatively
unchanged (Fig. 4d).
This dipolar spin model becomes particularly intriguing as one varies the dimensionality

of the system since the “extended pairs” criterion predicts d. = 3/2 for « = 5 = 3.
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Figure 6: Exact diagonalization study of Eqn. (1) with nearest neighbor hopping (o — o) and
dipolar interactions (8 = 3). Random fields are drawn from a uniform distribution of width W.
a) Finite size scaling of the long-time dynamic polarization. The finite size flow suggests a delo-
calization phase transition at approximately W, ~ 1.4¢t. b) MBL phase boundaries determined by
finite-size flow for V/t = 1,2,4. Error bars as determined by the width of the intersection region
are smaller than markers.

Compared to the simple Anderson criterion, which predicts d. = 3, this already allows one
to investigate the validity of the resonant pair counting arguments for optical lattice
pancakes where d = 2.

An additional feature of such systems is the ability to tune the spin-flip power-law. The
large rotational constant B enables restriction to the Hilbert space spanned by
1) =|J=1,m; = —1) and [1) = |J = 1,m; = 1). In this case, the dipolar flip-flop process
is effectively eliminated at first order; the system instead hops two units of J* via a second
order process of the form (Fig. 5e), H' =5 % [(d%)2(d”)? + (d)*(d,)?], while the
interaction remains formally unchanged. With the effective hopping power-law increased to
a = 6 and the interaction remaining as § = 3, one finds that (in d = 2) all criteria for the
consistency of localization are now satisfied, including both the extended pairs criterion
which predicts d. ~ 2.3 and the iterated pairs criterion with d. = 2.5.

Finally, solid-state implementations can be considered using spin defects in
semiconductors. For example, Nitrogen-Vacancy (NV) defects in diamond [44, 58-60] are
spin-1 magnetic impurities described by the Hamiltonian, Hyy = DS? + u.BS., where Dy
is a large crystal field splitting. In the presence of an applied magnetic field, one can restrict

the NV dynamics to a two-level subspace and recover the Hamiltonian of Eq. (A.13).
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2.1.3 Feasibility and detection

There are several probes available for detecting many-body localization in quantum optical
systems: 1) observing arrested decay of a long-wavelength spin/number modulation, 2)
generalized single-site spin-echo protocols that exhibit anomalously slow dephasing

[10, 13-15, 20], and 3) direct measurements of real-space correlation functions. The
simplest approach is to directly observe a lack of diffusion. In a typical ergodic system, an

2
DEZt where

initial long-wavelength inhomogeneous number /spin polarization decays as ~ e~
D is the diffusion constant. For a many-body localized phase, D = 0. In any experiment,
coupling to an external bath is unavoidable and produces characteristic decoherence
timescales; Ti-type depolarization provides a uniform k-independent contribution to the
overall decay. In the presence of weak Markovian T, dephasing, extrinsic energy
fluctuations induce diffusion, with D, ~ a2/Ts (neglecting back-action onto the bath).
Since Ty < T7, the figure of merit in such experiments is a separation of scale between Dr,
and the expected ergodic diffusion, D, ~ a3/T,,, where T,, represents the lattice scale
hopping time. Alternatively, one can also measure the decay of an initially polarized region;
for a Gaussian spot of initial size ¢ (larger than any correlation length), the modulation at
the origin decays as ~ (£2 4 Dt)~%2¢=t/Tt Here, one hopes to extract the sub-exponential
diffusive behavior, which can in principle be achieved by varying the spot size.

In the molecular case, the most direct experimental realization of our proposals would be
in diatomic alkali systems [57, 67-71]. Both the orbital and rotational cases can be carried
out with currently available technology; indeed the loading of “°K®"Rb molecules into 1D
[56] and 3D [67] lattices, as well as dipolar spin-exchange [66], have already been
demonstrated. For a typical polar molecule with saturated dipole moment ~ 3 Debye, the
interaction strength at 532nm (optical lattice spacing) corresponds to approximately
100kHz, yielding T,, ~ 10us. Meanwhile, dephasing times of up to Ty ~ 100ms [66] and
ground-state lifetimes of up to 7 ~ 25s have been observed [67].

In the case of N'Vs, recent advances in implantation and annealing have enabled dense
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defect ensembles with average spacing ~ 2 —3nm. The magnetic dipolar interaction at such
distances is given by T,, ~ 1lus, significantly smaller than the typical room-temperature
coherence times 77, Ty ~ 10ms of isolated NVs (working at cryogenic temperatures can lead
to further improvements [72]). To observe many-body localization in such a system will
require the ability to reduce the effective dimensionality; this can be achieved by fabricating
quasi-1D diamond nano-pillars [73] or by controlled implantation in 2D layers [74, 75].

In summary, by constructing hierarchical spin resonances we have analyzed upper critical
dimensions for many-body localization in the presence of power-laws (Table I). Our
arguments suggest that MBL is accessible to AMO-type experiments involving dipolar
spins in two dimensions or hopping polar molecules in three or fewer dimensions. Our work
opens a number of intriguing directions: (1) generalizations to other dipolar platforms such
as Rydberg atoms, trapped ions and other spin qubits, (2) working near the upper critical

dimensions to probe the nature of the MBL transition.

2.2 Detecting many-body localization via double electron-electron resonance

In the previous section, we described possible experimental realizations of many-body
localization. This begs the question: how does one probe a many-body localized AMO
system?

In this paper, we propose and analyze a new method for studying MBL, based on
coherent manipulation of individual degrees of freedom. We focus on disordered spin
systems, and show that spin-echo type measurements performed on individual spins can be
used as sensitive probes of localization [Fig. 7(a)-(c)]. Such measurements are standard in
liquid and solid-state spin systems (see [76] and references therein), as well as in systems of
cold atoms [21, 77-80]. Specifically, in order to probe MBL, we introduce a modified,
non-local spin-echo protocol [Fig. 7(c)], akin to the double electron-electron resonance

(DEER) technique in electron spin resonance [81-83], that allows one to probe the
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Figure 7: (Color online) Schematic illustration of the proposed protocols. (a) Spins are manipu-
lated with lasers in two spatially separated regions I and II. (b) The protocol consists of a Hahn
spin-echo sequence in region I while leaving region II untouched. (¢) The DEER protocol differs
by 7/2 rotations in region II which are performed after half of the evolution time. (d) Schematic
response of a system in the diffusive (left), non-interacting localized (center), and many-body lo-
calized (right) phases, to spin-echo and DEER protocols respectively. The combined information
from both sequences allows one to distinguish the different phases.

DEER

dynamical correlations between remote regions of a many-body system. This approach can
reveal interaction effects and probe quantum entanglement within the MBL phase. In
particular, the slow growth of entanglement entropy associated with the MBL phase
manifests itself in a power-law decay of the DEER response. Furthermore, by measuring
both the spin-echo and DEER response one can distinguish the MBL phase from a
non-interacting localized (NIL) phase as well as a diffusive phase [Fig. 7(d)]. We discuss

specific realizations of our proposal in several cold atom and solid state systems.

2.2.1 Conceptual approach

The key idea of this work can be illustrated using a phenomenological model of the MBL
phase [14, 15] that characterizes it by an infinite number of local integrals of motion, which

can be chosen as effective spin-1/2 operators 77 with eigenvalues +1. In terms of these
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variables, the MBL Hamiltonian is [14, 15]

}AI = Z iLiTZ.Z —+ Z tjijTiZTf + Z kZL‘jkTiZTjZTIj + ... (26)
i ij ijk
The couplings Ji;, Jijk, - - - fall off exponentially with separation with a characteristic

localization length & (expressed in units of the lattice constant). The Hamiltonian (2.6)
conserves the expectation value of each 77; however, interactions between effective spins
randomize relative phases of different components of the wave function. Such dephasing
generates entanglement between distant parts of the system [14, 15].

We first discuss interferometric signatures of Hamiltonian (2.6) assuming that one can
directly manipulate the effective spins 77 (in what follows we shall refer to effective spins
simply as “spins”), and later generalize these arguments to realistic cases involving
manipulation of physical rather than effective spins.

Let us first consider a simple spin-echo sequence applied to an individual spin I
[Fig. 7(b)]. Starting from an arbitrary eigenstate of H (i.e., a product state of the form
11441 - . .)), we initialize spin I in a superposition state [+); = (]1); + [4);)/v/2. Spin I
precesses in the magnetic field heg(I) = hy + 3 i T+ 20 TukTiTi + ..., which depends
on the state of the surrounding spins. The thermal average over initial states gives rise to
dephasing and decay of the free precession signal. The standard spin-echo sequence,
however, allows one to recover the quantum coherence of spin I, by applying a time-reversal
m-pulse to it at time ¢/2. For the MBL Hamiltonian (2.6), the precession induced by heg(I)
over the initial evolution for ¢/2 is cancelled by the precession accumulated during
evolution for time ¢/2 after the m-pulse, independent of the value of heg(I). However, since
spin echo is insensitive to dephasing in the MBL phase, it does not distinguish between
NIL and MBL phases.

We next introduce a modified spin-echo protocol, which directly probes interaction

effects in the MBL phase. The idea, inspired by the “double electron-electron resonance”
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Figure 8: (a) Typical behavior of spin-echo and DEER response for the random-field XXZ model
[Eq. (2.12)], averaged over 50 random eigenstates for a single disorder realization. The spin-
echo response F(t) quickly saturates, whereas the DEER response D(t) slowly decays to a much
smaller value. (b) Saturation values of disorder-averaged spin-echo fidelity as a function of disor-
der strength W and system size L for the random-field XXZ model with J, = J;. These results
are consistent with the expectation that ((F(¢))) should saturate to a nonzero value in the ther-
modynamic limit (see main text).

(DEER) technique [81-83], is to perturb spins in a remote region II, situated at a distance
d 2 & away from I, halfway through the spin-echo sequence. More specifically, DEER is
identical to spin echo for the first ¢/2 of time evolution, but simultaneously with the 7
pulse to spin I, another pulse (which we shall take to be a 7/2 pulse) is applied to all the
spins in region II. Assuming that the remaining spins are in a state with definite 77, all
interactions except those between spin I and region II are decoupled by this protocol; thus,
the decay of the DEER response directly measures the influence of region II on spin I.
Before analyzing the DEER response, we summarize our qualitative expectations
[Fig. 7(d)]. In the diffusive phase, both spin-echo and DEER responses should decay on a
fast timescale set by the spin-spin interaction. In the NIL phase, both spin-echo and DEER
responses should saturate at the same nonzero value in the thermodynamic limit, as
dephasing is absent. Finally, in the MBL phase, the spin-echo response should saturate

while the DEER response exhibits slow decay.
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2.2.2 DEER response

The time-evolution of the many-body wave function under the DEER sequence is described
by
lw(t)) = RYe~ M3 R R e~ RY? [4(0)) (2.7)

where R = Lo, (1 = i69)/v2, and R = (R7")
Many features of the DEER response can be understood by keeping only two-spin

interactions in Eq. (2.6), in which case the answer takes a compact form:

D(t) = @O (1) (2.8)
62’L'C7I]'Tjt

where the product is over the N spins of region II and 7; is the initial configuration of spin
j. The additional effects induced by three- and higher-spin interactions are considered
below.

To analyze the behavior of D(t), we note that the couplings Ji; decay exponentially with
the separation |j — I|, and therefore different terms on the r.h.s. of Eq. (2.9) oscillate at
very different frequencies. This leads to a separation of scales: at a given time, there are
~ N “fast” coupling constants, for which J; > 1, and the remaining ones are “slow,”
Ji;t < 1. In the product in Eq. (2.9), the terms corresponding to slow couplings contribute
factors which are close to 1 and are nearly time-independent, while the terms
corresponding to fast couplings oscillate between 0 and 1. Thus, D(t) can be separated into

a time-averaged term D(t) and an oscillatory term, Dog.(t):

D(t) = D(t) + Dosclt),  D(t) = 1/2V®), (2.10)

where the first term is obtained by replacing rapidly oscillating terms with their average

value of 1/2.

25



The number of “fast” couplings depends on time, and can be estimated knowing that
Ji; < exp(—|7 —1|/€). A coupling becomes “fast” when |j — I| < £log(t), i.e., when
entanglement has had time to propagate between the two regions [13]. Thus, the DEER
response has three regimes: (i) at short times ¢ < tg = h/J, (where k = I + d is the spin
in region II that is most strongly coupled to I), Np,ss = 0 and dephasing is absent; (ii) at
intermediate times ty <t < toeV/¢, we find Npg (1) ~ Elog(t/ty), so that D(t) ~ t=¢2; and
(iii) at very long times t > t,e™¥/¢, all couplings are fast, so that the DEER response
saturates at D(oo) ~ 27V, These three regimes can be combined using the following
interpolation formula:

(L+82/t5)72 ¢ S toel/e

D(t) = , (2.11)
2N > toelV/e

where a = £In2. Upon disorder averaging, one expects Dos.(t) to be suppressed, as the
oscillation frequencies vary randomly from realization to realization. Thus the full
disorder-averaged DEER response is given by Eq. (2.11).

We note that, although truncating Eq. (2.6) at two-spin interactions gives the correct
structure for the time- and disorder-averaged DEER response, it leads to incorrect
predictions for the oscillatory term Deg(t). Three- and higher-spin terms make the

oscillation frequencies dependent on the initial eigenstate, leading to the suppression of

Dosc(t) upon thermal averaging.

2.2.3 Numerical simulations

We now test the previous arguments against numerical simulations by studying the

spin-echo fidelity and DEER response for a 1D random-field XXZ spin chain, believed to
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Figure 9: DEER response thermally averaged over 50 eigenstates for three particular disorder
realizations of the random-field XXZ model, both at weak interactions (J, = 0.1/, ) and mod-
erate interactions (J, = J). The general trend is consistent with that predicted by Eq. (2.11),
but residual oscillations and sample-to-sample fluctuations are strong. The disorder strength is
W = 6J; spin I is located at I = 3, and separated by d = 3 spins from region II with N = 7
spins.

exhibit an MBL phase [8]:
] JL O+ G G 2z Qz 2
HZE;(S,-S A ZSS +ZhS (2.12)
ij

where 5'3“ with a € {x,y, 2z} are spin-1/2 operators with eigenvalues +1/2, S']i = S']‘” + zgjy,
and the random field h; is uniformly distributed in the interval [—-W; W]. For open
boundary conditions and J, = 0, H maps onto free fermions moving in a disorder potential.
In this limit, the system is in an NIL phase for any W > 0. When J, # 0, the system is
believed to exhibit both MBL and delocalized phases as a function of W/.J, [8].
Although the Hamiltonian in the MBL phase can be expressed in the form of Eq. (2.6)
when written in the basis of conserved quantities (effective spins), in experiments one
manipulates the physical S-spins, rather than the effective 7-spins. In what follows, we
calculate the response for spin-echo and DEER protocols performed on the physical spins.
We show that, due to the local relation between physical and effective spin operators, the
behavior of spin-echo and DEER responses discussed above remains qualitatively correct

throughout the MBL phase, and becomes quantitatively correct in the limit of strong
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Figure 10: (a) Disorder-averaged DEER response for the random-field XXZ model for both weak
(J; =0.1J,) and moderate (J, = J, ) interactions, and both small (d = 3) and large (d = 7) sep-
arations between spin I and region II. A regime of power-law decay, spanning multiple decades,
can be seen in all cases. (The disorder strength is W = 8.J, and the size of region Il is N = 3.)
(b) Dependence of the exponent « on disorder W (for d = 7 and N = 3). The fit, given by

a = c¢1/In(c2W), is consistent with the scaling of the localization length, & ~ 1/In(W), at strong
disorder. (c) Saturated value of DEER response, D(c0), for various sizes of region II (denoted
N) and various values of J,. We find that D(cc) does not depend on J, and decreases with N as
c/1.8V.

disorder.

We study time evolution and response functions by exact diagonalization of the
Hamiltonian (2.12). Unless otherwise specified, the chain contains L = 12 spins with open
boundary conditions. The Hamiltonian is diagonalized for all total S* sectors, and DEER
response (2.8) is calculated numerically. The initial state [¢(0)) is a randomly chosen
eigenstate, such that D(0) = (¥(0)|6f|1(0)) > 0. Thermal averaging is performed over the
entire band (infinite temperature), and is denoted by single brackets, (D(t)).

We first calculate thermally-averaged spin-echo and DEER response for a single disorder
realization (Fig. 8). Spin echo was implemented both using the protocol of Fig. 7(b) and a
modified protocol in which a 7/2 pulse was applied to region II at time ¢ = 0; the
disorder-averaged fidelity shows the same behavior for both protocols. In the MBL phase,

the spin-echo fidelity remains finite at long times, but its saturation value is smaller than
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one, reflecting the difference between physical and effective spins. Each pulse affects several
effective spins; therefore, the probability to come back to the initial state at the end of the
sequence is reduced. At strong disorder, the spin-echo fidelity saturates to a value close to
unity and is system-size independent. In contrast, the DEER response decays to values
much smaller than one.

Fig. 9 demonstrates that the DEER response (thermally averaged over 50 eigenstates for
a single disorder realization) fits well to the modified interpolation formula
D(t) = A/(1 + t2/t2)*/2 where a multiplier A has been introduced to account for the
difference between effective and physical spins [cf. Eq. (2.11)]. However, the oscillations
coming from Dy (t) are still significant.

Plotting the disorder-averaged DEER response (denoted by double brackets (D(¢)))) on
a double logarithmic scale, Fig. 10(a), clearly reveals a power law decay spanning several
decades. Comparison of (D(t))) for different separations d between regions I and II
illustrates the sensitivity of to[~ exp(d/¢)] to d. Fig. 10(b) shows the dependence of the
exponent governing the power-law decay, a, on disorder: a decreases with increasing
disorder strength, and is well-described by the functional form a = ¢;/In(ca W), consistent
with the relation o = £1In 2 and scaling of the localization length £ oc 1/1In(W) at strong
disorder. Finally, we study the dependence of the disorder-averaged saturation value of the
DEER response as a function of the number of spins NV in region II, Fig. 10(c). The
saturation value, which is nearly independent of the interaction strength, fits to a function
f(k) = c/1.8" (for effective spins, by contrast, Eq. (2.11) predicts 1/2%). Thus, the DEER
response for physical spins has the same functional form as that for effective spins,
although the coefficients are different, owing to the difference between physical and

effective spin operators.
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2.2.4 Experimental considerations

Promising experimental systems for studying MBL include ultracold atomic [64, 84, 85]
and molecular [57, 66] gases confined in optical lattices, as well as localized spin defects in
solids such as nitrogen-vacancy (NV) centers in diamond [44, 60]. Such systems can be
well-isolated from their environment and feature long coherence times. Further, they can
be manipulated by optical and microwave fields, thus allowing for implementation of the
pulsed protocols. We now evaluate the feasibility of the present protocols in a number of
experimental settings. In each case, the slow DEER decay can be observed provided that:
(a) there exists a separation of scales between the couplings J,,J, and the extrinsic
decoherence rate T} ', and (b) excitations are localized on a small number of sites, ensuring
a reasonable spin-echo fidelity.

The most direct implementation of our protocols involves a two-component Fermi- or
Bose-Hubbard model in a disordered optical lattice: in such models, random spin-spin
interactions arise via superexchange, and random fields can be imposed via a
state-dependent optical lattice. The typical interaction scale J ~ 10 Hz, whereas achievable
T, times (limited by particle loss) are limited to about 10s [86-88]. The ratio between
these scales is < 500; thus, the DEER protocol can detect entanglement at realistic
distances < £1In(JT;) =~ 6£. Even more favorable conditions exist in systems with dipolar
interactions. For instance, in NV-center samples at achievable densities (e.g., spacings of 10
nm), J ~ 100 kHz and T; ~ 10 ms, yielding T;/J~! ~ 5 x 10%. For Rydberg atoms,

J ~ (1 —10)MHz (e.g. in 38s state of Rb at typical distances ~ 5um), while Ty ~ 100us;
therefore, Ty/J ™1 ~ (0.5 — 5) x 103. Finally, for polar molecules in optical lattices,

J ~ 50Hz and T; ~ 25s, and thus T;/J~! ~ 8 x 103. For all these cases, therefore, it
should be feasible to probe interaction effects in the MBL phase through DEER; however,
the functional form of the dephasing might differ from that considered here, as the
power-law tails of the dipolar interactions modify localization (although the MBL phase is

expected to survive for dipolar interactions in one dimension [51, 61, 89]).
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Before concluding, we note that since the proposed protocols can distinguish various
phases after disorder-averaging, they can be applied even in experiments where the
disorder realization changes between individual experimental runs. This is especially
important for realizations involving atoms or molecules loaded at random into a deep
optical lattice; in such systems each disorder-realization is destroyed upon measurement.

In summary, we showed that coherent manipulation of spins can be used to probe
many-body localization. In particular, the modified spin-echo protocol directly probes the
characteristic slow entanglement growth in the MBL phase, and distinguishes it from the
NIL phase and the delocalized phase. We demonstrated that the corresponding response
function exhibits a power-law time decay, which reflects the broad distribution of time
scales present in the MBL phase. The technique is robust with respect to thermal and
disorder averaging, and can be implemented, using currently accessible experimental

means, in ultracold atomic, molecular and solid-state spin systems.

2.3 Translation Invariant Many-body Localization

In the final section, we consider the possibility of many-body localization in the absence of
disorder. Since its proposal in 1958 [23], Anderson localization has been observed in
systems ranging from light and sound waves to electron gases and ultracold atoms. In each
of these systems, disorder has been crucial to realize this single particle wave phenomenon.
Extending disordered localization to the interacting many-body regime has attracted
tremendous recent attention [3-8, 10-22, 49-52|, in part, because it represents a
fundamental breakdown of statistical mechanics. This breakdown opens the door to a
number of intriguing possibilities, including: novel phase transitions in high-energy states,
the protection of topological order, and quantum computing in a disordered many-body
system.

Recently, a number of proposals have suggested the possibility that localization can

persist even in the absence of disorder. One class of such models involves two types of
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particles (light and heavy); the dynamics of the heavy particles are significantly slower than
those of the light particles. At short time-scales, interactions between the heavy and light
particles can induce a random quasi-static background potential for the light particles. If
strong enough, this effective disorder can localize the light particles and one can argue, in
perturbation theory, that transport owing to the slow dynamics of the heavy particles is
insufficient to delocalize the system. Alternate models involving the motion of long-range,
power-law interacting impurities or generalized Bose-Hubbard models have also been
studied with similar conclusions. A central question which has emerged from these studies
is whether randomness in the state of the system can be enough to cause “self-localization”.

In this section, we address this question by considering a translation invariant two-leg
spin ladder. We demonstrate that quasi-static many-body localization can exist for finite
systems and quantify the three microscopic time scales that emerge. Despite signatures
consistent with many-body localization at intermediate time-scales (e.g. a slow logarithmic
growth of entanglement), we find ultimate thermalization at long times for all systems
studied. We note that these results are preliminary and that there seems to emerge an
extremely strong (anomalous) scaling of the decay of the fractional polarization in the
heavy chain as a function of system size; this may in fact be evidence for self-induced
many-body localization and is currently under study.

Consider a two-leg, spin-1/2, ladder as shown in Fig. 11, with Hamiltonian,

H=Y"JStS;+Y Jofoy +>  J.Sioi + hc (2.13)
(i) (i) i
Spins of the lower (upper) rung are labeled S(o) and are coupled via a nearest neighbor
XY interaction of strength J (J). The two spin species are coupled across a rung via Ising
interactions of strength J,. In the limit, J' — 0, the o spins of the upper chain can be
viewed as classical variables that generate disorder for their S-spin cousins. Depending on

the state of the {o;}, the lower chain sees an effective random on-site field of strength £.J,,
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Figure 11: Schematic figure of the spin-ladder model. The upper and lower chain are governed by
nearest neighbor XY models with strength J and J’ respectively. For short times, the J’ chain
effectively creates quasi-static quench disorder for the J chain inducing localization. Once dy-
namics are turned on for finite J’ the chains become interacting and thermalization eventually
occurs. The green dotted line indicates the position of the cut used in partitioning the system for
entanglement entropy calculations.

which for large J,, induces single particle localization of the S chain.

As one turns on J’ causing slow dynamics in the o chain, the system is no longer
non-interacting. Formally, this arises because strings of the Jordan-Wigner transformation
no longer cancel between all pairs of sites. Thus, a perturbative J’ effectively induces
interactions in the system, and the question becomes: does the system transition from
single-particle to many-body localized and if so, does localization persist to infinite times.

To study these questions we perform extensive exact diagonalization studies of
Eq. (2.13). We consider periodic systems up to size N = 20 and work within the Hilbert
space with S}, = o7, = 0. Since we are interested in the effect of slow dynamics from the o
chain, we begin deep in the single-particle localized regime with J = 1.0 and J,10.0. We
probe the effect of perturbative J' < J with two measures. First, we consider the growth
of entanglement entropy Se,; = —trpalogpa = —trpplog pp across a central cut (parallel
to a rung, Fig. 11) that divides the system in sub-regions A and B. Initial states are
chosen to be random product states within the relevant Hilbert space and we average over
between 30-100 states depending on system size.

Second, we explore the decay of the dynamic polarization D, a measure of spin transport
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Figure 12: (a-c) Depicts the growth of entanglement entropy and the decay of fractional po-
larization for N = 8 total spins. The entanglement entropy is averaged over 30 initial prod-

uct states and the fractional polarization is taken for an infinite temperature state within the
Sty = oi,; = 0 Hilbert space. The blue polarization plots are for a k = 1 initial spin polariza-
tion with the upper plot depicting the S-chain response while the lower plot depicts the o-chain
response. The red plots depict the decay for a k = 2 initial spin polarization. ¢;,; is indicated
by the purple dashed line while ¢4 is indicated by the black dashed line. (d-f) Analogous plots for
N = 16 total spins. Entanglement entropy is averaged over 50 initial product states and only

k = 1 polarization decay is shown.
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across the system at infinite temperature [8]. We perturb each eigenstate with a small
(long-wavelength) inhomogeneous spin modulation of the form F' =3 ; Szemi/L (replacing
S% with oF for the upper chain) and measure the time-dependent relaxation of this

inhomogeneous polarization. For each eigenstate k, the dynamic polarization is given by

pf — 1 SHIETR)(kIFIR) (2.14)
(k| 1 F|R)

and we define D as the infinite temperature average of D*.

The results for N =8, J' = 1072,1073,10* are shown in Fig. 12. Interestingly, we
observe three plateaus in the growth of the entanglement entropy. For all J’, we observe an
initial rise of Se,; until time ¢ ~ 1/.J corresponding to a rapid expansion of wave packets to
a size of order the localization length. The entropy then saturates (albeit oscillating) for a
period of time before beginning a second phase of entanglement growth. This second
growth step also saturates for an extended time before a third and final spurt where the
entropy reaches its thermal plateau.

The three regimes can be qualitatively understood as follows (Fig. 13a). The first
entanglement plateau which arises at ¢ ~ 1/J corresponds to single-particle localization.
As aforementioned, in the absence of J’, the system is non-interacting. Thus for time scales
t < 1/J', the system behaves as if it were single-particle localized with interactions turning
on only at some effective (J' dependent) interaction time t;,;. The second phase of
entanglement growth occurs for ¢t > ¢;,; and is consistent with a slow, logarithmic rise,
characteristic of many-body localization. As the system is finite, this growth ultimately
saturates to a quasi-MBL plateau. Finally, at late times ¢t > ¢4, a third phase of
entanglement growth begins, signifying thermalization of the entire system and diffusion in
the upper chain.

To understand the microscopic origin of these various time-scales we consider the scaling

of t;,; and t4 as a function of J'. Comparing the growth of S,,; across the various
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parameters yields t;,; ~ 1/J" and t;,; ~ 1/J'%; similarly, holding J, J' fixed while varying .J,
yields that ¢;,; ~ J, (see supplementary information). The scaling of ¢;,, is consistent with
a picture of J’ induced departure from single-particle localization. In particular, the
effective induced-interaction-strength is directly proportional to J' and arises from the
delocalization of upper chain particles across a bond where a pair of S spins are aligned
(inset Fig. 13a). The scaling of tq ~ J,/J"? suggests that the eventual diffusion in the
upper chain is characterized by a diffusion constant ~ J?/.J, consistent with a picture of
off-resonant hopping across a flipped S-rung (Fig. 13b). The decay of fractional
polarization confirms that the final plateau correlates with diffusion of the slow, upper
chain as t; corresponds to the location where the upper chain Dj,_; reaches its final decay
step. Interestingly, it also corresponds to the location where the k = 2 polarization first
decays to zero.

Our microscopic understanding of the triple plateau observed in the entanglement
entropy suggests that the schematic picture shown in Fig. 13a may not be generic for
longer chains. In particular, the slow growth of entanglement in the quasi-MBL regime
owes to exponentially weak dephasing across the system; thus, the saturation of such
dephasing occurs at times t ~ e”. On the other hand, the eventual thermalization of the
system is driven by diffusion in the upper chain. To wit, the decay of a k = 1/L fractional
polarization is expected to scale as ~ e~P¥*t_ yielding ty ~ L?/D, with D ~ J/.J, being
the effective diffusion constant from above. Thus, for longer spin ladders, one would not
generically expect the logarithmic MBL entanglement growth to saturate before being
cut-off by thermalization of the upper chain (Fig. 13b).

To probe this expectation, we perform analogous calculations for N = 16, which
significantly extends the time-scale for MBL entanglement growth (factor ~ €®) but which
only marginally alters the expected diffusion time-scale. The results are shown in
Fig. 12d-f. For all J’, the intermediate quasi-MBL plateau is indeed absent. Moreover, we

find that t¢;,; is independent of the system size while t; exhibits a scaling consistent with
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Figure 13: (a) Schematic of the entanglement entropy growth for short chains. Driven by local-
ization length dynamics, a rapid increase in Sep¢ occurs until time scales 1/J, wherein a single
particle localization plateau occurs. Then for times ¢ > ti = 1/Jint, J' induces effective in-
teractions in the ladder and the entanglement entropy exhibits a slow, logarithmic growth char-
acteristic of MBL. This growth saturates for a finite system into a quasi-MBL plateau before
ultimate diffusion of the upper chain takes place. For late times ¢t > t; = 1/J, the upper chain
thermalizes with a diffusion constant D ~ J"2/J,. (b) Schematic of Se,; for long chains. The in-
termediate quasi-MBL plateau disappears since its time extent scales as e’ and becomes cut-off
by diffusion which scales only as L?. (c) Linear response of the system to translation invariance
breaking perturbations. (d) Susceptibility which scales consistent with an exponential in system
size.
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Figure 14: Entanglement entropy for a spin ladder model with Heisenberg couplings along the
ladder. There no longer exists a single particle, non-interacting limit, and thus ¢;,; becomes J’
independent. Ultimate saturation occurs at time scales consistent with J'? suggesting an analo-
gous process as the XY ladder. An intermediate plateau becomes evident for certain J' and may
be associated with correlated spin-flips across a rung.

L?. Both observations are consistent with our microscopic picture; the interaction time
scale is set by resonant nearest neighbor hybridization in the upper chain while diffusion
scales as tg ~ 1/Dk* ~ L% For J = 1072, the existence of multiple regimes of entanglement
growth is difficult to observe. However, since t;,; and t4 scale differently with J', it is
possible to tease apart the different phases of entropy growth by considering slower upper
chain dynamics. The cut-off of slow MBL entanglement growth by thermalization is most
evident for .J’ = 107°, where one observes logarithmic growth for nearly 4 decades in time
before a rapid increase in S.,; owing to upper chain diffusion. This picture is confirmed by
the time decay of fractional polarization where t; precisely matches the location of o-chain
equilibration. Interestingly, in the fractional polarization of the o-chain, there emerges a
second long-time plateau which only decays at extremely long time-scales and which
exhibits an anomalously strong scaling with J' and system size. We view this as possible
evidence for self-induced many-body localization and are currently exploring these

signatures in more detail.
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While the spin ladder ultimately equilibrates and thermalizes at long times, it is
insightful to probe the system’s response to translation symmetry breaking. In particular,
it has been recently proposed [52] that a system which exhibits self-induced many-body
localization should also spontaneously break translational invariance, and in fact, that
these notions are essentially equivalent. To probe our system’s susceptibility to translation

symmetry breaking, we introduce a perturbation of the form

Hy =Y b:S;+ ) Wfo; (2.15)

where b, b’ are independent random variables drawn from a uniform distribution of width
W. To quantify the system’s response to Hy, we consider an observable

Apy = ~ SV (@] 2,y — S7[1)| which measures the inhomogeneity of the spin polarization
in the lower chain [52]. A perturbative estimate reveals that the dynamical localization of

typical quantum states should manifest as an exponential susceptibility to Hy,, with

dAp c "
e (\/W_/J> . (2.16)

Note that this contrasts with expectations for a single particle localized state where an
analogous calculation reveals % ~ N (see supplementary information). We perform exact
diagonalization on Hy = H + Hy with J = 1.0, J' = 0.01, J, = 10.0 and

1076 < W < 10~*. We average over 10% disorder realization for N = 8,12 and over 102
realizations for N = 16; we also average Ap over 10 eigenstates 1) centered around energy
density J/3. Our results are depicted in Fig. 13(c,d). As expected, for a perturbative
breaking of translation invariance, we observe a linear response in Ap; moreover, the
susceptibility is consistent with an exponential system size scaling, although the range of
sizes are too small to be able to make conclusions.Interestingly, despite eventual

thermalization, our system seems to exhibit an exponential susceptibility to Hy . This may

manifest as a turn over from exponential to power-law scaling at larger sizes.
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Finally, we consider the generalization of our ladder model to the case of Heisenberg

coupled chains with
Hy,=> JSi-Sj+» Joj-o;+Y JSio]. (2.17)
(i7) (i5) i

In this case, for J' — 0, there is no single particle localized regime. Instead, the time scale
for interactions ¢;,,; ~ 1/J and hence, the onset of logarithmic MBL entanglement growth
should be J’ independent. This is indeed observed in Fig. 14. The eventual diffusion of the
upper chain looks to be governed by a similar off-resonant upper-chain hop across a flipped
S-rung since the final plateau scales with J™. Interestingly, for certain .J’, we observe
another intermediate plateau for S,,; which scales with J’ and is consistent with a physical
process corresponding to a correlated S and o spin-flip across a rung. The effective strength

of a such a process ~ JJ'/J, and can be quantitatively compared to 1/tg ~ J?/J..
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Chapter 3

Topology and Fractionalization in Polar Molecules

3.1 Topological Flat Bands

Single-particle flat bands, where kinetic energy is quenched relative to the scale of
interactions, are being actively explored in the quest for novel strongly correlated phases of
matter [24-31]. Prompted by the analogy to Landau levels, recent efforts have focused on
topological flat bands (TFB) — lattice models in which the band-structure also harbors a
non-trivial Chern invariant. Seminal recent work has highlighted that certain classes of
highly-engineered two-dimensional tight binding models can indeed exhibit topological
nearly flat bands [90-95]. However, the identification of a physical system whose
microscopics naturally admit TFB remains an outstanding challenge.

In this section, we demonstrate the emergence of synthetic gauge fields for an ensemble
of interacting hardcore bosons — the effective spin-flips of pinned, three-level dipoles in a
two-dimensional lattice. Underlying these gauge fields are two key ingredients: spatially
varying, elliptically-polarized external (microwave or optical) fields break time-reversal
symmetry, while anisotropic dipolar interactions induce orientation-dependent phases onto
the hopping hardcore bosons. The combination of these effects naturally produces

nontrivial Chern numbers in the band structure and, when tuned appropriately, results in
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Figure 15: Schematic representation of a 2D dipolar droplet. The grey droplet represents a 2D
array of interacting tilted dipoles. The dipoles are tilted by a static field in the Z direction, ori-
ented at O, ®g relative to the lattice basis {X,Y, Z}. R;; is a vector connecting dipoles in the
XY plane.

the emergence of flat bands due to hopping interference. While we observe a variety of
non-topological correlated many-body states here (ranging conventional crystals to
supersolids), interacting particles living in such a flat-band-kinetic environment are also
leading candidates for the realization of fractional Chern insulators [24-31]. Our proposal
describes a natural framework in which ultra-cold molecules may be used to probe the
exotic features of such interacting topological insulators.

Let us consider a square lattice composed of fixed, three-state magnetic or electric
dipoles placed in a static external field. Such an arrangement naturally arises in
experimental systems ranging from ultra-cold polar molecules [67-69, 96-99] and Rydberg
atoms [100-102] to solid-state spins [44, 45] and magnetic atoms [103]. As shown in

Fig. 15, the dipoles occupy the {X, Y} plane and couple via dipole-dipole interactions,

1 K A A
i#j

where k is 1/4me for electric dipoles or po/4m for magnetic dipoles, and R;; connects the
dipoles d; and d;. The three states of each dipole, which we label as |0), | & 1), are

eigenvectors of the Z-component of (rotational or spin) angular momentum. We assume
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that the | £ 1) states are degenerate while the |0) state is energetically separated from
them (Fig. 16a).

Each three-level dipole is driven by electromagnetic fields of Rabi frequency €2,
(right-circularly polarized), Q_ (left-circularly polarized) and detuning A as shown
schematically in Fig. 16a. With |[Q[, |Q2_| < A, the approximate eigenstates (dressed
states) are: |0), |B) = a(| — 1) + §|1)), and |D) = o*(—8*| — 1) + [1)), where a = Q. /Q,
af =0_/Q, and Q = \/m . The energies of these dressed states are
Ey = —QQ/A, Ep=A+ QQ/A, and Ep = A respectively. We let d represent the typical
size of the dipole moment and Ry be the nearest-neighbor spacing; by ensuring that
kd?/ R} < Q%/A and so long as we initially avoid populating |D), the system remains
within the subspace locally spanned by |0) and |B) (note that one could also choose to
work in the subspace spanned by |0) and |D)).

Thus, it is natural to view |B) as representing an effective hardcore bosonic excitation
(spin-flip), while |0) represents the absence of such an excitation. Recasting this system in
terms of operators a! = |B)(0|; (n; = ala;) yields a 2D model of conserved hardcore lattice

bosons,

1
HB = — Z tl-jaZTaj + 5 Z V;jnmj, (32)
ij 1#£]

where we define the hopping ¢;; = —(B;0,|H4a/0;B;), the on-site potential

ti = 22;2((0,0;]Haq|0;0;) — (B;0;{Haq| B;0;)), and the interaction

Vij = (BiBj|Haa| BiB;) + (0,0;/Ha4|0,0;) — (Bi0;|Haa| Bi0;) — (0;B;|Haal|0; B;). The
conservation of total boson number, N; =", aZTaZ-, arises from the condition kd?/R3 < A,
which ensures that particle-number non-conserving terms of Hgy, are energetically
disallowed. The functional form of the effective hardcore bosonic Hamiltonian Eq. (3.9)

arises for any system of pinned, three-level dipoles. The parameters in Hg are given by
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Figure 16: a) Depicts the on-site level structure and the two-photon driving scheme. These lev-
els could, for example, be adiabatically connected to the J = 1 manifold of a rigid rotor as one
turns on a DC electric field (see Eq. (3.6)). The resonance frequency of the dressing lasers is de-
tuned by A, while their Rabi frequencies are Q_(r) and Q4 (r). We consider [Q4| < A to operate
in the far-detuned limit. In the case of polar molecules, § is the electric-field induced splitting
within the J = 1 manifold, which we require to be larger than the typical dipolar interaction
strength. b) Square lattice with a single tilted dipole per vertex. We index columns of the lattice
by ¢ and plaquettes by py. For a particle traversing the edge of a single plaquette, there are two
contributions ¢, and t}, to W (p); each contribution occurs twice as represented by the red and
blue colored arrows. A simple periodic gradient of 5 enables uniform 7/N flux per plaquette.

(k =1,0 7 j):
d2
tij = R3 |:Xz (qo + RG[QQ]O' + Im[qﬂay)xj} s (33)
tis = — ZQ (d"d7 — (d")%),
JFi
Vij = Qﬁ [dPdP — d°dP — d°d? + (d°)*]

where d° (d?) is the permanent 2-dipole moment of the |0) (|B)) state, dy; is the transition
dipole moment from |1) to [0), x; = a;(1, 8;)T is the normalized drive-spinor on site i,
go = 1(1 = 3cos?(® — @) sin*(Op)), g2 = —2[cos(® — Py) cos Og — isin(P — Py)]?, & are the
Pauli matrices, and (R, ®) is the separation R;; in polar coordinates (Fig. 15). We have
suppressed the explicit ij dependence of R, ®, gy, and ¢o. While the form of d?, and hence
of interactions, depends on the underlying implementation, the single-particle band
structures that can be achieved via driving are independent of such details.

Let us first explore these topological single-particle bands and illustrate the interplay

between the driven breaking of time-reversal and the anisotropic dipolar interaction. As a
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simple example, we demonstrate how to achieve a synthetic background gauge field with
uniform flux 7/N per plaquette on a square lattice (assuming only nearest-neighbor hops).
We choose the “magic” electric field tilt, (©g, ®y) = (sin~*(+/2/3),7/4), where g = 0 along
X and Y. This choice allows us to isolate the terms of Hzy that harbor intrinsic phases,
namely, those associated with dfd} and d; d;, where dy = F(d, £ id,)/v2 [99]. Moreover,

it simplifies the form of nearest-neighbor hopping to

tX_d_?)lT lgl‘_ﬁ(;y ,
i = gelilg 9 7 | X

tz};_dng 1 V3,

The microscopic breaking of time-reversal arises from the asymmetry between left- and
right- circularly polarized radiation and is captured by the ratio 5 = Q_/Q,. While each
Rabi frequency is characterized by both an amplitude (intensity) and a phase, initially, we
will consider only varying the amplitude of ; phase variations will be considered in more
detail in the discussion of many-body states. Physically, it is § which defines each hardcore
boson |B), by setting the relative admixture between the |1) and | — 1) states. Keeping 3
real, let us now consider varying the intensities of the drive fields along the ® = 7/4
direction in a periodic fashion.

For each plaquette, we define the Wilson loop, W (p) = [[,, ti;, which is identical along
columns indexed by ¢ (Fig. 16b). The flux in a plaquette is then the phase of this Wilson
loop, W, = arg[W (p,)] = arg[t7t/?], where t; are ¢, are the hops depicted in Fig. 16b. Taking
0, = arg(ty) and noting that §, = arg(t;,) = —041 yields the phase of the Wilson loop as
U, =260, — 20,,1. To achieve a uniform 7/N flux per plaquette, we can take

0o 1 = n — L35, where n € R is a constant to be specified. From the definition of 6, one

finds a simple recursion relation for (3,

Ben _ sin(E —n+ 05)
Br st lyy)

(3.5)
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with maximum periodicity 4N. Starting from any initial 51, Eq. (3.5) yields a recursively
generated drive pattern which achieves the desired uniform 7/N background gauge field.

While the uniform flux per plaquette is reminiscent of the square lattice Hofstadter
problem [104], we emphasize that the physics of these driven dipoles is significantly richer,
owing to the additional modulation of ¢;;. The background flux field arises, in part, from
the natural phases associated with the dipolar interaction. This ensures that (as in [105])
the number of flux quanta per plaquette is not limited by the magnitude of laser
intensities, contrasting with the majority of previous synthetic gauge field proposals, where
the scaling to high artificial fluxes is extremely difficult [106—-110].

To illustrate the symmetry breaking required for the generation of gapped Chern bands,
we now turn to a detailed study of Hp restricted to a two-site unit cell (remaining at the
“magic” tilt), as depicted in Fig. 17a. This restriction has the virtue of being analytically
tractable and allows us to identify the anti-unitary symmetries associated with the Dirac
points [111, 112]. Let us consider 8 = 1, B2 on the two sites of the unit cell and include all
terms up to next-next-nearest neighbor. The topology of the bands depends on the relative
ratio of 5, and 5. For 8; € R, the phase diagram in Fig. 17b illustrates the Chern
invariant of the bottom band as a function of the complex [s-plane. There exist two circles

of gapless (Dirac) points protected by distinct anti-unitary symmetries.

3.1.1 Implementation

An experimental realization of our proposal can be envisioned with either electric

(e.g. polar molecules) or magnetic (e.g. solid-state spins) dipoles. As previously mentioned,
the form of d? depends on this choice, since the permanent dipole moment of the | 4= 1)
states have either the same or opposite signs. We emphasize that the long intrinsic
lifetimes of such systems make them ideal for the consideration of driven, non-equilibrium
phenomena [65, 113].

To be specific, we now focus on diatomic polar molecules (trapped in a deep optical
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Figure 17: a) Schematic representation of the two-site unit cell lattice with 8 = (1, B2. The dot-
ted box outlines a single unit cell. There is a flux ¥, —W¥ which alternates in neighboring square
plaquettes. The direct lattice vectors g; and go are depicted as purple arrows. While all hops
are present with amplitude decaying as 1/R3, only nearest-neighbor (solid) and next-nearest-
neighbor (dashed) hops are shown. b) The topology of bulk bands as a function of complex (5

—

for #1 € R. The Chern number is ¢ = 2= fdk‘xdk:y(akxd X (9;%3) -d, where H(k) = d(k) - & + f(k).

lattice) in their electronic and vibrational ground state. We utilize microwave fields to
dress the molecules and partially polarize them with an applied DC electric field along 2

(Fig. 15); ignoring electronic and nuclear spins, this yields a single-molecule Hamiltonian,

H,, = BJ* —d,E + Hp, (3.6)

where B is the rotational constant, J is the rotational angular momentum operator, d. is
the Z component of the dipole operator, E is the magnitude of the applied DC field, and
Hp characterizes the dressing of the J = 1 rotational states depicted in Fig. 16a [65, 99].
In the absence of applied fields, each molecule possesses rigid rotor eigenstates |J, M).
The applied electric field E mixes eigenstates with the same M, splitting the degeneracy
within each J manifold and inducing a finite permanent dipole moment for each perturbed
rotational state. We choose from among these states to form the effective three-level

dipole; an example of one possibility for |0), | £ 1) is shown in Fig. 16a. Since these | + 1)
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states have an identical induced dipole moment d', one finds that d? = d', and hence,

Vi = 2(d—d), (3.7)
The relative strength of the interaction V;;/t;; is thus set by (d° — d*)?/dZ,; this is a highly
tunable parameter and can easily reach ~ 100 for certain choices of rotational states and
DC electric field strengths [99].

The main challenge in an experimental realization of our proposal lies in the spatial
modulation of the drive fields at lattice scale. For spins in the solid-state and on-chip polar
molecule experiments, one might envision using near-field techniques. A more
straightforward approach, suitable for molecules, is to utilize pairs of optical Raman
beams. For example, the so-called lin Llin configuration [114] automatically ensures that Q

and A are identical on all sites and moreover, generically produces gapped topological

band-structures.

3.1.2 Many-body phases

To illustrate the power of the present approach, we briefly explore two examples of
correlated ground state phases which arise in the Hamiltonian Eq. (3.9). As Hp conserves
boson number N, we may consider its many-body physics at finite filling fractions v
(particle number per unit cell). Let us work with a two-site unit cell and truncate the
dipolar interactions at next-next-nearest-neighbor order. Bosons residing in a strongly
dispersing band structure generically form superfluids in order to minimize their kinetic
energy. Interaction dominated phases arise when the single-particle bands disperse less
than the scale of interactions. Numerical optimization of the flatness ratio (bandgap/lowest
bandwidth) over the six-dimensional parameter space of microwave driving and tilt angle
reveals approximately flat Chern bands in several regions of phase space. The flatness of

these bands (Fig. 18a) derives from interference between the hopping in different directions
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Figure 18: Phase Transitions in topological flat bands of 2D driven dipoles. a) Band structure
for (g, ®g) = (0.46,0.42), B = 3.6e25% and B = 5.8¢763". We have verified that the Chern
number does not change upon adding in dipolar interactions up to order 1/27Ry. Significantly
flatter band structures with flatness ratio > 10 can be obtained for slightly generalized con-
figurations involving a tripod level-structure and optical super-lattice [115]. b) Structure fac-
tor S(R,0) = (n(R)n(0)) for filling v = 1/2 in KMS and c) SSS regime; size of circles indi-
cates weight. d) Spectral gap density plot as a function of varying MW drive for parameters:
(B0, ®o) = (0.66,7/4), B1 = —2.82¢1, By = —4.84e7%%2 and (d° — d')?/d%, ~ 2.8. The tran-
sition from the SF, which has a unique finite-size ground state, to the degenerate SSS shows as
a collapse of this gap. e) Spectral flow in the ground state momentum sector of the SSS under
twisting of the boson boundary condition in the §; and f) go directions. For the Ny = 24 lattice
with 6 bosons, momentum sectors return to themselves after 27 in 6, and after 47 in 6s.
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and, microscopically, owes to an interplay between the natural anisotropy associated with
dipolar interactions and the spatial variation of the drive fields.

As a first example, we consider the band structure depicted in Fig. 18a, where the
lower /upper band carry Chern index, ¢ = F1 (parameters in caption). Exact
diagonalization at filling fraction v = 1/2 and relative interaction strength
(d® — d")?/d%, =~ 6 reveals a knight’s move solid (KMS) phase with a 4-fold degenerate,
gapped, ground state. The real-space structure factor S(R,0) = (n(R)n(0)) (at total
number of sites, Ny = 32) in Fig. 18b illustrates the knight’s move relationship of the
bosons in the ground state. Twisting the boundary condition of the KMS in the g1, go
directions (Fig. 18b) does not significantly affect the ground state energy, as expected of an
insulator.

Many other commensurate phases arise as as we tune the driving fields to other regions
of phase space. Figure 18d shows a phase diagram containing both superfluid (SF) and
striped supersolid (SSS) phases. We can characterize the SSS arising at ¢; = ¢ = 0.1 as
follows: First, diagonalization reveals the existence of three degenerate ground states in the
sectors: ky = 0,k; = 0,27/3,47 /3. Consistent with striped ordering, the structure factor
shows density stripes in the gy direction (Fig. 18¢). However, each of these stripes has
incommensurate boson number, suggesting delocalization along the stripes. To wit, for
N, = 24, the 6 hardcore bosons are distributed evenly along two stripes, each containing 4
sites. Strong phase coherence along the stripes shows up in the sensitivity to twists in the
go direction, while transverse twists produce essentially no dispersion, as shown in
Fig. 18ef.

Our proposal opens the door to a number of intriguing directions. In particular, the
adiabatic preparation and detection of single-excitation states may provide an elegant
approach to probing chiral dynamics, edge modes, and the Chern index [115-117]. More
generally, dynamical preparation, manipulation and detection of many-body states in such

driven topological systems remains an exciting open question [118]. Finally, the large
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available parameter space holds the promise of more exotic phases, such as fractional
Chern insulators [115]. Realizing such phases in an effective spin system may provide a
deeper understanding of the stability of such states in the context of generalized long-range

dipolar interactions.

3.2 Realizing Fractional Chern Insulators

In the previous section, we demonstrated that tilted dipoles can provide a versatile
platform for realizing nearly flat bands and strongly correlated states. In this section, we
show that such systems can be tuned to realize fractional Chern insulators - exotic phases,
which arise when strongly interacting particles inhabit a flat topological bandstructure
[24-31]. Particles injected into these exotic states of matter fractionalize into multiple
independently propagating pieces, each of which carries a fraction of the original particle’s
quantum numbers. While similar effects underpin the fractional quantum Hall effect
observed in continuum two dimensional electron gases [32, 33], fractional Chern insulators,
by contrast, are lattice dominated. They have an extremely high density of correlated
particles whose collective excitations can transform non-trivially under lattice symmetries
[31, 119, 120].

In this section, we predict the existence of a fractional Chern insulator in dipolar
interacting spin systems. This state exhibits fractionalization of the underlying spins into
quasiparticle pairs with semionic statistics [121, 122]. The predicted FCI state may also be
viewed as a gapped chiral spin liquid (CSL) [121, 123].

Several recent studies have conjectured the existence of fractionalized topological phases
in idealized lattice models that require sensitively tuned long-range hopping and
interactions [28-30, 90-92]. Broadly speaking, two single-particle microscopic ingredients
are required. First, the dispersion of the lattice band-structure must be quenched relative
to the energy scale of interactions [90-92]. Second, the flat band should possess a

non-trivial Chern number, reflecting the underlying Berry phase accumulated by a particle
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moving in the band-structure. To observe a fractionalized insulating state, one must
partially fill the topological flat band-structure with interacting particles; since the FCI
state generally competes with superfluid and crystalline orders, the resulting phase
diagram naturally exhibits both conventional and topological phases (Fig. 19). Up to now,
it has been unclear whether such exotic fractional Chern insulating phases can be realized
in any real-world physical system.

We consider a two-dimensional array of tilted, driven, generalized spins interacting
exclusively through their intrinsic dipolar interaction, as depicted in Fig. 19a. This
interaction mediates the long-range hopping of spin-flip excitations. The quenching of the
spin-flip band-structure owes to the anisotropy of the dipole-dipole interaction, which
yields interference between different hopping directions [116]. The production of a
synthetic background gauge potential is accomplished via spatially varying electromagnetic
radiation [116, 124]. Together, the dipolar anisotropy and this radiation induce
orientation-dependent Aharonov-Bohm phases that ultimately generate topologically
nontrivial flat bands [116].

To be specific, we focus on an implementation using ultra-cold polar molecules trapped
in a deep two-dimensional optical lattice. Such an implementation has many advantages,
including local spatial addressing, stable long-lived spins, and strong intrinsic dipolar
interactions [57, 67, 125, 126]. The molecules are subject to a static electric field E tilted
with respect to the lattice plane (inset Fig. 19a). We assume that the molecular motion is
pinned, and hence, restrict our attention to an effective rotational degree of freedom on
each site, with associated Hamiltonian, H,, = BJ? — d*E, where E is an applied electric
field [65]. In particular, we focus on the four lowest rotational levels: |0,0), the
rovibrational ground state and the three states within the J = 1 manifold (|1, —1), |1,0),
|1,1)), where J characterizes the rotational angular momentum of the molecules. Here, the
quantization axis, Z, lies along the applied electric field and |.J, m) denotes the state

adiabatically connected (via E) to the rotational eigenstates [99]. Each molecule is driven
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Figure 19: Realization of a fractional Chern insulator. (a) Schematic representation of the
two-dimensional array of polar molecules dressed by optical beams (red arrows). Each polar
molecules is characterized as an effective pseudo-spin-flip, which can hop and interact mediated
by the long-range dipolar interaction; ¢ represents the Aharanov-Bohm phase which the spin-flip
acquires as it traverses a plaquette. (inset) Molecules occupy the {X, Y} plane and the rotational
quantization axis is set by an applied electric field along the Z direction. ©y and ®g define the
{z,y, 2z} axes with respect to the lattice coordinates {X,Y,Z}. (b) We consider the J = 0,1 man-
ifolds of each molecule with the |0,0) state representing spin-down. The spin-up state is created
via optical Raman dressing in the M-configuration. The optical radiation admits a single dark
eigenstate, which is a linear combination of the three states in the J = 1 manifold. (c) Phase di-
agram for “°K8"Rb molecules at half-filling with a total of N, = 24 sites as a function of electric
field strength and tilt ©y. Each phase finds a direct analogy in the language of frustrated mag-
netism and the equivalent nomenclature is given below. The knight’s move solid (KMS), checker-
board (CKB) and striped supersolid (SSS) are named for the position of bosons in the structure
factor. The dotted line at |E| = 0 signifies the fact that a minimal electric field is always required
to split the degeneracy within the J = 1 manifold.
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by optical radiation, which couples the three J = 1 states to a pair of molecular excited
states |e;) and |eg), in the so-called M-scheme (Fig. 19b). The Hamiltonian for each
molecule with the laser on has the form

H, = hl|e1)(2:(1, =1 + Q2(1,0]) + |e2)(23(1, 0] + Q4(1,1]) + h.c. | in the rotating frame,
where €2; are Rabi frequencies serving as the control parameters. The above Hamiltonian
admits a unique “dark” eigenstate, |1) = %(QQQ4|1, —1) — Q194]1,0) + Q1Q3]1, 1)), which is
decoupled both from the excited states and from the radiation field (€ is a normalization).
Together with the rovibrational ground state, which we label as |]), this forms an effective
two-state spin degree of freedom on each site [96-99, 116, 127].

Individual molecules interact with one another via electric dipole-dipole interactions,

1 K A A
Hy = - Z R_3 |:dz : dj — 3<dz : Rl])(dj ’ RZ]) ) (38)

25
where k = 1/(4mep) and R;; connects molecules ¢ and j. The dipole moment operator (d;
and d;) of each polar molecule couples its internal rotational levels and is directed along
the internuclear axis. We let d be the permanent molecular dipole moment and Ry be the
nearest-neighbor lattice spacing; we note that d, although related, is not the effective
dipole moment of our pseudospins. By ensuring that the characteristic dipolar interaction
strength, kd?/R3, is much weaker than the optical dressing, €);, all molecules remain within
the Hilbert space spanned by {|1),|J)}. Moreover, this interaction is also much weaker
than the bare rotational splitting 2B (Fig. 19b) and thus cannot cause transitions that
change the total number of |1) excitations. This effective conservation law suggests the
utility of recasting the system in terms of hardcore bosonic operators, aj = [TX1T4;, which
create spin-flip “particles”. Mediated by the dipolar interaction, these molecular spin-flips
hop from site j to site ¢ with amplitude ¢;; = — (1, Haa [4iT;). As each hardcore boson
harbors an electric-field induced dipole moment, there also exist long-range density-density

interactions of strength
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‘/z’j = <T2Tj| Hdd |T’LT]> + <\L’L\Lj| Hdd |¢z¢]> - <T’L\Lj| Hdd |Tz¢]> - <\LZTJ| Hdd |¢4T]> In

combination, this yields a two-dimensional model of hardcore lattice bosons,

Hp=—> tyala; + % > Vinng, (3.9)
ij i#j
whose total number, N = 3. ala;, is conserved [116]. Variations in the dipolar-induced
on-site potential, ¢;;, can be regulated via tensor shifts from the optical lattice.
To ensure that our effective hardcore bosons reside in a topological flat band, we adjust
the optical beams that dress the molecules to produce a square lattice with four types of
sites, {a,b, A, B}, as shown in Fig. 20a. Owing to interference between the dressing lasers,

the dark state on each of the sites is a different linear combination of the three J = 1 states,

1.

implying that the hardcore boson, a,, is site-dependent. Despite the existence of four
unique lattice sites, so long as ¢;; and V;; remain invariant under translations by the direct
lattice vectors g; and g5 (Fig. 20a), the Hamiltonian retains a two-site unit cell. Thus,
computing the single-particle band-structure produces two bands in momentum space, with
the bottom band possessing nonzero Chern number, C' = —1, as shown in Fig. 20b [116].

Numerical optimization of the electric-field and the optical dressing yields a variety of
flat bands. The optimized band-structure depicted in Fig. 2b has a flatness ratio [90-92],

f = 11.5, and is obtained at weak DC electric fields, just strong enough to split the
degeneracy within the J = 1 manifold (relative to the dipolar interaction strength) and to
set the quantization axis [67].

With topological flat bands in hand, we now consider the actual many-body phases which
arise at finite lattice filling fractions v (number of spin flips per unit cell). To this end, we
perform exact diagonalization of the full many-body Hamiltonian at v = 1/2 on systems of
varying sizes up to Ny = 44 sites with periodic boundary conditions. For weak electric

fields tilted near the so-called magic angle, © = cos™'(1/+/3) [128], diagonalization reveals

the existence of a bosonic v = 1/2 fractional Chern insulator. As numerical diagnostics,
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Figure 20: Topological Flat Bands. (a) Schematic representation of the 2D dipolar array. a, b,

A and B sites are characterized by dark eigenstates that are different linear combinations of the
three J = 1 states. Square plaquettes are characterized by a time-reversal breaking flux, ¢, which
is staggered throughout the lattice. The lattice harbors a two-site unit cell and is invariant under
translation by direct lattice vectors ¢ and g3. (b) An optimized band-structure in the reduced
Brillouin zone (RBZ) depicting a flatness ratio f ~ 11.5. The lowest band carries Chern index
C = —1. The electric field tilt is {Og, Po} = {0.68,5.83}.

this topological state requires the presence of two-fold ground-state degeneracy on a torus
(Fig. 21a) and a neutral spectral gap that is stable as the system size increases (Fig. 21b).
The quantity analogous to the Hall conductance, o,y = 5= [ [ F(6,,0,)d0,d6, = —0.5,

appears unambiguously in the response of the system to boundary-condition twists {6,,6,}

(equivalent to flux insertion) in the form of a well-quantized many-body Berry curvature,

F(0,,6,) = Im({QL|2%) — (22|25)) [27, 28, 30,
The counting statistics of low energy quasihole states provide a direct diagnostic of the
fractionalization of removed particles [27, 129]. Counting the total number of admissible

quasihole arrangements on a torus (for a v = 1/2 FCI) yields,

Qtorus = ( JJV\Z t‘jf:;]\@b) - ( %‘;11:2]&), where N, = N,/2 is the number of lattice unit cells and

N, is the number of hardcore bosons. As depicted in Fig. 21c for our system, numerically

counting the total number of quasihole states matches the above formula precisely.
Remaining at v = 1/2, we now probe the many-body phases which arise as one varies

the DC field strength and the tilt, O, while adjusting the optical parameters to keep the

local dark states fixed. Changes in the tilt alter the geometry of the dipoles and introduce
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Table 3.2.1: Diagnostics of Many-body Phases

Phase | Degeneracy | SF Response | Structure Factor Oy
FCI 2 none fluid -0.5
SF 1 isotropic fluid gapless
SSS 3 uni-directional stripes gapless

KMS 4 none knight’s move 0

CKB 2 none checkerboard 0
SS 4 none stripes 0

additional dispersion into the single-particle bands. On the other hand, increasing the
electric field strength enhances the long-range interactions. These qualitative differences in
the microscopics yield a rich phase diagram exhibiting both conventional and topological
phases, as shown in Fig. 19¢. In addition to the FCI phase, there exist four distinct
crystalline phases at strong DC fields and a large superfluid region at moderate fields (see
Table 3.2.1 for diagnostics). While we use the language of lattice bosons above, we note
that the FCI phase may also be interpreted in the language of frustrated magnetism as a
chiral spin liquid while the competing superfluid and crystalline phases correspond to XY

ordered magnetic and spin density wave (SDW) phases [121, 130].

3.2.1 Preparation and Detection

Next, we consider a possible route to preparing the v = 1/2 fractional Chern insulator. In
current polar molecule experiments, the spin-flip “vacuum”, corresponding to all sites in
the |]) state, may be prepared with high fidelity from Feshbach molecules by two-photon
stimulated Raman adiabatic passage [67-69]. If the phase boundaries surrounding the FCI
state are second order, one might attempt to prepare this state by adiabatically tuning the
electric field across the transition. However, the only known continuous transition between
a superfluid and the v = 1/2 FCI phase is multicritical [131], which suggests that this
phase boundary is generically first order, consistent with the numerics presented in the

inset of Fig. 21d. On the other hand, continuous Mott insulator to FCI transitions are less
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finely tuned and may constitute a promising avenue for preparation. In particular, the
striped solid phase may be reduced to a simple non-translation-symmetry breaking Mott
insulator in the presence of a one-dimensional superlattice potential. This observation is
consistent with the existence of a weaker, finite-size, cross-over at the FCI to striped-solid
phase boundary (inset Fig. 21d).

As probe light couples directly to the rotational motion of the dipoles, it is possible to
measure the single spin-flip response of the system in order to detect and then characterize
the FCI state. For example, the spectral function can be measured at finite energy and
momentum using two-photon Bragg spectroscopy, providing direct information regarding
fractionalization [132-134]. On the edge, one should observe gapless chiral Luttinger liquid
behavior, while in the bulk, the response should exhibit a gap to the multi-quasiparticle
continuum. Such a gap manifests as an effective “magnetization” plateau as shown in

Fig. 21d [121].

3.2.2 Experimental Realization

Our proposal can be carried out in currently available ultracold polar molecules, such as
K Rb [57], TLit*3Cs [68], ' K8"Rb [69] and 8"Rb!33Cs [70, 71]. The temperature scales
associated with the FCI gap are set by the dipolar interaction strength. For a typical polar
molecule with d ~ 3 Debye, the interaction at 532nm (optical lattice spacing) corresponds
to ~ 1uK. With ground state molecules of both KRb and RbCs at temperatures of
~ 100nK, this suggests that current generation experiments can indeed realize stable FCI
phases [67, 71, 135]. Moreover, it may be possible to work at significantly smaller optical
lattice spacings (340nm for KRb and 395nm for RbCs), further enhancing the dipolar
temperature scales [136].

Here, we focus on “°K®"Rb. For the optically excited states |e;) and |es), we propose the
|J',m’) = |2,42) rotational states of the v/ = 41 vibrational level of the (3)'S* electronic

state. These states harbor a strong 640 nm transition to the ground state [67, 69]. We
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Figure 21: Evidence for v = 1/2 FCI state. (a) Exact diagonalization of the full Hamiltonian

at v = 1/2 with a total of Ny = 24 sites and N, = 6 hardcore bosons. The electric field and
driving parameters are identical to those used in Fig. 2b. To avoid self-interaction, we truncate
the dipolar terms at order 1/(3Rp)3. There exist two degenerate ground states in momentum
sectors (kz,ky) = (0,0) and (kg, ky) = (—m,0) consistent with a v = 1/2 FCI state on a torus
(kz, ky are crystal momenta). (b) Finite size scaling from Ny = 16 to Ny = 44 suggests a stable
spectral gap in the thermodynamic limit. (¢) Quasihole counting for the same parameters as in
(a) with a single boson removed (N, = 5). There exists a clear gap below which there are 36 low-
energy quasihole states, consistent with the analytical counting formula for Qrys [27]. (d) Filling
fraction as a function of chemical potential, © = En,+1 — En, (where Ey, is the ground state
energy with N, bosons). Below v = 1/2, there exists evidence of a clear compressible superfluid
state, while at v = 1/2, there exists a plateau indicative of an incompressible quantum liquid.
This plateau can also be interpreted as a magnetization plateau in the language of frustrated
magnetism [121, 122]. (inset) Depicts dE/dOy as a function of tilt ©y. Phase transitions between
the superfluid, Chern insulator and striped solid are evidenced as jumps in dE/dOy; the plateaus
are rounded owing to finite size effects and the kink in the superfluid region arises from a jump
between a zero-momentum and finite-momentum SF ground state. Curves from top to bottom

are for increasing electric field strength from E = 0.4 — 8 kV /cm.
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require a hierarchy of energy scales corresponding to, Higtice S Hpp < Q; < A (Fig. 1b),
where Hj,uice describes the optical lattice potential and Hj s characterizes the molecule’s
hyperfine structure [67]. For K8 Rb, this hierarchy is easily realized since Hj; ~ 1 MHz,
while A = 160 MHz at a moderate DC field strength, £ = B/d ~ 0.5kV /cm. By ensuring
that the optical dressing (€2;) is weak relative to the splitting, Ey o — Fj 1, we can employ
frequency selection during the creation of the M-scheme; meanwhile, the condition
Hiapice S Hpyp < §2; allows us to consider hyperfine and tensor light-shift effects only after
the dark state (|1)) is already defined.

While we have focused our discussion on polar molecules, our proposal can, in fact, be
realized in any system composed of electric or magnetic dipolar interacting generalized
spins; such degrees of freedom are found in a diverse array of contexts ranging from
magnetic atoms and Rydberg ensembles to solid-state spins [44, 101, 103]. In particular,
for exchange coupled electronic spin dimers or hyperfine coupled nuclear and electronic
spins, one finds an effective level-structure nearly identical to that depicted in Fig. 19b.

The dipolar interaction between such coupled spins also yields topologically nontrivial, flat,

spin-flip band-structures, enabling the potential realization of a solid-state Chern insulator.
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Chapter 4

Yu-Shiba-Rusinov Bound States

4.1 Enhanced anti-ferromagnetic exchange from Yu-Shiba-Rusinov bound

states

Understanding the interactions between magnetic impurities (localized spins) in a metallic
host represents an important question at the interface of fundamental and applied science
[34-36, 137, 138]. While spins always interact with one another via their intrinsic dipolar
interaction, in a metal, their mutual interaction with conduction electrons can significantly
enhance the effective interactions. For simple metals, this results in the so-called RKKY
(Ruderman-Kittel-Kasuya-Yosida) interaction [34-36] — a coupling mechanism between
magnetic moments in which one impurity partially polarizes the spin of conduction
electrons; the second impurity then interacts with the spin density of the itinerant
electrons, thereby inducing an effective long-range interaction. One of the crucial
predictions of RKKY is the oscillatory sign of the exchange interaction, a feature which
underlies giant magnetoresistance [139, 140].

More recently, significant effort has been devoted to understanding magnetic impurities
on the surface of superconducting metals [138, 141-149]. This owes in part, to experimental

advances in single adatom control, which have enabled the observation of locally modified

61



Ey)|
lpBCS
Figure 22: a) Schematic illustration of a magnetic impurity which binds a localized electronic
YSR state. The associated spectrum is shown below, with the BCS ground state ¥ pcg separated
from excited states by A. There exists a single mid-gap YSR state of energy E,. b) When two

impurities are separated by distances r < &, their YSR states overlap and hybridize. This hy-
bridization causes both an overall energy shift  and a splitting 7.

electronic properties and raise the tantalizing prospect of atom-by-atom construction of
magnetic nanostructures [150-152]. Moreover, interactions between such impurities may
play a role in explaining low-frequency flux noise in Josephson circuits [153, 154]. The effect
of superconductivity on RKKY interactions is well established at lowest-order perturbation
theory (Born approximation) in the exchange interaction between the localized and
itinerant spins. In particular, the suppressed spin susceptibility in the superconducting
ground state modifies the inter-impurity interaction to become purely anti-ferromagnetic
when the separation between the impurities exceeds the superconducting coherence length
(r 2 £); at such distances however, the strength of this antiferromagnetic exchange is
exponentially small in the separation r. On the other hand, for impurities separated by
distances r < &, conventional RKKY dominates the effective interaction and
superconductivity yields only a weak antiferromagnetic correction [155-157]. Crucially, this
perturbative treatment neglects the formation of so-called Yu-Shiba-Rusinov (YSR) bound
states—Ilocalized electronic states that arise near a magnetic impurity.

In this section, we show that by tuning the energy of YSR states close to the middle of
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the superconducting gap, one may substantially enhance the antiferromagnetic contribution
stemming from the indirect spin exchange, allowing it to dominate over conventional
RKKY even at distances r < € [37-39]. When two magnetic impurities are brought near
one another, their associated YSR states hybridize in a spin-dependent fashion, yielding an
effective interaction. That one might expect such an interaction to dominate over RKKY
results, in part, from the strong localization of the YSR state around the impurity, directly
contrasting with the delocalized scattering states that mediate RKKY. This localization
implies that quasiparticles bound to the YSR states are more strongly coupled to the
impurity and therefore might be expected to mediate stronger exchange.

The key ideas underlying our derivation are illustrated in Fig. 71. We begin by

considering a BCS superconductor with Hamiltonian,

Ho = Z Ekchck,U + A Z[CIJLTCJLIQ + C—kick']‘]~ (41)
k,o k

The associated spectrum (Fig. 71) depicts the BCS ground state, 1pcs, separated from
excited states by the superconducting gap A. In the presence of a spin impurity whose
contact exchange interaction is of strength J, an excited-state electron can lower its energy
below the superconducting gap by aligning its spin opposite the direction of the impurity.
Treating the spin impurity classically yields the existence of a localized bound state (YSR

state) of energy [37-39],

b AL (ISNy/2? 1
T T (RJSN/2)2 T T 1+

(4.2)

where Ny is the normal state DOS at the Fermi energy. For pure exchange scattering, the
YSR energy is conveniently re-expressed in terms of a phase shift tan(é) = § = 7 JSNy/2,
wherein Fj, = A cos(2d). The latter relation between Ej, and 0 is more general than

Eq. (4.2), and valid beyond the approximation of a classical magnetic impurity [158-161].

Quantum fluctuations of the polarization of a magnetic impurity lead to the Kondo effect,
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which renormalizes the exchange interaction between the impurity and itinerant electrons
at low energies. The renormalized interaction is expressed in terms of the Kondo
temperature, Tk o< exp (—1/JNy) [138]. At small Kondo temperatures, Tx < A, the
effective constant 5 ~ 1/In(A/Tk) < 1. Thus, whether in the “classical” or “quantum”
consideration, the YSR level can be tuned arbitrarily close to the middle of the gap by an
appropriate increase of the exchange constant.

The characteristic wavefunction of the YSR state is localized around the magnetic
impurity and takes the form, ¢g,(r) ~ Le /€5l [138]. For two impurities separated by
distances r > &, the overlap between their associated YSR states is exponentially
suppressed. However, for distances r < &, the YSR states of the two impurities hybridize,
causing both an overall energy shift n and a splitting 7/, as depicted in Fig. 1b. Crucially,
the overall energy shift n depends on whether the impurity spins are aligned or
anti-aligned; in particular, only in the anti-aligned case is it possible for a pair of YSR
states to become virtually occupied by a Cooper pair from the superconducting
condensate. This provides a natural intuition for our result: The effective spin-spin
interaction manifests as a consequence of the spin-dependence in 7.

With this intuition in mind, we now begin by considering the total energy associated
with a pair of magnetic impurities (located at r7, and rg) in a superconductor. We treat
the impurities as classical spins parallel to the Z axis (which defines the direction in which
the impurities are either aligned or anti-aligned). The interaction Hamiltonian between the

localized impurity and the itinerant electrons is then given by

Hou= 1Y [ deolSufc = ra)cb(0)ca) + Saf e~ ra)b o), (43

where Sy () is the spin of the left (right) impurity and f(r) characterizes the spatial form
of the impurity potential. In momentum space,

Hie = J Y, [ dkdK'o[Spe'™mL fi 1o+ Spet¥)ra fhk/]cz,kcg’k/, where f is the Fourier
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transform of the potential. As is conventional [162], we now define a Nambu spinor,
Uy = (crx, CI ), wherein, Hy = [ dk¥] [,7* + A7%] ¥, (7 are Pauli matrices acting in

particle-hole space). Similarly, the interaction becomes,
Hiny = ‘]/dkdk/q’lwwi(k—kl)m fk,k' + SRei(k_k,)rR]Ek,k’]q]k’ + Ey (4.4)

where Ey = —J [ dk fk,k[s 1 + Sg] arises from anti-commutation.
Combining the bare BCS Hamiltonian and the interactions yields, Hr = Hy + H;p,
which we diagonalize utilizing a Bogoliubov transformation, df, = [ dk(umkw%k + vn,kwlk),

yielding,
1 1
— Ty — Tq _
Hr = gn endl d, 5 En En = En en(dld, 2). (4.5)

The total energy of the ground state is thus given by

Em—~§]m By 5 [ deldldote) (4.6)

where Ey characterizes the energy of the system in the absence of an impurity. Here, dp(e)
represents the change in the total density of states as a result of the impurities and
includes contributions from both continuum electronic states above the gap well as the
discrete YSR states. The effective exchange interaction, I(r), between two impurities can
be expressed in terms of changes to the DOS depending on whether the impurities are

aligned or anti-aligned,

1
1) = Eji — Bl = [ delel Bprale) ~ 5pr(e). (@.7)

4.1.1 Shiba induced changes to the DOS

To calculate changes in the DOS, we compute dp(e) = —=Im{Tr[Gy v (z) — Gl((o)(z)]}, where
z=¢€+107, Glio)(z) = [z — (ex7® + A7")]7! is the bare BCS Green’s function, and Gy /()
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is the perturbed Green’s function. Since translational invariance is broken by the magnetic
impurities, the perturbed Green’s function depends on two momenta, k and k’. Working

within the T-matrix formalism [138],
G (2) = GP(2) + G () T G (2), (48)
where Ty s is the T-matrix. Applying a Dyson expansion to the T-matrix, one finds that

5p() =~ Tm{ TG (2) T G ()]}

_ —%Im{Tr[JSH(l —JSG)Y) (4.9)

where II, G and S are 4 x 4 matrices (in the tensor product space of particle-hole and

left-right position) given by,

M (2) = / kGO (2)GO (2) k) (4.10)
Gu(z) = / dkGY) (z)el ) (4.11)
Sy = S0 ® 70, (4.12)

Here, 7° represents the identity matrix in particle-hole space and [, I’ run over {L, R},
indexing the left /right impurity.

We begin by considering the case of weakly bound YSR states (J < 1) and expand
Eq. (4.9) to second order in the exchange coupling, Tr[JSTI(1 — JSG) '] ~ Tr[J2STISG].
Evaluating this perturbative expression results in the following superconducting RKKY

exchange between the magnetic impurities,

sinQ(k‘fr)e*%FQ {%} : (4.13)

E;[? _2r 2 AB?
10 cos(2kgr)e” € Fy {%] + (kff)Q

Here, ky is the Fermi momentum, r = |r;, — rg| is the distance between the spins and
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Figure 23: (color online) For concreteness, all plots are calculated using actual parameters for
superconducting Aluminum, with Ey = 11.7eV, ky = 20.1lnm~!, Ny = 35eV/nm?, and ¢ = 1.6um
[163]. Comparison between bare RKKY and the Jygg for Ej ~ 10~2A. Resonant enhancement
enables Jy gr to dominate at distances r < &.

Filo] =a [ dee™ a(VeHl-1) By o] = 2 2 [ da % are dimensionless integrals. The
first term represents the bare RKKY interaction, while the second represents the
antiferromagnetic correction resulting from superconductivity. Although this second term
scales as 1/r?, it is weaker by a factor of A/E}; and only dominates over bare RKKY at
distances 7 > Ey¢/(Akys) ~ &, by which time the entire exchange integral I(r) is
exponentially suppressed. The above perturbative result is consistent with previous
calculations which utilize the Kubo formula to compute the exchange interaction from the
magnetization response [155-157].

Returning to the interpretation of the exchange energy in terms of changes to the
density of states [Eqs. (4.7,4.9)], we recall that the effective exchange contains two
contributions, one from continuum electronic states and the other from discrete YSR
states. One might expect that, being only weakly bound, the YSR states should induce a
contribution which decays more slowly than e %, However, we find that at O(J?), the tail
of the YSR contribution exactly cancels with a portion of the continuum contribution to

yield the perturbative expression found in Eq. (4.13).

67



4.1.2 Beyond perturbation theory

Moving beyond the perturbative limit, as J increases, the energy of the YSR bound state
decreases (approaching the middle of the superconducting gap) and the relative strength of
the continuum and YSR contributions change. In particular, one might expect the YSR
contribution to dominate for deeply bound states for two reasons: First, modifications to
the bulk DOS will become weaker (since the bound state is further from the bottom of the
band), and second, YSR hybridization with the superconducting condensate will become
stronger as E, — 0. This second point suggests that the energy shift n has the potential to
develop a singular contribution, arising from the |¢| in Eq. (4.6) near € ~ 0; thus, any
singular contribution to the exchange interaction can only arise from the low energy YSR
states.

To see these effects explicitly, we now compute the bound state energies as a function of
impurity separation. This corresponds to a direct calculation of the discrete YSR
contribution to Eq. (4.7). The YSR bound state energies can be computed from poles of

Tr[Gy i (2)]. More explicitly, Ej is determined by

F(E,) = Det[1 — SG(E,)] = 0. (4.14)

In the limit, k¢ > 1, one can consider the hybridization of the isolated YSR bound states
to obtain perturbative corrections to the YSR energies. We derive an analytic
approximation for solutions of Eq. (4.14) in the case of both parallel and anti-parallel
impurities. By subtracting the bare YSR energy [Eq. (4.2)], this allows us to compute the
spin-dependent total energy shift 7. Our perturbative expansion is in the parameter 1/ E,
and remains valid so long as the energy shift is small relative to the bare YSR energy (see
Eq. (4.16) and below for a discussion of validity).

We first consider the case of anti-parallel impurities where symmetry allows us to

directly expand around the bare YSR energy, F'(Ey) + ny F'(E,) = 0. A straightforward
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but tedious calculation then yields the leading term in 1 — 8 as ny) = A i 3 Cg?k;k’;;") e €. In

the case of parallel spins, the situation is slightly more complicated since one must extract
the total shift by averaging the split energies (Fig. 71b). This requires expanding to third
order, F(Ey) + nF'(Ey) + 505, F" (Ey) + g0 F"(E,) = 0 and results in a non-singular

A cos(kpr) —2r¢
-3 (kaJSQe ¢,as f— 1.

Shlft7 T =
The YSR contribution to the exchange, I(r), is given by Jysg = 14 — n+. Crucially, as
the bound state energy approaches the middle of the superconducting gap (E, — 0,

B — 1), Jysgr is dominated by the singular contribution in 7y, yielding,

1 cos?(ksr) _2r
J =A 3 4.15
YSR 1-3 2(kfr)2 e &, ( )
which exhibits a resonant enhancement of the form —. This resonant enhancement has an

1

intuitive explanation. It arises from the hybridization of a pair of YSR states with the
superconducting condensate; more specifically, when the impurities are anti-aligned, this
hybridization occurs as a result of the conversion of a Cooper pair from the condensate into
a pair of electrons in the YSR states. Heuristically, this coupling to the condensate takes
the form AU (r)c! TCIN’ where U(r) = cos(kyr)/(ksr) characterizes the overlap between the
bound states. While the ground state energy correction stemming from this coupling is
generally suppressed by an energy denominator 2F,, as 3 approaches unity, Fj approaches
zero, leading to the observed resonant enhancement.

The physical limit of the enhancement of this purely antiferromagnetic contribution is
set by the condition that the YSR energies have not crossed zero, which in effect, would
signify a parity changing transition. This condition also represents the regime of validity
for Jygsgr as derived from the expansion of Eq. (4.14). In combination with the constraint

that Jysgr dominates over bare RKKY interactions, we obtain a double-sided inequality,

1
k> =5 > é (4.16)
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By stark contrast to the perturbative limit, where the superconducting correction
dominates only at distances r > £, here, we find that the anti-ferromagnetic Jygg exchange

can prevail at r ~ /A€ < € and reaches a maximum (~ A/\/ks€) at such distances.

4.1.3 Discussion of Shiba interaction

Inspection reveals that the YSR-induced interaction strength, Jysr = n1) — n44 scales as

~ %2, exhibiting a weaker decay than conventional metallic RKKY interactions. We note
that this power-law is in agreement with the perturbative superconducting correction in
Eq. (4.13); as expected, for small 3, our full non-pertubative calculation matches the
perturbative results. In comparison to bare RKKY interactions, one important qualitative
observation is that, while oscillatory in nature, Jyggr does not vary between ferromagnetic
and antiferromagnetic couplings. The antiferromagnetic nature of the superconducting
YSR correction results from the fact that coupling to the condensate occur most effectively
for anti-aligned impurities.

For small impurity separation and weakly bound YSR states, the magnitude of the
RKKY interaction dominates over Jyggr. However, as illustrated in Fig. 23, for bound state
energies close to the middle of the gap, resonant enhancement enables Jysr > Jrxky at
distances well below the coherence length; the dominance of this anti-ferromagnetic
exchange is further highlighted by the weaker power-law decay as a function of r. This
effect will be especially pronounced for superconductors with relatively large coherence
lengths.

To observe/utilize the resonant enhancement of Jygr requires a system where the
coupling strength between the impurity spin and the superconductor can be tuned
continuously. In principle, any low-density system with a tunable DOS can provide a
natural mechanism for controlling the exchange constant via a gate voltage. An example of
such a scenario is found in graphene [164], where the exchange coupling of magnetic defects

can be altered by simply changing the carrier density. In combination with demonstrations
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of proximity-induced superconductivity [165], this suggests that graphene in contact with a
superconductor may represent a promising system with which to realize tunable-energy
YSR states. Such a system naturally possesses a large coherence length since the Fermi
velocity remains substantial even at low carrier densities. Interestingly, it may also be
possible to further enhance the effects of an applied gate voltage by separating the
graphene from the superconductor via a layer of semiconductor such as MoS, [166, 167].

In summary, working beyond the Born approximation, we have derived an enhanced
anti-ferromagnetic exchange between magnetic impurities on the surface of a
superconductor. This interaction is intimately related to the existence of a single mid-gap
bound Yu-Shiba-Rusinov (YSR) state near a magnetic impurity; indeed, it is the
hybridization of these YSR states, which induces a long range antiferromagnetic interaction
between spin impurities. Although our results are formulated within the treatment of
classical spins, such a description is consistent for high-spin magnetic ions such as those
currently used in experiments (e.g. Gd, Mn, Cr) [150, 151]. In the next section, we perform
a renormalization group (NRG) study on the two-impurity Shiba molecule problem. We
account for quantum fluctuations and shed light on the interplay between Kondo singlet

formation and YSR-induced spin-spin interactions.

4.2 Phase Diagram and Excitations of a Shiba Molecule

In an ordinary metal, the celebrated Kondo effect describes the scattering of conduction
electrons due to magnetic impurities. Below the so-called Kondo temperature (Tk), the
magnetic moment of a single impurity becomes screened by the electrons [168], leading to
its dissolution and hence, the formation of a Fermi liquid state [169]. This simple picture
can fail when one considers a finite density of impurities. In particular,
conduction-electrons mediate RKKY exchange interactions, I, between the impurities and
in the limit, I 2 Tk, such interactions can lead to the emergence of either magnetically

ordered or spin glass states [170, 171]. Much of our understanding of this phase transition
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Figure 24: Two magnetic impurities placed on a superconducting surface. RF fields can be used
to produce transitions between various molecular states and manipulate them.

owes to detailed studies of the two-impurity Kondo model [172, 173].

Extending the two-impurity calculations to the case of a superconducting host represents
an interesting and active challenge [138, 141-149]. On the one hand, the interplay of
superconductivity and magnetic moments can lead to the emergence of exotic phases and
excitations. Recent results have suggested the possibility of emergent Majorana edge
modes at the ends of a magnetic impurity chain situated on the surface of an s-wave
superconductor; in this system, topological superconductivity arises from the formation of
a spin-helix as a result of the underlying RKKY interaction [34-36]. On the other hand,
the presence of magnetic impurities breaks time-reversal symmetry and gradually leads to
the destruction of superconductivity. This breakdown occurs through the appearance of
proliferating mid-gap states (so-called Shiba states), as first observed by Yu, Shiba and
Rusinov [37-39]. In particular, within a simple classical calculation, they demonstrated
that a magnetic impurity can bind an anti-aligned quasiparticle, yielding a sub-gap bound
state of energy e = A — Ej,, where A represents the superconducting gap and FE, the
binding energy [150, 151]. As the binding energy E, increases (e.g. as a function of
increasing exchange coupling), the bound state energy eventually crosses zero, signifying a
parity-changing phase transition.

With certain modifications, this classical picture remains qualitatively valid even for
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quantum mechanical spins [138, 174-178]. Taking into account quantum fluctuations, the
aforementioned parity-changing transition occurs at a critical point, (A/Tk )., when the
superconducting gap becomes comparable to the Kondo temperature. [168]. For an
S = 1/2 impurity, the spin is essentially free for A/Tx > (A/Tk). and the associated
mid-gap Shiba state remains unoccupied. In this ’free spin’ regime, the ground state has
spin Sg = 1/2. In the opposite limit, when A/Tx < (A/Tk)., the impurity spin becomes
screened by a bound quasiparticle; more specifically, the mid-gap Shiba state becomes
occupied and this quasiparticle spin forms a singlet with the impurity spin, leading to an
Sa = 0 ground state. This phase transition has recently been observed in mesoscopic
circuits, where the strength of the exchange interaction can be tuned by means of a
pinch-off gate electrode [179].

In this section, through a combination of numerical renormalization group methods and
semi-classical analytics, we derive the phase diagram of the two-impurity Kondo model for

a superconducting host !. We consider an s-wave superconductor with Hamiltonian,

dk
Hpcs = / 2n)? [;gkcﬂackg + (ACLTCikJ, + h.c.)}

coupled, via exchange, to two identical spin 1/2 magnetic impurities of spin S; and S,,

J

J
Hip = 3 Sﬂﬂ"’ P1 + 3 52@0' (P (4.17)

Here, 11 and vy are the field operators at the impurity positions. We note that this
Hamiltonian captures the essential physics of two experimental systems: (1) magnetic
impurities placed on a superconducting surface (see Fig. 24) [150-152] and (2) double dot
devices attached to superconductors (e.g. as recently used for Cooper pair splitting)

[180, 181]. To study the ground state and excitation spectrum of Hy = Hpcs + Hiyg, We

1Some results in the limit of A < T are obtained in [178] and agree with the relevant cuts of our phase
diagram
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map the problem to a double superconducting chain, and analyze it via Wilson’s numerical

renormalization group (NRG) method [172].

4.2.1 Conserved currents for Shiba molecules

We observe that Hp conserves both parity, P, and total spin, S. In a superconductor, the
pairing terms imply that charge is typically only conserved modulo 2. However, for A =0
and in the presence of particle-hole symmetry, the Wilson chain possesses a hidden SU,(2)
charge symmetry [172] analogous to that of the Hubbard model [182]. For a half-filled
cubic lattice, this charge symmetry is generated by the operators, Q, = (QT + Q7)/2,
Qy=(QT—Q7)/2i, Q* =3 DI f ( CkaCkU - ) where QF = f @) 3CkTer Ky and

Q = (Q*)T 2. Although this symmetry is strictly broken for A # 0, a hidden U,(1)
symmetry remains, leading to a conserved pseudo-charge, ). Physically, this pseudo-charge
can be viewed as the generator of rotations along the superconducting order parameter.
For the remainder of the text, we will utilize these three quantum numbers (P, S and Q)
to classify the eigenstates of the Hamiltonian.

Our NRG calculations reveal the existence of five competing subgap Shiba-molecule
states, as depicted in Table 4.2.1. For large values of A, both of the impurity spins are
essentially free. They can form a singlet state (Sp) with spin S = 0, parity P = —, and
pseudocharge Q =0, or a a triplet state (Tp) with S =1, P =+, and Q = 0. Similar to the
single impurity case, one can also create a single (antiferromagnetically) bound
quasiparticle. However, in the Shiba molecule case, this quasiparticle is delocalized between
the two impurities and can form either a bonding (D, ) or antibonding state (D_) of spin
S =1/2, parity P = +, and pseudo-charge Q=1 Finally, it is also possible to induce the
binding of two quasiparticles, one to each of the impurities. In this case, one finds a singlet
state (S2) with pseudocharge Q = 2. The parity of this state is, rather counterintuitively,

P = —, owing to the fermionic nature of the bound quasiparticles.

2Here 7 denotes the corner of the Brillouin zone.
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Table 4.2.1: Shiba molecular bound states and their quantum numbers. Small spins represent
quasiparticles bound to the (large) impurity spins.

4.2.2  Shiba molecule phase diagram

The competition between these five states leads to a rich Shiba molecule phase diagram. A
heuristic understanding of this diagram can be gained by comparing the relative strengths
of superconductivity, exchange, and Kondo screening. In analogy to the single impurity
case, the ratio A /Ty characterizes the competition between superconductivity and Kondo
screening. For A /T > 1, Kondo screening is heavily suppressed and the magnetic
moments remain unscreened. The two impurities do however couple to each other via the
Fermi sea of conduction electrons. For processes involving quasiparticle excitations close to

the Fermi energy, this coupling is characterized by the overlap S of the two waves created

sin(kpR)
krR

at the impurity locations. For a three dimensional free electron system, S = , where
R = |R; — Ry is the separation between the impurities and kp the Fermi momentum. This
overlap S is also responsible for the hybridization of the Shiba states at sites 1 and 2, and
thus for the splitting between the bonding and antibonding states (D).

The impurity spins also interact via RKKY exchange I, which depends on high-energy
electron-hole excitations; thus, the coupling I ought be considered as an independent
parameter, determined by the precise band shape and the energy dependence of the

exchange coupling, J. The competition between RKKY and Kondo screening is

characterized by the ratio, I /Ty 3. The phase diagram obtained via NRG is shown in

3In the NRG scheme, a direct interaction between the impurities must also be introduced [172].
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Figure 25: NRG-determined phase diagram for S = 0.1 as function of I/Tx and A/Tk. The
background colors indicate regions with S = 1 (light maroon), S = 1/2 (white) and S = 0 (blue)
ground states. The blue dashed line separates the regions with Sy (light blue) and Sy (dark blue)
ground states.

Fig. 25. We identify four distinct regions, each corresponding one of the states in

Table 4.2.1: (1) For large values of A/Tk, the impurities are free and the ground state is a
molecular triplet (7p) for I < 0 and a molecular singlet (Sy) for I > 0. As expected, this
molecular singlet phase is also observed for I > Tk, A and extends down to the A =0
axis. (2) In the Kondo singlet region (Ss), |I|, A < Tk, one recovers strong Kondo
correlations, wherein the two impurity spins are basically individually screened by
quasiparticles. For perfect electron-hole symmetry this region is separated from (1) by a
first order phase transition (blue dashed line in Fig. 25), corresponding to both a
pseudo-charge jump from Q=0to Q =2 as well as a Sy — Sy singlet-singlet level crossing.
When electron-hole symmetry is broken, the transition becomes a smooth cross-over. (3)
Along the A = 0 line, the known phase diagram of the two impurity (normal metal) Kondo
model is recovered [171]. Here, a quantum critical point (blue star) separates the molecular
singlet from the Kondo singlet region. For any finite A, the spectrum is gapped, and this
critical point turns into the aforementioned first order transition line.

The nature of the Kondo singlet phase at A = 0 gradually changes as one moves toward
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Figure 26: Evolution of the bound states as function of A/Tk for RKKY couplings [ /T =
—0.58 and an overlap parameter S = 0.1 and corresponds to the black dashed line in Fig. 2.
One observes a phase transition from the individual singlet state (S2) into the molecular doublet
phase (D) and then another transition to the molecular triplet phase (7). The effective RKKY
interaction can be extracted as the splitting between the Sy and T} states: I.g = Eg, — E7y,.

large, negative exchange interactions. In particular, for —1 > Tk, the two impurity spins
are first bound into a molecular triplet, which is then screened in the even and odd
channels at (typically) two different Kondo temperatures. This picture survives for small
but finite A, although strictly speaking, there is no true Kondo effect for any finite gap;
nevertheless, one can still screen the impurity spins for A < Tk and a Kondo anomaly is
generally observed in the tunneling spectra at intermediate energies, A < w < Tk.

(4) Finally, and most strikingly, for S # 0 a new S = 1/2 phase emerges for A ~ Tk and
I =~ 0. We term this phase the molecular doublet (D). It can be understood as follows:
For A > Ty each of the two spins can bind a single excited quasiparticle. For & = 0 the
energy of these bound states are identical; however, for § # 0 these states can hybridize to
form molecular bonding and antibonding states D.. As one decreases the ratio A/Tk, the
energy of the Dy states moves towards zero until D, first crosses (zero) and becomes the
ground state. This transition is accompanied by a charge-parity flip and a spin transition

from S =1 — 1/2. Further decreasing A/Tk lowers the energy of the
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two-bound-quasiparticle state until a second charge parity transition to the Ss singlet
occurs. These level crossings and the evolution of the excitation spectrum along the
vertical dash-dotted line in Fig. 25 is shown in Fig. 26.

The existence of this novel molecular doublet phase can also be probed and confirmed in
a semi-classical calculation where one extends the original Yu-Shiba-Rusinov calculation to
the case of two classical magnetic impurities. Each magnetic impurity binds a Shiba state

with wavefunction ¢g,(r) ~ %e_r/ Clsin(20) 4y energy Fg, = A%, where ( is the coherence
length, 8 = tan(d) = JSNym/2 and Ny is the density of states at the Fermi energy.
Utilizing a two-impurity Green’s function calculation [183, 184], we compute the energies
of the hybridized Shiba bound states as poles of the T-matrix. Picking two values of kr R
(corresponding to ferromagnetic and anti-ferromagnetic exchange) we plot the bound-state
energies as a function of 4 (Fig. 27). In each case, hybridization causes a single bound
state to first cross Ey, = 0 leading to the formation of the molecular doublet phase. The

second bound-state crossing then yields the transition to either the triplet Kondo phase

(I < 0) or the Kondo singlet phase (I > 0).

4.2.3 Tunneling RF Spectroscopy

The most direct observation of the various molecular Shiba states can be achieved by
combining RF spectroscopy with transport measurements. To this end, we determine the
tunneling spectrum of the Shiba molecule by computing the spectral density of the
so-called composite fermion, F; = S; - o¢;. In the molecular triplet phase (Ty) both D
and D_ are visible in the tunneling spectrum and, correspondingly, a double mid-gap STM
resonance is predicted (see Fig. 28). The dominant obstacle to observing such a resonance
arises from thermal broadening; indeed, measurements of Mn and Gd impurities 4 on a

single-crystal lead superconductor at ~ 4K are unable to resolve individual Shiba

4Both Mn and Gd are high spin magnetic impurities. Adding in such effects (e.g. of single-ion anisotropy)
is an interesting direction [178§]
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Figure 27: Semi-classical molecular doublet phase transitions. (a) For kpR =~ 4.1, the RKKY
exchange is negative and the bound state energies are shown as one increases § = JNS7/2. At
B = 0.806, the first bound state crosses zero and a charge-parity transition from the molecular
triplet phase to the doublet phase occurs. At 5 = 1.3, the second bound state crossing leads to
the triplet Kondo phase. (b) Analogous semi-classical results for kpR =~ 2.6 where the exchange
is positive.

resonances [150]. However, operating at slightly lower temperatures (~ 500mK) should
reduce the linewidth to ~ 0.14meV, significantly smaller than the superconducting gap,
App, = 1.55meV. Such estimates are consistent with recent results which utilize a
superconducting Niobium tip to explicitly resolve multiple Shiba scattering channels
[151, 185]. Much lower temperatures in the range of 7'~ 20 mK can be attained in
mesoscopic circuits, where multiple Shiba states have indeed been resolved recently [181].

Applying an additional RF field with a frequency matched to the Ty — Sy transition
(AE = hv) allows one to populate the Sy state ®. In this case, the Sy — D. transitions
also become active and visible (Fig. 5), while the tunneling gap shifts from A — A — AF.
In this way, one can detect the excited state Sy and its energy by investigating the
RF-radiation-induced transport signal.

The transitions between the various phases and the corresponding STM spectra should

also be observable in double-dot spin-splitter devices. In particular, the tunneling d7/dV

5Parity must be broken to induce a Sy — Ty transition, e.g. by an inhomogeneous magnetic field
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Figure 28: STM spectrum of one atom of the Shiba molecule in the molecular triplet (7) phase.
The D4 and the D_ states can both be observed as subgap Shiba transition lines (see top).
Upon irradiation with a frequency matching the Ty — Sy transition hy = AFE (right panel),
two additional subgap lines appear, and the gap shifts to lower values (bottom).

spectra can be accessed by observing the transport with normal electrodes attached.
Similar to the case of a simple magnetic impurity, by approaching the phase boundaries
between (D, S2) or (D4, Tp), a single midgap excitation should get ‘soft’ and cross zero.
Interestingly, the strength of the corresponding tunneling resonance displays a universal
jump at these transitions, 2 — 1 and 3 — 2, respectively; this robust jump owes to a
change in ground state degeneracy [179].

As a possible application, one can consider using the singlet states Sy and Sj as a
quantum bit. These states are protected by the superconducting gap and, being singlets,
they are insensitive to magnetic noise (including the hyperfine field of nearby nuclear
moments). To have a direct transition between these states, both parity and particle-hole
symmetry must be broken sufficiently strongly; this can be achieved by placing a single
potential scatterer near one of the magnetic impurities, as may be possible in STM-type

experiments [150, 151, 185].
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Chapter 5

Robust quantum wires in spin ensembles

5.1 Quantum state transfer in a thermal spin chain

This chapter moves into the portion of the thesis which focuses more on quantum
information science. While still drawing from techniques and ideas in both condensed
matter and AMO physics, this chapter deals specifically with quantum state transfer. In
addition to diverse applications ranging from quantum key distribution to quantum
teleportation [186, 187], reliable quantum state transfer between distant qubits forms an
essential ingredient of any scalable quantum information processor [188]. However, most
direct qubit interactions are short-range and the corresponding interaction strength decays
rapidly with physical separation. For this reason, most of the feasible approaches that have
been proposed for quantum computation rely upon the use of quantum channels which
serve to connect remote qubits; such channels include: electrons in semiconductors [189],
optical photons [41, 190-192], and the physical transport of trapped ions [193]. Coupled
quantum spin chains have also been extensively studied [194-208]. A key advantage of such
spin chain quantum channels is the ability to manipulate, transfer, and process quantum
information utilizing the same fundamental hardware [209]; indeed, both quantum memory

and quantum state transfer can be achieved in coupled spin chain arrays [210], eliminating
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the requirement for an external interface between the quantum channel and the quantum
register. Prior work on spin chain quantum channels has focused on three distinct regimes,
in which the spin chain is either initialized [194, 201, 203, 204, 208],

engineered [196, 211, 212] or dynamically controlled [198, 213-216].

An important application of spin-chain mediated coherent coupling is in the context of
realizing a room temperature quantum information processor based upon localized spins in
the solid-state [217]. In this case, it is difficult to envision mechanical qubit transport,
while other coupling mechanisms are often not available or impose additional prohibitive
requirements such as cryogenic cooling [192]. At the same time, long spin chains are
generally difficult to polarize, impossible to control with single-spin resolution, and suffer
from imperfect spin-positioning [205, 206]; such imperfections can cause both on-site and
coupling disorder, resulting in localization [218]. For these reasons, a detailed
understanding of quantum coherence and state transfer in random spin chains with a
limited degree of external control is of both fundamental and practical importance.

In this section, we propose and analyze a novel method for quantum state transfer
(QST) in an unpolarized, infinite temperature spin chain. In contrast to prior work, the
method requires neither external modulation of the Hamiltonian evolution nor spin chain
engineering and initialization. Furthermore, it is robust to specific, practically important
types of disorder. The key idea of our approach is illustrated in Fig. 29(a). The two spin
qubits at the ends of the spin chain can be initialized and fully controlled, while the
coupling between these remote qubits is mediated by a set of intermediate spins, which can
not be initialized, individually controlled, or optically detected. We assume that the
qubit-chain coupling g, which can be variably adjusted, and the intrachain coupling x,
which is fixed, are characterized by short-range XX interactions. The essence of the state
transfer is the long-range coherent interaction between the spin qubits, mediated by a
specific collective eigenmode of the intermediate spin chain. This mode is best understood

via Jordan-Wigner (JW) fermionization, which allows for the states of an XX spin chain to

82



be mapped into the states of a set of non-interacting spinless fermions. In this
representation, the state transfer is achieved by free fermion tunneling, as shown in

Fig. 29(b). In what follows, we show that the initial state of the intermediate chain does
not affect the tunneling rate associated with free fermion state transfer (FFST), allowing
for the implementation of a SWAP operation between the end qubits after a period of

unitary evolution.

5.1.1 Thermal State Transfer

To be specific, we consider an XX Hamiltonian governing two distant qubits connected by

a quantum channel consisting of a spin-1/2 chain
H=Hy+ H' (5.1)

with Ho = >0 ' k(SF S, + 57 Sih,) and H' = g(Sy Sy + S, Sy + h.c.), as shown in
Fig. 29(a). Here, S* = §% 4 iS¥, where § = /2 and & are Pauli spin operators (i = 1).
We consider the limit ¢ < k, and work perturbatively in H’. Upon introducing fermi
operators ¢; = "0 5 S S;, Hy is transformed to Hy = SN " k(cleiy + cicLl), wherein
conservation of total spin z-projection becomes conservation of fermion number [219]. The
subsequent diagonalization of this tight-binding Hamiltonian occurs through an orthogonal
transformation f = L Z |, sin 4T ; with k =1,--- , N and 4 = (85)1/2] yielding

Hy = Z,ivzl Ekfgfk, where Fj, = 2k cos v N+1 [219]. The perturbation Hamiltonian is likewise

transformed to

N
H = Ztk(cgfk + (—1)kflcjv+1fk + h.c.), (5.2)
k=1
where ¢, = § sin N_+1 We begin by restricting our discussion to odd N, where there exists

a single zero energy fermionic mode in the intermediate chain corresponding to
k =z= (N +1)/2. Thus, the two end spins are resonantly coupled to the zero energy

fermion by H’, and under the assumption that the tunneling rate ¢, ~ g/A is much smaller
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Figure 29: (color online). (a) Distant spin qubits coupled by an unpolarized spin-chain quan-
tum channel with g, the coupling between qubits (yellow, green) and the spin chain and &,

the coupling between intra-chain elements. The spin chain can be re-expressed in terms of free
fermions via the Jordan-Wigner transformation, wherein the hopping strength is characterized
by k. Boxed spins, labeled a’ and ¥/, represent additional spin qubits that can correspond to

the memory of a quantum register or ancillary qubits associated with quantum information en-
coding. (b) By ensuring that the end spins are resonant with a single fermion mode (k = z),
unpolarized spin-chain state transfer becomes analogous to fermionic tunneling. Maintaining

g < k/VN ensures that off-resonant coupling to other fermionic modes can be neglected and
enables state transfer independent of the intermediate spin-chain state. (¢) Graph-like state gen-
erated by FFST, between the qubits and the intermediate spin chain [202]. Each line represents a
controlled-phase gate.

than the fermion detuning, |E, — E,+1| ~ k/N, off-resonant coupling to other fermionic
modes can be neglected. Upon absorbing a phase factor of (—1)*~! into c}, 41, evolution is
governed by the effective Hamiltonian, H.sr = tz(cg f-+ cj\, +1f> + h.c.), which describes
resonant fermionic tunneling, as shown in Fig. 29(b).

Unitary evolution under H.ss for a time 7 = ﬁ results in
Uepp = e mHers = (—Dflfz(l — (b + CR,H)(CO + cy41)). Upon projection to the subspace

spanned by {(1, ¢}, c}r\,ﬂ, cgcjv+1)|00>07N+1}, the effective evolution can be expressed as

UG = (—1)rotmventns (1 )monv it SWAP 1, (5.3)

e

where ng = fg fo is the fermion number operator. Hence, as desired, time evolution under

H_s¢ swaps the quantum state of the two end fermions. However, in addition to the SWAP
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gate and single fermion rotations, the end fermions are entangled through a controlled
phase gate CPy y11 = (—1)™"~+1 which arises from fermionic anticommutation
relations [198, 202, 220]. Before discussing this entanglement, let us first consider the
analogous prescription in the spin basis.

We consider a generic initial state ®; = (a| ) + ] 1))o @ (/| L) + 5| 1)) n41 @ Vs,
where WU represents the intermediate spin chain state, characterized as the co-eigenstate of
commuting operators M = Z;VZI S;FS; and n,. After fermionization, evolution and

inversion back to the spin basis, the final spin chain state becomes

N
®; = (][ CPojCPx41,)CPon+1SWAP v 11 ®; (5.4)
j=1
up to single qubit rotations. In this basis, the Wigner-strings become controlled-phase
gates and generate a graph-like entangled state between the two end spins and the
intermediate spins, as shown in Fig. 29(c) [202].

Despite this entanglement, the use of a simple two-qubit encoding can achieve coherent
quantum state transfer [221]. The quantum information is encoded in two spins, a and d/,
with logical basis | 1) = | {)a| $)ars | T) = | Dal T)ar. After encoding, one first performs
FFST between spins a and b via the unpolarized spin chain, and then, repeats the
operation between spins @’ and ¥', as shown in Fig. 29(a). Finally, the quantum
information is decoded by applying a CNOT gate between spins b and ¥, after which, the
information has been coherently mapped to spin b. Thus, we have demonstrated the ability
to perform QST between spatially separated spin qubits. Furthermore, as detailed in the
subsequent section on experimental realizations utilizing Nitrogen-Vacancy registers, we
offer an alternative solution which achieves remote coupling of spatially separated quantum
registers through a dual-transfer protocol.

To confirm perfect quantum state transfer, we perform numerics, as shown in Fig. 30.

1

Specifically, we calculate the average fidelity, F = 5 + 15 Y.,y 53 Tr [0°€(0")], of two-qubit
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encoded state transfer, where & represents the quantum channel consisting of encoding,
state transfer and decoding [222]. This average fidelity can be expressed in terms of
elements of the matrix e *57, where K is the NxN coupling matrix of the full
Hamiltonian found in Eq. (5.1), H = ZZ i K; ;S S5 5 crucially, this allows for simulations of
channel fidelity in extremely long spin chains, since diagonlization of the full Hilbert space
is no longer necessary. In finite chains of fixed length, the infidelity, e = 1 — F', varies as a
function of g/k, as shown in Fig. 30(a). This infidelity results from the leakage of quantum
information into the off-resonant modes of the intermediate spin chain, and can be
analytically expressed, in the limit g < s, as e~ ), . 2 (E—Z)Q [+ (=1)%* cos(Eyr)],

N+1

where z = =5=. In this limit, the analytic expression is in exact agreement with the

numerics, and is upper-bounded by the theoretical estimate, ), 42 13—0 (%)2, as shown in
Fig. 30(a).

Utilizing the analytic upper bound for a given chain length N, a given intrachain
coupling x, and a given tolerable infidelity ¢y, we can compute the maximum allowed g and
hence the minimum state transfer time 7. By contrast to direct dipole-dipole interactions,
which would depict a cubic scaling of 7 with N, the time required for FFST scales linearly
with chain length, as shown in Fig. 30(b) [223]. Intuitively, this results from the fact that

the condition on ¢, allowing for off-resonant coupling to be neglected is t, < x/N, implying

that 7 ~ 1/t, ~ N/k.

5.1.2 Extensions of the protocol

While we have chosen to focus on the case of odd N length intermediate chains, the
extension to even N is directly analogous. In even N chains, since the fermion
eigenspectrum is symmetric about £ = 0, no fermionic eigenmode is initially resonant with
the end spin qubits. However, by introducing a controllable detuning to the end spins,

Ha = A(S§ + S%.1), it is possible to choose an N-dependent A such that the end spins are

resonant with any single fermion eigenmode in both even and odd N cases [210]. In
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particular, for A = Ej,, resonant tunneling will occur at the rate t;, allowing for control
over the speed of FFST.

We now generalize our analysis and consider optimizing the FFST protocol in the
context of realistic imperfections including disorder and decoherence. On-site and coupling
disorder cause localization, asymmetry of the eigenmodes, and changes in the statistics of
the eigenenergies [205, 206, 218]. In the thermodynamic limit in 1D, localization occurs for
any amount of disorder; thus, it will be necessary to utilize eigenmodes whose localization
length is sufficiently large relative to the chain length, thereby rendering such modes
effectively extended and viable for QST. Crucially, in the case of particle-hole (PH)
symmetric disorder (e.g. coupling-strength disorder), there exists an extended critical state
at F/ = 0 with a diverging localization length; this ensures the existence of an extended
eigenmode with a known eigenenergy, suggesting that FFST is intrinsically robust against
coupling-strength disorder [218]. In the case of on-site disorder, random modulation of the
on-site potential may be able to restore PH symmetry [224]; in cases where this is
insufficient, it is possible to characterize the energy spectrum and coupling strengths of the
intermediate spin chain solely through tomography of a single end spin [225]. This
characterization will help allow for the identification of a suitable, extended eigenmode.

However, the existence of an extended mode is not sufficient to ensure state transfer as
disorder also enhances off-resonant tunneling rates and causes the eigenmode wavefunction
amplitude to become asymmetric at the two ends of the chain. Despite such imperfections,
by individually tuning the qubit-chain couplings, g, (left) and gr (right), it is possible to
compensate for eigenmode asymmetry; furthermore, sufficiently decreasing the magnitude
of the qubit-chain coupling ensures that off-resonant tunneling can safely be neglected,
even in the presence of disorder.

In addition to disorder, decoherence of the spin qubits and the intermediate spin chain
places a stringent lower bound on the values of g, and gg, since 7 ~ v/N/g [210]. Thus, an

interplay of disorder and decoherence will ultimately limit the experimental realization of
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Figure 30: (color online). (a) Numerical simulation of the infidelity of QST for N = 7 as a func-
tion of g/k depicting fluctuations in the infidelity. The numerical infidelity is bounded by the
theoretical estimate (bold line). (b) For a chosen tolerable infidelity ¢g = 1073, the minimum
time 7 (in units of 1/k), required for state transfer scales linearly with chain length.

FFST; further numerical exploration of such an interplay will provide insight into the

relevant constraints [210].

5.1.3 Experimental Realization

Both the necessity and realization of FFST can be evinced by considering
Nitrogen-Vacancy (NV) registers in diamond, which have extremely long room-temperature
coherence times [210]. In particular, the imperfect conversion of NV centers from single
Nitrogen impurities results in substantial spatial separation between individual registers.
However, the unconverted spin-1/2 Nitrogen impurities form a natural spin chain
connecting remote registers. At ambient temperatures, the Nitrogen impurity spin chain,
which is optically unaddressable, would be unpolarized and hence, the proposed scheme
would be essential to enable distant NV register coupling.

Thus, we envision an array of two-qubit NV registers connected by a quantum channel
consisting of spin-1/2 implanted Nitrogen impurities [210]. Recent experiments have
demonstrated the ability to fully manipulate the two-qubit NV register corresponding to
the NV nuclear spin, which serves as the memory qubit, and the NV electronic spin, which

is used to initialize, readout, and mediate coupling to the intermediate spin
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chain [44, 45, 226, 227]. The effective Hamiltonian described in Eq. (5.1) can be achieved
in such a mixed spin system via dynamic decoupling [210], and the qubit-chain coupling g
can be fully tuned by utilizing the structure of the NV center ground-state manifold [210].
To apply arbitrary two qubit gates between the nuclear memory of distant NV registers: 1)
SWAP the state of the nuclear and electronic spin of the first register 2) apply FFST
between the electronic spins of the two registers 3) apply a CP-gate between the electronic
and nuclear spin of the second register 4) repeat (2) and (1) to return the nuclear memory
of the first register and disentangle from the intermediary chain. Together with single qubit
rotations, such an implementation of FFST achieves a universal set of gates and hence
computation in an array of NV registers connected by Nitrogen impurity spin chains.

In summary, we have proposed a robust method to coherently couple spatially separated
quantum registers by means of an unpolarized spin chain. The proposed method is
examined in the context of NV diamond centers, where its direct application can
potentially allow for the realization of a scalable room-temperature quantum information
processor [210]. While we have focused on the specific case of an XX chain, the conceptual
framework can be used in a wide range of systems to achieve QST through effective
eigenmode tunneling. For example, QST in an unpolarized chain can also be achieved in
the transverse field Ising model, where in contrast to the XX chain, the JW transformation
yields a fermionic Hamiltonian which no longer conserves fermion number. In fact, all
Hamiltonians that are quadratic in bose and fermi operators can be exactly diagonalized
and thus provide a natural starting point to further explore eigenmode-mediated QST.
Finally, the proposed approach may also provide insight into entanglement generation in a

many-body system and the dynamics of the disorder-driven localization transition.

5.2 Fidelity of thermal quantum wires: dipolar interactions and decoherence

In the previous section, we described the method of thermal state transfer in a spin chain.

In this section, we analyze various decoherence mechanisms and quantify the fidelity of
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such state transfer. In the solid-state, our thermal state transfer method will naturally
suffer from localization effects associated with lattice imperfections and disorder [218].
Exploration of the interplay between such localization effects and intrinsic constraints set
by finite coherence times, is important to assess the feasibility of proposed architectures.

This section is organized as follows. In subsection II, we extend the previously proposed
notion of eigenmode-mediated quantum state transfer [116] to the transverse field Ising
model. In addition to being closely related to the actual achievable Hamiltonian of certain
driven spin systems, this simple model enables an analytic description of the state transfer
protocol. In subsection III, we build upon these protocols and derive analytic expressions
characterizing the channel fidelity for state transfer between remote quantum registers.
Next, we generalize our method to bosonic systems (e.g. coupled cavities and pendulum
arrays) in subsection IV. In particular, we demonstrate that chains of coupled oscillators
can faithfully transport quantum information even at high oscillator temperature.

Having described eigenmode-mediated QST in both the fermionic and bosonic context,
we then turn to a specific implementation within a solid-state quantum computing
architecture. In subsection V, we analyze eigenmode-mediated quantum state transfer
between remote spin-quantum-registers [44, 45, 226]. To be specific, we consider
Nitrogen-Vacancy (NV) defect center registers and examine the optimization of state
transfer fidelities in the presence of both disorder and a finite depolarization (7}) time. The
interplay between disorder-induced localization and decoherence yields a natural optimal
channel fidelity, which we calculate. Ultimately, this optimization demonstrates the
feasibility of scalable architectures whose remote logic gates can harbor infidelities below
the threshold for error correcting codes [228, 229]. While eigenmode-mediated QST
fundamentally requires the register-chain coupling to be weaker than the intra-chain
coupling, in subsection VI we consider generalizations to the strong coupling regime. In
particular, motivated by several recent studies [208, 230-232], we provide numerical

simulations in parallel with the analytic channel fidelities derived in subsection III.

90



In subsection VII, we perform exact diagonalization for spin systems, which includes the
full long-range dipolar interaction. We find remarkably high fidelities for our proposed
QST protocols in chains of length up to L = 12. Finally, in subsection VIII, we describe
and analyze an alternate architecture, which utilizes globally controlled pulses for state
transfer [216, 233]. In this case, we demonstrate that all spins in the system (e.g. even dark
intermediate chain spins) can be viewed as potential qubits. However, while this
dramatically increases the number of qubits available, the composite operations required to
manipulate such intermediary spin qubits significantly raise the error threshold for robust

operation.

5.2.1 Figenmode-mediated QST

In this subsection, we begin with an idealized system in which to understand

eigenmode-mediated QST, namely, the transverse field Ising model,

N-1 N
H=— Z KO, 07 + Z Bo? (5.5)
i=1 i=1

where k is the nearest-neighbor coupling strength and B represents a uniform transverse
field on each site. In addition to being realizable in a variety of experimental systems,
ranging from NVs and trapped ions to electrons floating on helium [116, 234, 235], this
model also has the virtue of being exactly solvable; this will allow us to clearly illustrate
the essence of eigenmode-mediated state transfer and to understand the many-body
entanglement which arises.

Expanding o7 as a function of spin flip operators, o = (¢ +1i0?)/2, and utilizing the

)

Jordan-Wigner transformation [236], ¢! = o7 ¢™"" 219795 | yields the fermionized
Hamiltonian,
N-1 N
Hyw =— Z k(clei + CICI_H - Cicl'L—',-l — CiCit1) Z Blcle; — e;ed) (5.6)
i=1 =1
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which is quadratic and conserves fermionic parity without conserving particle number. To

solve H jy, we re-express it as ggTAgg, where we define gz;: (c1,€9y ..y CN, cL cg, ey c}fV)T. The

matrix A is real, symmetric and is diagonalized to

e 0 0 0
0 —e; 0 0

A=f0 0 e 0 (5.7)
0 0 0 —e

via an orthogonal matrix, ¢, such that 1) AyT = A. The eigenmodes come in pairs with
energy ey, corresponding to eigenvectors dy, = 1g;—1 ;¢; and d}; = oy ;0;, Where

k=1,---,N. This transformation yields

N
Hyw = ex(didy — dyd), (5.8)
k=1

where the d-modes satisfy standard Dirac anticommutation relations. For a uniform chain

the spectrum is, €, ~ \/k2 + B2 — 2Bk cos qi, where g, = kr /(N + 1).
We now consider the addition of quantum registers, labeled 0 and N + 1, at the ends of
the data bus (Fig. 31). The registers couple perturbatively with strength g to the ends of

the Ising spin chain [116, 201] and we apply a local Zeeman field B’,

H' = —g(o507 + 00N 1) + B'(0§ + 0y 11)- (5.9)
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Upon fermionizing,

Hyyw = —g(cher + chef + cico — coc)
_ 1 T 1 _
g(enen+1 + CyCy + Cy Oy — ENCN1)

+ B'(cheo — coch + v ienir — enpich ). (5.10)

By tuning B’ = ¢, we ensure that the external registers are coupled resonantly to a single

finite-energy eigenmode dl of the intermediate chain. Quantum state transfer proceeds via
resonant tunneling through this mode. Noting that ¢; = Z,]f:l(wT)i,gk_ldk + Z,]le(wT)i,gde
allows us to re-express ¢; and cy in terms of the d-modes. By choosing

G111 = gia.—1 N < B',|e, — €,41| we ensure that off-resonant eigenmodes are only

weakly coupled to the quantum registers, leaving an effective three-mode picture,

e ~ € \04,4,; — A4, €2(CpCo — CoCy €(C CN+1 — CN41C
Hes =~ e(dld. —d.dl) + e (c] ) + €x(Chypn N1)

— o ra(ehd. + dico) — gvai i (i ds + dlenta). (5.11)

It is interesting to note that for B < k, the Hamiltonian in Eq. (5.6) represents a
spin-less p-wave superconductor in its topological phase [237]. The zero energy boundary
modes of this system have received a great deal of attention recently. As these Majorana
zero modes are exponentially localized [238], they cannot be employed for state transfer. In
our analysis, this follows from the failure of the secular approximation to remove fermion
number non-conserving terms. A straight-forward calculation shows that the pairing terms
precisely cancel the hopping terms in the effective evolution.

Equation (5.11) represents the key result of the above manipulations. State transfer is
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Figure 31: (color online). Quantum state transfer is achieved by tuning the left and right quan-
tum registers (blue) to a particular eigenmode (red) of the intermediate data bus. By ensuring
that the coupling, g between the registers and the chain is sufficiently weak relative to the spac-
ing of adjacent eigenmodes, it is possible to consider evolution in an effective three-mode picture.
Such eigenmode-mediated QST is applicable in a variety of contexts, ranging from solid-state
spin chains to coupled bosonic degrees of freedom (e.g. pendulums or cavity arrays).

achieved by time-evolving for 7 = oY leading to unitary evolution,

Uy = e iTHess = (_]_)nz(_1)(C$+C}Lv+1)(CO+CN+1)/2

= (=)™ (1 = (cf + clys1)(co + enin)), (5.12)

where n, = dldz. It is instructive to write the explicit action of U.¢; on the subspace

spanned by U = {|Q), ¢|Q), cjv+1|Q>, cgcj\,H]Q)}, where |Q2) is the vacuum associated with

Coy, CN+1,
1 0 0 0
o 0o -1 0
Ueff\lf = (—1) z v, (513)
0 -1 0 0
0 0 0 -1

Up to signs, the effective evolution in the register subspace is a swap gate. In the spin

i-1 _+ _—

representation, owing to Wigner strings (e~ 25=1% % ), there exists an additional set of
controlled phase (CP) gates, as shown in Fig. 32. Since CP? = [, this entanglement can be
easily cancelled and logic gates between the remote registers can be successfully
accomplished [221, 239]. We detail two possible such protocols below.

One protocol, herein termed “there-and-back”, is particularly applicable to the case of
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multi-qubit quantum registers. For a two-qubit register, we can label one qubit as the
memory qubit while the other represents the “coupling” qubit. Once an
eigenmode-mediated swap between the coupling qubits is accomplished, an intra-register
CP-gate is then performed between the two qubits of the remote register. The return swap
then cancels the unwanted entanglement illustrated in Fig. 32, leaving only a
controlled-phase gate between the two memory qubits. Since CP gates are themselves
universal, such a procedure enables universal logic between remote registers.

An alternate method, which we call the “paired protocol” utilizes a two-qubit encoding
to cancel the Wigner strings. In this approach, the quantum information is encoded in two
spins, a and b, with logical basis | |) = | L)al $)b, | T) = | Tal 1o [116, 221, 239]; the
intuition behind this encoding is that it produces an effective bosonic excitation, thereby
mitigating the effect of the fermionic Wigner strings. State transfer proceeds by

successively transferring a and b through the intermediary chain.

5.2.2  Analytic Channel Fidelity

We now derive the channel fidelity associated with the paired protocol. To set up the
analytic framework, we begin by calculating the fidelity of a simplified protocol, termed the
“double-swap”. In this double-swap, we consider the left register (indexed 0) undergoing
two successive eigenmode-mediated swap gates. Ideally, this simplified protocol swaps the
quantum information twice, thereby disentangling it from the intermediate chain and also
returning it to its initial position at the left register. We then consider a second protocol,
termed the “single-swap”, in which the quantum information undergoes only one
eigenmode-mediated swap-gate. Analyzing this protocol will illustrate the effect of the
residual entanglement on the channel fidelity. Finally, we turn to the paired-protocol and
demonstrate that the proposed two-qubit encoding can eliminate this entanglement,

thereby enabling quantum state transfer.
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Figure 32: (color online). Schematic circuit diagram depicting eigenmode-mediated state trans-
fer between the quantum registers (QR) 0 and N + 1. Controlled phase gates are represented as
circle-ending dumbbells while X-ending dumbbells depict a swap gate. In addition to the desired
state transfer, each register is CP-entangled with all intermediate spins owing to the Wigner
strings associated with fermionization. This additional entanglement can be cancelled by utilizing
a simple two-qubit encoding.

Double-swap

The average channel fidelity for a quantum dynamical operation is given by

L1 i i
F:§+EA Tr [0°E(0")] (5.14)

1=2,Y,2

where & characterizes the quantum channel [222]. For simplicity of notation, we will

restrict ourselves to the XX-model, H = g(og o7 +ofon., +h.c.)+ S k(o7 07, +h.c.),
although analogous results hold for the previously considered transverse field Ising model.
For the double-swap (DS), we let U represent evolution under H for a time, t = 27,
equivalent to twice the state-transfer time. Let us suppose that the left register is initially

disentangled from the remainder of the chain, which is in a thermal mixed state p5°; the
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average double-swap channel fidelity is then given by,

Fps = -+ — Z Tr [oyU(oh @ ph2)UT]

1=x,Y,2

+ = Z Tr [UTUéU(O'(i) & P?hsﬂ

1=T,Y,2

+ 25 > Tr[op(t)(oh @ ph)] (5.15)

1=x,Y,2

N~ N~ N
—
[\)

where o} (t) is the Heisenberg evolution of the left register. By fermionization, this
evolution can be re-expressed with respect to elements of the matrix M = e~ "%* where K is
the (N + 2) x (N + 2) coupling matrix of the full Hamiltonian (including registers),

H = vaj”;lo K; 'cjcj. Evolution of the fermi operators is governed by ¢;, = —i Y Kyncn,

implying that ¢, (t) = ) Mp,c, and further, that

o () =Ulod U =U'ejU =3~ Mgel = Mg [] et (5.16)

I<i

o5(t) = 2ch(t)co(t) — 1= —1+2) " My Mycle;
ij
= —1+2Y MgMyofoy [ e, (5.17)
ij i<l<j
where we have used the fact that cg carries no Wigner string. To evaluate Fpg, we note that
o* = (0" +i0¥)/2, and hence, Tr [0§ (t)(0f @ pen)] = Tr [(o (t) + o4 (1)) (o5 + 05 ) @ pen)]-
Contributions are only obtained from the cross-terms, oy (t)(cy ® pen) and o (1) (05 @ pen),

since the number of excitations in ¢ = 0 must be preserved to generate a non-zero trace.
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For example, using Eq. (5.16),

Tr [og ()(0g @ pen)]

* iro o —
= Tr (ZMO’iO-’j_He L7 )(0g ® pen)
i I<i

= Tr [Mgog oy ® pen] = M. (5.18)

An analogous calculation yields Tr [0 (¢)(0f @ pen)| = Moo. Finally, for the o* terms, one

finds, using Eq. (5.17),

Tr [o5(1) (05 © pen)] = Tr[=05 © pen]

+ Tr|(2 Z Mg Myjo; o H e”“l%l_)(ag ® Peh)
ij i<l<j

= Tr [2Mj, Moo 04 0 @ pen] = 2| Moo|?, (5.19)

where we’'ve noted that ¢ = j to ensure that the number of excitations in each mode is
conserved. Moreover, we must also have that i = j = 0, since Tr[o§] = 0. Combining the

above terms yields the double-swap channel fidelity as,

—_

1 *
Fps = 5 + —(MOO + Moo + ‘MOOIQ)' <520>

(@]

Interestingly, we need to compute only a single matrix element to obtain the relevant

channel fidelity.

Single-swap

We now consider the single-swap (SS) channel fidelity associated with the transfer of
quantum information from the right register (indexed N + 1) to the left register (indexed

0),
1 1 i SS %
Fss =5+ 55 ) Tr[oot)(pd @ o], (5:21)

1=x,Y,2
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where p3° now characterizes the initial state for spins {0,---, N}. Note that Fgg will be
independent of the direction of state transfer, and we have chosen right to left for

notational simplicity. From Eq. (5.16), one finds,

o5(t) = c(t)+colt) = Z Mg;el + Moic;
i—1

= > [{Re(My)o? +Im(Mo)o?} [ [(=07)]. (5.22)

7 =
In analogy to the DS case, i # N + 1 terms do not contribute to the trace,

N

Trlog () (pen @ 0%11)] = 2Re(Mon+1) Telp5 [ [(—of))- (5.23)

The oY term yields an identical contribution while the 0% term yields,

Tr[og (t)(p5 ® 0441)] = 2|Moy n41|?. Therefore,

N
1 1
Fss = 5 + ¢ [2Re(Mon ) TrlpS? [ [(=oi)] + Mo ). (5.24)
=0

For perfect transfer with Fgg = 1, we would require both |My y4+1| = 1 and

ITr[pS8 [T (—07)]| = 1. In the case of an unpolarized chain, the second condition is
unsatisfied since the expectation value of the chain parity operator P =[]\, (—07) is zero.
The dependence of the single-swap fidelity on the intermediate chain’s parity demonstrates

the entanglement illustrated in Fig. 32, and presents an obvious problem for QST.

Paired-Protocol

To overcome this problem, we now turn to the two-qubit encoding proposed in Sec. II., e.g.
1) =1dal oy [ T) =1 el T)p- Let us index the full chain as
{04,0p, 1, N, (N + 1), (N + 1), } and define U, as the transfer process through the

sub-chain {0y, 1,--- , N, (N 4+ 1),}, while U, represents the transfer process through the
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sub-chain {0,,1, -+, N, (N +1),}. The composite U = U,U, then represents the unitary

characterizing the encoded state transfer, with average channel fidelity given by

11 i i
Fene = B + 1 Tr o1 (t) (0 @ pl @ pns1)] - (5.25)
1=T,Y,2
Here, phF is the mixed initial state of the intermediate chain ({1,---, N}), of acts on the

encoded logical subspace of the 0-register, and py.; is the mixed state of the encoded

(N + 1) register within the logical subspace. Working within this logical subspace is crucial
to ensure that CPy, ny41,CPo, n41, = [. Inspection reveals that the paired-protocol includes
two contributions from the chain parity operator, and since P? = [, we have effectively
disentangled from the intermediate chain. Since a consistent ordering of the spin-chain is
required to implement the Jordan-Wigner transformation, the Hamiltonian, Hy, governing
the U, transfer evolution will contain uncanceled Wigner strings. For example, the piece of
Hy, containing the coupling between the registers and the ends of the spin-chain takes the
form, Hy, = g(cgaei’mobcl + cjve””(N“)quH)a + h.c.). While one must take care to

correctly evaluate such strings, an otherwise straightforward computation yields,

1
Fene = 6(2|M0,N+1\2Re (M3 ny1 — MooMyy1,n511]

%) + % (5.26)

+ [ Monsa|* +] Z M1, Mo

Again, one only needs to compute certain matrix elements of M and in fact, an analytic
form for all such elements can be obtained [201].
5.2.3 Generalization to Oscillator Systems

Motivated by the fact that quadratic bosonic systems can also be exactly solved and by the
tremendous experimental progress in realizing coupled-oscillator arrays, in this section, we

analyze the generalization of eigenmode-mediated state transfer to systems of bosonic
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oscillators. By contrast to our previous discussions of dipolar spin chains, where we made
an explicit nearest neighbor assumption, which truncates the otherwise 1/r® interaction,
many bosonic oscillator systems are often naturally nearest neighbor. For example, the
realization of such coupled-oscillators is currently being explored in systems such as, cavity
arrays [240-242], nano-mechanical oscillators [243, 244], Josephson junctions [43, 245, 246],
and optomechanical crystals [247].

Consider a chain of coupled harmonic oscillators with Hamiltonian

N N-1
B = Zwaiai + Z k(alagy + aLlaZ-). (5.27)
i=1 i=1
As before, we begin by diagonalizing the Hamiltonian. Let us define b, = % > ;sin ]{,]ffl aj,

with A= /(N +1)/2and k=1,--- , N, yielding H = 3", (w + €)b} b, where

km

~17). The perturbative coupling of the two additional quantum registers at the

€x = 2k cos(
ends of the oscillator chain is given by,

Hj = g(agal + a},aNH +h.c.) + w’(agao + a},H@NH), where ¢ characterizes the
register-oscillator-chain coupling strength and '’ is the register frequency. Upon

re-expressing a; and ay as a function of the eigenmodes by, we arrive at the full

Hamiltonian,
N
Hp + Hp=> tu(ahby + (1) tal, b + hoc)
k=1
N
+ wabao + alyani) + ) (w+ e)blbr, (5.28)
k=1

where we let ty = (g/A)sinlkn/(N + 1)]. In analogy to subsection. II, we consider resonant
tunneling through a particular mode b,, by tuning w’ = w + €, and ensuring that
t, < |e, — €,+1|. The resulting effective Hamiltonian is H eff =/2t, (nob + bing), where

no = 1/v/2(ag + any1). To demonstrate state transfer, we introduce operators
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&+ = 1/v/2(no £ b.), yielding
HY, =v2t(ele, + 1), (5.29)

Let us now consider unitary evolution under H gc s for a time 75 =7/ (v/2t,), wherein
€

UG, = e s = (—1)64& (—1)¢L6 50 that (U5 )L (U5) = =€+ Returning to the

original basis and evaluating the time evolution of ay and ay.; yields

ao(T) — (UeE;ff)TaO(Ue]?ff) = —aN41,

an+1(T) = (Ugcf)TaNH(Uf}f) = —ao, (5.30)

demonstrating a swap gate between the oscillator-registers at the ends of the chain. As
before, this state transfer is achieved independent of the state of the intermediate chain.
Moreover, there exists no additional entanglement between the registers and the
intermediary oscillators; this is a direct consequence of the bosonic nature of the modes,
which, unlike their Wigner-fermionic counterparts in subsection. II, carry no strings.

One crucial difference with the spin-chain case is that the occupation of the bosonic
eigenmodes is not limited to 0 or 1. In a highly excited system, this induces a “bosonic
enhancement” of off-resonant errors and will limit the achievable state transfer fidelity as a
function of temperature. In particular, the state transfer unitary evolution gives
an+1(7) = My10a0 + v/ea, where e = 1 — [My11]? o< g% is a small error and a, is a
normalized linear combination of the a; modes (i = 1,..., N + 1). The total number of
excitations in mode N + 1 after the state transfer is (nyy1(7)) = (1 — €){ng) + €(n.), where
n; = a}ai. Therefore, if the chain is thermally occupied with (n.) ~ kT /w > 1, the coupling
strength g must be reduced to g\/m in order to keep errors comparable with the
zero-temperature bosonic case. In realistic experimental systems, this implies an interplay

between temperature, which sets the bose-enhancement of off-resonant errors and
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Figure 33: (color online). (a) Contour plots for N = 11 characterizing the average achiev-

able fidelity as a function of the NV depolarization time (77) and the coupling strength disor-
der induced by imperfect implantation. Numerics utilize an average intrachain spin spacing of

d = 10nm corresponding to a k = 50kHz dipole-dipole interaction strength. This intrachain
spacing is assumed to be independent Gaussian distributed and the implantation deviation rep-
resents the standard deviation, o4. For each o4, 1000 realizations were averaged to obtain the
plotted fidelity and a smooth contour plot is generated via a third-order spline interpolation. The
register-chain coupling strengths g1, gr, Eq. (5.33), are assumed to be fully tunable via control
of the 3-level NV ground state manifold [116]. (b) Analogous contour plots for N = 51. In this
case, the NV registers are separated by order optical wavelength enabling individual laser ma-
nipulation without the need for subwavelength techniques. (c) Participation ratio for eigenmodes
(N = 51). Each eigenmode is indexed by its PR and the number of states within a certain PR
bin is shown. For each disorder (which are represented as fractions of the bare coupling strength
k = 50kHz), 1000 realizations are averaged.
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decoherence rates, which limit the minimal speed of state transfer.

5.2.4 Disorder and Decoherence

Eigenmode-mediated state transfer naturally finds use in a variety of quantum computing
architectures where data buses are required to connect high-fidelity remote registers
[116, 239, 248]. Within such architectures, it is crucial to consider an interplay between
naturally occurring disorder and finite decoherence rates. While disorder in 1D systems
generically localizes all eigenmodes [218, 230, 249, 250], leading to an exponentially long
state-transfer time, in finite-size systems with weak disorder, the localization lengths can
be large relative to the inter-register separation. In these cases, one must still reduce the
register-chain coupling strength g to compensate disorder effects, but so long as the register
decay time is sufficiently long, it remains possible to achieve high-fidelity QST. In this
section, we will discuss the impact of coupling-strength disorder on spin chains and will
analyze the optimization of g as a function of disorder strength and qubit depolarization
time.

In particular, we will consider two sources of error: 1) off-resonant coupling to alternate
eigenmodes (which becomes enhanced as disorder increases) and 2) a finite register

depolarization time 77,

2
€—kz¢z iw’gﬂ + R|¢Z§| )—i—Nﬁ (5.31)
where gr,(p) is left (right) register-chain coupling, vy, 1(r) is the eigenmode amplitude at the
left (right) register, Ay is the energy difference from mode z to mode k, N is the chain
length, t is the state transfer time and 77 is the depolarization time of the register. The
additional factor of N in the final term results from the entanglement discussed in
subsection II; indeed, since each register is CP-entangled with all intermediate spins, any

spin-flip of the intermediate chain immediately dephases the quantum information.
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To ensure that the tunneling rates at each end of the intermediate chain are equivalent,
we envision tuning g, and ggr independently, such that ¢, = gp|v. 1| = gr|t¥..r|. Plugging

in for the state transfer time, t = 7/ V2t, yields,

|¢kL’2 .| WkRP) Nr
€= ’ ’ + : 5.32
gé; ( A WZ,R‘Z AR V2Tigelt..c| 532

which enables us to derive the optimal coupling strength,

1
3 ’wk L‘Q ‘wz L’Z 2

— d d ) 5.33

9" 2\/_T1 |21 (Z AR : AR (5:23)

Disorder Numerics for a Specific NV-based Architecture

We now consider an example implementation of eigenmode-mediated state transfer in the
context of a quantum computing architecture based upon Nitrogen-Vacancy (NV) registers
in diamond [44, 45, 226]. Each fully controllable NV register consists of a coupled
electronic and nuclear spin. The nuclear spin, with extremely long multi-second
room-temperature coherence times is often thought of as the memory qubit [113], while the
electronic spin, which can be optically initialized and read out, mediates interactions with
other NVs [116, 239]. Our analysis of disorder effects will be based upon the specific
architecture proposed in [116]; there, NV registers are connected by a dark-spin-chain data
bus composed of spin-1/2 electronic spins associated with Nitrogen impurities. One of the
crucial advantages of utilizing spin chains to connect remote NVs is that this enables
optical addressing of individual registers in parallel, a necessary requirement for the
implementation of many error-correcting codes.

We consider realistic experimental parameters, with an average spin spacing of about
10nm, corresponding to a dipole coupling strength ~ 50kHz. At room-temperature, NV

centers are characterized by 77 ~ 10ms [113], owing to an Orbach spin-lattice relaxation
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Figure 34: (color online). Coupling pattern {.J;} between spins for two differing cases: 1) en-
gineered couplings (circles) as in [196] and 2) strong coupling regime (squares). The left y-axis
characterizes the coupling strength for each case and is associated with solid symbols; the cou-
plings are plotted between spin numbers (e.g. Jy is plotted between spin number 0 and 1). The
right y-axis characterizes the fermionic spectrum (in this case, the x-axis is simply an index) and
is associated with the open symbols. The open red circles depict the exactly linear spectrum of
engineered chain, while the open green squares depict the quasi-linear spectrum of the strong
coupling case with uniform interchain couplings x = 1 and optimized g ~ 0.7.

process; the exponential dependence of the Orbach process on temperature suggests that
slight cooling can significantly extend 77, with many seconds already demonstrated at
liquid Nitrogen temperatures [116, 251]. We now perform disorder-averaged numerics for
two separate chain lengths: 1) sub-wavelength addressable (N = 11) and 2)
optical-wavelength addressable (N = 51) [227]. We characterize the amount of disorder by
the standard deviation associated with imperfect spin positioning; in the case of NVs, the
origin of this imperfection is straggle during the ion-implantation process [74, 75]. We
average over 1000 disorder realizations and calculate the fidelity, 1 — €, according to

Eq. (5.32); in particular, for each realization, we calculate the error for each eigenmode of
the spin-chain and choose the maximum achievable fidelity. As shown in Fig. 33a,
high-fidelity quantum gates can be achieved for few nanometer straggle provided that the
NV depolarization time is ~ 200ms; similarly, for the longer chain case (Fig. 33b) with

N = 51, high-fidelity gates are also possible, but require significantly longer 77 of a few

seconds.
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Next, we analyze the participation ratio (PR) [230, 250],

1

— 5.34
SoiLy il .

Npr =

which provides a characterization of the number of sites which participate in a given
eigenmode; modes are typically said to be extended if Npr ~ O(N) and localized if

Npr < N. In the case where the participation ratio is much shorter than the overall chain
length, it becomes extremely difficult to perform quantum state transfer within the
coherence window set by the quantum register. This allows us to quantitatively determine
the regime over which high fidelity state transfer can be achieved despite the interplay
between disorder and decoherence. As shown in the histograms of Fig. 33c, for increasing
disorder, Npg drops sharply as a function of o,. By o, = 0.5k, on average, all eigenmodes

exhibit a state transfer fidelity < 2/3 even for extremely long T} ~ 5s.

5.2.5 Strong Register Coupling

The eigenmode-mediated QST discussed above operates in the weak coupling regime,
g < k/N. Numerical simulations reveal that by optimally tuning g = gy (N) ~ &,
high-fidelity QST can also be achieved (see Fig. 35). This “strong-coupling” regime enables
faster state transfer and has been analyzed in several recent studies [208, 230-232]. Here,
our contribution is to show that this strong coupling regime still enables high fidelity state
transfer in the case of unpolarized channels. We demonstrate this by performing numerical
simulations and by deriving analytic channel fidelities valid for an arbitrary coupling
pattern (analogous to subsection III). We emphasize that our results are consistent with
and motivated by those in [208, 230-232].

To provide intuition for this strong-coupling regime [208, 230-232], we will begin by
considering the engineered spin-chain described in [196], where we have N + 2 spin-1/2

atoms with nearest-neighbor XX-interactions. The intra-chain coupling is non-uniform and
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Figure 35: (color online). Strong coupling regime: By tuning g/k ~ N6 we obtain high-

fidelity QST utilizing an unpolarized chain with two-qubit encoding (paired-protocol). The trans-
fer time scales linearly with N (Lieb-Robinson bound) [223] and high fidelities > 90% can be
maintained for chain lengths up to N = 100.

is given by, J; = $1/(i + 1)(N + 1 — i), yielding a Hamiltonian

N N+1
H=> Jiofo,+he)+ ) 30 (5.35)
i=0 1=0

where h is a uniform background magnetic field. Upon employing the Jordan Wigner

f

transformation, we once again return to a simple tight-binding form, with H =), ;K

¢
where K;; = J;0j ;11 + Jj0; 41 + hd; j up to a constant. Diagonalizing reveals
H = fo:ol wkfgfk with a linear spectrum given by w, =k + h — %

As described in subsection. III., the system’s evolution is governed by
ci(t) = >2; My(t)ci(0). Upon setting h = ML one finds that at time ¢ = 27, M(27) = Id
and therefore ¢;(27) = ¢;(0), returning the system to its initial state. As the coupling

pattern {J;} harbors mirror symmetry with J; = Jy_;, the orthogonal transformation, v,

which diagonalizes H can also be chosen mirror symmetric, 1, = (—1)N TRy

108



Setting h = 3(N + 1) and ¢ = 7 yields,

M;; = Z¢N+1—i,k¢jk = ONti1—ij- (5.36)
k

To demonstrate state transfer, let us recall the analytic single-swap fidelity given by
Eq. (5.24). For the moment, let us assume that the spins {0,1,... N} are all polarized, so
that Tr[p3° P] = 1. Combined with Eq. (5.36), which ensures My y41 = 1, we find Fgg = 1,

enabling perfect QST. We note that in lieu of applying a uniform magnetic field
3 . ) 1 0 '
h = 5(N + 1), one can also just apply a simple phase gate Up = on spin 0
0 (—i)N*!
following transfer.

Turning now to the case of an unpolarized spin chain, we again employ the two-qubit

encoding previously described. In this case, one will need to apply the phase gate,

1 0
Ui = to the logical qubit after state transfer.
0 (_1)N+1
The state transfer fidelities for these two strong coupling methods are given analogously
by,
1 1 9
Fss = 5T 6[2|M0,N+1’ + | Mo n+1]7), (5.37)
1 1
Fene = 5 + 6[2|M0’N+1|2|M3’N+1 — MooMn11,n4+1
H Moyl + 1D Mys1iMiol’]. (5.38)

While these expressions are valid for an arbitrary coupling pattern (so long as the resultant
fermionic Hamiltonian is quadratic), to ensure high-fidelity QST, we require | My y+1| = 1.

As depicted in Eq. (5.36), satisfying this constraint is intimately related to the linear

spectrum resulting from the choice of J; = /(i + 1)(N + 1 — i).
Let us now consider the strong coupling regime (g ~ ) where Jy = Jy = g and

Ji = Jy = ... = Jy_1 = K. Surprisingly, tuning only g/ enables one to obtain a
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Figure 36: (color online). Infidelity of QST for a strongly coupled chain with long range interac-
tions (1/77 is assumed negligible). Encoded state transfer (paired protocol) fidelities are shown
for dipolar (diamonds), NNN-canceled-dipolar (squares) and NN interaction (circles) models.

quasi-linear spectrum [231]; such a spectrum will then ensure that | My y11| =~ 1, as desired.

Of course, for N = 2,3, J; = 51/(i + 1)(N + 1 — i) can be satisfied exactly. Although for

N > 3, an exactly linear spectrum cannot be obtained, it is possible to optimally tune

N+1
2

1/6
)

g = gu(N), so that wy, looks nearly identical to the previous linear spectrum, k —
(h = 0), as shown in Fig. 34. In particular, by optimizing F,., we obtain gy ~ N~

with a transfer time 7 ~ N (Fig. 35), consistent with [231].

5.2.6 Long-range Interactions

Finally, we now consider the effect of longer range interactions. The majority of proposals
for spin-chain state transfer focus on approximate nearest-neighbor models; however, the
microscopic magnetic dipolar interaction is naturally long-range and decays as 1/r3,
inducing an important infidelity in quantum state transfer. The origin of this infidelity
becomes especially evident as we examine the Jordan-Wigner fermionization of the spin
chain. Each Wigner fermion carries a string of the form e~ 25219797 In the
nearest-neighbor case, all such strings cancel pairwise leaving a simple quadratic model.

However, with longer-range interactions, uncanceled strings remain and generically
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introduce perturbative quartic terms into the Hamiltonian. These quartic terms imply that
the model, unlike the transverse field Ising model, is no longer diagonalizable in terms of
free fermions. In the previous free fermion case, the energy of each eigenmode is
independent of the occupation of all other eigenmodes; this enables state transfer even
when the spin-temperature of the chain is effectively infinite. By contrast, the quartic
terms associated with the long-range dipolar coupling introduce interactions between
fermionic eigenmodes; the energy fluctuations of each eigenmode, caused by changing
occupations of other modes, naturally dephases quantum information, limiting the
operational spin temperature of the chain.

Certain proposals have suggested the possibility of using dynamical decoupling to
effectively cancel next-to-neareast neighbor (NNN) interactions [116], but the complete
canceling of all long-range interactions requires a level of quantum control that is currently
beyond the realm of experimental accessibility. Since any long-range X X coupling destroys
the quadratic nature of the fermionic Hamiltonian, an analytic solution for state transfer
fidelities in the presence of full dipolar interactions is not available. Thus, we perform exact
diagonalization for chains of length up to NV = 12 (total number of spins), as shown in
Fig. 36. We obtain the encoded state transfer fidelities for dipolar, NNN-canceled-dipolar
and NN interaction models. Remarkably, even with full dipolar interactions, fidelities
~ 90% can be obtained for a total of N = 10 spins; in the case where NNN interactions are

dynamically decoupled, the fidelities can be further improved to ~ 98% at similar lengths.

5.2.7 Quantum Mirror Architecture

In this subsection, we present an alternate quantum computing architecture based upon
pulsed quantum mirrors [216, 233]. By contrast to eigenmode-mediated state transfer,
remote quantum logic will be achieved by global rotations and NN Ising interactions. To
remain consistent, we choose to discuss the advantages and disadvantages of such an

architecture within the context of NV registers. In particular, analogous to Sec. V, we
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consider NV registers connected by spin 1/2 chains of implanted Nitrogen impurities.
Let us begin with a detailed discussion of the mixed spin system composed of NV centers

and Nitrogen impurities [116]. The full Hamiltonian of a single Nitrogen impurity is,

— —

Hy = —7.B-S — B - T+ AjS*I* + AL (S°I" + SUIY), (5.39)

where S is the spin-1/2 electronic spin operator, I is the nuclear spin operator, and
A = —159.7MHz, A; = —113.8MHz are the hyperfine constants associated with the
Jahn-Teller axis.

We envision the application of a magnetic field and field gradient, which, within a
secular approximation, reduces the Hamiltonian of a nearest neighbor Nitrogen-impurity

chain to Ising form [116],

N-1 N
Hy=rY SiSi,+ Y (wo+6:)S7, (5.40)
=1 =1

where k is the relevant component of the dipole tensor, wy captures the electronic Zeeman
energy, and 0; characterizes the hyperfine term, which is nuclear-spin-dependent, for each
impurity. Taking into account the magnetic dipole coupling between the electronic spin of
the NV register and the surrounding Nitrogen impurities allows us to consider the mixed

spin system,

a—1 N—-1
Hepp =Y kSiSiy + JSiv(Si+S7)+ > kSiS7, (5.41)
=1 1=b

where J is the strength of register-impurity interaction, the Zeeman term in Eq. (5.40) is
assumed to be echoed out, and superscripts a, b represent the pair of nearest-neighbor
impurities next to a given register (assuming for simplicity a 1D geometry as shown in
Fig. 37). The selective individual addressing of the NV registers is accomplished via a
combination of optical beams and microwave driving; this enables an isolation of the

coupling between the NV register and the two neighboring impurities. In particular, it is
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Figure 37: (color online). (a) In a qubit chain of length N, a mirror swap operation is defined
as the pairwise swap between the (1, N), (2, N — 1), --- qubits. This can be achieved via global
control in the form of single qubit gates (Hadamards) and controlled phase gates. Regardless

of the initial state, a mirror swap occurs after a N + 1 cycles of Q = H - CP [216], where H
represents a global Hadamard operation and C'P denotes a global controlled phase operation. (b)
Coupling the central NV register to the NV on the left (right) requires the ability to perform a
directed swap to a neighboring Nitrogen spin (grey). These directed swap operations are made
possible by using combinations of the mirror sequences Qs (swapS a pair of impurities directly
surrounding an NV) and @, (mirror swaps an individual impurity chain). (c¢) Utilizing a fast
echo-pulse on the NV register (in combination with Qs and @) allows one to generate selective
interactions between the NV and any outlined Nitrogen.
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possible to perform unitary evolution of the form

. ! . !/ 3 zQz /
Uepp = e HeasT'12G% e=itlersT'/28% = 72575501 and hence,

. . zQz / s z z z
Ulocal —e 1HeffT€ iky SFSE T —e iJS% (SE+SE)T (542>

by choosing k(T + T") = 2mm for integer m. We note that this condition implies that the
fidelity of Ujyeq is extremely sensitive to both coupling-strength disorder as well as the

general long-range nature of the dipolar interaction.

Globally Controlled Mirror swap

Considering only global addressing of the Nitrogen spin-chain and unitary evolution as
described above, we demonstrate a universal set of operations between remote NV
registers. Coherent register coupling is achieved by means of global pulses which mirror the
quantum state of the impurity chain [216]; the pulses take the form of Hadamard gates and
controlled phase gates, which can be generated by evolution under an Ising Hamiltonian.
In an impurity spin-chain of length NN, the global pulses swap the state of the first and N'*
spin, the state of the second and (N — 1)** spin etc, as shown in Fig. 37a. The total mirror
swap results from N + 1 cycles of Hadamard and controlled phase gates on all impurities,
Qni1 = ([T H; - [ CP,)™. This globally controlled impurity mirror will ultimately enable
the directed and coherent interaction between remote NV registers.

Let us now consider a specific NV register, separated from neighboring registers by
impurity spin-chains on both sides, as shown in Fig. 37b. Since the Ising Hamiltonian
generates a controlled phase gate, it is possible to achieve a mirror swap between any set of
qubits connected by Ising interactions. In particular, the impurity Ising interaction allows
for a mirror operation within any impurity chain, while the Ising interaction corresponding
to Uppeqr allows for a three qubit mirror centered around any NV register. This local

unitary enables an operation, ;, which swaps the state of the Nitrogen neighbors of the
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Figure 38: (color online). Schematic diagram of the 2D computational lattice showing limita-
tions imposed by missing Nitrogen implantations (stars) and imperfect Nitrogen-to-NV conver-
sions. Coherent coupling of distant NV registers in a faulty 2D array can be achieved via global
pulsed control of a spin-chain quantum data bus. A combination of optical beams and a mag-
netic field gradient allows for individual control of NV registers; combined with global single
qubit operations on Nitrogen impurities in any given row (orthogonal to the field gradient) [116],
directed swap operations (e.g. dark green path) can be achieved, which allow for quantum infor-
mation transfer along arbitrary paths. This field gradient enables a swap gate to be performed
between two NV registers in adjacent rows, which occupy the same column. Moreover, it in fact
also enables any pair of rows to be swapped, provided that the intrarow interactions refocus.

central NV register as shown in Fig. 37b.

To couple the central NV register to a specific side register, it will be necessary to break
the left-right symmetry of the Ising interaction; this is achieved by exploiting the length
asymmetry between Nitrogen chains to the left and right of the NV register. Indeed, it is
often possible to refocus the mirror operation in one impurity chain while causing the edge
impurity pair to swap in the other chain; we will denote this operation as (), as shown in
Fig. 37b. Combinations of Q)3; and @), successfully manipulate and permute the impurities
such that the nearest neighbors of the central NV register can be any pair of the three
impurities (blue, red, green), as depicted in Fig. 37c. In combination with local rotations of
the central register, this enables the application of “directed” unitary evolution, e.g.
Ugirected = e SN VS}ZVbT, allowing for the NV register to selectively couple to either side.

This enables an interaction between any pair of neighboring NV registers effectively

mediated by a single Nitrogen impurity,

Hmed = J(S:]Z\fvl + S]@VQ)’S]ZV(,? (543>
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where NV and NV, denote the neighboring registers to be coupled and N, represents the
mediating impurity. The form of this Ising interaction implies that an application of @y,
on this effective three qubit system will swap the quantum information of the two
electronic spins of the remote NV registers. Since each NV center harbors a nuclear-spin
qubit in addition to its electronic spin [44], the “there-and-back” protocol described in
subsection. IT enables universal logic between remote registers.

Having achieved the ability to coherently couple distant NV registers within a row,
assisted by Nitrogen impurities, we now turn to the coupling between adjacent rows in a
two-dimensional lattice (Fig. 38). The simplest approach involves applying a magnetic field
gradient along the columns. This would enable a swap gate to be performed between two
NV registers in adjacent rows, which occupy the same column, provided all other
interactions are echoed out. The limited occurrence of vertically adjacent NVs is a
significant source of overhead; however, this limitation can be overcome if we achieve the
ability to swap any pair of nearest neighbor qubits in the two-dimensional array, essentially
allowing for the construction of arbitrary paths (Fig. 38). Moreover, the ability to swap
along arbitrary paths also provides an elegant solution to the experimental limitation
imposed by implantation holes, where a Nitrogen impurity may be missing from the ideal
2D lattice. Finally, it also enables the use of nominally dark Nitrogen impurities as
computational resources, thereby significantly increasing the number of effectively usable
qubits.

While arbitrary individual control of impurities would trivially enable such a scheme,
realistic constraints limit us to individual control of NV registers and only global control of
the impurity chains. Thus, it is necessary to utilize the permutation operation inherent to
individual cycles (] H; - [[CP;)""™ of the mirror operation. These gate cycles correspond
to an effective propagation of local gates via a relabelling of qubits within a given chain. In
the simplest scenario, it is possible to apply a swap gate between the second and third

qubit by only utilizing local rotations on the first qubit and global operations elsewhere, as
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k+lcycles O, p O, k+1 cycles

Figure 39: (color online). Individual control of any given NV register (row 1) enables a swap
operation between any two neighboring qubits along the same row. We illustrate the specific ex-
ample of a four qubit chain. The depicted gate sequence achieves a swap gate (up to individual
qubit rotations A, B) between the second and third qubit by only applying a local gate X on the
first qubit (NV register) and global operations elsewhere.

shown in Fig. 39. The fundamental operation to be propagated is U, = CP- X, -CP where
X is an x rotation (by 7) on the first qubit and cP represents a global controlled phase
gate; propagation takes the form of conjugation by mirror cycles where Q) = (I:I . C’~P)k
and Uék) = QZUka. To apply a swap operation on the n and n + 1 qubit, we let k =n — 1
and apply

Uswap = HUNHXUW ZHUPH, (5.44)

where X is a global z rotation and Z is a global z rotation (by 7). This protocol requires
the ability to produce a boundary at the location of the first qubit and allows for swaps
between arbitrary spins in a given row; moving quantum information between rows can be
achieved provided intrarow interactions refocus (e.g. if vertical and horizontal
nearest-neighbor distances differ).

In summary, we have extended the analysis of eigenmode-mediated state transfer to a
variety of imperfections ranging from disorder-driven localization to uncompensated
long-range interactions. By calculating the analytic channel fidelity associated with
eigenmode-mediated state transfer, we clarify the effects of entanglement arising from the

protocol and illustrate the method in which the two-qubit encoding overcomes this
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challenge. We analyze our protocol in the context of proposed solid-state quantum
computing architectures; numerical simulations with realistic experimental parameters
reveal that QST errors can be kept below certain surface-code error-correcting thresholds.
Furthermore, we have generalized our protocol to the case of bosonic oscillator systems.
This approach may enable the routing of a “ground-state-cooled” mode through a
relatively “hot” intermediate oscillator chain, thereby significantly reducing the resources
associated with system-wide cooling.

Moreover, our work may also provide insight into generalized infinite-temperature state
transfer. In particular, by introducing a time-dependent control of the register-chain
coupling, one may be able to compensate for off-resonant errors. This approach finds
analogy to the continuum wave-packet limit, where dispersion limits transfer fidelities; in
this case, pre-shaping of the packet can overcome nonlinearities of the dispersion.

Finally, we describe an alternate architecture based upon global control pulses which also
enables remote quantum logic; in particular, we demonstrate that even intermediate chain
spins can be used as registers, despite the fact that they are unable to be individually
addressed. This may provide the blueprint for a novel quantum computing architecture

which utilizes dark spins as quantum memory resources.

5.3 Long-range quantum gates using dipolar crystals

In this section, we explore an alternate method to realize long-range quantum gates by
utilizing a finite-size phase transition through a dipolar crystal. We demonstrate that
adiabatic driving of a dipolar spin system across a quantum phase transition can be used
to implement a controlled phase gate between distant qubits in a robust manner.

Our approach is especially applicable to solid state systems that are strongly affected by
natural imperfections leading to disorder, which can render the solid state system unable to
act as a reliable quantum bus any longer. If one assumes perfect control over the quantum

bus these imperfections can be characterized and corrected dynamically, but such a level of

118



control is currently out of reach for most realistic applications.

Thus motivated, we therefore take a different route to create a quantum bus within a
disordered system. The key element is the phenomenon discussed in the context of Rydberg
atoms as the blockade effect: due to the strong repulsive interactions, there cannot be two
Rydberg excitations on distances shorter than an intrinsic length scale known as the
blockade radius. Within this radius, the underlying spatial distribution of the particles is
largely irrelevant. Thus, the arising many-body ground state washes out the disorder
effects, up to the point where the Rydberg excitations form a crystalline phase [252].
However, we would like to stress that our proposal is not limited to Rydberg atoms. The
same setup can be realized with nitrogen-vacancy (NV) defect centers in diamond, opening
a route to many-body physics within these systems. Furthermore, we show using general
scaling arguments that the fidelity of the proposed gate is equivalent to a microscopic 1/72
interaction between the qubits and finally we discuss the required experimental parameters.

Our protocol for the controlled phase gate is based on the dynamical crystal formation in
these dipolar systems [252-255], see Fig. 40. We consider two qubits A and B that are
coupled to a quantum bus, which is initially prepared in the ground state that contains no
Rydberg excitations. Then, the quantum bus is driven adiabatically across the phase
transition. Depending on the boundary condition set by the state of the qubits, the
resulting many-body state has a different energy. One can readily understand this effect as
a compression of the crystal, by which the distance between two Rydberg excitatons ap is
decreased. Under free evolution, the energy difference is translated into a phase difference,
which entangles the qubits. After reversing the adiabatic step, the quantum bus returns to

its initial state while the qubits remain entangled.

5.3.1 Rydberg dipolar crystal

For the quantum bus we consider are an ultracold gas of atoms that can be excited to a

Rydberg state, or an array of NV centers in diamond. Here, we are interested in the

119



(a) (A) Quantum bus

(e0 00 o 000 000 0 0000 o 00

= =
p—

— —* %)

N
E
(b) 4 Pamn{ Crystal

@
VD
L >\

Figure 40: Setup for the proposed gate.(a) Depending on the state of the qubits A and B, the
quantum bus prepared in a crystalline phase possesses a different ground state, where the dis-
tance between two Rydberg excitations ap is changed, corresponsing to a compression of the
crystal. (b) Ground state and first excited state during the control sequence. Initially, the quan-
tum bus is prepared in the paramagnet (1). Then, control parameter A is increased adiabatically
(2), driving the system across the phase transition. Once in the crystal the system evolves freely
and picks up a phase shift depending on the qubit states (3). After the adiabatic process is re-
versed (4), the quantum bus is disentangled from the qubits (5). The inset contains the phase
diagram of the system, with the dashed line showing the control path depending on the Rabi fre-
quency €2 and the detuning A.

N)
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strongly interacting regime, where the dipolar interaction between the particles is
dominant. Within Rydberg atoms, the strongly interacting regime can also be reached for
van der Waals interactions decaying like 1/r®. Both for Rydberg atoms and NV centers the
quantum bus can be described in terms of an interacting spin 1/2 model, whose
Hamiltonian is given by

H= _% ot ? DY |r; fprj|pPiTPjT' (5.45)

% % 1<j

In the case of Rydberg atoms A and €2 are external laser parameters accounting for the
detuning from the atomic resonance and the Rabi frequency driving the transition,
respectively. Strong interactions with long-range character are described by a generalized
C,, coefficient and involve the projectors onto the Rydberg state P! = |[1¥1] = (1 4 07)/2.
For NV centers, the my = 0 state, which can be efficiently prepared by optical pumping,
corresponds to the atomic ground state, while the m, = 1 state possessing a magnetic
dipole moment corresponds to the excited Rydberg state. Strong magnetic dipole
interactions between different NV centers can be obtained if the separation is sufficiently
small [256]. In the following, we will refer to the |1) state as the “Rydberg state”,
independent of the underlying physical implementation. The interaction between the

quantum bus and qubits is governed by a similar interaction, i.e.,
C C
Hap = —r _ptpty__ -2 _plpl 5.46
" ;m‘_ri‘p Al+|rB—ri|p B (5:46)

Note that this interaction conserves ¢% and o, therefore the only possible entangling
operation between the qubits is a controlled phase gate.

For one-dimensional (1D) systems it has been shown that the crystal spacing
ar = [¢(p)(p+ 1)C,/A]*/? is essentially independent of the spacing between individual
spins, which suggests that the crystalline phase is stable against disorder [257]. Therefore,

the effects of disorder can be analyzed in the classical limit with 2 = 0. The crystalline
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phase will break down when fluctuations in the positions of neighboring spins result in an
additional interaction energy that overcomes the cost A to remove one Rydberg excitation.
From this, we can see that the relevant quantity for this process is given by the maximum
separation of two neighbors in the spin chain R,,... For a uniform distribution of spins,
this quantity can be calculated from the pairwise distance distribution p,(r), which is given
by p.(r) = nexp(—nr) with n being the density. Using extreme value statistics we find
(Rmax) = n~tlog N, where N is the number of particles. Then, the creation of an

additional Rydberg excitation is energetically favorable for

Cp

[ —
(aR - Rmam>p7

(5.47)

from which the critical detuning at which the crystal melts due to disorder can be
calculated.

Let us now focus on the general properties of the proposed scheme that are largely
independent of the microscopic detail. In particular, we are interested in the scaling
behavior of a 1D setup with the system size L. There are three different factors that
influence the asymptotic scaling with L: (i) the scaling of the effective interaction strength
with the size of the system, (ii) the scaling properties of the energy gap protecting the
adiabatic evolution, and (iii) the effects of decoherence. The effective interaction strength
between the qubits A and B that eventually creates the entanglement between them can be

computed as

B = By — By — Ep + By, (5.48)

where E,4 refers to the energy of the many-body state with the qubits in state |a) 4 |5) 5,
see Fig. 40. A straightforward calculation within the continuum limit of a classical crystal
yields Ey ~ b*/L, where b is the distance between the qubits and the ends of the quantum
bus. Note that the classical crystal cannot be the true ground state of the system due to

quantum fluctuations, instead the system has to be described in terms of a Luttinger liquid
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(257, 258]. However, these corrections leading to an algebraic decay of the correlation

functions only occur for very large system sizes [257].

5.3.2 Vanishing gap and decoherence

For analyzing the influences of both the gap and decoherence, we first note that we can
write the gate error € for nearly perfect gates as € ~ €1 + €5, where €; and €5 are the
individual errors due to the gap and decoherence, respectively. To understand the scaling
behavior of the gap, we first need to discuss some aspects of the underlying phase
transition. While in the thermodynamic limit the gap vanishes at the phase transition,
there is still a finite gap for finite size systems. For gapless phases, as in the Rydberg
crystal, it is possible that the gap decreases even more the further one enters into the
ordered phase. The qualitative behavior of the process can be described with a
Landau-Zener model. There, the error of the process due to nonadiabatic transitions, i.e.,
the probability to stay in the ground state, is given by e; = exp[—A%t,/(h\)], where Ag is
the minimum value of the gap, ¢, is the gate time, and A is a microscopic coupling
constant. It is possible to improve this scaling by adding a nonlinearity to the
Landau-Zener sweep, resulting in a scaling of the form ¢; = exp(—cAgt,/h), with ¢ being a
numerical constant that depends on the details of the model and the variation of the
coupling constant [259, 260]. For the Rydberg crystal we have Ag ~ 1/L due to the
phononic nature of excitations [257, 258], which is the theoretical optimum according to
the Lieb-Robinson bound for information transfer [223]. In the following we separate off
the system size dependence as a = cAg/h = ap/L.

The scaling properties of decoherence processes can be analyzed in a similar manner.
Ignoring errors related to the non-adiabadicity of the process, the error g5 = e2(7t,) is a
monotonously increasing function depending only on the product of a decoherence rate
and the gate time ¢,. Here, we assume the form g5 = 1 — exp|—(7t,)°] & (vt,)°, where the

exponent 0 depends of the physical details of the decoherence process. Since a
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superposition of the different many-body states depicted in Fig. 40 is a highly entangled
state, the decoherence rate v ~ L has to be proportional to the system size. We express
this scaling again as v = oL/ Lg, where g is the single spin decoherence and Ly is a length
scale depending on the details of the many-body state. For the Rydberg crystal, we have
Ly to be given by the average distance between two Rydberg excitations ag, since
decoherence processes are only relevant at sites where there is an actual excitation.

Combining these results, we obtain for the error

e = exp(—ag/Lt,) + (oL/Lot,)’. (5.49)

Consequently, there exists an optimal time ?.p¢, at which the error is minimal. For high
fidelity gates with « > + the optimal time is given by o = 0L 1og[Locv/(L*y0)] /a0, which

yields for the minimum error

L2’YU Loy ’
=14 1 . 5.50
c ( Loy o8 L2’Yo) ( )

Consequently, we find the same scaling as a microscopic interaction between the qubits
decaying as 1/L%.

In the following we present numerical simulation results demonstrating that superior
fidelities compared to the microscopic interaction can be obtained using the proposed
setup. We consider a chain of N equidistant or disordered spins with interparticle distance
a with the qubits being located at a distance b away from the ends of the chain. The details
of the numerical simulation method are described in [252]. Initially, the qubits are prepared
in the state [¢) y 5 = (1) 45 + H)A’B)/\/ﬁ, as this state is most affected by decoherence

and consequently allows us to compute the fidelity of the gate. The spin chain is fully
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polarized, i.e., [¢)g- = [, [{);- Then, the external control fields are varied according to

. 8t/to
Qi) = QO 2 —L 2 5l
*) 05t (1+16t2/t§) (5.51)

where % is the duration of the adiabatic step. Note that this protocol features the
nonlinearity needed to improve the scaling properties of the gate fidelity. However, the
protocol has not been optimized in great detail, therefore it might be possible to achieve
even higher fidelities with improved protocols. At ¢ = ¢y the system is held for a time

tr = mh/Eiy, in order to have the system pick up a phase shift of 7. Following this free
evolution, the adiabatic step is reversed. Note that there are two ways how this reversal
can be performed. One can either adiabatically follow the ground state or completely
reverse the dynamics of the adiabatic step by flipping H to —H. The possibility to change
the sign of the interaction depends on the physical implementations, for Rydberg atoms
this can be achieved by transferring the population from a repuslsive to an attractive state.
However, we find that both cases give very similar results and focus on the latter, as it
simplifies the numerical analysis. The entire protocol will take the time ¢, = 2t, + t,.
Then, the fidelity of the proposed gate is given by the residual entanglement between the
qubits and the rest of the chain, which can be expressed as the disentanglement fidelity

F = \/tr p% g, where pap is the reduced density matrix of the qubits A and B. The data
collapse in Fig. 41 shows that the fidelity depends only on the product Agty according to
F =1— cexp(—dAgty), where ¢ and d are fit parameters. We have checked numerically
that the resulting density matrix pap does indeed implement a controlled phase gate up to

local phases.
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Figure 41: Numerical simulation results for the gate fidelity in the absence of decoherence de-
pending on the product of the gap Ag and duration of the adiabatic step ty for up to N = 34
particles for equidistant (diamonds) and disordered (crosses) configurations. The gap has been
varied independently from ¢y by changing €25. The solid line is an exponential fit to the data.
(p =3, C3 = 100Qpa3, Ag = 2.3Q0, b = 3a).

5.3.3 Fidelity of dipolar crystal gate

As discussed previously, there exists an optimum value for t, with respect to decoherence
processes and nonadiabatic transitions. Here, the decoherence rate of the many-body state
is enhanced by the factor L/(ag). The fidelity for the quantum gate, including both

nonadiabatic processes and decoherence, is given by

F = %[1 — cexp(—dAgto)] {1+ exp [— (VOL/<aR>tg)3}} (5.53)

for a spin echo type decoupling from the environment with 6 = 3. Note that up to the
numerical constant /3, this expression is equivalent to Eq. (5.49). Determining the optimum
value for ¢ leading to the maximum fidelity is then straightforward. We now investigate in
detail the consequence of disorder based on the previous analysis. Therefore, we
numerically determine the gap Ag and the interaction energy Fiy for 100 different
uniformly distributed random configurations. We calculate the fidelity according to

Eq. (5.53) and determine the optimum value of ¢y. Figure 42 demonstrates that the fidelity
is significantly higher than when directly using the microscopic interaction between the

qubits A and B, even in the presence of disorder.
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Using Rydberg atoms the proposed scheme can be either realized using the van der
Waals interaction between S states (p = 6) or using the dipolar interaction between states
within the Stark fan in an external electric field (p = 3). Focussing on the latter case with
for a Rydberg state with a principle quantum number of n’ = 43 and a decoherence rate
Yo = 10 KHz, the laser parameters corresponding to a gate fidelity F' = 0.95 are given by
Qo =21 x 3.2MHz and Ay = 27 x 7MHz. Then, the corresponding interaction strength is
found to be Csn® = 21 x 320 MHz, which can be obtained in an atom cloud with an
interparticle distance of @ = 1pym. Note that these parameters are compatible with present
experimental techniques [261]. For van der Waals interactions the requirements to observe
an improvement of the gate fidelity are even more relaxed.

As discussed above, it is also possible to implement the Hamiltonian required for the
proposed gate using NV centers. There, coherence times of several milliseconds have been
reached in isotopically pure diamond samples [45]. Using 79 = 100 Hz, this translates to a
requirement for the microwave frequency of )y = 27 x 80 KHz and Ay = 27 x 170 KHz, and
an average spacing of the NV centers of a = 2nm. Note that fluctuation in the magnetic
field giving rise to 73 dephasing processes can be canceled by stroboscopically switching
the system between the ms; = +1 and mg = —1 states, and adjusting the driving fields
accordingly. In the resulting dynamics the election spin is then dynamically decoupled and
coherence times up to the spin relaxation time 77 can in principle be reached [262].

Finally, we would like to remark that the proposed long-range quantum gate is not
limited to the dipolar crystal case. In fact, one can implement this setup using any
continuous phase transition from a disordered to an ordered phase, provided that the
couplings between the qubits and the quantum bus obey similar conservation laws and the
ground state in the disordered phase is a product state. However, the robustness against
disorder appears to be a characteristic feature of the dipolar crystals and opens up a

common perspective for Rydberg atoms and NV centers.
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Figure 42: Dependence of the maximum fidelity of the proposed quantum gate on the decoher-
ence rate vy with parameters taken from the numerical simulation. The solid red line is the fi-
delity in the equdistant case, while the shaded areas correspond to 90% confidence intervals for a
disordered situation. The dashed line indicates the fidelity that can be achieved using the dipolar
interaction between the qubits.

5.4 Collectively enhanced quantum gates

Harnessing collective phenomena by utilizing ensembles of identical particles is a powerful
tool, which has been exploited in effects ranging from superradiance to scattering
suppression [263]. The coherent dynamics resulting from interactions with individual
constituents of an ensemble are often too weak to be observed directly; however, as
evidenced by experiments in systems such as Rydberg atoms [264-266], cavity QED

[267, 268], atomic ensembles [269, 270] and solid state qubits [271], collective enhancement
provides a natural route to overcoming this challenge. In this section, we demonstrate that,
for electronic spin quantum registers, such collective effects enable an extended coherent
coupling over large distances — an essential prerequisite for quantum information
processing.

Owing to favorable coherence properties, electronic spins associated with point-like
defects in solid-state systems have garnered significant recent interest as candidates for
room-temperature quantum registers. Quantum control of such spins can be achieved using
a combination of optical, magnetic and electric fields. While our considerations apply to a

variety of electronic spin qubits [272-274], here, we focus on the Nitrogen-Vacancy (NV)
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r = 20nm

Figure 43: High-density NV spin ensemble distributed randomly within a sphere of diameter 7,
with an average distance a. The NV centers have three internal spin states that are split by a
zero-field splitting and a Zeeman field.

center in diamond. The NV center harbors an electronic spin (S = 1), which can be
optically initialized, coherently manipulated and read out on sub-wavelength scales

[44, 59, 275]. These results have sparked several recent proposals which utilize networks of
NV registers as the platform for a scalable quantum information processor

[116, 210, 276, 277]. However, for any spin qubit candidate, two crucial challenges remain
to be addressed: 1) the weakness of the magnetic dipolar interactions on distances
compatible with individual optical addressing and 2) the disorder in spin positioning due to
inherent imperfections during defect creation.

We present a novel approach to remote quantum logic which harnesses collectively
enhanced interactions to overcome both of the above challenges. The key idea underlying
our proposal is to associate a single, robust qubit with a collective, generally disordered
spin-ensemble (Fig. 43). If the spins behave in an aggregate fashion, such a qubit can
produce a large state-dependent magnetic field, leading to enhanced long-range coupling
between ensembles; this is reminiscent of tailored light-matter interactions achieved via
atomic ensembles [278]. However, we note that quenched disorder naturally leads to
localization in solid-state spin systems, implying that each eigenmode of the ensemble is
composed of only a few spins. Here, we demonstrate the use of a uniform transverse

magnetic field to overcome this issue. The applied field causes the symmetric W-state

129



(279, 280] to become an approximate eigenstate of the Hamiltonian, thereby enabling us to
harness it as a collective qubit. Moreover, we show that this particular state is largely

insensitive to the underlying spin distribution and hence robust to effects of disorder.

5.4.1 Collective W State

To be specific, we now describe our proposal in the context of NV diamond color centers.
The largest energy scale in this system (A) is set by a combination of the zero field
splitting (2.87GHz) and a Zeeman field along the NV axis. We assume that this Zeeman
field is sufficiently strong to ensure that the my, = —1 spin state is sufficiently far detuned
and hence does not contribute to the effective dynamics. Thus, the number of m, = 1
spins, m, is an approximately good quantum number and a perturbative description is
justified. The second-largest energy scale arises due to the perturbation created by the
transverse field (2. To gain a qualitative understanding, let us restrict ourselves to the
analytically tractable case where m is either 0 or 1. The effective Hamiltonian is,

H, = —A|0X0] + vV NQ(JOXW| 4 h.c.), where the state |0) has all ensemble spins polarized
into mg = 0, and the collective |W) state is fully symmetric with all spins sharing a single

excitation,

1
\W>:ﬁ;|0...1i...>. (5.54)

Second order perturbation theory in v NQ/A yields H. = —A|0X0| + J|W W], with

J = NQ?/A. Including higher m manifolds merely leads to a renormalization of J, without
changing this qualitative picture (so long as we are in the perturbative limit). This is
equally true in the presence of dipolar interactions, provided that the energy scale J is
larger than the characteristic strength of the dipolar interaction Vy;. Thus, even with these
additional terms, the new eigenstates will still have substantial overlap with the collective
|W) state. This is in stark contrast to the situation without a transverse field, where
strongly quenched disorder owing to random spin positions localizes all such eigenstates,

even in three dimensions. Furthermore, the dipolar interaction naturally ensures that
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collective states with different m values will have different energies, leading to a
“blockade”-type scenario, where manifolds with m > 1 are energetically inaccessible

(279, 280]. This allows us to selectively drive the transition between |0) and |W) without
populating any other collective states, provided that the external driving {2, is weaker
than V4. This hierarchy of energy scales can be summarized as: A > J > Vg > Qo

Let us consider a three dimensional ensemble of NV = 100 NV centers randomly
distributed within a diameter » = 20 nm, as depicted in Fig. 43. Such high density NV
ensembles have been recently realized using long-time annealing of
repeat-electron-irradiated diamond samples [74, 75, 281, 282]. We will characterize our
effective two-level system (mg = 0,1) using Pauli spin operators o,. Being magnetic
dipoles, NV centers interact with one another via long-range magnetic dipolar interactions
(ignoring energy non-conserving terms which are suppressed by the NV center’s zero field
splitting),

uQ 1 . . N N
Vij = (1 = 3cos® d;;) o X {Z (1409 [1+0D] - ool - a(_l)a(J)} ., (5.55)
where r; denotes the position, ;1 characterizes the magnetic dipole moment, and ¥;; is the
angle between the NV axis and the vector connecting sites r; and r;. The total
Hamiltonian including both on-site and interaction terms is then given by
H=A/2%". o)+ Yo ot + >ici Vig-

Let us now consider the enhanced coupling between an isolated NV defect (hereon
termed “qubit”) and the collective ensemble. We envision the ensemble to be initialized
into the |0) state, while the NV qubit is initialized to the my = 1 state. By ensuring that
the qubit splitting is tuned resonant with only the |IW) state, one finds that the effective
dynamics are restricted to the single-excitation manifold of the combined qubit-ensemble

system; to lowest order, these dynamics are governed by,

2
H.g— \/Nc%ﬂlq, 0X0,, W| + h.c.), (5.56)
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where N, characterizes the approximate number of spins participating in the |IV) state and
the notation |1,,0) refers to the combined state with the NV qubit being in ms = 1 and
with the ensemble spins being in |0). Consistent with sub-wavelength techniques such as
STED (R = 100nm), we will assume that the NV qubit can be manipulated and read out
independently of the ensemble [227].

To support the qualitative picture presented above, we now perform exact
diagonalization of the full Hamiltonian. In the majority of the numerics, we restrict
ourselves to m < 2 excitations; however, we check the validity of our results by including
the m = 3 manifold for slightly smaller system sizes. For each eigenstate |¢), we calculate

the collective enhancement factor, defined as

N, = <i<01...1i...0N|¢>> , (5.57)

i
which essentially characterizes the number of ensemble spins participating in the
eigenmode. As expected, in the absence of a transverse field, disorder localizes all
eigenstates and as depicted in Fig. 44 (blue circles), N. < N for all eigenstates. On the
other hand, In the case of a moderate transverse field, 2 =~ h x 100 MHz, one finds the
existence of a single eigenstate with N, ~ 70 ~ N. While the specific details of this state
depend on the microscopic details (e.g., spin distribution within the ensemble and
magnitude of the applied transverse field), its collective nature is rather robust. In
particular, as one varies the strength of the transverse field €2, there exists a large
parameter regime where N. > 50 (Fig. 44). The dips in N. are associated with resonance
effects, which arise when other eigenstates become near-degenerate with the collective
state. Finally, the decrease of N, for large values of €2 signals the breakdown of

perturbation theory as v NQ/A approaches unity.

132



80 T
80
(@]
60
= 40 'E
20 04 100 200
Qlh x MHz!
oLo e | 0@&‘3 Lo e
-2 -1 0 1 2
E[h x GHz]

Figure 44: Comparison of the collective enhancement N, for Q = 0 (blue) and 2 = h x 110 MHz
(vellow) within the single excitation manifold. In the latter case there is a collectively enhanced
state with N, ~ 70, corresponding to an increase by more than one order of magnitude (A =

h x 4 GHz). The inset shows the maximum value of N, depending on the transverse field strength
Q.

5.4.2 Numerical simulations

We now perform simulations of the combined qubit-ensemble system. As previously
discussed, the system is initialized to |1,,0) and the qubit splitting is tuned resonant with
the energy of the collective mode; the resulting dynamics is evinced in Fig. 45.
Interestingly, the probability of finding the qubit in the my = 1 state, p,, exhibits
collectively enhanced Rabi oscillations. The frequency of these oscillations is enhanced by
nearly an order of magnitude relative to that expected for bare dipolar interactions
between two individual NV qubits at a similar distance. The numerics also allow us to
obtain the time required for an interaction-induced 7 pulse, ¢, and from this, one can
derive the effective distance R associated with H.g. Surprisingly, in all cases, we observe
that this distance corresponds not to R — r, but instead to the distance between the NV
qubit and the center of the ensemble. We study the effects of putting the qubit closer to
the ensemble by calculating the collectively enhanced coupling strength V. (as extracted
from the numerically obtained ¢,). As shown in Fig. 45, we find that only for distances very
close to the ensemble does the collective enhancement deviates from the asymptotic 1/R3

scaling, e.g., the qubit is coupled to individual spins rather than to the entire ensemble.
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Figure 45: Collectively enhanced Rabi oscillations between an isolated NV qubit and a NV en-
semble. The probability to find the qubit in the my = 1 state, p,, goes to zero within a time
tr = 600 us. The inset shows the collectively enhanced coupling strength V. between the qubit
and the ensemble for four different realizations. The dashed line shows the asymptotic 1/R? de-
pendence.

5.4.3 Experimental Realization and Decoherence

Thus far, our discussion has assumed that both the NV qubit and the ensemble spins are
perfectly decoupled from the environment. In any experimentally realistic scenario,
however, there are two natural decoherence effects which will be present: spin dephasing
and spin depolarization. We are particularly interested in the scaling of the decoherence
rates with IV, as this may adversely affect the scaling fidelity of our proposed long-range
gates [210]. As the decoherence processes act locally on individual spins, we first calculate
the decoherence rate for a single spin and multiply the result by N to obtain the rate for
the collective state. For simplicity, we assume that the collective state is the previously
described |W) state in which a single excitation is shared among all N spins.

First, let us consider the effects of spin dephasing. The worst-case scenario for such
dephasing is given by the leaking out into non-symmetric states. Consequently, the error
probability after a single T5 dephasing event on spin 7 is given by the probability to leave

the |W) state,

4 1

where pp, is the single spin dephasing rate. For large IV, this result is essentially
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independent of N (after weighing with the number of spins); therefore, the effect of T,
processes on such a collective |I¥) state does not get enhanced by system size and in fact,
is only slightly worse than for a single spin, i.e., it can be expressed in terms of an effective
dephasing time T5T.

Second, we consider the decoherence arising from phonon-induced spin depolarization
processes (77). Here, we must distinguish between processes which flip an ensemble spin
from ms; = 1 to mg = 0, and the reverse. This asymmetry can easily be seen by noting that
the |WW) state has only one spin in ms = 1, while all other spins are in mg = 0. We denote
the error probability associated with these two events as pj,’® and pj,”", respectively. For
plTl_)O, the state |0) with all ensemble spins in mg = 0 is not affected at all, while the
probability to flip from the |IW) state into |0) is given by

9 _ pTl1~>0

N (5.59)

Pw—o = pri—o| (0] W) |

which is again independent of the size of the ensemble after rescaling with N.

However, this is not the case for TP~! processes. Both the |0) and the |W) state are
strongly affected by such processes, since the existence of any additional spin in the mgy = 1
state corresponds to an effective magnetic impurity; this impurity modifies the energy of
the collective state, thus tuning it out of resonance with the NV qubit. Additionally, this
new state is also no longer an eigenstate of the Hamiltonian; numerical simulations
demonstrate that this state dephases very quickly due to dipolar interactions within the
ensemble. Thus, since any single spin TP~! error will immediately dephase the collective
state, the effective decoherence rate owing to p%?l is enhanced by N and scales with the
size of the ensemble.

While the system size scaling of p%l_” errors might seem unfortunate, in solid-state spin

systems, it is often the case that 77 > T5. Our proposed protocol is particularly useful in

cases where T} /N remains longer than Ts, implying that the ensemble’s decoherence is
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Figure 46: Scalable architectures with collectively enhanced interactions, corresponding to a lat-
tice spacing of R = 100 nm, compatible with sub-wavelength optical addressing. (a) Individually
addressable NV qubits (yellow) are used for single qubit operations (SQR), whereas the collec-
tively enhanced interaction with an ensemble is used to mediate two-qubit gates via SWAP op-
erations. (b) NV ensembles are used as collective qubits, where also single qubit operations are
performed using the collective |W) state.

dominated by dephasing as opposed to the enhanced depolarization. The specific example
of NV centers highlights this crucial point. The dephasing of the NV originates from
fluctuating magnetic fields as neighboring pairs of dipoles flip-flop [45, 72]. Even at low
temperatures it is impossible to freeze out such magnetic fluctuations and 75 remains on
the order of milliseconds [45, 113]. On the other hand, the depolarization of the NV is
thought to originate from an Orbach spin-phonon process; such a process has an
exponential dependence on temperature and implies that even moderate cooling can yield
exceedingly long 7) times (> 1s at cryogenic temperatures) [283-285]. By liquid nitrogen
temperatures, the errors introduced by the enhanced T processes are already sub-percent,
enabling us to focus on the effects of dephasing. An alternate approach to combat the
enhanced depolarization of the collective state is to utilize conventional dynamical
decoupling techniques (e.g. WAHUHA) [286] to suppress dipolar interactions within the

individual ensembles.
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5.4.4 Collective quantum gates

We now turn to a possible application where isolated NV qubits are interspersed with
high-density NV ensembles, forming a regular structure, as depicted Fig. 46a. The qubits
are used for initialization, single-qubit rotations, and readout. Two-qubit gates between
remote spin qubits are mediated by the ensemble between them and thus benefit from
collectively enhanced interactions. The gate time ¢, is limited by the SWAP time ¢,
required to to transfer the information from one of the qubits to the ensemble (required
four times per gate operation ) [116]. The resulting error (assuming 77 /N > T5) of the
gate is given by ¢ = 1 — exp[— (4t /TsT)?] in the presence of spin echo decoupling [287]. For
an error of ¢ = 1072, this translates to a required dephasing time of T§T = 11 ms, which can
be readily realized in isotopically pure diamond samples [45, 113] or by using dynamical
decoupling pulses [72, 262]. The requirements on the coherence time can be further relaxed
by increasing the number of spins in the ensemble or by reducing the qubit-ensemble
separation.

An architecture featuring even better gate fidelities can be realized using a collective
encoding scheme for the qubits (see Fig. 46b). There, the logical |0) state corresponds to
all nuclear spins being polarized, while the logical |1) state is a collective nuclear spin |IW)
state. This state can be prepared by applying a microwave pulse to map the electronic |IW)
state onto a nuclear spin |W) state [280]. The timescale for such a single qubit operation is
limited to approximately 100 kHz by the hyperfine splitting of the NV centers in the my, =1
state (A ~ —2.14 MHz for *N) [288]. In this collective qubit architecture, two-qubit gates
between ensembles are enhanced by a factor of N instead of v/N, thus leading to a SWAP
time of ¢, = 70 us. Thus, we find that a gate error of ¢ = 1072 requires a dephasing time of
Tst = 700 ps, while for e = 1074, a coherence time of 75 = 3ms is needed [45, 113].

In summary, we have shown that collectively enhanced interactions can be realized
between an NV qubit and a mesoscopic NV ensemble. Our proposed approach relies upon

a transverse magnetic field to inhibit the localization of symmetric W-eigenstate. Our work
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enables the realization of collectively enhanced quantum gates with high fidelity and
provides an important step towards the realization of scalable quantum information

architectures involving solid-state electronic spins.

138



Chapter 6

Architecture for a Nitrogen-Vacancy based Quan-

tum Information Processor

In this previous chapter, we described various mechanisms to implement robust quantum
logic between distant quantum registers. In this chapter, we take advantage of those
mechanisms and propose a scalable architecture for a room-temperature quantum
computer using thermal state transfer. The realization of a scalable quantum information
processor has emerged over the past decade as one of the central challenges at the interface
of fundamental science and engineering. Much progress has been made towards this goal.
Indeed, quantum operations have been demonstrated on several trapped ion qubits, and
other solid-state systems are approaching similar levels of control. Extending these
techniques to achieve fault-tolerant operations in larger systems with more qubits remains
an extremely challenging goal, in part, due to the substantial technical complexity of
current implementations. Here, we propose and analyze an architecture for a scalable,
solid-state quantum information processor capable of operating at or near room
temperature. The architecture is applicable to realistic conditions, which include disorder
and relevant decoherence mechanisms, and includes a hierarchy of control at successive

length scales. Our approach is based upon recent experimental advances involving
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Nitrogen-Vacancy color centers in diamond and will provide fundamental insights into the
physics of non-equilibrium many-body quantum systems. Additionally, the proposed
architecture may greatly alleviate the stringent constraints, currently limiting the
realization of scalable quantum processors.

Nitrogen-Vacancy (NV) color centers in diamond stand out among other promising qubit
implementations [40-43, 289-291] in that their electronic spins can be individually
polarized, manipulated and optically detected under room-temperature conditions. Recent
advances involving the quantum manipulation of such crystal defects have allowed
researchers to achieve sub-diffraction limited resolution and dipole-coupling mediated
entanglement between neighboring NV electronic spins [44-47, 58, 192, 226, 256, 292-295].
Despite such substantial developments in this and other experimental systems, it remains
unclear whether these pieces can be combined into a scalable quantum information
processor (QIP) capable of operating under ambient, room temperature conditions.

In what follows, we describe and analyze a feasible architecture for a diamond-based
quantum information processor. Our approach makes use of an array of single NV centers,
created through implantation of ions and subsequent annealing [45, 296]. Each NV center
constitutes an individual quantum register containing a nuclear spin and a localized
electronic spin. The nuclear spin, which has a long coherence time, serves as the memory
qubit, storing quantum information, while the electronic spin will be used to initialize, read
out, and mediate coupling between nuclear spins of adjacent registers. Magnetic dipole
interactions allow for coherent coupling between NV centers spatially separated by tens of
nanometers. While in principle, a perfect array of NV centers would enable scalable
quantum information processing, in practice, the finite creation efficiency of such centers,
along with the requirements for parallelism, necessitate the coupling of registers separated
by significantly larger distances. To overcome this challenge, we show that the coupling
between NV centers can be mediated by an optically un-addressable “dark” spin chain data

bus (DSCB). For concreteness, within our architecture, we will consider the specific
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Figure 47: Schematic representation of individual NV registers within bulk diamond. (a) Each
NV register contains a nuclear spin I = 1/2 (yellow), providing quantum memory, and an elec-
tronic spin S = 1 (green). Dark spins (black) represent elements of an optically un-addressable
spin chain which coherently couples spatially separated NV registers. The NV level structure (in
a high B field) is shown. A resonant microwave (£23/y7) pulse coherently transfers the electronic
spin of the register from [0), to |1),; subsequent manipulation of the nuclear spin is accomplished
through an RF pulse (Q2rr). The far detuned |—1), state can be neglected to create an effective
two-qubit register. However, the full three level NV structure will be utilized in horizontal DSCB
mediated coherent coupling of NV registers. (b) A universal set of two-qubit gates can easily be
achieved with only MW and RF controls [48]. Electronic spin manipulation can be accomplished
with a MW field, where ¢ represents the duration of the MW pulse. By exploiting the hyperfine
coupling between the electronic and nuclear spin, one can achieve controlled-NOT operations
conditioned on either spin. In particular, a C.NOT,, gate can be accomplished by utilizing a RF
m-pulse, which flips the nuclear spin conditioned on the electronic spin being in |1).. Similarly, a
C,NOT, gate can be accomplished by utilizing the hyperfine interaction to generate a controlled-
phase (CP) gate, where 7 represents the duration of the wait time required to achieve such a
hyperfine-driven CP gate. Performed between two single-qubit Hadamard gates (7 /2-pulses) on
the electronic spin, such a CP gate generates the desired C,NOT, gate. Finally, combining the
C.NOT,, and C,NOT, gates allows for the execution of a SWAP gate.

implementation of such a DSCB by utilizing implanted Nitrogen impurities (P3 centers)
with spin 1/2, as shown in Fig. 47a. [292, 297].
6.0.5 The NV Qubit Register

Single NV registers contain a spin triplet electronic ground state (S = 1) and can be
optically pumped and initialized to the |0), spin state, which has no magnetic dipole

coupling with other NV registers or impurities. After optical initialization, the electronic
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spin of each register remains in the |0),_ state, unless coherently transferred to the |1), state
by a resonant microwave (MW) pulse, as depicted in Fig. 47a [44-47]. The nuclear spin
associated with Nitrogen atoms (I = 1/2 for 1°N) possesses an extremely long coherence
time and will serve as the memory qubit in our system [59]; manipulation of the nuclear
spin is accomplished with RF pulses [48]. The Hamiltonian governing the electronic and

nuclear spin of the NV register is

He,n = AOS,S + ,ueBSz + ,unB[z + ASzIzv (61)

with zero-field splitting Ag = 2.87GHz, electronic spin gyromagnetic ratio

e = —2.8MHz/Gauss, nuclear spin gyromagnetic ratio pu, = —0.43 kHz/Gauss, and
hyperfine coupling A = 3.0 MHz [44]. The application of a magnetic field along the
NV-axis (2) ensures full addressability of the two-qubit system, resulting in the energy
levels shown in Fig. 47a. A universal set of two qubit quantum operations can easily be
achieved with only MW and RF controls, as shown in Fig. 47b [48].

Furthermore, it is possible to selectively readout the state of the NV register; for
example, to readout the nuclear qubit of a register, we apply a C,,NOT, gate to couple the
electronic and nuclear spins, thereby allowing for readout of the electronic spin based on
fluorescence detection. In the case where NV registers are separated by
sub-optical-wavelength distances, the readout of registers will be complicated by the strong
fluorescence background from neighboring NV centers. To suppress this background
fluorescence, a red donut beam can be used, with its minimum located at the particular
NV center being read out [226]. Thus, while the fluorescence signal from the NV register
located at the minimum persists, the remaining illuminated registers will be dominated by
the stimulated emission induced by the red donut beam. In addition to suppressing the
background noise, the red donut beam can also suppress the nuclear decoherence of the

remaining NV registers, by reducing the amount of time these registers spend in the
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excited electronic state. After each round of fluorescence detection, the electronic spin is
polarized to the |0), state, while the I, component of the nuclear spin, a quantum
non-demolition observable, remains unchanged [298]. Therefore, it is possible to repeat this
readout procedure multiple times in order to improve the readout fidelity [256, 295]. A
strong magnetic field B,y ~ 1 Tesla along the NV axis should be used to decouple the
electronic and nuclear spins in order to achieve high fidelity single shot readout of NV
registers [256]. In addition to sub-wavelength readout, optical donut beams also introduce
the possibility of selectively manipulating individual NV registers with subwavelength
resolution. While un-illuminated NV centers may respond to a resonant MW pulse,
illuminated registers undergo a strong optical cycling transition which suppresses their

response to microwave pulses due to the quantum Zeno effect [227, 299].

6.0.6 Approach to Scalable Architecture

One of the key requirements for fault-tolerant quantum computation is the ability to
perform parallel gate operations. In our approach, this is achieved by considering a
hierarchy of controllability. The lowest level of the hierarchy consists of an individual
optically addressable plaquette with horizontal and vertical spatial dimensions

~ 100 — 500nm, containing a single computational NV register, as shown in Fig. 48a. The
plaquette dimensions are chosen such that register control and readout can be achieved
using conventional far-field or sub-wavelength optical techniques [44, 59, 226, 227, 293].
The second level, termed a super-plaquette (~ 10um x10um), consists of a lattice of
plaquettes whose computational registers are coupled through DSCBs. At the highest level
of the hierarchy, we consider an array of super-plaquettes, where individual
super-plaquettes are controlled by confined microwave fields [300]. In particular,
micro-solenoids can confine fields to within super-plaquettes, allowing for parallel
operations at the super-plaquette level. For example, as depicted in Fig. 48, independent

microwave pulses can allow for simultaneous operations on the electronic spins of all
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computational NV registers within all super-plaquettes. In order to control registers at the
super-plaquette boundaries, we define a dual super-plaquette lattice (Fig. 48a). Localized
microwave fields within such a dual lattice can provide a smooth transition between the
boundaries of neighboring super-plaquettes.

Taking advantage of the separation of length scales inherent to optical control and
microwave confinement provides a mechanism to achieve parallelism; indeed, the
hierarchical control of plaquettes, super-plaquettes, and super-plaquette arrays allows for
simultaneous single- and two-qubit gate operations, which are fundamental to
fault-tolerant computation. One of the key difference in the currently proposed
architecture as compared to previous proposals [42, 290] is that the design here does not
rely on optically resolved transitions, which are only accessible at cryogenic temperatures.

The required 2D array of NV centers can be created via a two-step implantation process
and the selective manipulation of individual registers within such an array is enabled by
the application of a spatially dependent external magnetic field B, (y) = %y + B. . The
1D magnetic field gradient is sufficiently strong to allow for spectroscopic microwave
addressing of individual NV registers, each of which occupies a unique row in the

super-plaquette, as shown in Fig. 48b.

6.0.7 Results and Discussion
Dark Spin Chain Data Bus

To coherently couple two spatially separated NV centers, we consider two distinct
approaches. First, we consider an approach, which is appropriate for spin-state transfer
along the direction of the magnetic field gradient, in which individual addressing of spins is
possible. This allows for an adiabatic sequential SWAP between neighboring qubits and,
consequently, between the ends of the chain. Alternatively, in the situation where

individual addressing of spins is not possible (i.e. direction transverse to the field gradient),
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Figure 48: The architecture for a room-temperature solid-state quantum computer. (a) A two-
dimensional hierarchical lattice allowing for length-scale based control, which enables fully paral-
lel operations. At the lowest level, individual plaquettes are outlined in grey and each contains a
single computational NV register. At the second level of hierarchy, a super-plaquette, outlined
in white, encompasses a lattice of plaquettes; each super-plaquette is separately manipulated

by micro-solenoid confined microwave fields. In order to allow for quantum information trans-
fer across boundaries of super-plaquettes, there exists a dual super-plaquette lattice outlined in
red. (b) The schematic NV register implantation within a super-plaquette. Two rows of indi-
vidual plaquettes within a super-plaquette are shown. NV registers, consisting of an electronic
(green) and nuclear (yellow) spin are depicted within a staggered up-sloping array which is row-
repetitive. Individual rows within a single plaquette are specified by an integer n withn = 1
being the bottom row and n = M being the top row. To achieve a staggered structure, we spec-
ify a unique implantation row within each plaquette wherein single impurities are implanted and
subsequently annealed. For a given row of plaquettes, the implantation row corresponding to
the left-most plaquette is n = 1, while the plaquette to the immediate right has implantation
row n = 2; this pattern continues until the final plaquette in a given row, which by construction,
has the highest implantation row number. The implantation process is repeated for each row of
plaquettes within the super-plaquette and creates an array of NV registers, which each occupy

a unique row in the super-plaquette. Since each NV register occupies a unique row within the
super-plaquette, the magnetic field gradient in the ¢ direction allows for individual spectroscopic
addressing of single registers. Coherent coupling of spatially separated NV registers in adjacent
plaquettes is mediated by a dark spin chain data bus (DSCB) and is schematically represented
by the curved line connecting individual registers. The second implantation step corresponds to
the creation of these horizontal and vertical dark spin chains.
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we show that global control pulses achieve effective Hamiltonian evolution, which enables
quantum state transfer through the spin chain. In both cases, we show that perfect state
transfer and remote coupling gates are possible even when the intermediate spin chain is
completely unpolarized (infinite spin temperature).

We begin by analyzing the adiabatic sequential SWAP in a spin-1/2 chain. This
approach is suitable to couple registers in plaquettes that are vertically adjacent, relying
upon the individual addressability of qubits and utilizing the magnetic dipole coupling
between spin-chain elements. Under the secular approximation, the magnetic dipole

coupling between a pair of neighboring spins can be reduced to Ising form

Hipy = 465152+ (wo + ;) 5L, (6.2)
i=1,2
where k is the relevant component of the dipole tensor, wy captures the electronic Zeeman
energy, and J; characterizes both the hyperfine term (nuclear spin dependent) and the
magnetic field gradient. From the Ising Hamiltonian, an XX interaction between qubits can
be distilled by driving with Hapive = Y, 5 2455 cos[(wo + 6;)t], leading to (under the
rotating wave approximation, in the rotating frame, and in a rotated basis with

(ZL’, Y, Z) - (Z7 —-Y, x))
Hint = K(S{Sy + S785) + Q18! + Q,592. (6.3)

The spin-flip process in H;,; is highly suppressed in the limit of [Q; — Q3| > &, while the
same process is dominant in the case of [ — Q| < k. Hence, by slowly ramping the Rabi
frequencies €2; and €25 through one another, adiabatic SWAP of the quantum states of the
two impurities can be achieved through rapid adiabatic passage, as shown in Fig. 49a.
Generalizing to arbitrary length spin chains yields

Hipe = >0, k(S7 S5, + S7S1) + >, S, whereby the sequential adiabatic SWAP of

quantum states along the spin chain can be achieved by successively tuning individual Rabi
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frequencies across one another. During the adiabatic SWAP of a single pair of spins, higher
order interactions, such as those resulting from next-to-nearest neighbors, will be
suppressed due to the differences in Rabi frequencies. By including the magnetic dipole
coupling between the electronic spin of the NV register and the spin chain quantum
channel, we arrive at an effective mixed spin chain with the DSCB connecting the two
electronic spins of the vertically separated NV registers. The specific procedure resulting in
adiabatic sequential SWAP mediated coupling between NV registers is depicted in Fig. 3c.

Crucially, such an adiabatic sequential SWAP is robust against variations in the coupling
strength x, which can be induced by the imprecise implantation of impurities that form the
spin-1/2 chain; in particular, even for the case of varying r;;+1, perfect adiabatic SWAP
occurs so long as the rate at which €2; and €2;,; are ramped through one another is
sufficiently small. Within the proposed architecture, the impurities forming the horizontal
spin chain will not induce operational errors during the vertical adiabatic sequential SWAP
since the design principle allows for selective spin echoing.

Next, we consider a second method, termed free fermion state transfer (FFST) developed
in [116], to coherently couple NV registers. In contrast to the adiabatic sequential SWAP,
the method utilizes only global control over impurities and effective Hamiltonian evolution.
The relaxation of the requirement of individual control over elements of the dark spin chain
renders this second method applicable for coherent coupling between NV registers in
horizontally adjacent plaquettes, transverse to the direction of the field gradient. In
particular, the protocol achieves coherent coupling through an unpolarized, infinite

temperature spin chain, employing purely Hamiltonian evolution under
N-1
Hrrsr = 9(Siu ST + %, Sy + he) + D w(S7S5 + 5757) (6.4)

i=1

as shown in Fig. 49b. This Hamiltonian, obtained in analogy to Eq. (6.3), results in

coherent interactions between NV centers, which is best understood via an analogy to
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Figure 49: Dark spin chain data bus (DSCB) mediated coherent coupling of spatially separated
NV registers, which does not require spin chain initialization. (a) Adiabatic sequential SWAP
along the vertical direction, parallel to the magnetic field gradient. Individual addressing of im-
purities, enabled by the field gradient, allows for a slow ramping of the Rabi frequencies §2; and
2; through one another; this achieves adiabatic SWAP of the quantum states of the two impuri-
ties through rapid adiabatic passage. Thus, sequential adiabatic SWAP of quantum states along
the spin chain can be achieved by successively tuning individual Rabi frequencies across one an-
other. (b) Free fermion state transfer in the horizontal direction, transverse to the magnetic field
gradient. The coupling strength between the end qubits and the spin chain is g, while the inter-
chain coupling strength is k. Schematic representation of the level structure of the NV electronic
spin and a dark impurity spin. Controlling the NV-impurity coupling ¢ is an essential compo-
nent of FFST and occurs by driving the NV in two-photon resonance, with Rabi frequency €2 and
detuning A. (¢) Schematic circuit diagram outlining the protocol to achieve coherent coupling
between the nuclear memory qubits of spatially separated NV registers. First, the nuclear and
electronic qubits of a single register are swapped. Next, the electronic qubits of the two NV cen-
ters to be coupled are swapped via the DSCB. Finally, a two-qubit gate between the electronic
and nuclear spin of the second register is performed before the memory qubit is returned to the
nuclear spin of the original NV center.
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eigenmode tunneling in a many-body system. Specifically, the spin chain described by
Hppsr can viewed as a system of non-interacting fermions. As described in [116], by tuning
the NV centers into resonance with a single fermionic eigenmode, an effective three-state
system can be realized. Mediated by this fermionic eigenmode, the electronic states of two
remote NV centers can be coherently swapped, leading to an analogous protocol for remote
register coupling as shown in Fig. 49c. Crucially, such a SWAP gate is insensitive to the
polarization of the intermediate dark spins and high-fidelity quantum state transfer can be
achieved, provided that the fermionic mode is delocalized and that the coupling, g, of the
NV qubit to the spin chain is controllable. As detailed in the Materials and Methods, by
utilizing the three-level NV ground-state structure (Fig. 49b), it is possible to fully control
the NV-chain coupling. This tunability also ensures that FFST is fundamentally robust to
experimentally relevant coupling-strength disorder, which could be induced by
implantation imprecision. Indeed, by separately tuning the NV-chain coupling on either
side of the DSCB, it is possible to compensate for both disorder-induced asymmetry in the

fermionic eigenmode as well as altered statistics of the eigenenergies [116, 218, 301].

Implementation, Operational Errors and Gate Fidelities

The specific implementation of the DSCB can be achieved with implanted Nitrogen
impurity ions. Dipole coupling between neighboring Nitrogen electronic spins forms the
DSCB, while dipole coupling between the NV and Nitrogen electronic spins forms the
qubit-DSCB interaction; non-secular terms of this magnetic dipole coupling are highly
suppressed due to the spatially dependent external magnetic field B,(y), resulting in the
effective interaction found in Eq. (6.2). In addition, the Nitrogen impurities possess a
strong hyperfine coupling, the principal axis of which can take on four possible orientations
due to tetrahedral symmetry [285, 302, 303]. Dynamic Jahn-Teller (JT) reorientation of
the Nitrogen impurity’s hyperfine principal axis results in two particular considerations: 1)

the addressing of additional JT frequencies yielding a denser super-plaquette frequency
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Figure 50: Numerical simulation of the DSCB fidelity. (a) The operational infidelity associated
with the adiabatic sequential SWAP for N = 18. The simulations account for the Jahn-Teller
orientation of Nitrogen impurities and utilize the optimized adiabatic ramp profile [259]. Simula-
tions utilize an optimized coupling strength of 8.71kHz (18.1nm spacing). Full numerical integra-
tion of the time dependent Schrédinger equation produces infidelity contour plots as a function
of total SWAP time and 77¥V. (b) Numerical simulations of the operational infidelity associated
with FFST for N = 7. Non-nearest neighbor interactions are assumed to be refocused through
dynamic decoupling. Simulations, which utilize an optimized coupling strength of 12.6kHz (16nm
spacing), are based upon a full diagonalization and also account for the Jahn-Teller orientation

of Nitrogen impurities. Infidelity contour plots are again shown as a function of total SWAP time
and TNV

spectrum and 2) the JT-governed spin-lattice relaxation (SLR) time T7¥. Since T} is
characterized by an Arrhenius rate equation [302] at ambient temperatures, a combination
of a static electric field and slight cooling by ~ 50K allows for a substantial extension of
the relaxation time to ~ 1s; hence, in the following consideration of operational errors, we
will assume that we are limited by Ti¥V, the spin-lattice relaxation time of the NV center.

We now consider various imperfections, which may introduce operational errors. In
particular, we consider the errors associated with: 1) sequential SWAP mediated coupling
between vertically adjacent registers and 2) FFST between horizontally adjacent registers.
We begin by discussing the analytic error estimate associated with each method, after
which, we summarize the results of full numerical simulations.

First, we consider the accumulated infidelity associated with the adiabatic sequential
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SWAP,

P55~ N(P55) + Dadia + Daip + D35 + D33). (6.5)

The first term, pOS]§f ~ ( X_f, >2’ represents off-resonant excitations induced by microwave
manipulations with Rabi frequency €2;. Here, A, characterizes the gradient-induced
splitting achieved within the super-plaquette frequency spectrum. The second term, pugia,
corresponds to the non-adiabatic correction resulting from an optimized adiabatic ramp
profile [259, 304, 305]. The third term, pg;, ~ (Qii)z, is directly obtained from Eq. (6.3)
and corresponds to additional off-resonant errors. The fourth error term, p3 corresponds
to the depolarization error induced by the finite NV T} time, while the final error term, p35
corresponds to the infidelity induced by dephasing. Since each error term is considered
within the context of a single adiabatic SWAP, the total error contains an additional factor
of N, representing the chain length, which is plaquette size dependent (e.g. N =5 for
100nm and N = 20 for 500nm).

We can similarly consider the accumulated infidelity associated with FFST,

PEEST 2 pEEST - p e + Dy + D1 5T + ph o1 (6.6)

FFST

-t corresponds to the excitation of an NV

In direct analogy to p>%, the first term in p
register by off-resonant microwave fields. The second term, pgermi, corresponds to the
undesired coupling with off-resonant fermionic modes. Since the coupling strength is

characterized by g/+/N [116], while the splitting of the eigenenergy spectrum ~ /N, such

9/vV'N

i )2. The third error term, p,, results from

an off-resonant error induces an infidelity ~ (
the protocol designed to control, g, the NV-chain coupling (see Materials and Methods for
details). Finally, directly analogous to p5%. the fourth and fifth terms correspond to errors
induced by the operational time, tppgr, which causes both depolarization and dephasing.

Finally, we perform numerical simulations, taking into account the Nitrogen JT

frequencies, to characterize the infidelity of both the adiabatic sequential SWAP and FFST
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within the NV architecture, as depicted in Fig. 50. The results of these calculations are in
excellent agreement with the above theoretical predictions. In particular, these simulations
reveal that, for sufficiently long TV ~ 100ms, operational infidelities in both DSCB
methods can be kept below 1072

These simulations clearly show that the T} time of the NV electronic spin is of critical
importance in obtaining high-fidelity quantum operations. While at room temperature 7}
appears to vary depending on the particular sample and on the specific properties of the
local NV environment, such as strain, values on the order of 10ms are generally
obtained [59, 285]. However, the spin-lattice relaxation mechanism governing 77 is most
likely related to an Orbach process [283], which is strongly temperature dependent. In such
a case, modest cooling of the sample by ~ 50K, is likely to extend T1 by more than an
order of magnitude, thereby making high fidelity gates possible.

Given that such numerical estimations suggest the possibility of achieving high fidelity
two-qubit operations between remote NV registers, the proposed architecture seems well
suited to the implementation of topological quantum error correction [228, 229, 289, 306].
Recent progress in optimizing the 2D nearest-neighbor surface code has yielded an error
threshold of € ~ 1.4% [229], which is above the estimated infidelity corresponding to both
the adiabatic sequential SWAP and FFST; thus, in principle, implementation of the 2D
surface code can allow for successful topological quantum error correction, and hence, fault

tolerant quantum computation [307].

6.0.8 Outlook

The above considerations indicate the feasibility of experimentally realizing a solid-state
quantum computer capable of operating under ambient conditions at or near room
temperature. We emphasize that a majority of the elements required for the realization of
individual qubits in our architecture have already been recently demonstrated. In our

approach, these techniques are supplemented by both a new mechanism for remote register
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coupling between NV centers as well as a hierarchical design principle, which facilitates
scalability. The remote coupling mechanisms discussed can naturally be implemented via
Nitrogen ion implantation in ultra-pure diamond crystals and are robust to realistic
imperfections and disorder [116].

While the implementation and integration of the various proposed elements still require
substantial advances in areas ranging from quantum control to materials science, a feasible
approach to room temperature quantum information processing can greatly alleviate the
stringent requirements associated with cryogenic temperatures, thereby making the
realization of a scalable quantum computer significantly more practical.

The present work opens a number of new directions which can subsequently be explored.
In particular, while we have considered the direct errors associated with DSCB mediated
coupling, it is instructive to note that the fidelity of such quantum gates can often be
significantly improved using techniques from optimal control theory [308, 309]. For
example, such methods of optimal control, while negating the detrimental effects of
decoherence, can also simultaneously allow for the implementation of high-fidelity gates
despite both frequency and coupling disorder as induced by ion implantation errors.
Indeed, the ability to precisely guide the quantum evolution via optimal control, even when
the system complexity is exacerbated by environmental coupling, provides an alternative
solution to improve single and two-qubit gate fidelities [310]. In addition, it is well known
that the local strain field surrounding each NV center can significantly alter the register’s
properties; hence, through a detailed understanding of electric field induced strain, it may
be possible to improve the coherence properties of the qubit. Beyond these specific
applications, a number of scientific avenues can be explored, including for example,

understanding and controlling the non-equilibrium dynamics of disordered spin systems.
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6.0.9 Theoretical Methods
Controlling Qubit-Chain Coupling in the NV Architecture

To achieve an effective Hamiltonian of the form given by Eq. 6.4, it is essential to control
the coupling strength between the NV register and the neighboring impurity. Here, we
utilize the three levels of the NV electronic spin [311] to effectively control g, as shown in

Fig. 49b, whereby the Hamiltonian (under microwave driving) can be written as

H = — A(1)(1] +] = 1)(=1]) = Q(0){(1[ + [0)(~1] + h.c.) = QS + 4657V ST, (6.7)

where () represents the Rabi frequency on the NV register, A represents the associated
detuning, and )y represents the Rabi frequency on the Nitrogen impurity. In this case,

since the NV two-photon detuning is zero, it is convenient to define bright and dark states,

|B) = |1>J:/|§_1> and |D) = %; further, in the resulting two-level picture, the associated
dressed states are |[+) ~ |B) + %|0) and |—) ~ |0) — %|B), in the limit Q@ < A. Hence,

rewriting the Hamiltonian in this limit yields

H= — AIDY{D| — (A+2TQQ)!+><+I

20)? 1
+ T|_><_| - §QN(|+>N<+’ — [=)n (=) (6.8)

+ 26(IB) (D] + [D)(B)([+)n (=] + |=)n (],

PINE=Y
V2

where |£)y = correspond to the two S¥-eigenstates of the Nitrogen impurity.

The coupling term can be further re-expressed as

2m{<|+><D|+\D><+|> v <|—><D\+|D><—|>} (a)onl + l-xenl) (69)

Thus, by working within the NV subspace {|D),|—)}, it is possible to completely control

the coupling between the NV register and Nitrogen impurity, g ~ /4;%, by tuning the Rabi
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frequency and detuning. It is possible to work in the required two-state subspace by
ensuring that x < A and hence, that the |+) state remains unpopulated, with
corresponding off-resonant error x2/A2.

Furthermore, we evince a possible scheme to coherently map the quantum information
that is stored in the nuclear memory into the desired electronic subspace. For example,
consider mapping [0) ® (] 1) + 5] 1)) to (a|]=) + 5| D)) ® | 1), where the first (tensor)
factor corresponds to the electronic state and the second corresponds to the nuclear state
of a single NV. The proposed mapping can be achieved in a two-step process. First, by
simultaneously performing a m—pulse on the transitions [0) ® | |) — | — 1) ® | {) and
0) ® | ) = |1) ® | ]) with oppositely signed Rabi frequencies, one can map [0) ® | |) to
|D) @ | |). Next, one utilizes an RF pulse to flip the nuclear spin, which yields
ID)®|J]) = |D)®]|1). Finally, turning  on in an adiabatic fashion ensures that the state
preparation populates only |D) and |—), thereby mapping the quantum information into

the desired electronic subspace.
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Chapter 7

Topologically protected quantum state transfer

At the end of the previous chapter, we mentioned that one crucial challenge facing the
implementation of an NV-based room-temperature quantum computer is the issue of
disorder. In particular, disorder tends to localize modes of the spin chain, limiting the
fidelity of quantum state transfer. In this chapter, we address this challenge by describing a
possible topological spin data bus which can overcome effects of disorder. Topology plays a
central role in ensuring the robustness of a wide variety of physical phenomena. Notable
examples range from the robust current carrying edge states associated with the quantum
Hall and the quantum spin Hall effects to proposals involving topologically protected
quantum memory and quantum logic operations. Here, we propose and analyze a
topologically protected channel for the transfer of quantum states between remote quantum
nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid.
We demonstrate that the proposed method is intrinsically robust to realistic imperfections
associated with disorder and decoherence. Possible experimental implementations and
applications to the detection and characterization of spin liquid phases are discussed.

The decoherence of both quantum states and quantum channels represents a major
hurdle in the quest for the realization of scalable quantum devices [312, 313]. Several

avenues are currently being explored to address these important challenges. For example,
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quantum repeater protocols are expected to improve the fidelity of quantum state transfer
— the fundamental building block of quantum communication [314, 315]. Similarly,
quantum error correction can significantly extend the lifetime of quantum memories and
suppress the errors associated with quantum logic operations [316, 317]. The practical
realization of these technologies, however, requires a high level of quantum control that is
as yet, not experimentally accessible. An alternative paradigm to achieving protected
quantum states is provided by topology; indeed, if such states can be stored in the
topological degrees of freedom of certain exotic states of matter, they become intrinsically
robust against local noise [237, 238, 318-321].

The implementation of robust long-lived quantum memories can also be achieved by
encoding quantum bits in appropriately chosen physical degrees of freedom. For example,
the natural isolation of nuclear spins immunizes them from the environment and makes
them an exceptional candidate for the storage of quantum information
[44, 45, 59, 256, 322, 323]. Such solid-state spin qubits can be locally coupled with high
fidelities, enabling the realization of few-bit quantum registers [59, 256]. However, spatially
remote registers interact extremely weakly; thus, in this context, the challenge of scalability
is shifted to the development of quantum channels capable of connecting remote registers
in a robust and noise-free fashion [116, 241, 324].

This chapter describes a novel approach to the realization of intrinsically robust
quantum channels and exploits topological protection to enable high-fidelity quantum
information transport. We envision quantum state transfer between remote spin registers
to be mediated by a 2D system composed of interacting spins. Specifically, the spin system
is tuned into a gapped chiral spin liquid phase, which harbors a fermionic edge mode. The
prototype of this specific chiral spin liquid is the gapped B phase (CSLB) of the Kitaev
honeycomb model [325]. Although such a phase is best known for its non-Abelian vortex
excitations, here, by operating at finite temperatures below the gap, we make use of its

Majorana fermionic edge mode as a topologically protected quantum channel. Moreover,
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we discuss possible applications of our protocol for the spectroscopic characterization of

spin liquid states [326].

7.0.10 Approach to Topologically Protected State Transfer

Our approach to quantum state transfer is schematically illustrated in Fig. 51. Quantum
information is encoded in a two-qubit spin register, with each qubit capable of being
individually manipulated. The register is coupled to the edge of a two-dimensional spin
droplet, whose elements we assume cannot be individually addressed but can be globally
“engineered” to create a spin liquid state in the CSLB phase. The transfer protocol
proceeds by mapping the quantum information stored in the left-hand spin-register onto
the chiral edge mode of the droplet. The resulting wavepacket traverses the edge before
retrieval at the remote register.

A distinct feature of our protocol, as compared with previous approaches
[116, 196, 202, 216, 241], is the fundamental robustness of the quantum channel. The chiral
nature of the fermionic edge mode ensures that destructive backscattering during state
transfer is highly suppressed; moreover, the characteristic (linear) dispersion of the
edge-mode ensures that wave packet distortion is minimized. Finally, we demonstrate that
our approach is remarkably insensitive to disorder and decoherence affecting both the bulk
and edge of the droplet. Although any spin system with a stable CSLB-like phase can
potentially mediate topologically protected state transfer (TPST), to illustrate the
microscopic mechanism responsible for such state transfer, we turn initially to a particular
model and will later generalize our analysis to include the effects of disorder, additional

interactions, and decoherence.

7.0.11 TPST on the Decorated Honeycomb

We now consider a specific exactly solvable spin-1/2 model which supports robust TPST

[327]. Within this Yao-Kivelson model, the spins are situated on a triangular-decorated
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Figure 51: Schematic representation of topologically protected state transfer | The grey droplet
represents a 2D array of interacting spins tuned into the CSLB phase. Quantum spin-registers
composed of a transfer qubit (green) and a memory qubit (gold) are arranged around the edge
of the 2D droplet and coupling between them occurs through the chiral edge mode. (1) By map-
ping the quantum information onto a fermionic wave-packet (blue) traveling along the edge, the
quantum state can be transferred to a remote register. The wavepacket travels only in the direc-
tion of the blue arrow; this chirality prevents mode localization and destructive backscattering.
At a specified time at the remote register location, the coupling is turned on and the wavepacket
is captured (2). Given an ancillary memory qubit and local register manipulations, a two-qubit
gate (3) can be performed before the quantum state is transferred back to the original register
and stored (4-5). This allows for universal computation between the memory qubits of spatially
separated registers.

honeycomb lattice as depicted in Fig. 52 [327]. The associated Hamiltonian naturally
generalizes the Kitaev model [319] and features a chiral spin liquid ground state (CSLB
phase),

Z KOO + = Z Koyod + Z Ko7 O3, (7.1)

lznks lznks lznks

where & are Pauli spin operators (& = 1). The model may be solved by introducing four
Majorana operators, {7°, 7!, 7% 73} for each spin, as shown schematically in Fig. 52a and
by representing the spin algebra as: 0 = iy19°, 0¥ = iv?4yY, 07 = iv34° [325, 327]. The
Majorana operators are Hermitian and satisfy the standard anticommutation relation
{41, 4™} = 20;,,. The Hilbert space associated with the physical spin is a two-dimensional
subspace of the extended four-dimensional Majorana Hilbert space; thus, we must impose

1+D

the gauge projection, P = , where D = yly2y3~9 [325].
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Transforming to Majorana operators results in the extended Hamiltonian
7 N
HY =25 Uiy, (7.2)
4,3

where UZJ = 77§ (a depends on the type of ij-link) for ij connected and zero otherwise;
these U” correspond to the boxed Majorana pairs illustrated in Fig. 52a. Remarkably each
(A]m commutes with the Hamiltonian and with all other (A]Lm, implying that the extended
Hilbert space can be divided into sectors corresponding to static choices of {U; ; = £1}
[325, 327].

The choice of {U; ;} yields a Hamiltonian which is quadratic in the 7 Majorana
operators; from the perspective of these Majoranas, U, ; is a static background Z, gauge
field. The physical states are sensitive only to the flux of the gauge field,

w(p) = Hijeap U, j, where p represents a plaquette, dp is its boundary and ij is oriented
according to the arrows in Fig. 52b [327]. For any link with U; ; = 41, this orientation can
also be interpreted as the direction in which a v° Majorana hops in order to accumulate a
7/2 phase. The ground state flux sector of the model has w(p) = +1 for all plaquettes,
corresponding to m phase around the dodecagonal plaquettes and 7/2 phase around the
triangular plaquettes, as shown in Fig. 52b. The 7/2 phase around the triangular
plaquettes indicates the breaking of time-reversal symmetry necessary for a chiral ground
state. Alternate flux sectors contain plaquettes with vortex excitations defined by

w(p) = —1. In general, such vortices are energetically gapped by A,, but the energy and
dynamics of vortices near the edge are controlled by the details of the boundary.

In each flux sector, the associated Majorana Hamiltonian can be diagonalized through a
unitary transformation () such that /ﬁzm Qk,i(iUm)Q,’g,J = O €g, yielding
HY = % ]kV:/Z—N/2 ekclck, where ¢, = \/Li Zj Qk,ﬂ?, N is the number of spins on the lattice,

and the index k is ordered according to energy. Owing to particle-hole symmetry,
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€, = —€_p and cz = c_y; thus, by restricting to k£ > 0,

1
HY = ZGk(CLCk — 5), (7.3)
k>0
where ¢, and CL satisfy Dirac anticommutation relations. Diagonalization of the ground
state flux sector on a cylinder yields three bulk fermion bands, energetically gapped by A,,
as shown in Fig. 53 [327]. At the edge, the fermionic quasiparticles form gapless chiral

modes which are guaranteed by the nontrivial Chern number of the bulk fermion bands.

7.0.12 Spin-Register Coupling to a Chiral Edge

We now consider the addition of spin qubits, which can be individually manipulated and
read out, to the edge of the exactly solved model with open boundary conditions [59, 256].
Each edge spin with coordination two has an uncoupled Majorana operator, which we term
dangling as depicted in Fig. 52a. We can extend the definition of vortices to include the
dangling plaquettes defined by the U, ; links between dangling Majoranas, as shown by the
red rectangle in Fig. 52a. These dangling vortices are completely decoupled from the
fermions and lead to a large degeneracy of the model. However, generic perturbations will
lift this degeneracy by gapping out these dangling vortex states; in this situation, as we
later describe, the control of dangling vortices at the injection point will become important.
To illustrate TPST, we consider the full Hamiltonian Hy = Hy + H;,; where H;,,;
characterizes the coupling between the two spin-registers (termed L and R) and dangling

spins at the edge of the droplet (Fig. 52b),

A
H,, = _TS(UE +05) + gLafaf + gropoy. (7.4)

Here, Ag is the splitting of the register states (e.g. by an applied field), 3, n are chosen to

respect the interaction symmetry at the injection points, and g, gr represent the
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Figure 52: Coupling between spin-register and the droplet edge | (a) Schematic representation
of the generalized Kitaev Hamiltonian on the decorated honeycomb lattice. Spins are represented
by four Majorana operators; spin-spin interactions become products of the four Majoranas living
on each link. Boxed spins correspond to the UZJ operators which determine the effective hopping
associated with the vy Majoranas. Coupling (dashed line) between the quantum register and the
2D droplet can occur at any edge vertex with an unpaired Majorana; the Majorana flavor deter-
mines the form of the spin-spin interaction that introduces the desired additional hopping. (b)
Schematic representation of the ground state flux configuration. Each arrow represents a Majo-
rana hopping of ¢, yielding 7 phase (oriented CCW) around the dodecagonal plaquettes and /2
phase around the triangular plaquettes. Vortex excitations (circular arrows) correspond to the
flipping of a U;; link (red arrow and link), which yields w(p) = —1 in the two adjacent plaque-
ttes. Quantum registers corresponding to a transfer qubit (green) and a memory qubit (gold) are
shown coupled into the droplet (injection points) at two different dangling edge spins.
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interaction strength between the registers and the injection spins (a and b) as shown in
Fig. 52. Transforming to Majorana operators yields

Hine = =55(iv30) + %) + 9091900878 + 9r7R eV, where, without loss of generality,
we have chosen a 0%0” register-edge interaction.

The existence of a dangling Majorana at the droplet edge is critical to enable spin-edge
coupling. At the injection points (Fig. 52b), the register-edge coupling of equation (7.4),
not only creates a fermionic excitation, but also introduces a dangling vortex (by flipping
the U, ; corresponding to the adjacent dangling plaquette). Thus, in order to exploit the
chiral fermion mode to transport spin-based quantum information, we will need to control
the injection point. Imperfections in such control will result in the spin-register coupling to
additional nearby spins. However, since the nearest spins surrounding the injection point
will not contain dangling Majoranas, these additional interactions will naturally gap out.

Even in the presence of the additional interactions prescribed in equation (7.4), since
Ur,. and Ugy are conserved, the model remains exactly solvable. Expressed in terms of the

eigenmodes of the unperturbed Hamiltonian in the ground state flux sector,

1
Hr=H+ Hjpy = Z ek(chk - é)
k>0
L1 L
+ Ag(cpern — 5) + AS(CRCR — 5)

(7.5)
— grUp CL+CL ZQkack+ZQkack

— 9rUrp(cr + ) —= ZQMCVFZQM%

where we have defined CLR = 1/2(v" —ivg ™) and cp g = 1/2(707" + i75°™); in this
language, the ¢* spin state of the L(R) qubit is encoded in the occupation of the L(R)
fermion mode. The first term of the Hamiltonian characterizes the modes of the 2D
droplet, the second and third term characterize the splitting associated with the

spin-registers, while the final two terms capture the coupling between the registers and the
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dangling edge spins. This Hamiltonian acts in the extended fermionic Hilbert space and

returning to physical spin states requires gauge projection.

7.0.13 Topologically Protected State Transfer in the Dot and Droplet Regime

The coupling between the register and the chiral edge mode can be analyzed in two distinct
regimes: 1) the mesoscopic dot regime and 2) the macroscopic droplet regime. The
distinction between these two regimes is best understood from a perspective of
resolvability; in the dot regime, we consider the coupling to a small finite-size system,
enabling energy resolution of the individual chiral edge modes. Thus, TPST is mediated by
a single fermionic eigenmode of the system [116]. Meanwhile, in the droplet regime, we
consider the coupling to a larger system, in which energy resolution at the single mode
level would be extremely difficult. In this regime, we encode the spin register’s quantum
information in a traveling fermionic wave-packet.

In both the dot and droplet regimes, TPST relies on the coherent transfer of fermionic
occupation from register L to R. In order for this to be well-defined, we choose Ag > 0 and
g1, gr < Ag so that the effective Dirac fermions, clz, are conserved. In the dot regime,
TPST can be understood by tuning Ag to be resonant with a single edge mode, k, with
energy €;; so long as the coupling strength is weak enough to energetically resolve this
mode, evolution is governed by the effective Hamiltonian,

.. - i . it i .
eff = —EQLQ];’GCLC% - EgRQIE,bCRCfC + h.c. (7.6)
and hence, state transfer proceeds via resonant fermion tunneling, as depicted in Fig. 54a
[116]. The timescale, 7, required to achieve high fidelity state transfer depends only on the
energy spacing between adjacent modes, Ae ~ /¢, where ¢ is the system’s linear
dimension; to prevent the leakage of quantum information into off-resonant fermionic

modes, 7 2 ¢/k [116].
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Figure 53: Fermionic spectrum of the ground state flux sector | The model is placed on a cylin-
der of circumference 61 and width 40 unit cells, with a zigzag edge oriented such that the y direc-
tion is periodic [328]. The chiral edge modes are clearly visible near kya = 7 at energies below
the bulk fermion gap A, = 0.46x. Numerical simulations also indicate the following values of the
two vortex gaps: 0.14k (dodecagonal vortex) and 0.17x (triangular vortex).

In the droplet regime, we encode the fermionic occupation into the presence/absence of a
wavepacket traveling along the chiral edge, as illustrated in Fig. 54b [329]. Upon tuning

both spin-registers to an energy Ag, the encoding can be performed by choosing gz, (t) with

the following time-dependence,

gty = YO (7.7)

S delf)P

where f(t) characterizes the shape of the desired wave-packet and v is the group velocity of
the chiral mode. Subsequent retrieval can be similarly achieved by employing time-reversal
symmetry to appropriate choose the shaping of gr(t). We note that such wavepacket
encoding is in direct analogy to the storage and retrieval of photonic wavepackets

(278, 330, 331]. In contrast to the dot regime, the magnitude of the coupling strengths may
be of order Ag, which is independent of /. However, the time scale of TPST includes the
wavepacket’s propagation time, which depends on both the physical separation of the

registers and the wavepacket group velocity.
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7.0.14 Effects of Imperfections, Disorder and Decoherence

Having explicitly demonstrated TPST in an exactly solvable model, we now consider
additional imperfections, disorder, temperature and decoherence. As the CSLB phase has a
bulk gap and a topological invariant protecting its chiral edge mode, we expect the
effective low energy fermion dynamics to be insensitive to small perturbations [325].
Furthermore, the chirality of the edge mode prevents localization and the Majorana nature
of the edge fermions strongly suppresses the phase space for scattering, thereby limiting
nonlinear corrections to the dispersion [116, 196, 202, 216, 241]. In the following, we
consider various classes of imperfections arising from local spin perturbations and coupling

to a finite temperature bath; these result in: 1) vortex excitations, 2) finite Majorana

lifetime and 3) dynamical decoherence.

Vortex Excitations

At low temperatures T', there will be a dilute gas of bulk vortices, N, ~ npe_A“/ T

, where n,
represents the total number of bulk plaquettes. Since a vortex excitation corresponds to a
7 flux relative to the ground state, a circumambulating fermion acquires an additional
phase of N,7. Thus, the presence of vortices can have two relevant effects: 1) vortices
within a localization length, £ ~ a (where a is the lattice spacing), of the edge can scatter a
traveling fermion and 2) an odd number of vortices induces a w-shift of the net phase [332].

In addition to introducing bulk vortices, perturbations also generically lift the
aforementioned degeneracy associated with dangling edge vortices. However, this will only
affect the fidelity of TPST at the injection point, where one must ensure the existence of a
single dangling edge Majorana. Away from the injection point, three possibilities arise:
First, zero energy dangling vortices are completely decoupled from the fermions and hence
will be irrelevant for TPST. Second, low energy dangling vortices will scatter only

minimally, since the interaction strength between the dangling Majoranas, and hence the

hopping strength across the dangling link, will be extremely weak. Finally, much as in the
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regime droplet regime

Figure 54: Regimes of TPST | (a) Schematic representation of the dot regime wherein TPST be-
comes analogous to tunneling. In this mesoscopic dot regime, the coupling strength is kept weak
enough to enable resolution of single edge modes. (b) Schematic representation of the droplet
regime wherein TPST is achieved by mapping the quantum information from a spin-register onto
a traveling fermionic wave-packet. The wave-packet is caught at the remote register, after which
a two-qubit gate is performed before the information is returned (via a wave-packet) to the initial
register.

bulk, the effect of high energy dangling vortices will be suppressed by their gap.

As static effects, all of the aforementioned error contributions can be abrogated by the
use of tomography; hence, it is crucial to effectively freeze out vortex fluctuations on the
time scale of TPST, and this is most easily accomplished at temperatures which are small

compared to A,.

Finite Majorana Lifetime

Next. we consider the addition of generic perturbative local spin interactions, H), to the
full Hamiltonian, Hy. Certain classes of perturbations leave the model exactly solvable;
more generally however, if H, is longer ranged or does not respect the model’s interaction
symmetry, the gauge field acquires dynamics and the effective fermionic theory is no longer
free. In order to understand these effects, we turn to a low-energy continuum theory of the
Majorana edge (assuming that dangling vortex excitations are either decoupled or gapped

out),

H, = v/;l—ipcgcp = v/dx v(z)(10)y(x), (7.8)
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where C;L) = c_p is the subset of {cL} in equation (7.3) which creates an edge excitation at

momentum p and where we have switched to a continuum normalization of the Majorana
field, {7(z),7(y)} = 6(z — ) [332].

The introduction of interactions induces decay of the quasiparticle excitations c},. This
quasiparticle lifetime limits the size of the droplet around which coherent excitations may

be sent. The leading order symmetry-allowed interaction is of the form [333]

H{ = A / dz y(2)(i0)y(w)(i0)*y(x)(i0)*y(x), (7.9)

where \ characterizes the strength of the interaction. We estimate the decay rate Fli)”t of a
single quasiparticle excitation using Fermi’s golden rule. In the low temperature limit

(Ep > kBT)a

)\2p13 N )\2p11T2

Fint ~
p v v

+O(T%). (7.10)

To relate F;"t to the microscopic model parameters, we consider generic vortex-inducing
local spin perturbations of strength «’, which yield A ~ n(%)2a7 in second order
perturbation theory. Substituting into equation (10) allows us to re-express the zero
temperature decay rate as I‘;"t ~ Z—Z(’%)‘l(ap)m, where Ag = vp is the energy of the

injected TPST fermion. The surprisingly strong dependence on momenta suggests that

quasiparticle decay can safely be neglected so long as p < 1/a.

Dynamical Decoherence

Finally, we consider dynamical decoherence due to weak coupling with a low temperature
phonon bath, which induces additional decay erc of the fermion involved in TPST. We
assume that the bath couples to local spin operators of* and that its effect is characterized
by its noise spectral density, ' ~ S(w) [334]. In the bulk, each such operator creates a
pair of vortices (Fig. 52b) in addition to creating or destroying a Majorana quasiparticle.

As the fermionic edge modes are exponentially localized, the contribution of this process to
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the decay rate is suppressed by e~%¢, where d is the distance from site i to the edge.
Moreover, there is an additional energy suppression from S(wg) ~ ewo/ksT where wy = 2A,
is the energy cost of creating a pair of vortices.

This brings us to the primary decoherence effect: edge noise. There are two types of spin
operators acting on the lattice edge: 1) those which only create or destroy an edge fermion
(type I) and 2) those which also introduce vortices (type II-IV), as shown in Fig. 55. Type
I spin operators can only induce decay if they directly annihilate the injected TPST edge
fermion, a process costing energy Ag. By contrast, once a vortex is created at any edge
plaquette it can scatter the traveling TPST fermion, implying that the associated
decoherence is enhanced by a factor of ¢, as depicted in Fig. 55. Thus, the total TPST

decay rate induced by edge noise is,
Fgec ~ e~ As/keT 4 ge=Bv/keT (7.11)

Strikingly, the sources of decoherence in TPST are exponentially suppressed in
temperature and thus can be controlled [116].

The above analysis generalizes to other types of noise sources. Of particular relevance in
the context of solid-state spin systems are nuclear spin baths, in which S(w) ~ #1#3’
where ¢, is the bath’s correlation time. In this model, the Arrhenius-type energy

suppressions of equation (11) becomes T'9 ~ 1/A2 if A, > 1/t. [334].

7.0.15 Experimental Realizations and Outlook

The search for novel topological phases represents one of the most exciting challenges in
many-body physics; indeed, this challenge has led to a widespread effort to experimentally
identify or engineer systems exhibiting exotic topological order. One of the prototypes of
such order is provided by the CSLB phase of the Kitaev honeycomb model; while such

chiral spin liquid phases have yet to be experimentally implemented, several realistic
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Figure 55: Schematic representation of the various forms of edge decoherence | Type I spin op-
erators correspond to non-vortex inducing decoherence and can affect TPST only by annihilating
the TPST fermion (teal star), a process suppressed by e 2s/ksT where Ag represents the de-
tuning of the spin registers and hence also the energy of the injected quasiparticle. Type II-IV
spin operators create vortices (circular arrow) in edge plaquettes. Once a vortex is created at any
edge site, it can scatter the traveling TPST fermion, leading to the decoherence being enhanced
by ¢ (the droplet’s linear dimension). In addition to creating vortices, Type II-IV spin operators
also create un-gapped edge fermions (gold star), which we assume does not affect TPST since
quasiparticle interactions have been shown to be extremely weak.
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approaches toward their realization have been envisioned.

The realization of a honeycomb lattice, an essential component of implementing the
Kitaev gapped B phase, is currently being considered in systems ranging from ultra-cold
atoms [335-337] and polar molecules [96, 338] to superconducting lattices [339, 340] and
dipolar-coupled electronic spin arrays [74, 210]. While engineering a macroscopic
honeycomb droplet remains a daunting challenge, recent experiments have demonstrated
the ability to control mesoscopic ensembles containing tens of qubits [341-345]. Despite
these remarkable advances, such mesoscopic systems are insufficient in size to support the
existence of several well-separated quasiparticles, a crucial prerequisite to demonstrate the
non-abelian braiding essential for topological quantum computing [238, 321, 325]. However,
these smaller systems represent ideal candidates to demonstrate topologically protected
state transfer and hence, the existence of a chiral fermion edge - another hallmark of the
CSLB phase.

Moreover, our proposed technique can also be used to directly characterize spin liquid
states via passive spectroscopy of the droplet edge. By observing the splitting-dependent
relaxation of the spin-qubit probe, one could map the energy spacing between the chiral
edge-modes. In addition, asymmetries in correlation measurements provide a direct
indication of chirality. In this case, by gradually altering the physical distance separating
two spin-qubit probes, one could characterize the timescale of incoherent interactions
between the remote registers. Asymmetry in this timescale, dependent on the direction in
which the qubits are separated provides a strong indication of the existence of a chiral edge
and would enable direct evaluation of the velocity associated with the edge dispersion.
Alternatively, one could also imagine holding the spin qubits fixed and characterizing
asymmetries associated with L-to-R versus R-to-L TPST. These considerations imply that
solid-state magnetic spin probes can provide a potential tool for exploring the properties of
natural spin liquid candidates in both organic and inorganic insulators [326, 346-348].

Finally, our technique suggests a new avenue for a hybrid solid-state quantum computing
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architecture. In particular, while solid-state spin systems enable the realization of
long-coherence-time quantum memories and high-fidelity quantum registers, scaling these
individual components up to a local area quantum network remains a critical challenge
[45, 46, 59, 116, 210, 256]. Thus, we envision a hybrid architecture in which conventional
solid-state spin qubits are connected by topologically protected channels. In this scenario,
dynamical decoupling of spins within an engineered CSLB droplet generates a lattice of
mesoscopic CSLB islands around which individual qubits reside [262]. The edge-modes of
these island regions act as quantum routers, ferrying quantum information between remote
spin registers. Since spin-qubits are naturally well-separated in such a hybrid architecture,
the individual addressing and direct control of single qubits is greatly simplified [227].
Furthermore, such an architecture suggests a perspective in which control fields can

reshape CSLB islands and thereby dynamically reconfigure network connectivities.
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Chapter 8

Quantum primitives enabled by Nitrogen-Vacancy

centers

8.1 Quantum credit cards

In the chapter, we describe a variety of quantum primitives enabled by the
Nitrogen-Vacancy center. The realization of devices which harness the laws of quantum
mechanics represents an exciting challenge at the interface of modern technology and
fundamental science[187, 313]. An exemplary paragon of the power of such quantum
primitives is the concept of “quantum money” [349]. A dishonest holder of a quantum
bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal
measurements and decoherence-free memories such security is guaranteed by the no-cloning
theorem [350]. In any practical situation, however, noise, decoherence and operational
imperfections abound. Thus, the development of secure “quantum money”-type primitives
capable of tolerating realistic infidelities is of both practical and fundamental importance.
Here, we propose a novel class of such protocols and demonstrate their tolerance to noise;
moreover, we prove their rigorous security by determining tight fidelity thresholds. Our

proposed protocols require only the ability to prepare, store and measure single qubit

173



quantum memories, making their experimental realization accessible with current
technologies [113, 351, 352].

Recent extensions to Wiesner’s original “quantum money” protocol [349] have garnered
significant interest [353-356]. One particular extension enables the authentication of
quantum tokens via classical public communication with a trusted verifier [357]. However,
to tolerate noise, the verification process must condone a certain finite fraction of qubit
failures; naturally, such a relaxation of the verification process enhances the ability for a
dishonest user to forge quantum tokens. It is exactly this interplay which we, here, seek to

address, by focusing on a class of "quantum token”-protocols which involve either direct

physical or classical communication verification of qubit memories.

8.1.1 Quantum tickets

Our approach to quantum tokens extends the original quantum money primitive[349] by
ensuring tolerance to finite errors associated with encoding, storage and decoding of
individual qubits. We denote the tokens within our first primitive as quantum tickets
(qtickets); each qticket is issued by the mint and consists of a unique serial number and N
component quantum states, p = ), p;, where each p; is drawn uniformly at random from
the set, Q = {|+),|=),| +14),| —4),]0), |1)}, of polarization eigenstates of the Pauli spin
operators. The mint secretly stores a classical description of p, distributed only among
trusted verifiers. In order to redeem a qticket, the holder physically deposits it with a
trusted verifier, who measures the qubits in the relevant basis. This verifier then requires a
minimum fraction, Fi,, of correct outcomes in order to authenticate the qticket; following
validation, the only information returned by the verifier is whether the qticket has been
accepted or rejected.

The soundness of a qticket, e.g. the probability that an honest user is successfully
verified, depends crucially on the experimental fidelities associated with single qubit

encoding, storage and decoding. Thus, for a given qubit p;, we define the map, M;, which
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characterizes the overall fidelity, beginning with the mint’s encoding and ending with the
verifier’s validation; the average channel fidelity[222] is then given by,

F=1/1Q|% o, Tr[piM;(p;)]. With this definition, the verification probability of an honest

user is,
1
= 1o > Tr[PacM(p)] > 1 — e NPFewliFra), (8.1)
pPEQ
where Q = Q®V, P,.. represents the projector onto the subspace of valid qtickets,

M =@, M,, Fox, = 1/N ). F; is the average experimental fidelity, and D, the relative
entropy, characterizes the distinguishability of two distributions (see Methods for details).
Crucially, so long as the average experimental fidelity associated with single qubit processes
is greater than the tolerance fidelity, an honest user is exponentially likely to be verified.
To determine a tight security threshold, we consider the counterfeiting of a single qticket.
For a given tolerance fidelity (Fio) set by the verifiers, a qticket is only accepted if at least
FioiN qubits are validated. In the event that a dishonest user attempts to generate two
qtickets from a single valid original, each must contain a minimum of Fi, N valid qubits to
be authenticated. As depicted in Fig. 56a., in order for each counterfeit qticket to contain
FioiN valid qubits, a minimum of (2F}, — 1) N qubits must have been perfectly cloned.
Thus, for a set tolerance fidelity, in order for a dishonest user to succeed, he or she must be
able to emulate a qubit cloning fidelity of at least 2F;, — 1. Crucially, so long as this
fidelity is above that achievable for optimal qubit cloning (2/3) [358], a dishonest user is

exponentially unlikely to succeed,

Pa = ! > T [PET(p)] < e NPEHatR), (8.2)
Q] %
where T represents any completely positive trace preserving qticket counterfeiting map. To
ensure 2F, — 1 > 2/3, the tolerance fidelity must be greater than 5/6, which is precisely
the average fidelity of copies produced by an optimal qubit cloning map [358]. In certain

cases, an adversary may be able to sequentially engage in multiple verification rounds;

175



F N

tol

T D0 ens®RR

P Py P 22 Pn-2 Pn-1 Py
® =
=3
%g F;mlN
r |
cloned
qticket:®®® LU 'OOO
p] p2 p? pN—Z pN—l pN

m 1y

“challenge” questions
—
Oy (

Figure 56: a) Depicts the pigeonhole type argument which is utilized in the proof of gticket
soundness. For a tolerance fidelity Fiq, a qticket is only successfully authenticated if it contains
at least Fio N valid qubits. However, for two counterfeit qtickets, not all valid qubits must coin-
cide. The minimum number of perfectly cloned qubits enabling both qtickets to be accepted is,
(2Fio1 — 1)N. b) Depicts the quantum retrieval type situation envisioned for cv-qtickets. For two
verifiers asking complementary “challenge” questions, the optimal strategy is for the user to mea-

sure in an intermediate basis. Such a strategy saturates the tolerance threshold, F| = %Ni

however, the probability of successfully validating counterfeited qtickets grows at most
quadratically in the number of such rounds, and hence, the likelihood of successful
counterfeiting can remain exponentially small even for polynomially large numbers of
verifications.

Our previous discussion of gtickets assumed that such tokens are physically transferable
to trusted verifiers (e.g. concert tickets); however, in many situations, this assumption of
physical deposition, may either be impossible or undesirable. Recently, it has been shown
[357] that it remains possible, even remotely, for a holder to prove the validity of a token
by responding to a set of “challenge” questions; these questions can only be successfully
answered by measuring an authentic token. The core behind this approach is to ensure

that the “challenge” questions reveal no additional information about the quantum state of

the token.
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8.1.2 Classical verification quantum ticket

We now discuss a specific realization of such an approach, the classical verification
quantum ticket (cv-qticket), and demonstrate its robustness against noise and operational
imperfections. In contrast to the case of bare qtickets, a cv-qticket holder will be expected
to answer “challenge” questions and hence to measure qubits himself. One might imagine
that the ability to participate in multiple remote verifications simultaneously could offer a
dishonest user an additional advantage over the bare qticket case; in particular, certain
measurement strategies may yield an increased likelihood for multiple successful
authentications.

One example of a cv-qticket framework, is to utilize a set of eight possible two-qubit
product states with each qubit prepared along either X or Z (note that a single qubit

framework is also possible):

{|O7+>7 |07 _>7 |17+>7 |17 _>7 |+’0>7 |_’0>7 |+7 1>7 ’_7 1>}

We then envision each cv-qticket to consist of n blocks, each containing r qubit pairs, and
thus, a total of n x r x 2 qubits; as before, each of the qubit pairs is chosen uniformly at
random from the allowed set above. A “challenge” question consists of randomly asking the
holder to measure each block (of qubits) along either the X or Z basis; naturally, as
depicted in Table 8.1.1, a valid qubit pair (within a block) is one in which the holder
correctly answers the state for the particular qubit (within the pair) which was prepared
along the questioned basis. For a given tolerance threshold, an overall answer will only be
deemed correct if at least F{yr qubits within each of the n blocks are found valid. By
analogy to the qticket case, honest users are exponentially likely to be verified so long as

Fop > FY); in particular, since there now exist n blocks of qubits, each of which can be
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thought of as an individual qticket (with r qubits),
P > (1 — e rPFesliFia))™ (8.3)

The proof of cv-qticket security is based upon a generalized formalism of quantum retrieval

games [357, 359], in combination with a generalized Chernoff-Hoeffding bound [360]. So

long as Fo) > 1+12/\/§,

a dishonest user is exponentially unlikely to be authenticated by two
independent verifiers. For two complementary “challenge” questions, one finds that on
average, no more than 1+ 1/ V2 & 1.707 can be answered correctly. Interestingly, the
threshold F&Y corresponds exactly to that achievable by either covariant qubit cloning[361]
or by measurement in an intermediate basis (Fig. 56b), suggesting that both such

strategies may be optimal [187]. Similar to the qticket case, one finds that a dishonest user

is exponentially likely to fail,

2
f n
pSV S (;) (1/2+€—TD(FtolHl+12/ 2)> , (84)

where v represents the number of repeated verification attempts. Moreover, so long as two
verifiers agree to ask complementary “challenge” questions, participation in simultaneous
verifications is unable to improve a dishonest user’s emulated fidelity. Thus, in the case of
both gtickets and cv-qtickets, so long as the hierarchy of fidelities is such that:

Flishonest < Fiol < Fexp, it is possible to prove both soundness and security of each protocol.

8.1.3 Quantum credit card primitive

Next, we consider applications of the above primitives to practically relevant protocols. For
instance, one might imagine a composite cv-qticket which allows for multiple verification
rounds while also ensuring that the token cannot be split into two independently valid

subparts [357]. Such a construction may be used to create a quantum-protected credit
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Correct v v v v v v v X
Block v v

B:Res. Verified

Table 8.1.1: Verification of a single cv-qticket. Here, we consider a cv-qticket with n = 4 and

r = 2, totaling 8 qubit pairs and Fy, = 3/4 (for illustrative purposes only). The prepared qubit-
pairs are chosen at random, as are the bank’s requested measurement bases (for each block). The
holder’s answer has at most, a single error per block, which according to, Fi, = 3/4, is allowed.
Secure cv-qtickets require Fyo] > 1/2 + 1/4/8 and a larger number of constituent qubits.

card. Indeed, the classical communication which takes place with the issuer (bank) to
verify the cv-qticket (via “challenge” questions) may be intentionally publicized to a
merchant who needs to be convinced of the card’s validity. By contrast to modern credit
card implementations, such a quantum credit card would be unforgeable and hence
immune to fraudulent charges (Fig. 57a).

An alternate advantage offered by the qticket framework is evinced in the case where
verifiers may not possess a secure communication channel with each other. Consider for
example, a dishonest user who seeks to copy multiple concert tickets, enabling his friends
to enter at different checkpoint gates. A classical solution would involve gate verifiers
communicating amongst one another to ensure that each ticket serial number is only
allowed entry a single time; however, as shown in Fig. 57b., such a safeguard can be
overcome in the event that communication has been severed. By contrast, a concert ticket
based upon the proposed qticket primitive would be automatically secure against such a
scenario; indeed, the security of gtickets is guaranteed even when verifiers are assumed to
be isolated. Such isolation may be especially useful for applications involving quantum
identification tokens, where multiple verifiers may exist who are either unable or unwilling
to communicate with one another.

While quantum primitives have been the subject of tremendous theoretical interest, their

practical realization demands robustness in the face of realistic imperfections. Our above
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Figure 57: a) Depicts the possibility of using the cv-qticket framework to implement a quantum-
protected credit card. Unlike its classical counterpart, the quantum credit card would naturally
be unforgeable; this prevents thieves from being able to simply copy credit card information and
perform remote purchases. b) Depicts a dishonest user who attempts to copy a concert gticket
(e.g. same serial number), enabling his friend to enter at an alternate checkpoint gate. Naively,
each verifier can communicate with one another to prevent such abusive ticket cloning. However,
such a safeguard can be overcome in the event that the communication among verifiers is either
unsecured, unavailable or severed (possibly by the dishonest user himself). The qticket is exempt
from this type of attack since security is guaranteed even in the case of isolated verifiers.

analysis demonstrates that such noise tolerance can be achieved for certain classes of
unforgeable quantum tokens. Moreover, the derived tolerance thresholds are remarkably
mild and suggest that proof of principle experiments are currently accessible in systems
ranging from trapped ions [351, 362] and superconducting devices [339, 352] to solid-state
spins [45, 59, 113, 322]. In particular, recent advances on single nuclear spins situated in a
compact room-temperature solid, have demonstrated that ultra-long storage times can be
attained in combination with high fidelity initialization and readout [113]; such advances
suggest that quantum devices based upon single qubit quantum memories may be both
practical and realistically feasible.

While our analysis has focused on describing a primitive based upon single tokens,
natural extensions to the case of multiple identical quantum tokens open up the possibility
of even more novel applications. In particular, it is possible to extend our threshold results

to the case where ¢ identical copies of the quantum token are issued. In this case, to ensure
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that the production of ¢ 4 1 valid tokens is exponentially improbable, the required
threshold fidelity must be greater than 1 — m The existence of such multiple
identical tokens can provide a certain degree of anonymity for users and could be employed
in primitives such as quantum voting. A crucial question that remains is whether a
rigorous proof of anonymity can be obtained in a noisy environment. Furthermore, our
proposed quantum tokens can also be seen as a basic noise tolerant building block for
implementing more advanced application schemes; such schemes can range from novel
implementations of quantum key distribution [187, 363-365] based upon physical qubit
transport to complex one-time-entry identification cards. Beyond these specific
applications, a number of scientific avenues can be explored, including for example,

understanding whether an interplay between computational assumptions and quantum

memories can yield fundamentally new approaches to encryption.

8.1.4 Proof of Quantum Ticket Soundness

To demonstrate the soundness and security of qtickets, we employ the framework of a
Chernoftf Bound, which characterizes the central limiting behavior of a set of independent
random variables; in particular, it provides exponentially decreasing bounds on tail

distributions of their sums. Here, we state a generalization of this bound [360],

Theorem: Generalized Chernoff-Hoeffding bound Let X, ..., X,, be Boolean {0, 1} random
variables, such that for some §; and every S C {1,...,n}, it holds that

Pr [/\ies Xl} < Hies 0;- Then
=1

with § :=n~! Zfil 0; and for any v s.t. 6 <~y < 1.

D(pllq) = pln§ +(1—p)ln %Z characterizes the distinguishability of two binary

probability distributions, where Pr(X = 1) = p for the first distribution and Pr(X =1) = ¢
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for the second. To establish the soundness of qtickets, we now define the “acceptor”, P’ ,

which projects a pure N qubit product state onto the subspace of valid gtickets. As

expected, the size of this subspace will depend on the verifiers tolerance fidelity, Fi..

Definition: Acceptance Projector

Given p = ®z]11 p; and a security parameter 0 < Fi, < 1, the acceptance projector is given

by
N
Pr.o= Z ® (biloi + bz‘PiL)
Bi[bl1>Fiq N =1
b e {0,1}" is a length N, boolean string with |b]; = SN by, by =1—1b;, and pt =1 — p;.

Intuitively, |l;|1 can be thought of as a Hamming weight since it characterizes the number of
non-zero entries of the string. The sum is over all strings which have at least Fi, /N entries
which are 1; thus, the definition of b naturally enforces the projection onto the set of valid
qticket states. We now recall the qubit map M; which characterizes the overall fidelity, F},
of encoding, storage and decoding. We define Fiy, = 1/N ). F; to be the average

achievable experimental fidelity. This brings us to the statement of qticket soundness.
Theorem: Soundness of a Quantum Ticket

For Fey, > Fiol, an honest holder successfully redeem a qticket with probability

py > 1 — e NPEallFox),

Proof. Consider a vector composed of boolean random variables, X = (X1,...,Xn), with

a joint probability distribution given by

N
Pr[X =] = |Q’2Tr M(p) Q) (bip: + bipi")

pPEQ =1

= H Z Tr [M;(pi)(bip; + bip;)]

- Pi GQ
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As evidenced, we can consider X; to be independent boolean random variables with
probability Pr[X;| = F;. Moreover, a simple calculation reveals that Eq. 8.1 of the main
text can be recast as, @1‘ ZpGQ Te[PL M (p)] = PF[Z,-]L X; > FiqN]. Application of the

acc

Chernoff bound yields the desired result. m

The security proof for qtickets follows in a similar fashion; it requires the generalized
Chernoff-Hoeffding bound to rigorously deal with arbitrary counterfeiting attacks, which

may in principle generate correlations between qticket components.

8.2 Spin squeezing

Electronic spins associated with nitrogen-vacancy (NV) centers in diamond exhibit long
coherence times and optical addressability, motivating extensive research on NV-based
quantum information and sensing applications. Recent experiments have demonstrated
coupling of NV electronic spins to nuclear spins [44, 275], entanglement with photons [192],
as well as single spin [287, 293] and ensemble [366, 367] magnetometry. An outstanding
challenge is the realization of controlled interactions between several NV centers, required
for quantum gates or to generate entangled spin states for quantum-enhanced sensing. One
approach toward this goal is to couple NV centers to a resonant optical [368, 369] or
mechanical [370-372] mode; this is particularly appealing in light of rapid progress in the
fabrication of diamond nanostructures with improved optical and mechanical properties
[373-377].

In this section, we describe a new approach for effective spin-spin interactions between
NV centers based on strain-induced coupling to a vibrational mode of a diamond resonator.
We consider an ensemble of NV centers embedded in a single crystal diamond nanobeam,
as depicted in Fig. 58a. When the beam flexes, it strains the diamond lattice which in turn
couples directly to the spin triplet states in the NV electronic ground state [378, 379]. For

a thin beam of length L ~ 1 um, this strain-induced spin-phonon coupling can allow for
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(a) NV centers (C) [+1) |+1)

|-1)

Figure 58: (a) All-diamond doubly clamped mechanical resonator with an ensemble of embedded
NV centers. (b) Spin triplet states of the NV electronic ground state. Local perpendicular strain
induced by beam bending mixes the |£1) states. (c) A collection spins in the two-level subspace

{|+1),]—1)} is off-resonantly coupled to a common mechanical mode giving rise to effective spin-
spin interactions. (d) Squeezing of the spin uncertainty distribution of an NV ensemble.

coherent effective spin-spin interactions mediated by virtual phonons. Based on these
effective interactions, we explore the possibility to generate spin squeezing of an NV
ensemble embedded in the nanobeam. We account for spin dephasing and mechanical
dissipation, and describe how spin echo techniques and mechanical driving can be used to
suppress the dominant decoherence processes while preserving the coherent spin-spin
interactions. Using these techniques we find that significant spin squeezing can be achieved
with realistic experimental parameters. Our results have implications for NV ensemble

magnetometry, and provide a new route toward controlled long-range spin-spin interactions.

8.2.1 Model for NV spin squeezing

The electronic ground state of the negatively charged NV center is a spin S = 1 triplet
with spin states labeled by |m, = 0, 41) as shown in Fig. 58b. In the presence of external

electric and magnetic fields E and B, the Hamiltonian for a single NV is (i = 1) [379]

Hyy = (Do + dyE.)S? + pupgsS - B — dy [E.(S:S, + S,S:) + E,(S2— S2)], (8.5)
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where Dy /27 ~ 2.88 GHz is the zero field splitting, gs ~ 2, pup is the Bohr magneton, and
dy (d1) is the ground state electric dipole moment in the direction parallel (perpendicular)
to the NV axis [380, 381].

Motion of the diamond nanoresonator changes the local strain at the position of the NV
center, which results in an effective, strain-induced electric field [379]. We are interested in
the near-resonant coupling of a single resonant mode of the nanobeam to the |+1)
transition of the NV, with Zeeman splitting Ag = g,upB,/h, as shown in Fig. 58b,c. The
perpendicular component of strain £ mixes the |[+1) states. For small beam
displacements, the strain is linear in its position and we write F, = Ey(a + a'), where a is
the destruction operator of the resonant mechanical mode of frequency w,,, and Ej is the
perpendicular strain resulting from the zero point motion of the beam. We note that the
parallel component of strain shifts both states |£1) relative to |0) [382]; however, with
near-resonant coupling A = Ap — w,, < Dy and preparation in the |£1) subspace, the
state |0) remains unpopulated and parallel strain plays no role in what follows. Within this
two-level subspace, the interaction of each NV is H; = ¢ (0;r a+alo; ), where
oif = |£1), (F1] is the Pauli operator of the ith NV center and g is the single phonon
coupling strength. For many NV centers we introduce collective spin operators,

J.o=150 11, (1] = |-1),(~1] and Jy = J, £iJ, = >, 07, which satisfy the usual angular

momentum commutation relations. The total system Hamiltonian can then be written as
H =uwpala+ ApJ, + g (a'J_ +aly), (8.6)

which describes a Tavis-Cummings type interaction between an ensemble of spins and a
single mechanical mode. In Eq. (8.6) we have assumed uniform coupling of each spin to the
mechanical mode for simplicity. In general the coupling may be nonuniform and we discuss
this further below.

To estimate the coupling strength g, we calculate the strain for a given mechanical mode
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and use the experimentally obtained stress coupling of 0.03 Hz Pa~! in the NV ground
state [192]. We take a doubly clamped diamond beam (see Fig. 58a) with dimensions
L > w, h such that Euler-Bernoulli thin beam elasticity theory is valid [383]. For NV

centers located near the surface of the beam we obtain

9~ 180 (Lym GHz (8.7)
27 L3w+/pE 7

where p is the mass density and F is the Young’s modulus of diamond. For a beam of
dimensions (L, w, h) = (1,0.1,0.1) pum we obtain a vibrational frequency w,,/2m ~ 1 GHz
and coupling g/2m ~ 1 kHz. While this is smaller than the strain coupling g./2m ~ 10 MHz
expected for electronic excited states of defect centers [384, 385] or quantum dots [386], we

benefit from the much longer spin coherence time 75 in the ground state. An important

g1y
Yth

figure of merit is the single spin cooperativity n = , where v = w,,,/Q is the mechanical
damping rate and ngy, = (eﬁ“m/ k5T _ 1)~1 is the equilibrium phonon occupation number at
temperature 7. Assuming Q = 10°, 75 = 10 ms and T = 4 K, we obtain a single spin

cooperativity of n ~ 0.8. This can be further increased by reducing the dimensions of the

nanobeam and operating at lower temperatures.

8.2.2 Figure of merit for spin squeezing

In the dispersive regime, g < A = Ag — w,,, virtual excitations of the mechanical mode
result in effective interactions between the otherwise decoupled spins. In this limit, H can
be approximately diagonalized by the transformation e®He ™ with R = £ (a'J_ — aJy).

To order (g/A)? this yields an effective Hamiltonian,
i i A
Heg = wma'a+ (Ap + Aa'a) J. + §J+J,, (8.8)

where A\ = 2¢%/A is the phonon-mediated spin-spin coupling strength. Rewriting

JoJ_=J*— J?+ J,, and provided the total angular momentum J is conserved, we obtain
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a term o< J?2 corresponding to the one-axis twisting Hamiltonian [387].

To generate a spin squeezed state, we initialize the ensemble in a coherent spin state
(CSS) |1g) along the x axis of the collective Bloch sphere. The CSS satisfies
Ju |tho) = J [th) and has equal transverse variances, (.J2) = (JZ) = J/2. This can be
achieved using optical pumping and global rotations of the spins with microwave fields
[388]. The squeezing term oc J> describes a precession of the collective spin about the z
axis at a rate proportional to J,, resulting in a shearing of the uncertainty distribution and
a reduced spin variance in one direction as shown in Fig. 58d. This is quantified by the
squeezing parameter [389, 390],

2J (AJZ,)

2 _ ;nin 7 8.9
3 TR (8.9)

where (AJ2,) =1 <V+ — V2 4+ Vsz> is the minimum spin uncertainty with
Vi = <Jy2 + JZQ> and V,, = (J,J. + J.Jy,) /2. The preparation of a spin squeezed state,
characterized by €2 < 1, has direct implications for NV ensemble magnetometry
applications, since it would enable magnetic field sensing with a precision below the
projection noise limit [389].

We now consider spin squeezing in the presence of realistic decoherence. In addition to
the coherent dynamics described by H.g, we account for mechanical dissipation and spin

dephasing using a master equation

: A i 1 i
p=—i —§Jz—|—(AB+>\a a) Jz,p] +2—T22i:D[OZ]p
+ I (A + 1)D[J_] + I yne D[ J 4], (8.10)

where Dlc|p = cpcl — % (cTcp + chc) and the single spin dephasing 7, ! is assumed to be
Markovian for simplicity (see below). Note that we absorbed a shift of A/2 into Ag, and
ignored single spin relaxation as 77 can be several minutes at low temperatures [251]. The

second line describes collective spin relaxation induced by mechanical dissipation, with
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[, = v¢*/A?. Finally, the phonon number n = a'a shifts the spin frequency, acting as an
effective fluctuating magnetic field which leads to additional dephasing.

Let us for the moment ignore fluctuations of the phonon number n; we address these in
detail below. Starting from the CSS |vy), we plot the squeezing parameter in Fig. 59a for an
ensemble of N = 100 spins and several values of iy, in the presence of dephasing T, ' and
collective relaxation I',. Here we calculated £2 by solving Eq. (8.10) using an approximate
numerical approach treating I',, and 75 separately, and verified that the approximation
agrees with exact results for small N. To estimate the minimum squeezing, we linearize the
equations of motion for the averages and variances of the collective spin operators (see
dashed lines in Fig. 59a). From these linearized equations, in the limits of interest, J > 1,

nyn > 1 and to leading order in both sources of decoherence, we obtain approximately

41" n t

2 y'tth

~ —. 8.11
S S U (8:.11)

Optimizing ¢ and the detuning A, we obtain the optimal squeezing parameter,

2
2~ 8.12
fopt \/J_n ( )

at time topy = To/+/Jn, similar to results for atomic systems [391-393]. Note that for
non-Markovian dephasing, the scaling is even more favorable [394]. In Fig. 59b we plot the
scaling of the squeezing parameter with J for small but finite decoherence, and find
agreement with Eq. (8.12). For comparison we also plot the unitary result in the absence of

decoherence, scaling as €2, ~ J~** and limited by the Bloch sphere curvature [387].

8.2.3 Phonon number fluctuations

In Eq. (8.8) we see that the phonon number n = a'a couples to J., leading to additional

dephasing due to thermal number fluctuations. On the other hand, this same coupling can
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Figure 59: (a) Spin squeezing parameter versus scaled precession time with N = 100 spins. Solid
blue lines show the calculated squeezing parameter for 7o = 10 ms and values of iy, as shown.
For each curve, we optimized the detuning A to obtain the optimal squeezing. Blue dashed lines
are calculated from the linearized equations for the spin operator averages. Black solid (dashed)
line shows exact (linearized) unitary squeezing. (b) Optimal squeezing versus number of spins.
Lower (upper) red line shows power law fit for iy, = 1 (10) and 72 = 1 (0.01) s. The detuning A
is optimized for each point. Other parameters in both plots are wy, /27 = 1 GHz, g/27 = 1 kHz,
Q = 10,
also lead to additional spin squeezing from cavity feedback, by driving the mechanical
mode [391-393]. In the following, we consider a twofold approach to mitigate thermal spin
dephasing while preserving the optimal squeezing. First, we apply a sequence of global spin
echo control pulses to suppress dephasing from low-frequency thermal fluctuations. This
also extends the effective coherence time T of single NV spins [388]. Second, we consider
driving the mechanical mode, and identify conditions when this results in a net
improvement of the squeezing.

To simultaneously account for thermal dephasing, driven feedback squeezing, and spin
control pulse sequences, we write the interaction term in Eq. (8.8) in the so-called “toggling

frame” [395],

Hin(t) = AJ. f(t)dn(t). (8.13)

The function f(¢) periodically inverts the sign of the interaction as shown in the inset of
Fig. 60a, describing the inversion of the collective spin J, — —J, with each 7 pulse of the
spin echo sequence. Phonon number fluctuations are described by dn(t) = n(t) — n, where

n is the mean phonon number and we have omitted an average frequency shift proportional
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to 7 in Eq. (8.13). The number fluctuation spectrum S,(w) = [ dte™* (dn(t)dn(0)) is
plotted in Fig.60a for a driven oscillator coupled to a thermal bath.
We calculate the required spin moments within the Gaussian approximation for phonon

number fluctuations, and obtain
(Jo(t)) = e X (e =712 T (0)), (8.14)

and similar results for (J2(¢)) and (J.(¢)J.(¢)). In Eq. (8.14) the dephasing parameter y

and effective squeezing via p are given by

Y= \2 / Z—:F E:‘;T) 5, (w), (8.15)
=2 / Z—iKiﬁﬂAn(u), (8.16)

where S, (w) = (S, (w) + Sp(—w)) /2 and A, (w) = (S,(w) — Sp(—w)) /2. The filter function
F(wr) =< | [ dte™" f(t) }2 describes the effect of the spin echo pulse sequence with time 7
between 7 pulses [396-398]. The function K (w) plays the analogous role for the effective
squeezing described by u, and is related to F' by a Kramers-Kronig relation. We plot K

and F for a sequence of M = 4 pulses in Fig. 60a.

8.2.4 Impact of thermal fluctuations

We now consider the impact of thermal fluctuations on the achievable squeezing. The noise
spectrum S, (w) = 2y7ig, (e + 1)/ (w? + 4?) is symmetric around w = 0. Without spin echo
control pulses, this low frequency noise results in nonexponential decay of the spin
coherence, xo(t) = sA?n3,t* (with 7ig, > 1), familiar from single qubit decoherence

[388, 399]. The inhomogeneous thermal dephasing time is T ~ v/2/Aiy,, severely limiting
the possibility of spin squeezing. In particular, at time ¢ = t,,¢ we find that squeezing is
prohibited when 7, > v/J. However, one can overcome this low frequency thermal noise

using spin echo. By applying a sequence of M equally spaced global m-pulses to the spins
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during precession of total time ¢, we obtain yu, ~ \?yn2 t3/M?, suggesting that thermal
dephasing can be made negligible relative to both I', and T, '. For a sufficiently large
number of pulses, M > ny,+/7Ts, we recover the optimal squeezing in Egs. (8.11) and
(8.12).

Adding a mechanical drive can further enhance squeezing via feedback; however, it also
increases phonon number fluctuations, contributing to additional dephasing. We consider a
detuned external drive of frequency wq, = wy, + d, leading to two additional peaks in S, (w)
at w = +0, as shown in Fig. 60a. The area under the left [right] peak scales as ng,n,
[ar(7en + 1)], where g, is the mean phonon number due to the drive at zero temperature.
The symmetric and antisymmetric parts of this noise contribute to dephasing and
squeezing as described by Egs. (8.15) and (8.16). Choosing the interval ¢/M = 27/§
between 7 pulses, we obtain additional dephasing x4, >~ (%)2 na:nyt and effective
squeezing with p ~ ’\TQﬁdrt. In the limit ngq, > nyy,, the effects of the drive dominate over
x¢h and I, and we recover the ideal scaling given in Eq. (8.12), even with a small number
of echo pulses. This is shown in Fig. 60b,c where we see that the optimal squeezing
improves with increasing ng, for a fixed number of pulses M = 4.

Finally, we discuss our assumption of uniform coupling strength ¢ in Eq. (8.6). This is an
important practical issue, as we expect the coupling to individual spins to be
inhomogeneous in experiment due to the spatial variation of strain in the beam.
Nonetheless, even with nonuniform coupling, we still obtain squeezing of a collective spin
with a reduced effective total spin Jeg < J, provided J > 1. First, we note that
inhomogeneous magnetic fields resulting in nonuniform detuning are compensated by spin
echo. Second, for a distribution of coupling strengths g;, the effective length of the
collective spin is 3, gi/+/>., g7 for the direct squeezing term, and °, g2/+/>., g for
feedback squeezing with a mechanical drive. Similar conclusions were reached in atomic
and nuclear systems [391-393, 400]. In the case of direct squeezing, it is important that the

sign of the g;’s is the same to avoid cancellation; this is automatically achieved by using
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Figure 60: (a) Number fluctuation spectrum of thermal driven oscillator. Center (blue) peak is
purely thermal while side (green) peaks are due to detuned drive. Solid (dashed) purple line
shows filter function F' (K) for M = 4 pulses. Inset: corresponding function f(t) for M = 4.
(b) Solid green curves show squeezing parameter versus precession time for ng, = 10 and

nar = 103,5 x 10%,10% (top to bottom). Dashed black line shows unitary squeezing. (c) Mini-
mum squeezing versus drive strength for iy, = 50,10 (top to bottom). Symbols mark correspond-
ing points with (b). Dashed black line shows unitary squeezing. Parameters in (b) and (c) are
M =4, g/2n =1 kHz, To = 10 ms, N = 100, w,,/27 = 1 GHz, Q = 10°.

NV centers implanted on the top of the beam. For beam dimensions (1,0.1,0.1) um
analyzed above, we estimate that N ~ 200 NV centers can be embedded without being
perturbed by direct magnetic dipole-dipole interactions. A reduction of the effective spin
length by factor ~ 2 still leaves Nqg ~ 100, sufficient to observe spin squeezing.

We have shown that direct spin-phonon coupling in diamond can be used to prepare spin
squeezed states of an NV ensemble embedded in a nanoresonator, even in the presence of
dephasing and mechanical dissipation. With further reductions in temperature, beam
dimensions, and spin decoherence rates, the regime of large single spin cooperativity n > 1
could be achieved. This would allow for coherent phonon-mediated interactions and

quantum gates between two spins embedded in the same resonator via

Hiy = A (07 05 +h.c.), and coupling over larger distances by phononic channels [384].
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8.3 Nitrogen-Vacancy atomic clock

Atomic clocks are the most accurate systems for measuring time and frequency. They are
used in a broad array of applications, ranging from communication and computation to
navigation (e.g. global positioning system (GPS)). Modern frequency standards derive
their stability from the precisely measured internal hyperfine level splittings of atoms of Cs,
Rb, or H. When an oscillating magnetic field is resonant with the energy difference of these
internal states, a change in population between levels changes the radiofrequency or optical
absorption. Standard lock-in techniques modulate the driving frequency and monitor the
absorption as a correction for a tunable active reference oscillator, e.g. a quartz crystal,
thus stabilizing it to the atomic line [401]. Recent experiments on single trapped ions [402]
and on ensembles of atoms trapped in optical lattices [403, 404] have far exceeded the
international cesium standard, enabling the observation of general relativity corrections at
distances of a few meters [405]. Such precision, however, comes at the expense of mobility,
as the infrastructure for these standards encompass several tens of cubic meters of space.
At the other extreme, portable standards based on rubidium vapor cells provide excellent
stability for time scales ranging from 1 s to 10* s and find usage in satellites, laboratory
equipment, and cellular communications [406]. Mobile devices, which typically do not
contain their own precision standards, can share GPS time signals for maintaining
communication standards, but when the external lock signal is obstructed, a precise local
frequency standard with minimal drift is necessary to maintain synchronization.

To address this need, several groups have miniaturized these atomic standards on-chip
through the aid of modern microfabrication techniques applied to detectors and lasers
[407-409]. Here, we propose a solid-state alternative based upon electronic spin states in
the negatively charged nitrogen vacancy center (NVC) in diamond. This diamond system
offers a host of advantages and some unique challenges. First, single crystal diamond can

be grown into a micron-scale, radiation hard chip, which makes it portable and well-suited
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for integration in a semiconductor fabrication process [75]. Second, this solid-state system
derives its performance as a clock from exceptional spin lifetimes of the NVC [45] and
resembles atomic and molecular systems. The optical detection of the NVC also increases
the signal-to-noise of solid-state standards based on inductive detection [410]. Compared to
vapor cells, this standard does not suffer from doppler or collisional broadening. However,
owing to a complex mesoscopic environment, both single and ensembles of NVCs exhibit an
increased homogeneous linewidth compared to atomic standards [44]. The higher density of
defects in solids allows for a comparable frequency stability in smaller sensor volumes when
ensemble effects can be mitigated. Similar to atomic clocks, temperature fluctuations can
degrade the clock stability. For the NVC, these temperature changes induce a shift in the
resonance frequency of the entire ensemble. To this end, we will discuss temperature
stabilization methods based upon certain unique properties of the NVC strain and defect
symmetry.

We estimate a stability, expressed as an Allan deviation, of o, ~ 2 x 107! at 1s of
averaging for a 0.1 mm?® diamond sample with an ensemble of NVCs. Paired with
potentially modest operational power requirements, this NV clock could result in a new
generation of portable solid-state frequency standards. A proposed device is shown in
Figure 61 and contains: a diamond chip grown with a dielectric cavity for lowering the
optical pumping power requirements, photoluminescence (PL) collection with on-chip Si
photodiodes, and planar microwave waveguides for addressing the NV transitions, all of

which can be integrated within modern device fabrication.

8.3.1 The NV zero-field splitting as a frequency standard

An atomic clock derives its stability from the large quality factor, @ = v/Awv, of the probed
resonance, with narrow linewidth, Av, being much smaller than the resonant frequency v.
In the solid-state, we desire: (i) a microwave transition (v ~ GHz) that also exhibits a

large Q; (ii) a resonance that does not vary due to material or fabrication processes; and
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Figure 61: Schematic of the diamond frequency standard. A thin (100 um) diamond chip is
surrounded by dielectric stacks (Bragg Reflectors) on both sides to create a resonant cavity for
532nm excitation in order to reduce the power requirements. On-chip 532nm excitation comes
from a doubled 1064nm surface emitting laser (not shown). Silicon photodetectors underneath
the diamond serves to collect emission. Microwaves, which address the NV magnetic sublevels,
are applied to the entire sample by a planar stripline.

(iii) a precise method of measuring population changes. The NVC in diamond satisfies
these criteria by having: a ground state spin triplet characterized by long (>1ms)
coherence times, a ground state crystal field splitting with an intrinsic resonance frequency
near 2.870 GHz, which is independent, to lowest order, of applied magnetic field, and spin
states that are optically polarizable and detectable on single site length scales.

The magneto-optical description of the NVC is well-documented in the literature, thus
we give only a brief phenomenological summary. Figure 62A shows the relevant spin
sublevels (0,1,2,3 and S) for the NVC. Optical absorption of green laser light causes
broadband PL of the NVC from 637-800 nm. A spin-dependent intersystem crossing
between the excited state triplet (3) and the metastable, dark singlet level (S) changes the
integrated PL for the spin states |0) and |£1). The deshelving from this singlet occurs
primarily to the |0) spin state, providing a means to polarize the NVC. Microwave fields
resonant between levels |0) and |1), perturb the spin populations, and thus the PL
response. This can, in principle be characterized in two ways: 1) by measuring a
continuous wave response to simultaneous optical and microwave fields (e.g. Figure 62B) or

2) in a pulsed manner, by preparing a state using only microwaves, and observing the
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transient PL response.

In order to compare these two methods quantitatively, we construct a simple model for
the relevant spin dynamics described by Hamiltonians for the lowest and first excited
triplet state and two metastable singlet states. For the purposes of a frequency standard,
we monitor the response of only the ground state triplet sublevels to resonant excitation,

yielding the ground state Hamiltonian[381]:
H,, = (Dys + djo.)S? + guS - B+ d10,(SpSy + S,Se) + dioy(S2 — S2) (8.17)

Here, d)j , are the ground state electric dipole moment components along and
perpendicular to the Cs, symmetry axis of the defect. D, is the ground state crystal field
splitting (2.870 GHz), uy is the Bohr magneton, and g is the Lande factor. Sy are spin-1
operators in the k = {x,y, z} directions. The local electric field vector, induced by crystal
strain, is . We assume there is no applied external electric field. In the limit of static
magnetic and electric fields much smaller than D, the eigenfunctions are those of the S,
operator, as show in Fig. 62.

A driving field at frequency w induces electron spin resonance (ESR) transitions between
|0) and |£1). On resonance (w ~ D), the PL decreases and provides a feedback signal
with which to lock w to Dys. The dynamics are best viewed as a response to a time-varying

magnetic field By = 2b; cos(2nwt)Z; transforming H into the interaction frame defined by

the operator V = e2miS2 and performing the rotating wave approximation yields,
H), = (Dys + djo. — w)S? + giuB. S + gpush1 Sy (8.18)

The relaxation rates of the excited triplet and singlet states, shown in Fig. 62A, play an

important role in the optical pumping and spin measurement [411]. We model the total
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magneto-optical response using a master equation approach:

1 1 1
 — i i ]
o= %[H;S, o] + zk: LipL}, — 5 LiLip — 5pLi Ly (8.19)

where p is the density operator for the NVC ground, excited triplet, and effective singlet
states. The jump operators, L, have magnitudes corresponding to relaxation rates |/ry.
The solution to the equation yields the total magneto-optical response for both continuous
and pulsed excitation, allowing for a numerical assessment of the clock sensitivity with

respect to changes in the electromagnetic fields.

8.3.2 CW Approach

Under continuous excitation of optical and microwave fields the NVC frequency standard
closely resembles a two-isotope Rb standard. Spin-dependent PL of the NVC occurs under
non-resonant absorption of green light of intensity /. Application of a microwave field of
intensity Q0 = gupbi, detuned from resonance by an amount A = Dy, — w, causes a broad,
phonon-assisted PL: F'(I,Q,A) = vp35 + %pgg Here p55 and p335 represent the
populations of the first excited state spin sublevels in the steady-state, as analytically
derived from a master equation. Figure 62B shows the typical response of F' for varied

detunings, which displays a Lorentzian lineshape. The stability of the clock can be derived

from the resonance curve by considering the Allan variance:

11 1
S (8.20)

) = G (SN F

where 7 is the averaging time and S/N is the signal-to-noise ratio, which depends on both
the photon shot noise as well as the imperfect modulation of the resonance (i.e. C'# 1).
The intrinsic linewidth is limited by the paramagnetic and nuclear spin environments which
fluctuate during the measurement. This linewidth broadens if the microwave and optical

transitions are driven near saturation (‘power broadening’); however, higher pump powers
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Figure 62: Nitrogen-vacancy center energy levels and resonant response. (A) The lowest lying
triplet (*E, 3A) and singlet (1 E, 'A) orbital states of the NV~ center. I, ~y, x, and \ represent
the absorption, PL, intersystem crossing, and deshelving rates, respectively. Sublevels 0 and 2 are
S eigenstates |0), whereas 1 and 3 are |£1), with the degeneracy lifted by small crystal strain or
applied magnetic field. The model is simplified by approximating both singlet states as a single
metastable level. (B) The steady-state fluorescence emission of the NVC under continuous optical
and microwave irradiation, detuned from resonance by A [412].

also increase the the depth of the dip (C' — 1). Indeed, far below optical saturation, the PL
rate is sufficiently small, and the modulation depth (C) reduced, so as to cause a decrease
in the stability per averaging time. As Q is the most important factor for stability, there
exists an optimal condition, which balances line broadening with the reduced signal. Under
these conditions we estimate a linewidth of 3.6 MHz (75 = 88ns), an off-resonance
fluorescence rate of ~9400 photon/s (accounting for a finite detector efficiency), and a 17%
modulation depth. With these parameters, o, (1) = 8.124 x 107 772 for a single NVC. In
short, the NVC lacks sufficient stability when monitoring the PL response continuously.
This results from the fact that the laser excitation must be reduced far below saturation so
that optical power broadening reaches the homogeneous linewidth. At such low pump
powers, the fluorescent photon flux is so small that the gains in () are offset by losses in
S/N. As seen in magnetometry studies of the NVC [287], a pulsed microwave excitation
scheme, which monitors transient fluorescence behavior can drastically improve the

performance beyond the naive continuous excitation/detection method.
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8.3.3 Pulsed Approach

Thus, we now consider monitoring the NVC crystal field splitting (Dy,) in a pulsed fashion,
akin to the Ramsey spectroscopy used in atomic clocks. The standard two-pulse Ramsey
sequence, with time separation 7', imprints a phase proportional to the frequency drift, dw,
between two t hyperfine states of the atomic system. The PL response varies sinusoidally
with dwT and can be linearized to provide a passive standard with frequency uncertainty
set by T~!. However, if the system does not remain coherent for times 7' > T, (coherence
time), the modulation of the PL response does not persist. In atomic vapor cells, trapped
ions, or atomic fountains, T, can be greater than a second due to a complex infrastructure
involving magnetic shielding and the minimization of atomic collisions. In the NV system,
a spin-bath environment limits 7, to tens of microseconds in a typical sample. Quantum
memories and AC magnetometers often employ a Hahn echo sequence to extend this
coherence time to Ty by removing slowly varying magnetic fields; however, for frequency
standards based on m; = 0 “clock” states, the additional m-pulse of the Hahn echo would
completely remove the phase accumulation associated with frequency drift, making it
useless for time-keeping. Luckily, the S=1 nature of the NVC allows for a modified echo
sequence, which yields a PL signal proportional to the drift for T" ~ T5.

In particular, let us begin with the usual spin echo sequence:

where the notation 9) s indicates a pulse with a flip angle 6 and phase ¢. The pulse
durations, t, are set to the flip angles 6 = gupbit, and for O = gupby > (Dys — Q). g B.,
off-resonant excitations are suppressed. To simplify the analysis, we will directly calculate

the propagator for the echo sequence:
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Uecho = 715 5 g mHIASZHDS:)T 615 Se 015 Su o5 S0 o i(0QSTHDS:)T o —i5 50 — WW' where W is

W — %8 —i(00S24bS.)r i3S, (8.21)
_ e—i(éQX—bSy)T’ (8.22)
W' is
W' = i55eo-i(00S24bS:)T ,~i5 S, (8.23)
_ e—i(éQX—i—bSy)T, (8.24)
and X is
1 1
2 0 =3
X=10 1 0 | (8.25)
1 1
-3 0 3

Since [X ,Sy] = 0, we can write the product of W and W’ as the sum of exponential

2i(Dgs=DTX Ty take advantage of this propagator we must

arguments such that Ug.p, = €~
first apply a pulse that creates a superposition of X eigenstates with differing eigenvalues;
starting from the optically pumped |0) state, we accomplish this by applying a 7 pulse

Ju

19 such that Uys |0) = \%(|O) —i|+)), where |+) is the

about the # axis: Uy = e
symmetric superposition of the 1 eigenstates of S,. This yields the state prior to clock

measurement:

1 ) —100T
UsenoUss |0) :E<—26Z5QT|+)+6 50 |o)>. (8.26)

As seen in Eq. (8.18), the term proportional to S? is sensitive to the frequency drift (v),
whereas the term proportional to S, vary with B. In addition, hyperfine interactions with
nearby nuclear spins have a secular correction term to the Hamiltonian oc A S.1,. By
modifying the flip-angle of the first and last pulses of the echo sequence from 7/2 to 7 /4,

as shown in Fig. 63, the phase accumulation due to the S, term cancels while that from
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Figure 63: The spin-1 ground state |0) state is prepared by optical pumping. 45° rotations ensure
that the S, term evolution averages within the echo sequence, while the S? does not, as illus-
trated in the Euler projections of the state (inset). Note that the S, term is completely refocused
by the echo sequence, while the S? operator evolves, resulting in a different magnitude between
the first and sixth states. A transient fluorescence (TF) measurement records the photocurrent
for about 300ns timed with a pulse of green light.

the S? terms add over the duration 27. For simplicity, we monitor the eigenkets of S, to
describe the clock, assuming perfect microwave pulses and no optical illumination. First,
optical pumping of the NV prepares the initial state |1)y) = |ms = 0). Evolution under our

drift echo sequence, Uy, gives:

) = UssnoUis 1) = —=sin()0) = 5 cos(@)(|+1) + |-1)) (3.27)

where ¢ = (Dys — w)T = dwT.

Unlike the steady-state case, the NVC is prepared in a state used for time keeping, then
measured optically, without simultaneous microwave excitation. The transient PL response
of the NV center can be modeled using projective measurements. The operator M
describes the spin expectation value for a PL measurement [413],

M = al0) (0] + b(|+1) (+1| + |-1) (—1] ), where a and b are independent Poisson random

variables. The fractional frequency deviation varies as the quantum observable, M for our
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state [¢¢) according to: )
ow 1 AM
W wo \a<<M> /gwy (52%)
where (AM?) = (M?) — (M)? is the variance of the operator. For room temperature spin
readout of the NVC, 2a =~ 3b [295]. By calculating the moments of M and by assuming we

accumulate M’ independent measurements (e.g. total sampling time 7 = M'T), we arrive

at:

<i—°;>M - —D:Jﬁ (8.29)

with £ ~ 5 due to a combination of imperfect spin readout (i.e. b # 0), imperfect collection
efficiency (a ~ 0.031), and a small ratio, A/, of the metastable deshelving rate to the
radiative lifetime. Taking 7" =T, ~ 1ms and Dgs = 2870 MHz, gives a deviation of

dw/wy = 8.8 x 1072 /4/T for a single NVC. Thus, the pulsed NV frequency standard
dramatically outperforms the CW scheme. A comparison of the two schemes for different
defect concentrations, along with established standards, is shown in Figure 66. Note that
all optical collection efficiencies (assumed to be ~ 0.2% of the total radiated photons) do
not yet include cavity or resonant enhancements; this is, in fact, an area of current research
[414] and will likely lead to further improvements.

The stability for a single NV center can be scaled by collecting the fluorescence from an
ensemble of N non-interacting NV centers, yielding a 1/ VN enhancement. To make a
reasonable estimate of N, we start with the density of pure diamond: 1.74 x 10?3 C
atoms/cm®. At an NV~ defect fraction of 107! (0.01 part per billion), the density of
defects is 1.74 / ym?®, consistent with commercially available samples. For a 1 mm? sample,
the proposed 1/ V/N enhancement would yield a fractional frequency deviation of
2 x 10713 /,/7 for the pulsed scheme and 2 x 107 /,/7 for the CW scheme; thus, a diamond
film of thickness ~ 100um with a surface area ~ 1 mm?, as depicted in Fig. 61, gives
opulsed 6.7 x 10713 /\/7. Further increasing the defect density to 1 ppb would improve all

Y

values by another order of magnitude, but dephasing effects may start to arise owing to
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interactions with other paramagnetic impurities [388]. Next, we will consider limitations of

the NV frequency standard imposed by: dephasing, ensemble effects and temperature.

8.3.4 Dephasing and Inhomogenous Broadening

Dephasing. The coherent evolution of the NVC is strongly affected by interactions with its
local environment, meaning that the 7'/2 scaling of Eq. (8.29) cannot be maintained for
all times. Unlike an atomic vapor, where collisions and stray magnetic fields dominate the
dephasing, in the case of the NVC, impurities in the solid-state lattice limit the coherence.
However, excellent material growth [45] and precision implantation [74, 75] can yield
crystals, which are largely free of paramagnetic impurities. For a single NVC in an
ultrapure diamond sample, spin echo (of duration 27") can further improve the observable

~(T/T2)" \where the exponent n & 3 is related to the nuclear spin

coherence with a scaling, e
bath [44, 415]. In an ensemble of NVCs, where each center has a different bath, and hence,
a different 75 time, the net effect results in an “averaged” time constant, T,, and n =1 — 2,
depending on the NV density [416]. We also note that owing to imperfect conversion
efficiency, the NV density in the sample is a fraction of the total number of substitutional
nitrogen impurities. Thus, a heavily doped sample, while improving the S/N, can reduce
the overall ensemble coherence time 7,. Based on the estimates in Ref. [388], with an NV
density of 10'"/cm?, a marginal modification can be expected; figure 66 shows the Allan
deviation floor due to such dephasing considerations.

Inhomogenous Broadening. By taking advantage of spin echo, the pulsed NV frequency
standard shows a favorable Allan deviation when compared to similarly sized atomic
standards. As discussed above, considering an ensemble of defects provides a
straightforward route to improving the Allan variance; however, the local strain field within
the crystal may vary from center to center resulting in inhomogeneous broadening. Recent

room temperature experiments on bulk diamond (defect fraction of ~ 107!3) have observed

~ 50 — 100kHz variations in the NV D, of centers spaced at ~ 1um [113]. Taking these
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parameters would imply that for an NV-ensemble clock, the sensitivity is in fact, limited by
the inhomogeneously broadened ensemble linewidth, 75 ¢ps ~ 10 — 20us. This would reduce
our estimated stability by nearly an order of magnitude and motivates the development of
modern CVD growth and annealing techniques, which may be able to alleviate such local

strain fluctuations [417].

8.3.5 Temperature Fluctuations

One of the most challenging aspects of an NV frequency standard is the fact that the
resonance frequency corresponding to D varies as function of temperature. At
room-temperature, recent ensemble studies have observed dDgys/dT" = —74.2(7) kHz/K
[382] for mm-sized samples. Low temperature studies, down to 5K, show that this
temperature dependence is, in fact, highly nonlinear; indeed, at liquid Nitrogen
temperatures, linearizing yields a much weaker temperature dependence with,
dDgs/dT ~ 100 Hz/K [164]. Finally, at higher temperatures (up to 600K), recent work has
observed |dD,,/dT| = 100 kHz/K, consistent with room temperature measurements [418].
The microscopic mechanism which underlies this pronounced zero-field splitting (ZFS)
temperature dependence is not yet fully understood, but is thought to be related to the
thermal expansion of the diamond. In particular, as temperatures vary, the local lattice
spacing of the NV center is distorted causing changes in orbital overlaps which determine
Dg,. This picture is also consistent with very recent measurements of the
room-temperature ZFS of single NV centers in bulk diamond, which also exhibits
dDgys/dT ~ —75 kHz/K [113]. Since the ensemble measurement is averaged over all NV
orientations, the fact that it agrees identically with the single NV case suggests that
crystallographic orientation does not affect dDg,/dT, consistent with our proposed
mechanism which owes to the overall thermal expansion of the lattice.

To further understand the effects of thermal expansion, we consider a schematic picture

of the NV electronic orbitals; in particular, let us assume that the three orbitals associated
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with the basal Carbon atoms are highly-localized wavefunctions (§-function), which simply
move with their respective atoms. The microscopic origin of the zero-field splitting is
thought to be spin-spin interactions, meaning that a shifting of the wavefunctions will
correspondingly alter the average magnetic dipole-dipole interaction, leading to a change in
Dy,. The dipole-dipole interaction is generally characterized as,

KR 37217?] — 5z'j
where S; is the magnetic dipole operator and & is the scale of the interaction strength (2.88
GHz at 2.6 angstroms). To compute the above expectation value, we simply need to

average over the displacements between each pair of carbon atoms. With a as the distance

between nearest neighbor carbon atoms, the displacement vectors (without strain) are

given by: r = qg, r? = @:)ﬁ" — 59, and r® = —@i — 5¢. Thus, the spin Hamiltonian
in the absence of strain is simply,
3
H = VS8, = 4—;@3 —2/3). (8.31)

Under strain €, the change in this Hamiltonian is,

ory, 73

3k . 3 1
= ol (Gt ew) (ST = 2/3) + Slee — €)(S] = 57)
1 1
+ g(exy + ny)(SJ;Sy + SZ/SQU) - 56251:(53&59; + Ssz>
1
_ §€zy(SySZ + SZSy)] (832)

Inspection reveals that the change in the ZFS is set by the coefficient of the first term,
o = —3(€gy + €4y) 2% In order to reproduce the zero strain ZFS of 2% = 2.88 GHz, we take

a = 2.38A, yielding o = —4.32GHz (e, + €,,). Assuming isotropic expansion
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Figure 64: Temperature Stabilization using two clocks. (a) The two diamond clocks have differ-
ing dDy,/dT since they are clamped to substrates with different thermal expansion coefficients,
n1,2 and different Young’s moduli, E; 2 (b) Schematic illustration of a synchronized composite
clock setup. (c) Alternatively, using strain engineering, a single clamp may be designed to fully
cancel the temperature dependence of the NV ZFS.

€ze = €yy = €2, our highly schematic model predicts a ZF'S temperature dependence of,

dD,, 1.6 x 107
= (432 % 2) (T) ~ 15kHz/K, (8.33)

which is a factor of 5 from the observed room-temperature dependence [382]. By adding in
further details, e.g. taking p-orbitals instead of d-function orbitals, one can refine our
above results so that the predicted temperature dependence is within a factor of 3 of the
observed. This suggests that our proposed picture where temperature simply serves to
distort the defect geometry is likely the dominant factor underlying the observed %.
Such a temperature dependence under normal operating conditions makes this passive
standard behave like a traditional crystal oscillator and poses a challenge for maintaining a
precise operating temperature.

One can certainly envision stabilizing the temperature of the diamond chip to within
0.01K by using commercially available Peltier coolers with PID loops. This would, in
principle, allow us to achieve & 742 Hz uncertainty in the zero-field splitting, or a

fractional frequency stability of 2.58 x 107 at room temperature. We note that ensemble
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averaging would have no beneficial effect here, as all centers shift equally due to isotropic
expansion. In the next section, building upon our discussions above, we will show that one
might benefit by inducing anisotropy in the crystal’s temperature response. Furthermore, if
two different temperature dependences can be identified, locking them in a feedback loop

may also enable enhanced temperature stability.

Temperature Stabilization Using Synchronization

Let us start by considering a scheme which utilizes two NV clocks. The zero-field splittings
of the two clocks are assumed to have different temperature dependences, a fact which can
be achieved by utilizing two distinct diamond slabs mounted on substrates with different
thermal expansion coefficients.

In particular, let us assume that one diamond slab (‘1’) is clamped in a stiff material
(Young’s modulus E) with a high thermal expansion coefficient 1, (e.g., brass), while the
second slab (‘2) is clamped in a different material with Young’s modulus E, and a lower
thermal expansion coefficient 1. < 7.1, as illustrated in Fig. 64(b). Both diamond slabs and
clamps are assumed to be at the same temperature, 7. Assuming that the clamp’s cross
sectional area is much larger than that of the diamond slab, one finds that the change in
strain imparted on the diamond can be approximated as A€y o & Ng(1 4+ N1 2Fe1 2/ Eq) AT,
where AT is the temperature difference from an initial set-point, Ty. This set-point should
be chosen such that both clocks have the same initial frequency wy and can be adjusted by
pre-loading strain within the samples, as illustrated in Fig. 64(a).

A conventional thermal feedback system maintains the temperature T near Tg, but
current thermistors only allow a long-term stability ~ 1072 — 10~2K. To compensate for

even smaller temperature drifts, we employ a protocol, which exploits the different
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temperature dependencies of the two diamond samples,

W1<T) = Wo—f—ﬁlAT (834)

CUQ(T) = CL)O"‘BQAT (835)

where (19 = g—;% =n4(1 + na2Fa2/Eq)(dDys/de). At time 7 = 0, both clocks are at
the same temperature Tg, before the temperature is allowed to fluctuate within a small

range around Ty. After time ¢, these clocks have acquired a phase

¢1y2 (t) = OJot + / BLQAT(t/)dt/ + A¢0, (836)
0

where A¢y = &Vt / \/m is the phase uncertainty. The difference between the two
phases may be recorded by mixing and low-pass filtering the two clock signals, giving
AB(t) = dalt) — d1(t) = [y ABLaAT(#)dt £ /2Ny, where Ao = B2 — B1 and we have
assumed identical variances for ¢;(t) and ¢o(t).

Now, one can “correct” for temperature fluctuations in clock ‘1’

P(t) = ¢(t) - /0 BAT(t)dt!

= 0~ ([ asasrrar) . S
— 0ult) = 35— (A0 F VEAd). (8.37)

Dividing by ¢ yields the frequency, from which we then find the uncertainty of the new

“synchronized composite” clock after a time ¢:

) o\ 1/2
Awj _ § 149 ( Io )
Wi VT2 NtD AVGIR

- <%) . <1 +2 (A/g1172)2> 1/2. (8.38)
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Figure 65: Simulated Dy, variation with temperature for tungsten (green) and brass (blue)
clamps. (b) Spatial frequency variation as a function of position within the diamond disk. (c)
Clamp and diamond geometry.

The expression provides an intuitive result: the uncertainty is minimized when the
temperature dependencies of the two clocks can be large. In particular, Eq. (8.38) reveals
that when Af; 2 > i, then the performance of the composite clock is similar to that of a
bare temperature-insensitive NV clock. While the phase difference can be directly
computed and the clock frequency corrected digitally, in many cases, it will be easier to use
the phase difference to stabilize the temperature. This stabilization is simplest if the two
clocks are maintained at a frequency difference, vpeq; ~ 10 kHz, so that the beat frequency
can be locked to a high @ (~ 10°%) quartz oscillator.

So far, we have approximated that the strain imparted on the diamond by the clamp is
uniform across the sample. To check the validity of this assumption, we model the
composite system by finite element analysis as a circular disk of diamond clamped within a
brass or tungsten holder, as shown in Fig. 65(c). Fig. 65(a) depicts the calculated shift in
D as a function of temperature; the slopes agree with our previous expression for
Br2 ~ na(l + 10 2Eq2/Eq)/(—75 kHz/K). Finally, Fig. 65(b) shows that the strain is
nearly uniform for a large area within the disk across the relevant temperature range
AT ~ 0.01K. Building upon the notion of altering the temperature dependence of the NV

ZFS, in the next section, we consider the possibility of fully canceling the dD,,/dT.
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Controlling Temperature Dependence with Engineered Strain

As previously discussed, the temperature response of the NV D likely originates from
changes in the local strain field; in particular, fluctuations in temperature modulate the
lattice, altering the position of the basal carbon atoms and thereby changing the effective
spin-spin interaction. Within the usual ground state Hamiltonian, the strain dependence is
hidden in the effective electric field vector, &. In terms of actual components of the strain
tensor €, perturbations to the spin Hamiltonian take the form, Fj;;;S;S;€x, where F' is the
fourth order strain response tensor. Symmetries reduce the number of allowed terms to
eight totally symmetric combinations, and of these, we are interested in only the ones with
an S? coefficient. Thus, one finds that the strain dependence of the ZFS is most generally

characterized as,

(Dygs + Ai(€se + €4y) + Azes2) (57 — 2/3) (8.39)

where A; and A, are parameters which require further experimental input. In the case of
isotropic expansion, €,, = €,, = €,,, one would expect dD,,/dT = 2A; + A;. By clamping
the diamond along a specific direction, one can envision inducing an anisotropic lattice
response which may significantly reduce the effective temperature dependence of the ZF'S.
A schematic example is illustrated in Fig. 64b. Consider a small temperature shift AT,
near T, which would cause a diamond slab of length L, to expand by AL = LyngAT. 1f
the diamond slab were instead clamped, this expansion could easily be modulated. For
instance, if material ‘2’, which forms the bottom of the clamp, has a low thermal expansion
coefficient and high Young’s modulus, and material ‘1’ has a high thermal expansion
coefficient and high Young’s modulus, then a pressure P = E4ALy;/L = Eqeq = EqATng
may be exerted to compress the diamond slab by —AL. For temperature changes
AT ~ 0.01K, this pressure is approximately 12.2 kPa. One possible material combination

(among many), is to utilize brass for material ’1” and silicon carbide for material ‘2’; tuning
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Figure 66: Allan Deviation for Atomic and Solid-state standards. Note that in moving from a
CW scheme with a single NV center to an ensemble of centers with pulsed excitation and detec-
tion, we gain almost six decades of improvement. Cited deviations are as follows: Al-ion clock:
[402, 405]; Cs Chip Clock [407]; TXCO and Commercial Rb figures available from Stanford Re-
search Systems (www.thinksrs.com); SAW oscillator is quote from Epson Toyocom Corporation
EG-4101/4121CA datasheet

of the modulated temperature can then be achieved by altering the width of the brass layer.

Looking forward, the diamond frequency standard promises a fully chip-integratable
solid-state time-keeping platform whose performance rivals that of modern atomic clocks,
both laboratory and chip-scale. Such miniaturized clocks can easily be integrated into
scientific and consumer electronics and could be used in harsh external environments.
Devices benefiting include those for wireless communication and GPS navigation (with
improved tolerance to jamming) [419]. In addition, the clock’s center-frequency of 2.870
GHz would enable a wide-bandwidth data rate in next-generation cellular communications
(f > 40 GHz). At these frequencies, phase-sensitive data encoding is limited by the phase
noise of the derived frequency source, which is usually a MHz range mechanical oscillator,
whose frequency gets upconverted by a factor > 1000. The low noise spectrum of the
mechanical oscillator scales with N2, thus degrading performance. By contrast, a
low-power, portable, and stable on-board oscillator in the GHz range can avoid this
quadratic stability loss (Fig. 66).

In summary, we have proposed a solid-state spin-optical frequency standard based on the
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NV defect center in diamond. Due to the center’s relatively long lifetime, high density of
spins, and optical detection, we estimate a time stability exceeding o, = 2 x 10712771/2,
rivaling that of the newest chip-scale Cs and Rb standards. Many of the technological
advances, such as surface emitting lasers and chip-scale detectors, are readily deployable to
this system, with the added benefit that the atomic system resides within the diamond
substrate. We anticipate the ability to greatly improve upon this frequency standard using:
repetitive readout [295], entanglement [58], IR absorption detection [366], and

nanophotonics [420].

8.4 Nanometer scale thermometry in a living cell

In the previous section, we found that the main challenge for an NV-based frequency
standard was the strong temperature dependence of the zero-field splitting. In this section,
we turn this challenge on its head and demonstrate that NV centers in nanodiamonds can
be effective nanoscale thermometers that can even be integrated inside living cells.
Sensitive probing of temperature variations on nanometer scales represents an outstanding
challenge in many areas of modern science and technology[421]. In particular, a
thermometer capable of sub-degree temperature resolution over a large range of
temperatures as well as integration within a living system could provide a powerful new
tool for many areas of biological, physical and chemical research; possibilities range from
the temperature-induced control of gene expression[422—425] and tumor metabolism[426] to
the cell-selective treatment of disease[427, 428] and the study of heat dissipation in
integrated circuits[421]. By combining local light-induced heat sources with sensitive
nanoscale thermometry, it may also be possible to engineer biological processes at the
sub-cellular level[422—-425]. Here, we demonstrate a new approach to nanoscale
thermometry that utilizes coherent manipulation of the electronic spin associated with
nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect

temperature variations down to 1.8 mK (sensitivity of 9 mK/v/Hz) in an ultra-pure bulk

212



diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds), we directly
measure the local thermal environment at length scales down to 200 nm. Finally, by
introducing both nanodiamonds and gold nanoparticles into a single human embryonic
fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular
level, enabling unique potential applications in life sciences.

Many promising approaches to local temperature sensing[421] are currently being
explored. These include scanning probe microscopy[421, 429], Raman spectroscopy|[430],
and fluorescence-based measurements using nanoparticles[431, 432] and organic
dyes[433, 434]. Fluorescent polymers[433] and green fluorescent proteins (GFPs)[434] have
recently been used for temperature mapping within a living cell. However, many of these
existing methods are limited by drawbacks such as low sensitivity and systematic errors
owing to fluctuations in the fluorescence rate[431, 432]; such fluctuations result from a
combination of changes to the local chemical environment[433] and to the optical
properties of the surrounding medium[434]. Moreover, while promising, GFP-based
methods rely on cellular transfection[434] that proves to be difficult to achieve in certain
primary cell types[435]. Our new approach to nanoscale thermometry utilizes the quantum
mechanical spin associated with nitrogen vacancy (NV) color centers in diamond. As
illustrated in Fig. 67, in its electronic ground state, the NV center constitutes a spin-1
system. These spin states can be coherently manipulated using microwave pulses and
efficiently initialized and detected via laser illumination (see SI). In the absence of an
external magnetic field, the precise value of the transition frequency (A) between the
|ms = 0) and |ms = £1) states exhibits a temperature dependence
(dA/dT = —(2m)77 kHz/K) due to thermally induced lattice strains[164, 382, 418|.

The operational principle of NV-based thermometry relies upon the accurate
measurement of this transition frequency, which can be optically detected with high spatial

resolution (Fig. 67). For a sensor containing N color centers, the temperature sensitivity is
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Figure 67: a, Schematic image depicting nanodiamonds and gold nanoparticles (Au NPs) within
a living cell. The controlled application of local heat is achieved via laser illumination of the Au
NP, while nanoscale thermometry is achieved via precision spectroscopy of the NV spins in nan-
odiamonds. b, Simplified NV level diagram showing a ground state spin triplet and an excited
state. At zero magnetic field, the | = 1) sub-levels are split from the |0) state by a temperature-
dependent zero field splitting A(7"). Pulsed microwave radiation is applied (detuning J) to per-
form Ramsey-type spectroscopy. ¢, Comparison between the NV quantum thermometer and
other reported techniques as a function of sensor size and temperature accuracy. Red circles
indicate methods that are biologically compatible. The red open circle indicates the ultimate
expected accuracy for our measurement technique in solution (see Methods).
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Figure 68: a, Measured fluorescence as a function of echo evolution time 27 (red points); the
black solid line indicates a fit corresponding to a damped cosine function with two distinct fre-
quencies. The characteristic beating can be explained by fluctuating proximal charge traps lo-
cated at distances of about 50 nm. The inset depicts the microwave 2m-echo-pulse sequence
used to cancel unwanted external magnetic field fluctuations[437]. b, Measured fluorescence (red
points), corresponding error bars (one standard deviation) and best fit line as function of tem-
perature for an echo time of 27 = 250 us (bottom) and 27/ = 50 us (top). The fixed evolution
times of 27 and 27’ are indicated in (a) by red arrows. The overall temperature is controlled by
a Peltier element at the sample mount, while the (local) x-axis temperature is determined via a
thermistor located immediately next to the sample. The fluorescence is converted to population
by normalizing to two reference measurements where the spin is prepared in mgs =0 (ms = —1).

given by
e 1
T AAJAT T NT

where T, is the NV-spin coherence time and ¢ is the integration time. Here, we also

(8.40)

introduce a factor C' to account for imperfections in readout and initialization[388].
Assuming T¢,y, is on the order of a few milliseconds and C' & 0.03[388], a single NV can
potentially exhibit a sensitivity better than 1 mK/ vHz. Beyond high sensitivity, NV-based
thermometry also offers several distinct advantages over existing methods in biological and
chemical temperature sensing. First, owing to diamond’s chemical inertness, it is generally
robust to changes in the local chemical environment. Second, it can be applied over a wide
range of temperatures, 200 — 600 K[164, 418], which is of particular interest in the study of

nanoscale chemical reactions[436].
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As a first benchmark experiment, we demonstrate the high temperature sensitivity of
NV-based thermometry in a bulk diamond sample. While the NV’s magnetic sensitivity
has rendered it a competitive magnetometer[287, 293], to accurately determine the
temperature, it is necessary to decouple the NV electronic spin from fluctuating external
magnetic fields. This is achieved via a modified spin-echo sequence that makes use of the
spin-1 nature of the NV defect[437], allowing us to eliminate the effects of an external,
slowly varying, magnetic field. Specifically, we apply a microwave pulse at frequency w
(Fig. 67b) to create a coherent superposition \/ig(|0> +|B)), where |B) = \%(\ +1)+|-1)).
After half the total evolution time 7 we apply a 27 echo-pulse that swaps the population of
the | + 1) and | — 1) states (Fig. 68a). Following another period of free evolution for time 7,
quasi-static, magnetic-field-induced shifts of these | &= 1) levels are eliminated, allowing for
accurate temperature sensing. In the experiment, we use a CVD-grown, isotopically pure
diamond (99.99 % spinless '?C isotope) sample[45] to further reduce magnetic-field
fluctuations originating from the intrinsic *C nuclear spin bath. As shown in Fig. 68a, this
allows us to observe coherence fringes approaching 0.5 ms. Interestingly, for all NVs tested,
we observe a characteristic low-frequency beating of the fluorescence signal that varies from
NV to NV, which is most likely due to locally fluctuating charge traps[381]. Despite this
beating, for a fixed evolution time 27, the NV spin depends sensitively on the sample
temperature (Fig. 68b). We observe a temperature sensitivity of n = (9 4 1.8) mK/v/Hz for
27 = 250 ps. With 30 seconds of integration, we achieve a measurement accuracy
0T = 1.8 £ 0.3 mK (see Methods). While the measurement sequence for a single value of
27 allows us to determine the temperature only up to a multiple of (2dA/dT27)7 1,
absolute temperature variations can be determined by repeating the measurement for
27" < 27 as shown in Fig. 68b.

We now demonstrate the high spatial resolution of NV-based thermometry. This is
achieved by using diamond nanocrystals (nanodiamonds, NDs). In most commercially

available nanodiamonds, the NV coherence time is limited to approximately 1 us due to
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additional paramagnetic impurities. While this shortened coherence time reduces the
intrinsic temperature sensitivity for a single defect, this decrease can be offset by using an
ensemble of NVs to enhance the signal to noise ratio by a factor of v/N. Note that unlike
NV-based magnetometry, where the proximity to the source (often limited by
nanodiamond size) is critical to the maximum sensitivity, NV thermometry is not subject
to such a constraint; in fact, the excellent thermal conductivity of diamond ensures that all
NV centers within a nanocrystal are in thermal equilibrium with the local heat
environment. To maximize the number of NV centers and to minimize the lattice strain,
our measurements are performed on single-crystalline nanodiamonds containing
approximately 500 NV centers (Adamas Nanotechnologies). The zero-field splitting A of
the NV ensemble, and thus the temperature, is determined by recording a continuous-wave
electron spin resonance (ESR) spectrum. Specifically, we measure changes to the zero-field
splitting by recording the fluorescence at four different frequencies centered around

A = 2.87 GHz (Fig. 69a). This procedure eliminates unwanted effects from fluctuations in
the total fluorescence rate, ESR contrast, Rabi frequency and magnetic field, yielding a
robust thermometer (see Methods).

Combining our nanodiamond thermometer with the laser heating of a gold nanoparticle
(Au NP) allows us to both control and monitor temperature at nanometer length scales
(Fig. 69). Both nanodiamonds and Au NPs (nominal diameter 100 nm) are initially
spin-coated on a microscope coverslip. Using a confocal microscope with two independent
scanning beams, we co-localize Au NPs and nanodiamonds with ~ 100 nm resolution (see
SI). While locally heating the Au NP via continuous illumination with a variable-power
green laser (focused to a diffraction limited spot), we simultaneously measure the
temperature at the nanodiamond location using ESR spectroscopy.

The ability to measure temperature with NDs is verified by heating the substrate
temperature over a range of 2.5 K and simultaneously monitoring the zero-field splitting

(see Fig. 69¢c, inset). To demonstrate nano-scale temperature control Fig. 69¢ depicts the
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Figure 69: a, Frequency scan of a single nanodiamond containing approximately 500 NV cen-
ters. The four red points indicate the measurement frequencies used to extract the temperature
as detailed in Methods. b, Two-dimensional confocal scan of nanodiamonds (circles) and Au NPs
(cross) spin-coated onto a glass coverslip. The color bar represents fluorescence given in counts
per second (cps). ¢, Temperature of a single nanodiamond as a function of laser power for two
different laser-focus locations. The red data points depict the dramatic heating of a nanodiamond
as a result of laser illumination on a nearby Au NP. The blue data points depict the same mea-
surement with the laser focus displaced by 0.8 pm from the Au NP location; this results in the
negligible heating of the nanodiamond as a function of laser power. The inset shows the mea-
sured temperature change of a nanodiamond. The surrounding temperature is controlled by a
Peltier element. d, Temperature changes measured (red points) at the six nanodiamond locations
in (b) as a function of distance from the illuminated Au NP (cross). The blue curve represents
the theoretical temperature profile based upon a steady-state solution of the heat equation. All
data in this figure are obtained on a glass coverslip, and all error bars correspond to one stan-
dard deviation.
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temperature change recorded by the ND as a function of the green laser power applied to
the Au NP at a distance of 0.8 £ 0.1 um. To further verify that the temperature change
originates from local heating, we repeat the measurement with the excitation laser
displaced from the ND by 0.8 um in the opposite direction. In this case, the temperature
measured by the nanodiamond remained constant as a function of laser power (blue
points), thereby confirming the locality of the heat source. From a linear fit to the data we
estimate the accuracy of our ND sensor to be 67" = (44 £ 10) mK. The measured
temperature change is in excellent agreement with the theoretically expected temperature
profile based upon a steady-state solution of the heat equation, AT(r) = %, where Q is
the heat dissipation, x is the thermal conductivity of glass and r is the distance between
the nanodiamond and the Au NP. As shown in Fig. 69b, by recording the temperature of
six nanodiamonds at different distances from the laser-heated Au NP we find that the
measured temperature profile (Fig. 69d) is in excellent agreement with the theoretical
steady-state prediction (solid line). This allows us to directly estimate the temperature
change at the location of the Au NP to be 72 +£6 K.

To demonstrate that nanodiamond thermometry is compatible with living cells, we
introduce nanodiamonds and Au NPs into human embryonic fibroblast WS1 cells via
nanowire-assisted delivery[435]. Just as in the control experiments described above, we
probe the temperature at two different locations (NV; and NVy) within a single cell while
locally heating an individual Au NP (Fig. 70a). As shown in Fig. 70b, NV, which is
significantly closer to the heat source, exhibits a stronger temperature dependence as a
function of laser power than NV,. Varying the incident power allows us to generate
controlled temperature gradients of up to 5 K over distances of approximately 7 um. To
ensure that this temperature gradient is created by the controlled illumination of the NP
and does not result from heating of the cellular cytoplasm, we displace the laser spot from

the Au NP; this then results in a negligible temperature change at the location of NV with

AT = (—20 £ 50) mK (green square, Fig. 70b). The increased measurement uncertainty for
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larger laser powers is the result of heating fluctuations from drift of the Au NP.

The experiments shown in Fig. 70b clearly demonstrate the sub-micron measurement of
an intra-cellular heat gradient. However, the substantial heating induced by constant
illumination for an extended period of time ultimately leads to the death of the cell, which
is confirmed using a standard live/dead assay (Calcein AM/Ethidium Homodimer-1). To
demonstrate that our technique can be employed within living cells, we increase the
concentration of Au NPs to allow for heat generation at different locations by simply
moving the laser focus. Then, we measured the temperature variation at a single
nanodiamond (bar plot in Fig. 70c) while introducing a slight heating of Au NPs in two
differing locations (crosses). After our measurement, the viability of the cell is confirmed
(Fig. 70c).

Finally, we demonstrate that our method can be used to control cell viability. To start,
we heat the cell with 12 4W of laser power and measure a temperature change of
0.5 £ 0.2 K at the nanodiamond location; this corresponds to a change of approximately
10K at the Au NP spot. At this point, the cell is still alive, as confirmed by the absence of
ethidium homodimer-1 fluorescence inside the membrane (Fig. 70d). By increasing the
laser power to 120uW, we induce a temperature change of 3.9 + 0.1K at the nanodiamond
location (approximately 80K at the location of the laser focus); in this case, the cell is
flooded with fluorescence from the ethidium homodimer, thus signaling cell death. This
proof-of-principle experiment indicates that nanodiamond thermometry may enable the
optimization of NP-based photothermal therapies[428].

Our experiments demonstrate that NV centers in diamond can be used as robust
temperature sensors that combine the virtues of sub-micron spatial resolution, sub-degree
thermal sensitivity and bio-compatibility. The sensitivity of our current measurement can
be enhanced by improving the relevant coherence time and by increasing the number of NV
centers within the nanocrystal. Optimizing these factors should allow us to reach

sensitivities of 80 uK/vHz (see Methods), yielding the ability to sense sub-kelvin

220



55

45 -

I /§
35¢ -
¢ 7
5l .

L -
5 25

T (K)
=2
<
=
\

y (um)

- . -
osl @ /,?—"%’sz

0 20 40 60 80 100
Au Fluorescence (kcps)

3500
P =12uW

T=05+0.2K 3000

2500
2000
1500

1000

P = 120pW
T=39+0.1K

500

55 60 65 70 75 50 60 70 80
x (um) X (um)

X (Hm)

Figure 70: a, Confocal scan of a single cell under 532 nm excitation with collection above

638 nm. The cross corresponds to the position of the Au NP used for heating, while circles rep-
resent the location of the nanodiamonds (NV; and NV3) used for thermometry. The dotted line
provides a guide to the eye and outlines the cell membrane. Color bars indicate the fluorescence
in cps. b, Measured change in temperature at the position of NV; and NVs relative to the inci-
dent laser power applied to the Au NP. Dashed lines are linear fits to the data. Each point con-
sists of an average of 10-20 measurements with each individual measurement taking 4 seconds.
The error bars (one standard deviation) are set by fluctuations in the laser heating of the Au NP.
¢, Fluorescence scan of stained cells (live/dead assay) with excitation at 494/528 nm and emis-
sion at 515 nm (green - cell alive) and 617 nm (red - cell dead). The bar plot depicts the temper-
ature of a single nanodiamond (circle) with local heat applied at two different locations (cross).
d, Confocal fluorescence scans of an individual cell under varying illumination power. Excitation
occurs at 532 nm and collection is above 630 nm. Cell death is indicated by the penetration of
ethidium homodimer-1 through the cell membrane, staining the nucleus. At low laser powers, the
cell remains alive, while cell-death occurs as laser-induced heating is increased.
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temperature variations with milli-second time resolution, thus opening the door to studying
non-equilibrium nanoscale processes. In solution, the ultimate accuracy of our method will
likely be limited by residual heating during the measurement process. As discussed in the
Methods, this limit is in the range of 50 uK to 5 mK, depending on experimental
conditions. While the present work focuses on monitoring temperature variations, the use
of diamond samples with low strain or, alternatively, ensembles of NDs, should allow for
the realization of an absolute thermometer (see Methods). The spatial resolution of our
method can be further improved by using far-field sub-diffraction techniques|[227].

The present observations open up a number of intriguing possibilities. For instance, the
simultaneous real-time measurement and control of a sub-cellular thermal gradient could
enable the accurate control of gene expression[438]. The large dynamic range of our
quantum thermometer and it’s intrinsic robustness may also allow for the direct
microscopic monitoring and control of chemical reactions[436]. Moreover, combining our
technique with two-photon microscopy[439, 440] may enable in vivo identification of local
tumor activity by mapping atypical thermogenesis at the single-cell level[441]. Finally the
combination of thermoablative therapy with our temperature sensor constitutes a potent
tool for the selective identification and killing of malignant cells without damaging

surrounding tissue [428, 442].

8.4.1 Nanodiamond measurement pulse sequence

As indicated in Fig. 69a, we record the fluorescence at four different frequencies centered
around A = 2.87 GHz:

2 f(wo) + L), (F0w + 0B + 6742 and
A f(we) + 2Ly (Fow — 0B + 6T494). This allows us to determine the change in

temperature,
__dw (TP
dA/AT (fY = f2) + (f = f)

where w4 F dw are the four microwave carrier frequencies and d B is a unknown static

oT

(8.41)
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magnetic field. By averaging the fluorescence at these four frequencies as shown in
equation (8.41), we are able to remove errors associated with changes in total fluorescence

rate, ESR contrast, Rabi frequency and magnetic field.

8.4.2 Experimental apparatus, sensitivity and accuracy

Our experimental apparatus consists of a confocal microscope with two independent
excitation/collection paths allowing measurement and heating at two independent locations
simultaneously. The experiments use either a Nikon Plan Fluor 100x oil immersion, NA =
1.3, (nanodiamonds) or a Nikon Plan Apo 100x air, NA = 0.95, objective (bulk sample),
resulting in C' = 0.03, which can be further improved by employing a solid immersion lens
or diamond nano patterning. Microwaves are delivered via a lithographically defined
coplanar waveguide on top of a glass coverslip. For experiments with nanodiamonds we use
neutral density filters in the collection path to avoid saturation of the APD. The
temperature accuracy 07 for bulk diamond is estimated from the measurement shown in
Fig. 68b. Using the standard deviation o (shown error bars) we evaluate the accuracy as
6T = o /(c %2 27), where c is the oscillation amplitude and 27 is the free evolution time.
We find that for integration times ¢ < 30 s (limited by temperature stability) the
temperature accuracy improves as v/t, giving a sensitivity n = 07v/t. A linear dependence
of the dissipated heat as a function of laser power (Fig. 69b) is used to determine the

measurement accuracy for NDs. A linear function, with slope m, is fitted to the data (red

dashed line) and the measurement accuracy is given by 67 = \/ 2N, (T, —m P)?, with

T; the measured temperature and P; the corresponding laser power. The error bars are

evaluated as o (0T) = 5T\/1 — ﬁ%, where I'(+) indicates the Gamma

distribution.
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8.4.3 Ultimate sensitivity

The ultimate sensitivity of our method is limited by the NV coherence time and the
number of defect centers. In our current experiment, we have demonstrated a sensitivity of
9 mK/v/Hz (with a free evolution time of 250 us). Two natural extensions enable longer
NV coherences: 1) decreasing the *C concentration to suppress the nuclear spin bath and
2) further dynamical decoupling. These methods can, in principle, allow us to extend the
evolution time up to 77/2 ~ 3 ms. In combination with a nanocrystal that contains ~ 1000
NV centers, this could yield an ultimate sensitivity limit of 80 ukK/ vHz. Further
improvement may be possible by employing spin squeezed states. Finally, we note that the
absolute temperature sensitivity of our technique is limited by variations of the zero-field
splitting due to spatially varying strain. For low strain diamond samples, we find that the
variation in the zero-field splitting is on the order of 60 kHz. Thus, using an ensemble of
NV centers in different NDs with uncorrelated strain values would allow for a further

increase in absolute sensitivity by a factor y/n, where n is the number of NDs.

8.4.4 Ultimate accuracy in solution

In cases where our method is used to probe a system that is in solution (e.g. cells, chemical
reactions), the primary accuracy limit is set by heat dissipation during the measurement
process. In particular, the microwave spectroscopy used to detect changes in the NV
zero-field splitting also induces heating of the solution. In the present experiment, we
utilize a lithographically fabricated microwave loop (diameter 200 pm) to generate an
ac-magnetic field, B ~ 10 milli-gauss, for spin manipulations. Estimating the effective
dipole field created by the microwave loop shows that the solution (water) absorbs 1076 W
of power yielding a temperature increase of 5 mK in the steady state. By using a smaller
microwave loop (20 um) and reducing the duty cycle, it could be possible to decrease the

heating of the solution to approximately 50 pK.
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8.4.5 Injection of nanodiamonds into cells

Nanodiamonds and Au NPs were introduced into WS1 cells via silicon nanowire-mediated
delivery[435]. Silicon nanowires were treated with 3-amino- propyltrimethoxysilane to
present NHy functionality on the surface, and nanodiamonds / Au NPs were subsequently
attached via electrostatic binding. Afterwards, human embryonic fibroblast WS1 cells were
plated on the silicon nanowire substrates and cultured overnight. The cells were removed
by trypsin treatment and re-plated on a glass slide with lithographically defined strip lines
for ESR measurements. The samples were stained with calcein-AM and ethidium

homodimer-1 for the live/dead assay.
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Appendix A

Many-body localization with power-laws

This appendix serves as a detailed derivation for certain results in Chapter 2 of this thesis.
In particular, we derive the counting of pseudo-spin resonances for power-law interaction

systems.

A.1 The Pseudo-spin Hamiltonian

We begin by isolating the Hamiltonian of a pair of spins, 51,55, at some separation R,
Hiy = €157 + €55 + t12(S7 Sy + 5755 ) + V125153 (A1)

where ¢; are local random fields of bandwidth W, t15, V5 are the flip-flop and interaction
piece of the Hamiltonian and we have temporarily absorbed the R-dependence into the
couplings. For R large enough, we may assume that t15, V1o < |¢;| ~ W. In this case, the
perturbation ¢;5 leads to resonance between the |f}) = |[1) and |{}) = |[{1) states in the

S* = 0 manifold, precisely when the detuning 0, = €; — € satisfies |d,| < ¢, = t1o.
Somewhat more formally, we define a set of pseudospin Pauli operators 7 with respect to

the 1), |{}) basis to get an effective pseudospin Hamiltonian restricted to the S* = 0
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Figure 71: Schematic construction of pseudo-spin resonances. (a) Energy levels of an original pair
of spins separated by a distance R;. The spin flip-flop couples the central two energy levels which
defines a new pseudo-spin degree of freedom. (b) Spatial structure of an interacting pseudo-spin
pair. The original spins S7 and Se form the new pseudo-spin a and spins S3 and S4 form the new
pseudo-spin b. (c) Bare energy levels (neglecting t,,t,) of the pseudo-spin Hamiltonian H,.

subspace:

H, = 6,7 + 1,7, (A.2)

Resonance corresponds to the condition that the eigenstates of this Hamiltonian point
predominantly in the 77 direction. We note that Vi3 does not enter the pseudospin
Hamiltonian as the Ising term 5753 is constant on the S* = 0 subspace.

We now consider the interaction of a pair of pseudospins a = 12, b = 34 each of size R,
and at separation Ry (Fig. S1). So long as t(Rs) < |€;| ~ W, the hopping terms between a
and b spins will be unable to resonantly move out of the S? = 0, Si = 0 subspaces, so we
may again restrict attention to the joint pseudospin space. The effective Hamiltonian in

this space is

ab = 0aTy +taTy + 0p1f + tory + VauToTf (A.3)

where V,, = Vig — Viy — Vaz + Voy. This coupling formula follows most easily by noting
that, within the pseudospin subspace, 77 = S7 = —53.
Within the effective Hamiltonian H,;,, pseudospin resonance corresponds to the condition

that some set of eigenstates of H,, are entangled of order unity (as a function of the

227



separations Ry, Ry). Clearly this requires the interaction V,;, # 0, but it further requires
tasp # 0 or else the eigenstates will be product states in the 7% basis. Assuming the original

spins are resonant (0q/5 S ta/s), We find pseudospin resonance for

V2 + 02, \/t2 4+ 62 Z Vo 2 |ta — ts]. This corresponds to the resonance condition quoted in
chapter 2.

Finally, we turn to the next level of the hierarchical construction of resonances, i.e.
pseudo-pseudo-spins. We define a new set of pseudo-pseudo-spin Pauli operators u® and
take the p* eigenstates to label the two resonant central eigenstates of H,,. Unlike the
pseudospins 7, there is no natural quantization axis for u. In particular, that the two
central eigenstates are resonant ensures that the pseudo-pseudo-spins have O(1) transition
matrix elements with respect to the underlying 7 and 7 operators. Thus, a pair of

pseudo-pseudo-spins has a Hamiltonian of the form,

H = Hab + Hcd + Hint

= Davfigy + Deatteg + Z Vs iy g, (A.4)
o, fe{x,z}

where Hipy = Vo277 + Voam27; + Viemi 72 + Vigmi 7 and in the second line, we have

restricted to the resonant p subspace.

A.2  Multipole expansion

The pseudospin resonance between two well-separated pairs of spins corresponds to
correlated interaction-induced local charge rearrangements within each pair. If V(r) ~ 1/r
is pure Coulomb, this observation immediately suggests that the effective interactions
between pairs should decay according to the next leading term in a multipole expansion —

that is, as dipoles 1/73. More generally, for homogenous, isotropic interactions
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V(r) ~ 1/r®, we have

Vab = Viz — Vig — Vag + Vo

(1 11
() (g ag)
_ ( 1 - 1 ) . ( 1 - 1 )
|Ry + 73 —11|%  |Re 4+ r3 — 1P |Ry + 73 — 3|8  |Rg 4+ ry —r3?
1 (2r3-r1+2r4-r2—2r4-rl—27"3-7’2) N R?
5 R RETE

~

R}

(A.5)

where in the last step we have assumed that R; < Ry/2 in order to perform the multipole
expansion. The factor of R? in the numerator corresponds to the scale of the multipole
moment.

In general, the cancellation that produces the leading multipole decay fails unless the
interactions are homogeneous and isotropic. An important special case is provided by
uniformly aligned dipoles for which the interaction depends on the angle between the dipole
axis and the displacements R;;. The sum V,, = Vig — Vig — Vaz + Vo4 can be reinterpreted as
the interaction energy of the four dipoles where the dipole at site 2 and 4 has been reversed
and thus the net dipole moment in a or b is zero and V,;, ~ R?/R5 becomes quadrupolar.

When the multipole form of V,;, Eq. (A.5) applies, the estimate of Ny(Ry, Ry) presented
in the main text Eq. (3) must be corrected by the replacement V/RS — VR2/R5™2. The
resulting criteria for MBL (the “istotropic” case) are summarized in the last column of

Table I. For completeness, we provide detailed derivations of these formulae below.
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A.3 Pseudo-spin counting

A.3.1 Fixed pair size (“small pairs”)

We fix the size of a central pseudo-spin to be R; and count the number of resonant

pseudo-spins separated by a distance Ry (using the multipole form of the interaction),

VRYR™ i+
2

NZ(Rla RQ) ~ (nl(Rl)Rél) ’ t/R?

: (A.6)

where n; = pN; is the density of pseudo-spins. The first factor (n;(R;)R%) counts the total

number of pseudo-spins in a volume shell between Ry and 2R, while the second factor

+2
(VR‘;’ R

L Re ) represents the probability that a given pseudospin is resonant with the central
1

pseudospin. With R; fixed, we can take Ry — oo to check whether the number of resonant

pseudo-spins diverges. This occurs when d > 5 + 2.

A.3.2 Growing pair size (“extended pairs”)

A more stringent constraint arises when one allows the size of the central pseudospin to
grow as Ry grows. The optimum arises when V' (Ry) ~ t(R;) such that the factor describing

the probability of resonance in Eq. (A.6) is maximized (of order unity),

B+2 a+2
‘Z((}%) ~ R%l//%a ~ 1/10, yielding Ry ~ R{** (again using the multipole form of the
1

interaction) and

d—a+det2
1

at2
Ny(Ry, Ry) ~ RITH(R]7Z) T2 = R 77072, (A.7)

The number of resonant pseudo-spin pairs diverges at large scales, and hence delocalization

a(B+2)
occurs, for d > rBTd-
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A.3.3 Iterating the construction of pseudo-spin pairs (“iterated pairs”)

It is possible to continue iterating the hierarchical construction of resonant pairs (e.g. to
create an effective pseudo-pseudo-spin from 4 original spin degrees of freedom). However,

the resulting criteria for MBL saturate after the third level. The counting at this level is,

/RS VR}/RS™
J 3 d 1 3
N3(R17 RQ,R?)) ~ (nQ(Rla RQ)R3) ' V/Rg o <n2(R1’R2)R3) . W
— R-ot2. pd . pi-p-2 (A-8)

where ny = ny Ny is the density of pseudo-pseudo-spins. As usual, we count the number of
resonant pseudo-pseudo-spins as R3 — co. Holding Ry, Ry fixed reproduces the small pairs
criterion. Holding R, fixed but optimizing Ry ~ R3 (to saturate the probability of
resonance) yields a new, “iterated pairs” criterion d > (8 + 2)/2. Finally, optimizing both
Ry~ Réﬁ F2/(+2) and Ry ~ Rj3 reproduces the extended pairs criterion. Physically, the
reason that all MBL criteria saturate after N3 is that no new length scales emerge; this
occurs because both the numerator and denominator of the term describing the probability
of resonance originate from V' as all pseudo-pseudo-spins have transition dipole moments

with respect to o®. The iterated pairs criterion supersedes Eq. (S6) only when o > [ + 4.

We note that throughout section III we always assume R; < Ry < Rjs.

A.4 Nearby resonances

In the mixed power law regime, with a > (3, the distance R, between pairs of pseudospins

RIT?/°2) and anisotropic

is much larger than the scale of the both isotropic (R; ~
(Ry ~ Rg / “) pseudospins. As the interactions V are generally much stronger, one might
worry that pseudospins at distances R < R, might spoil the resonance condition for the

pseudospin counting at the larger distance Rj.

When are there O(1) pseudospins of scale R; at distances R < R,? First, we note that
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the number of resonances at a distance R is given by,

No(Ry, R) ~ pNi(Ry)R? ~ RI—R. (A.9)
Thus, there are O(1) resonances when R ~ Rf/ 41 We should now compare this with Ry

as set by the condition V(Ry) ~ t(R;). There are three possible cases:
(A) When R > Ry, there are no “nearby” resonances.

(B) When R = R,, pairs at scale R; find other pairs at scale R = Ry which are resonant

with respect to V.
(C) When R < Ry, there are many “nearby” resonances before distance Ry.

The critical case occurs when R ~ Ry or when R‘f/ LN R/, yielding d, = ;‘—ﬁg This
result is especially nice since this condition matches with that obtained for the critical
dimensions for MBL (middle column of Table I in the maintext). Thus, for d < :‘—JZ?, MBL

is consistent with resonance counting of the form considered above; moreover, there are no

“nearby” resonances to modify the counting.

A.5 Size of a resonant pseudo-spin pair

In numerical and experimental studies of finite size systems, pseudospin resonances only
play a role when the system size becomes large enough to contain them. Thus, in this
section, we estimate the typical scale Ry at which any given extended pair finds O(1)
resonant partners Ny(Rs) ~ 1. The typical size Ry is measured in lattice units and thus has
a microscopically detailed dependence on the microscopic couplings and disorder as we

derive below.
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A.5.1 Random field disorder

Let us first estimate Ry in the case of a filled lattice where disorder arises from the
underlying randomness of the on-site fields (e.g. the case of molecules with speckle). In the
next subsection, we will consider the case where disorder arises from dilution (e.g. rotor or
NV spin model).

We consider No(Ry, Ry) and are interested in the smallest Ry which harbors resonances.
For concreteness, let us work with o = § and hence take R; ~ Ry. A central pseudo-spin is
resonates with another pseudo-spin at scale Ry if No(Rs) ~ 1, so we estimate,

v
W

1 W 11 W
1~ Ny(Ry) = p? - R¥P. — R - A.10
2( 2) P 2 2 2V P> ag V/ag ( )

We now define D = VV[;ﬁ as the ratio between the disorder bandwidth and the nearest
0
neighbor interaction strength; it is a dimensionless measure of the disorder strength and for

an un-diluted lattice p ~ 1/ad. Thus, one obtains
Ry ~ agDY5) (A.11)

which for d = = 3 is Ry =~ ag¥/D and for d = 2 is Ry ~ agD. For a = f =3 (e.g.
dipoles), the expected upper critical dimension is d. = 1.5 so as expected, the pair size

diverges (in large disorder, such that D > 1) as one approaches d. from above.

A.5.2 Disorder arising from dilution

We now consider the case where disorder arises from Poissonian (random) dilution on the
lattice. For concreteness, let us consider the rotor example from the maintext (v = 8 = 3).
The effective on-site random fields generated by the dilution arise from the d7d; (Ising)

term of the dipolar interaction. Assuming that the rotors are oriented along the same
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quantization axis, one finds

d?d? (di + dfof)(d; + djo?) dads (d*)?
L o? z __z
Z . _Z 3 Z )+Z 3 %0
i<y Y i<j Y 1<j i<j Z i<j (]
(A.12)

where we have re-expressed the effective permanent dipole moment (diagonal component of
the dipole moment operator) in terms of symmetric and antisymmetric pieces,
g. (T d*|1) =d*+d* and (}|d*|}) = d* — d°.

Let us now estimate the width of the disorder distribution arising from random fields

dads dads pdeds 1 .
€ =D iz S5 =) . The average field at site i is & = > _,, 75 W Q) = r > tcia 7> Where v is
the dilution probability and (); = 1 for a lattice site containing a spin and 0 otherwise; the
last sum runs over the integer lattice and is the analog of the usual Madelung constant in
electrostatics. The variance of the on-site field is de2 = €2 — &2, where

€& =24 Zk?ﬁz (dadé QJ) (d:?is Qk)‘ Noting that Q;Qr = vdj + v*(1 — ;1) yields
_12 <dzgs> [(V -V )Zéelat ELG + (V > telat %)2] Thus, one finds that

W:\/e:?:\/g—a?:dzgs\/(u—ﬂ)zg%, (A.13)

lelat

)\

. . . . . . dadé‘
which in the strong dilution limit (¥ < 1) scales as W ~ \/Ea—g
With the effective disorder bandwidth in hand, we now estimate the size of resonant

pseudo-spin pairs. For the case of dilution, we note that p ~ v/a3 and

W= dd \/ (v —1v%) Y yciat 75 Following the same analysis, one finds,

ag

deds 1

Vv 1 W 1152 (v—12)> .
1NN2<R2):p2,R§d_5~_:>R2d3 Evzp . 0\/ V/a Eelt‘i‘
%o 0

(A.14)
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The interaction strength V' ~ (d*)? and hence,

s 1 1 7
Ry ~ ag <@§\/(V -2 €—6> . (A.15)

L€lat

Working in the strong dilution limit ¥ < 1 and ignoring the order 1 correction from the
1/3
Madelung constant, one finds that in d = 3, Ry ~ (g-z) ag/+/v and in d = 2,

o de 3/2
ngdzao/y/.
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Appendix B

Topology from Polar Molecules

This appendix serves as a detailed derivation for the results in Chapter 3 of this thesis. In
particular, we derive the effective Hamiltonian starting from the rotational physics of polar

molecules.

B.1 Deriving the Effective Hamiltonian

Here, we derive the effective Hamiltonian, Hp = —}_,; tijala; + 5 2izg Vijning. The
molecules lie in the X-Y plane and the applied DC electric field has spherical coordinates
(B0, Pp) in this basis. To simplify the notation, we define |1) = s|1, —1) + v|1,1) + w]|1,0),
where s = 92(24/52, v = Qlﬂg/fl, w = —9194/Q. Consider two dressed molecules at
positions i and j separated by R = (R, 0, ¢) (spherical coordinates in the {z,y, z} basis).

The dipolar interaction between these molecules can be written in spherical tensor form as:

1 V6 < a2 2040 q0)
Haa = = DL (CU'C2,(0.0)T3a%,a), (B.1)

q=—2

where 05(6’, ¢) is the spherical harmonic of degree k and z angular momentum ¢. Here, 7>

is the rank 2 spherical tensor generated from the dipole operators; in particular,

T2,(d9,d9) = dPd), T2,(,a9) = (d¥a? + dPd?) /v2,
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T2(d®, d9)) = (d@d@ +2d9dY + dﬁf)d(_j)) /v, and dy = F(d, + id,)/v/2. Expressing
the dipolar interaction in this form allows us to isolate energy conserving terms. We
assume that the energy difference between |1,0) and |1, £1) is larger than the scale of the
dipole-dipole interactions. Under this assumption, 7%, terms of the dipolar interaction are
energy non-conserving and thus highly suppressed.

We now consider the three resonant contributions to the hopping (¢;;) matrix elements,

(Gl TEWit) = /s dbawsu; — sty +sisy)L, (B2
(sl T2 t) = —da(vis,), (B3
(sl T2 lty) = —dia(siu), (B4

where dop = (1,0|d.|0,0) and dop; = (1,£1|d+|0,0). Combined with the spherical harmonic
coefficients of Eq. B.1, these terms determine the directionally dependent hopping t;; of the
spin flips.

The interactions V;; between the spin flips arise as a consequence of the induced dipole
moment which each molecule acquires in an applied electric field. Thus,
Vij = (0l Haa [1:15) + (s Haa ids) — (Nidsl Haa [1idy) — (4ity| Haa [J41;) can be
calculated in a similar fashion. First, let us define the induced dipolar moment of a
molecule on site i, dy, = dy(|s;|* + |vi|?) + polw;|?, where dy = (1, £1]d.|1,+1) and

po = (1,0]d,|1,0) that of the |1,0) state. The contributing terms to V;; are then
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(suppressing ij superscripts in d):

(bl deds + S (dyd_ 4 d-d) |Lly) = &, (B.5)
(bl dede 3 (dyd 4 d_d) I0L) = drdo (B.6)
(Ul dede S (dyd- + d_d) L) = dody,, (B.7)
(it d=d. + %(d+d— +d_dy) 1) = dydy, — %Mgl(siwfwﬁ; + wivjvjw; + c.c.|B.8)
(Tilsl dody ITity) = —M(Qn(sz‘wfwjv; + wiv;‘sjw;), (B.9)
(el dod [ty = =y (wistogul + vawtys)), (B.10)

where dy = (0,0]d.|0,0) and ug; = (1,+1|d+|1,0) is the transition dipole moment between
|1,0) and |1, £1). From Hg, there also exists an on-site potential

ti = D52 ((Vidyl Haa [bidy) — (Tidj| Haa [1:d5)) which varies between sites; however, as we
will see below, inhomogeneities in t;; can be regulated using optical lattice tensor shifts.
Finally, we note that we have dropped a uniform chemical potential term associated with
the molecule’s rotational constant 25.

To obtain topological flat bands, we adjust the optical radiation to generate four
different types of sites {a, b, A, B} (in relation to the M-scheme). By restricting the
variation of |1) on (a vs. A) sites and on (b vs. B) sites, we ensure that both ¢;; and V;; are
invariant under the direct lattice vectors gi, go, enhancing the symmetry to that of a
checkerboard lattice with a two-site translational unit cell. This small generalization from a
two-site model provides an important minus-sign freedom in the choice of w between
lowercase and uppercase letter sites, which we exploit in tuning the Chern band structures.
The freedom can be seen by examining the constraints imposed by requiring ¢;; and V;; to
be invariant under a <+ A and b <> B (i.e. translation by g,). In particular, the relevant

constraints allow wg/, = wa/p Or Wa, = —w4,/p as solutions.
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B.2 Experimental Implementation in “°K8"Rb

B.2.1 Molecular Hyperfine Structure:

In this section, we consider the complications in our scheme due to the hyperfine structure
of diatomic polar molecules such as *°K®"Rb. The molecular rotational degree of freedom is
naturally coupled to the nuclear spins, I; = 4 and I, = 3/2 of potassium and rubidium.
The hyperfine Hamiltonian is dominated by the nuclear quadrupole interaction, which has
a typical strength Hg ~ 1MHz (for “°K®"Rb). This interaction splits the degeneracy
between the |1, +1) rotational states implying that our workhorse, the T%, terms of Hyg,
are off-resonant. To overcome this issue, one can simply ensure that the optical dressing €2
(in the M-scheme) is much stronger than Hyy. This ensures that the hyperfine interaction
is unable to couple the dark state to other dressed eigenstates.

One final issue to consider is the particular choice of nuclear spin states. Since the
composition of the dark state differs on the four types of lattice sites {a, b, A, B}, molecules
on these sites are subject to slightly different hyperfine potentials; in particular,

(Tal Hug [Ta) = (Tl Hup [Ta) # (Tl Hup [T5) = (To| Hug [Tp). Furthermore, the appropriate
nuclear eigenstates will also depend on whether we are considering the rovibrational
ground state (|})) or the dark state (|1)); this is because the decoupled nuclear spin basis
(so-called Paschen-Bach regime) is only valid in the first case. One can solve this issue by
applying a static magnetic field ~ 10* G along the direction of the DC electric field,
ensuring that the decoupled basis is appropriate for both ||) and [1) (note that such a field
is already present in experiments). Then, it only remains to choose a pair of nuclear
eigenstates which have reasonable overlap and resonant energies. We have numerically

verified that this is generically achievable.
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B.2.2 Optical Lattice Tensor Shifts:

Similar to the hyperfine potential, A-type and B-type sites feel different tensor shifts from
the optical lattice. As alluded to in the main text, these tensor shifts can be exploited to
compensate for dipolar induced t;; terms. To start, let us consider a single optical field,
E(R,t) = E(R)e ™' + h.c. which we use to create the lattice potential in the X direction.
The optical potential is given by Hjuice = —E(R)*a(w)E(R), where
E(R) =|E(R)| >, By(R)ey, €, is the polarization basis, and a(w) is the polarizability
tensor of the molecule. Recasting the lattice potential in terms of spherical harmonics
yields,

20 — q

Hiattice = ~E*(R) | —5—" + (0 = a1) 3 O, (B.11)
p

where « is the polarizability along the internuclear axis, o, is the polarizability transverse
to the internuclear axis, vo = |Bo|? — 1/3, 721 = 1/V3(55 8+ — B%B), and
Yo = —/2/30% B+

In our case, the optical lattice potential seen by ||) is,

20{J_ — a”

7 (g —au){0,0] C3 10,0) o (B.12)

(I Hiattice 1) = —E*(R)

while the potential seen by |1) is,

QCU_ —OéH

(] Huasee 1) = —E*(R)[=

+ P (L1 CF 1L, 1) + [w]* (1,0[ G |1, 0)) + yesv* (1,1] C5 [1, —1)

+ (ay — an){(|s* (1, =1| C7 |1, 1)

T s (1, —1]C%, 1, 1)}, (B.13)

The energy difference 0E = (1| Hiastice |T) — (I| Hiattice |4) varies between A-type and B-type
sites since the dressing parameters {s,v, w} are site-dependent. The goal is to use this

tunable tensor shift to compensate for dipolar induced ¢;; terms. Note that we can achieve
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propagation of the optical beams along any direction using only o, and 7 light. Since our
optical field never contains any o_ polarization, we find that vy, terms are zero. Moreover,
we have also dropped 74; terms, since A = Ey g — E1 1 > Hjguice. Combining the optical
fields along the Z, y and 2 direction, we have numerically verified that by simply adjusting
the intensities of the lattice light, we can fully compensate for any inhomogeneous on-site
potential.

Finally, we demonstrate a simple configuration of Raman lasers (with wavelength \g),
which generates the M-scheme for the {a, b, A, B} checkerboard lattice shown in Fig. 2A.
We take the lattice constant to be A\, = Ry (Fig. 2A) and assume that Ay < Az; this can
always be accomplished by increasing Aj, (at the expense of weaker dipolar interactions).
We can tilt the k-vectors propagating along X and along Y up or down out of the XY
plane to give them a periodicity of Ay (in the XY plane). Similarly, we can tilt the
k-vectors propagating along (X + Y) up or down out to give them a periodicity of v/2Ay,
(in the XY plane). By using only four out of these eight beams and linearly polarizing
them along k x Z, we can obtain arbitrary (25 and 23 on A and B sites with Q; = €, = 0.
By utilizing the other four beams, we can obtain arbitrary ; = €24 on A and B sites (and
their negatives on a and b sites) with Qs = Q3 = 0. This immediately enables us to

construct the four-site M-scheme.

B.3 Many-Body Phases

Here, we provide a detailed description of the many-body phases which arise as one tunes
the electric field parameters. First, we note that the field and dressing parameters for the
phase diagram are different than those in Chapter 3. This is because the richest

many-body phase diagram that we observe does not occur for the band structure with the
largest flatness ratio. The band-structure depicted in Chapter 3 occurs at electric field tilt

Oy = 0.68, &g = 5.83, with optical dressing parameters:
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Figure 72: Many-body Phases. (A) Depicts the spectrum associated with the knight’s move solid
phase in the reduced Brillouin zone (k, and k, are crystal momenta). The electric field tilt is

©p = 0.05 and the field strength is |E| ~ 32kV/cm. (B) depicts the spectrum associated with
the striped phase (©p = 1.05 and |E| ~ 28kV /cm). (C) depicts the spectrum associated with the
striped supersolid phase (09 = 0.68 and |E| ~ 36kV/cm). (D) depicts the spectrum associated
with the checkerboard phase (9 = 0.25 and |E| ~ 40kV /cm). (E-G) depicts the structure factor
of the KMS, CKB, SSS respectively for the same parameters as above (SS phase omitted). (H)
depicts the spectral flow under magnetic flux insertion of the SSS phase.

{04, 0, Pay Ob, Qay b, Ya, Vo) = {0.53,0.97,1.36, 3.49,2.84,2.03,4.26, 3.84}, where we have
parametrized: s; = sin(o;) sin(6;), v; = sin(a;) cos(6;)e® and w; = cos(a;)e?i. The phase
diagram shown in Fig. 72 is computed by exact diagonalization for filling fraction v = 1/2
and a total of Ny = 24 sites (parameters:

{©0, Do, 04, Oy, Das D, Oty Ay Ya, 1ot = {0.65,3.68,2.4,2.97,6.06,4.1,0.97,2.74, 3.44, 1.74}).
The associated band-structure has an optimized flatness ratio, f ~ 7. The dressing
parameters on A-type and B-type sites are identical to those on a and b sites with the
exception that y4 = 7+ 7, and v = 7+, (ie. we = —wasp). At weak electric fields,

E < 8 kV/cm, diagonalization reveals the v = 1/2 Fractional Chern Insulator. By changing
both the strength and tilt (©¢) of the DC field, one can map out a phase diagram
containing both conventional and topological phases. To isolate the effects of long-range
interactions, we ensure that at each tilt, the flatness ratio remains the same for all DC field

strengths. This can be achieved by re-optimizing the dressing parameters for each field
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Figure 73: Variational Mean-field theory. Depicts the variational mean-field theory for “°K8"Rb
as a function of applied electric field strength and tilt angle ©y. We consider twelve variational
ansatz’s including all allowed solids up to a quadrupled unit cell. The superfluid ansatz is opti-
mized with respect to its winding and a relative phase difference between A- and B-type sites.

strength. Alternatively, this corresponds to ensuring that dog = do; as the field increases;
experimentally, one can realize this by dressing the |1, £1) states with a long-lived
metastable excited state. Numerically, we implement this constraint by taking

s; = 8idoo/do1 and v; — v;doo/do; -

There exist four crystalline phases at strong DC electric fields whose diagnostics we
depict in Fig. S1. At low and intermediate DC field strengths, we observe a large superfluid
region. This phase is characterized by a unique ground state (typically in either the (0,0)
or (—m,0) momentum sectors) and a fluid-like real space structure factor. The
homogeneity of the superfluid changes as one adjusts the DC field strength and tilt. At
very weak fields |E| < 4kV/cm, A-type and B-type sites are equally populated; however, as
one increases the field strength, the anisotropy of the long-range dipolar interaction yields
anisotropy in the structure factor. To verify the nature these non-topological phases in the
thermodynamic limit, we perform a detailed variational mean-field study. As shown in

Fig. 73, this study confirms not only the existence of these phases, but also the qualitative
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location of the phase boundaries. Moreover, in the KMS, CKB and SS solids, the
mean-field energies match nearly identically with the exact diagonalization energies. This
suggests that product state wavefunctions are valid approximations in these regimes and

hence, that one can easily prepare finite density, low-temperature states.
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Appendix C

Yu-Shiba-Rusinov corrections to RKKY in a su-

perconductor

This appendix serves as a detailed derivation for the results in Chapter 4 of this thesis. In
particular, we derive the perturbative superconducting correction to RKKY and discuss

the origin of the singular contribution to the Yu-Shiba-Rusinov interaction

C.1 Perturbative Superconducting Correction to RKKY

We provide the derivation for the perturbative (second order) superconducting correction

to RKKY. In particular, we compute the exchange integral from the magnetization density,

2 00
I(r) = ﬁ—/ Tr[Go(r; 2)Go(r; z)]dx (C.1)
4 J,
where Go(r; z) = [ d*kZ=55% is the superconducting Green’s function. Calculation
reveals,
Golrsz = ia) = T (cos(hyr)VATF a2, +sin(kyr)liz + Ar]) . (C2)
riz=ix) = r 227, + sin(ksr)|iz 7)) - .
0 ka A2 1 12 ! f
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Computing Tr[Gy(r; 2)Go(r; 2)] one finds,

kfro\/m
oo TTE 32[A2 2 9
() :/ gz B2[A® 4 22 cos(2ksro)] (©3)
0 m(kgro)*(z? + A?)
ﬁQ [e%¢] kao\/m [e%e] e_%
_ ———F 2 o2
= W COS(QkffT())/O dx |e Ef +2A Sin (k’f’l“)/o dJTW
(C4)
Changing the variables from x — Ax yields,
52 9 kproAvaz2+1 &9 67%;52“
I(r) = ——— | cos(2k;r Adx |e  Fr + 2sin?(kyr / Adr————
(1) = s | cont@him) [ (yr) [ A
(C.5)
_k:frOAx B _k:froA
Noting that floo dx {e Es } = kfrgAe Pr, we can rewrite exactly,
o0 _kproave?il Ey A TkaroA
d £y = By | L2 C.6
/0 X [e ] kaer 1 [ Ef ( )
where F) is the integral defined as,
Fila] = a/ dpe~oVei+i=l), (C.7)
0
The second integral can be recast in a similar fashion,
kproAVaET1
e Fr m ks kaOA:|
dr——— = —e "1 L C.8
/O (z2+1) 2 2{ Ey (C8)
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where Fj is the integral defined as,

9 [ e—alvaFI-1)
/ e
0

(22 +1) (C.9)

In combination, this yields the perturbative superconducting RKKY exchange (see Fig. 74

for agreement with full non-perturbative calculation) as,

Eifﬁ2 _kyros kjfT‘()A A52 . 9 _Fyroa ]{JfToA
I(r)= ——— 2k By I k Er F
(T) ﬂ_(kfro)g COS( fTO)e 1 Ef (kaO)Q Si ( fT)e 2 Ef
Efﬁ2 _2rg 210 ABQ . 9 _2rg 210
=7 2% Gl A k € —_— C.10
Uesro)? cos(2ksro)e 1 { : + (epro)? sin®(ksr)e H ( )

While the integrals F} and F, cannot be performed analytically, by looking at the

asymptotic behavior, one can provide a reasonable closed form approximation,

Fila] = a/ dre W=+ ~ 1 95(a 4 0.65) /2 (C.11)
0

- 9 oo p efa(\/:rQJrlfl) 0.8 19
2[0‘]_%/0 Tt 1) (ar065) 2 (C12)
C.2 Dyson Expansion
Recall from the main-text that the Dyson expansion reveals
Tr[Ghw (2) — G (2)] = Te[STL + STISG 4 STISGSG +...] = Tr[STI(2)(1 — SG©(2))7).
(C.13)

We now establish that our above expression is consistent with the conventional linear

response formalism in the small S limit. To check this, observe that at quadratic order in S

247



@® Full SC Correction
—— Perturbative SC Correction

M 6 =0.01 |

(@)

W

%

SC Interaction (kHz)

S

3 5 7
R (nm)

Figure 74: Depicts a comparison between the non-perturbative SC correction (blue circles) and
the perturbative correction (red line) for small § = 0.01. The non-perturbative SC corrections
are obtained by numerically integrating the full Green’s function and then subtracting out the
A = 0 (metallic) portion.

(dropping the linear order S term, which does not contribute to interactions)
Tr[STI(2)(1 — SGO(2))7] ~ Tr[STI(2)SG?(2)]. (C.14)

Expanding both II(z) and G(z) in eigenstates, we obtain

(V| S| Wo) (W] S| W)

(z —em)*(z —&n)

Te[STI(2)SGO (2)] = )

n,m

(C.15)

The contribution of the above term to E,,; involves terms of the form

co+iA d .
/ 9 o Ref € ]
0

47 (i€ — €)% (i€ — &,)
€

B /oo—i/\ ede
S esin 4w (i€ — )2 (i€ — £3)

/ooiA de €
S ain AT (e ign)2(e +igy)

(C.16)

The above integral can be computed via contour integration by closing the contour around

either of £io00. If both —ie,,,, lie on the same side of ¢A then the integral vanishes.
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Otherwise we can close the integral on the side of A containing —ie,, so that

/oo—iA B de €
—oomin AT (€4 igy,)? (e + tgy)
_ legsgn(e, — A)

C.17
2 (en—é€m)? ( )
Symmetrizing with respect to m, we obtain
/oo—iA _% €
Coin AT (€4 iem)? (e +igy)
_ lensgn(en — A) +emsgn(em — A) (C.18)
4 (En — Em)? '
Lsgn(e, — A)
—_-Zn AY C.19
4 (e, —em) ( )

1 [ de 1
= — —— . C.20
4 /—oo—m 27 (€ + iem) (€ + igp) ( )

Substituting back, we obtain that the correction to the total energy is also given by

10 Epy =2 / IR TY[SG 1) SG i)
0

m
oo+iA de co—iA de
— / 4—2Re[iTr[SG(O)(ie)SG(O)(ie)]] — / 4—2Re[2'Tr[SG(O)(ie)SG(O)(ie)]], (C.21)
0 0

v 7

in agreement with the conventional linear response formalism.

C.3  Expressions for G5 (2), G9%(2), 1195 (2) and I15%(%)

Here, we provide the derivations for G%7 (2), G9%(2),1155 (z) and 119%(2) as used in the
numerics. First, let us note that L and R will denote the left and right impurities. From

the symmetry of the expressions, one can immediately see that G7 (2) = G%(2) and that
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G9%(2) = G%; (2). Expressing the BCS Green’s function yields,

, 1 Z—€ A _ z A
G5 (2) = | &Pbk———s ‘ S (C.22)
22 _ A2 _ (2 A2 _ 2
k A Z+ € < Az

For G9%(%), the only difference is that the form factors do note cancel out. Instead, one

finds

oo’ 1 Z Tk A ik-r
GLR(Z) :/d?’km ek 0, (023)
k A Z+ €

where 75 = 77, — 7;. Contour integration yields G3% () =

VA2 22

—poe 10 zsin(ksro) + VA2 — 2% cos(ksro) Assin(kyro)
kpro VVA? — 22 Asin(kgry) zsin(ksro) — VA% — 22 cos(kyro)
(C.24)
A similar calculation for 119 () yields,
oo’ pOA Az
1_ILL (Z) = (AQ _ 22>3/2 (025)

A

C.4 Singular YSR Contribution

Here, we explain the dominance of the YSR contribution relative to the bulk contribution

e.g. changes to the bulk DOS). In the limit £, > 1, we derive an analytic expression for
f
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the YSR shifts in both the parallel and anti-parallel impurity configuration.

o tan®(20) [14 324 (367 — 1) cos(2kpr) | _2r gingas)

Ty = Esh (Qkf’l“)Q |: I 62 :| e ¢ (026)
1-p 28 \?[1+4 8%+ (382 — 1) cos(2ksr)] 2 gn(as)
= AT 5 k) <1—52) { 115 }e 5 (©.21)
B 1 1 4% [14 2+ (362 — 1) cos(2ksr) ] _2r Gncan)
R TR +62[ 1+ 5 } § (6:28)

c 2 2 2
sin®(20) [—1+4 5%+ (1 —58%) cos(2ksr)  2r . 5 _ 2t gin(20)
= F, = sin(2§ k ¢ (C29
TM\T h (2kfr)2 |: 1 o 52 + 5 Sln( )Sln ( f/r) € ( )
As one can see the singular contribution to the YSR interaction comes from the divergence
of py as f — 1 (Eg, — 0). The form for this singular portion of the YSR interaction is

given by,

2
1 cos (kfr)e_%
1-— ﬁ Z(I{Zf’f’)Q

Jyeater — A (C.30)
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Appendix D

Yao-Kivelson model and Quantum State Trans-

fer

This appendix serves as a detailed derivation for the results in Chapter 7 of this thesis.

D.1 Gauge Projection to the Spin Subspace

Having demonstrated topologically protected state transfer by working in the extended
Hilbert space in the main text, here, we consider the gauge projection back to the physical
subspace. We ultimately illustrate the SWAP gate associated with TPST in the language
of physical spin states. Recall that the 4-Majorana representation of the spin algebra

0% = i7" (for spins a € {x,vy, 2} and correspondingly for Majoranas a € {1,2,3}) only

2.3.0

holds under the constraint that D = y'42~34% = 1. This defines the two dimensional

physical subspace of the four dimensional Hilbert space associated to four Majorana

fermions. More generally, for N spins o2, the 2 dimensional physical space is defined by
the N constraints D; = 1 in the 22 dimensional extended Hilbert space. We may impose

these constraints by using the physical (gauge) projector

1+ D;
P:H 5 (D.1)
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which simply annihilates any state not satisfying the local constraint.

The gauge projector P has several important properties. It commutes with any physical
operator built out of spin operators: [P,of] = 0. Furthermore, P absorbs gauge
transformations D;, with PD; = D;P = P. This gives us the freedom to understand the
evolution of physical states [i)) under any physical operation O, which is a function of spin
operators of, by lifting this operation to the extended Hilbert space O7 = O(iv{§),
applying any gauge transformations D; which may simplify the analysis, and projecting
back only at the end. That is, if we can find a state [¢/7) in the extended Hilbert space
such that [¢0) = P |¢7) then O |¢) = PO7 [¢)7). In particular, if [¢)7) is an eigenstate of O7,
the physical state |¢) is an eigenstate of 0. This is particularly useful for identifying

energy and spin eigenstates in the extended Hilbert space. One must always ensure that
Py7) #0.
D.1.1 Decorated Honeycomb Lattice

We now focus on the decorated honeycomb lattice model along with two additional spin

registers. The full Hamiltonian, Hr = Hy + Hy + Hgr + H;y,; is composed of

H0:%ZU§”U;’?+%Z<7?U?+%Z(7§J;
@,z vy’ 2,2

links links links

A A
Hpr= —TSUE — TSU]Z%, Hipy = grLoio, + gropoy (D.2)

where we have chosen units in which x = 1. The extension of the Hamiltonian to the

Majorana Hilbert space results in a model of Majorana fermions 49 coupled to a static Z,
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dangling Y dangling
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Figure 75: A schematic microscopic edge of the decorated honeycomb with the injection point ex-
plicitly labeled. Other pairs of dangling edge spins are paired into decoupled dangling vortices. It
is these dangling vortices which lead to the large degeneracy found in the exactly solvable model.

gauge field UZJ residing on the lattice links:

_ : d 0.0
H = 4 Z Ui 1?5 (D.3)
ij
Ag . Ag
Hljp === 100 — = Rk (D.4)
H} = —igrULavins — igrUri 30 (D.5)

where (A]” = 17;"yj and @ = z,y, z is the link type of (ij), or UH = ( if 7 and j are not
connected. We extend the definition of the gauge field Uw to the paired dangling edge
spins on the boundary as in Fig. 75, and to Uy, p = i72~%. With this choice of pairings, all
Ui,j are conserved by the total Hamiltonian and thus time evolution may be understood in
each U; ; sector. We label the sectors of [A]” by field configurations {U; ; = £1}. Due to the
antisymmetry of U, ;, there is some subtlety in correctly labeling sectors: in all our
formulae, we take ¢j to be oriented according to the arrows in chapter 7. Thus, U; ; =1
corresponds to a ground state gauge sector. Finally, we define ¢z p = %(72 /Rt o / r) asin
the main text so that we may think of H} /g &S measuring the occupation of left and right
register fermions.

The U, ; are gauge dependent quantities as {D;, (72]} = 0, but the net flux around any

closed loop w(C) = [];;c¢ Ui is gauge invariant; thus w(C) is physical and conserved. The

extended Hilbert space may be divided into conserved gauge sectors while the physical
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Hilbert space splits into conserved flux sectors after projection. As usual, we say that any
plaquette P such that w(OP) = —1 contains a vortex; here, we additionally extend this
definition of vortices to include the dangling plaquettes defined by the U; ; links between
dangling edges, as shown in Fig. 75. These dangling vortices are completely decoupled from
the fermions and lead to a large degeneracy of the model with open boundaries (2Ve/4

where N, is the number of dangling edge spins).

D.1.2 Spin states on the Decorated Honeycomb

Let us consider the physical ground state of the system in the absence of interaction ¢
between the registers and the decorated honeycomb. The spin registers both point up,
disentangled from the rest of the system, while the lattice spins sit in their collective
ground state: |[1)); |GS),|[1)) 5. We seek a reference ground state |Q2) in a fixed gauge
sector of the extended Hilbert space such that |[1)), |GS),||1))z = P |Q) up to
normalization. We choose U; ; = +1 (i.e. the flux configuration of the ground state sector
as described in the main text) and we choose |2) to be annihilated by ¢y, c¢g and ¢ for
k>0of H/(U)+ H] IR This state is, by construction, a lowest energy eigenstate of the
system, but it may not survive projection. The norm of P [Q)) is

(Q PP|Q) = 55 (214 IT; D; |Q) where we have exploited the orthogonality of states with
different gauge configurations U; ;. The product over all gauge transformations D
measures the product of all U; ; and the parity of the {45 - -~ fermionic state. Thus, by
flipping the choice of Uy g in [§2), we may guarantee that P |€2) survives projection. In
general, in any fixed gauge sector related to our reference sector by an even (odd) number
of flipped U, ;’s, P will annihilate states with odd (even) fermionic parity.

We now construct an explicit representation of the 4 possible register states coupled to the
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intermediate ground state |GS), by acting with o7 IR

||T>>L |GS>0 ||T>>R =P |Q> (D-G)
1)1 1GS) [11) 5 = —iPclz 1)
M) L IGS)o [11)) g = —iPcky 192)

)2 1GS)o 1)) = —iPelck 1€2)

where in the last line we have used U g = 1 acting on [€2). More generally, degenerate
and/or low energy states may be found in either the same flux sector with (pairs of) extra
edge fermions, e.g. Pc;foc;, |2) or in degenerate flux sectors (containing dangling vortices),
e.g. Pczfyf‘ |2) where 7% is a dangling edge Majorana. We note that since HJ(U) does not
depend on the dangling edge U, ;’s, neither do the fermionic eigenmodes ¢ in these

degenerate sectors nor the fermionic vacuum.

D.1.3 SWAP Gate in the Physical Subspace

Let us now consider time evolution U(t) in the presence of the coupling H,,.

The gauge
field U; ; remains conserved and the time evolution of the Majorana field 49 within each
gauge sector is that of noninteracting fermions. The full Hamiltonian in our chosen ground
state gauge sector is given by equation (7.5). In general, €;, Qkq, and ¢, depend on the
gauge field but not on the dangling pieces of it, so the following analysis applies identically

in each sector containing dangling vortices so long as the gauge is chosen the same way in

the bulk and on Uy, 4, Ugy. Assuming that ¢ < Ag, we may use the secular approximation
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to eliminate the c-fermion number non-conserving terms in equation (7.5),

1 1 1
H'(U) ~ ;gk@ck -5+ Ag(chep — 3+ As(cher — 5) (D.7)
_ b
V2

?

gr(ch Z QrpCk +Cr Z Qruch).
V2 k k

gr(ch Y Qrack ey Quach)
k k

This Hamiltonian leaves the c-fermion vacuum |{2) invariant and evolves the modes as
usual non-interacting Dirac fermions: Z/{CLC}LQ e ch|Q) = cLl(t)cLQ " -c,tm(t)\Q% where
k;(t) denotes the time evolved wavefunction of the k; mode according to the single particle
Schrodinger equation. We note that the most general Majorana evolution would mix the cf
and ¢ modes and accordingly the instantaneous c-vacuum would evolve in time.
To enable state transfer, we now tune Ag = ¢; for an edge mode k. In the dot regime, we
further require |g.,Qf .|, |9rQ% | < |65 — €741]- This condition enables single-mode
resolution of the edge eigenmodes and state transfer proceeds by resonant fermionic
tunneling in an effective three mode model (dropping constants and the uninvolved modes):
H. :e = ¢ x i x f

eff = _EgLQ%’aCL% - EQRQ;;@CRCI% + h.c. (D.8)
Since the individual quantum registers are fully controllable, we tune g; and gr to ensure
that the effective tunneling rate ¢; = |f/—%Q,~€’a] = | %&£}, between the modes is equivalent.
Re-expressing —iQ?a = ei¢’?va|Q,~€7a| and —iQ};b = ei¢’5vb|Q,;7b|, subsequent evolution under

us

H_sy for a time 7 = o results in mode evolution,

b — —el, (D.9)
| _ i
. — —c

C}r% — —Gi(’bCTL
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Figure 76: (a) The quantum registers L and R each contain two spins with the gold spin corre-
sponding to the memory qubit. A single step of evolution SWAPs the information between the
green spins of the left and right register. However, in addition to the SWAP gate, it also creates
entanglement in the form of a controlled phase gate between these spins. To perform a remote
CNOT gate between the memory qubits, we first perform an intra-register operation to SWAP
the quantum information between the green and gold qubit of the left spin. (b) Next, the first
step of TPST is performed (corresponding to a SWAP gate and a controlled phase gate). Af-
terwards, an intra-register CNOT gate between the green and gold qubit of the right register is
performed. (¢) The second step of TPST is then performed to return the information to the left
register. Finally, intra-register gates are performed to yield a remote CNOT between the memory
qubits. This enables universal computation.
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where ¢ = ¢; , — ¢1,- Using these relations to evolve the states from equation (D.6), we

find

I LIGS) M) e — I L IGS ) 1T & (D.10)
1)L 1GS)o 1)) — —ie @ [[1) L 1GS ) [14)) 5
M) L 1GS)o 1)) — i€ [[4)) L 1GS ) 1) &

WD L1GS) o [N g — = IN)) L 1GS ) IN)) g -

up to known dynamical phases. The time evolution presented above generates our desired
SWAP gate in addition to a controlled phase gate between the register modes (up to single
qubit rotations). Here |GS’), indicates a state which evolves from |GS), independent of
the state of the two register qubits. As depicted in Fig. 76, in combination with
intra-register manipulations, the gate described by equation (D.10) enables universal
computation between the memory qubits of the remote spin registers.

This schematic evolution holds identically for any initial state of the intermediate system
|G'S), containing extra fermions or dangling vortices, since such states may be represented
in a gauge sector where all bulk U; ; = 1. Furthermore, in flux sectors in which there are an
even number of bulk vortices, it is possible to choose a gauge in which U; ; = 1 for all links
near the edge. The evolution proceeds nearly identically in this case as well. On the other
hand, in flux sectors where there are an odd number of bulk vortices, the energy of the
edge modes is shifted by ~ x/L implying that the spin registers are off-resonant. This can

be corrected for through tomography and subsequent retuning.

D.2  Shaping the Traveling Fermionic Wavepacket

Here, we describe the shaping of the fermionic wavepacket in the droplet regime of TPST.
The edge mode energies €, of a finite-sized droplet are split at order 1/¢. As discussed in

the main text, since single mode energy resolution becomes impossible in the macroscopic
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limit, we encode the spin register’s quantum information into a fermionic wavepacket
traveling along the chiral edge of the 2D droplet. This requires the shaping of g, (¢) and
gr(t) in order to ensure the sending and receiving of the packet. Let us first consider the
shaping of the initial wavepacket at the left register, so gr(t) = 0. As described in Sec. IC,
here, it is sufficient for us to consider the single particle problem since the modes evolve as
usual non-interacting Dirac fermions. By tuning Ag to an energy in the middle of the edge
dispersion and restricting |g,| < Ag, we have (assuming a plane wave description of the

low energy chiral edge modes)

pr:gEk‘kMk‘+%;(‘k><L‘+|L><kD7 (D.11)

where |k) is the edge mode with momentum &, we have absorbed all numerical factors into
gr. and Ej = vk is shifted by Ag (here, we have correspondingly shifted the definition of
zero energy and the indexing of k to begin at the state with energy Ag). We choose this
notation for the Hamiltonian to be consistent with the literature regarding photonic
wavepacket storage and retrieval, where an analogous problem is solved; thus, in this
section, ¢;, rather than being fermionic operators, will represent the amplitude of the |7)
mode. Initially, we consider a state |1)) whose amplitude is fully localized on the left spin
register, |¢) = cp|L) + > cxlk), where ¢ (t = 0) = 1 and ¢, (t = 0) = 0. After making a
continuum approximation in both position and momentum, we formally solve the
Schrodinger equation to obtain ¢r,(t) = —5-]g.(t)|*c.(t), yielding cr(t) = e"® where

ht) = 5 fot dt'|gr(t')|?. Substituting this result into the formal solution of ¢ (t) yields

t

; / 1 !

cr(t) = —i/ dt' e R g (#)e M), (D.12)
0 Vi
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Thus, the shape of the outgoing wavepacket is

\/_ —1 . ¢ . ’ /
t zka: dke zka: dk zkx/ dt’ —ivk(t—t') ' —h(t)
(. \/Z W(t) = 57 [ dhe™ | dte gu(t')e
(D.13)

= —i/o dt's(x — vt —t")gr(t)e ") = —zlgL(t—x/v) ht=z/v)g(t — z /v).

where 0 is the Heaviside step function and we have assumed linear dispersion with group
velocity v. Here, we note that in converting from a k£ sum to an integral, we have assumed
that the amplitude on both k < 0 and bulk modes will be negligible since |g,| < Ag. As
previously discussed, this assumption is crucial to ensure that the vacuum does not
undergo time evolution.

It is natural to think of the wave-packet in the time domain and evaluate c(z,t) at
x = 0. Thus, the solution to the problem of shaping any desired wavepacket, f(t),
simplifies to deriving the requisite g, (t) control function that satisfies g, (¢)e™"®) = f(¢)

where h(t) fo dt'|gr(t')]?; such a solution then yields,

Vor(t)

gL(t) = .
VS deLf )

The subsequent retrieval of the wave-packet at the location of the right spin register can be

(D.14)

understood by using time-reversal; indeed, the control function gg(t) should be the
time-reversed form of the control used to generate the time-reversed form of the sent
wavepacket. While, for simplicity, we have considered gr, gr € R above, generalizing to
complex gr,r can easily be achieved, for example, by employing a A-configuration spin

register.
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D.3 The Edge — Injection and Interactions

There are two types of excitations on the edge: Majorana fermions and Z, vortices. The
topology of the bulk guarantees the existence of gapless chiral Majorana edge-modes, as

described in a low energy theory by,

H. = v/d:ty(m)(ia)v(m) (D.15)

where y(z) is a continuum Majorana field and v is the group velocity. Generically all
vortices are gapped; however, details of the lattice edge can lead to the existence of
decoupled and/or low energy vortices. While the Hamiltonian (D.15) does not capture
these degrees of freedom, the presence of these additional states in the low energy Hilbert
space cannot be ignored. Indeed, the degeneracy of the exactly solved model follows from
the presence of zero-energy dangling vortices formed by pairs of dangling Majoranas, as
depicted in Fig. 75. Away from the injection point: 1) zero energy vortices are decoupled
and hence irrelevant to TPST, 2) low energy vortices scatter only weakly, and 3) high
energy vortices are suppressed by temperature. The presence of a low-energy vortex degree
of freedom at the injection point is critical to enable spin-edge coupling, which occurs at a
dangling spin. Crucially, this dangling spin contains a decoupled Majorana operator ~>
(dangling Majorana), as shown in Fig. 75. Keeping track of this mode in the low-energy

Hilbert space allows us to couple as follows,

, As . .
H = v/dxfy(x)(za)”y(x) - TSU + 190" ¥(0)Yaecoupled- (D.16)

This is the continuum formulation of the microscopic coupling illustrated in the main text.
To further elucidate the importance of the vortex degree of freedom at the injection point,
we consider three possibilities. First, in the case when the dangling injection Majorana is

completely decoupled, the injection vortex (corresponding to the flipped U; ; at the
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injection point) is zero energy and the procedure for TPST remains identical. Second, in
the case when the injection Majorana is weakly interacting with a single nearby Majorana
(respecting the interaction symmetry), the injection vortex is low-energy. In this case, the
splitting of the spin-register will need to be retuned to account for the creation of this
low-energy vortex and TPST will then naturally create both a fermion and an injection
vortex. Crucially, tunneling of the injection vortex into the bulk will be energetically
disallowed since Ainiection < Abulk Problems only arise in the third case, when the
injection Majorana is interacting strongly (order x) with a single nearby Majorana, and the
injection vortex is hence high-energy. In this case, spin-edge coupling will create an
injection vortex which can diffuse into the bulk; thus, upon the return of the traveling
fermion, the injection vortex may no longer be localized near the injection point, causing
dephasing when the quantum information is recaptured.

Next, we consider the role of interactions between edge modes. The fidelity of
topological state transfer will be dependent on these interactions as they induce decay of
the Majorana quasiparticles. Here, we begin by estimating the lifetime of such excitations
in the continuum edge setting by taking into account the leading order interaction term.
We consider, at T' = 0, the situation where we tunnel a single quasiparticle excitation into

the chiral edge from an associated spin register. The Hamiltonian is,

H=H,+ H, (D.17)

H = A / dz y(2)(i0)y()(i0)*y(x)(i0)*y(x).

To evaluate the interaction induced decay rate of the quasiparticles, we use Fermi’s golden
rule and consider the relevant interaction matrix elements coupling an incoming excitation

7€) with three outgoing (decayed) excitations v,, 1p,Vps|S2). The associated decay rate
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takes the form,

dpy dps dps
=27 E%E (Y Vo Vs Hp | Q) 206 — €1 — €00 — €35) (D.18)

where the delta-function imposes energy conservation and the integrals are one dimensional
because the quasiparticle is confined to the droplet edge. To evaluate the decay rate, we

begin by considering the interaction matrix element,

dky dko dks dky

M=A| o5 5 5 kiok3 ke (2m) 3 (1 + o+ kg + K ) (Y py Yo Vs Vi Voo Vi Vs V) (D-19)

where we have represented the interaction Hamiltonian in momentum space; by employing
Wick’s theorem, we can contract the matrix element into a function of two point Majorana
correlators. The only terms from this contraction which contribute are connected terms of
the form (y_p, Vi, ) (V—pa Vi) (V—psVis ) (Ve Vp) and such terms yield, T' ~ A\?p'3 /v. The leading
order temperature correction in the limit |vp| > kT, is obtained from a Sommerfeld type
expansion and yields,

AZpl3 A2pliT?

I~ . D.2
” + ” +O(T7) (D.20)
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