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The geometry of the Weil-Petersson metric in complex dynamics

Abstract

In this work, we study an analogue of the Weil-Petersson metric on the space

of Blaschke products of degree 2 proposed by McMullen. We show that the Weil-

Petersson metric is incomplete and study its metric completion. Our work parallels

known results for the Teichmüller space of a punctured torus.
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1. Introduction

In this work, we study an analogue of the Weil-Petersson metric on the space of

Blaschke products of degree 2 proposed in [McM2]. We show that the Weil-Petersson

metric is incomplete and study its metric completion. Our work parallels known

results for the Teichmüller space of a punctured torus.

1.1. The traditional Weil-Petersson metric. To set the stage, we recall the def-

inition and basic properties of the Weil-Petersson metric on Teichmüller space. Let

Tg,n denote the Teichmüller space of marked Riemann surfaces of genus g with n

punctures. For a Riemann surface X ∈ Tg,n, let

Q(X) be the space of holomorphic quadratic differentials with
´
X
|q| <∞ and

M(X) be the space of measurable Beltrami coefficients satisfying ||µ||∞ <∞.

There is a natural pairing between quadratic differentials and Beltrami coefficients

given by integration 〈µ, q〉 =
´
X
µq. One has natural identifications T ∗XTg,n ∼= Q(X)

and TXTg,n ∼= M(X)/Q(X)⊥. We will discuss two natural metrics on Teichmüller

space: the Teichmüller metric and the Weil-Petersson metric. For a quadratic differ-

ential q ∈ Q(X), let ||q||T =
´
X
|q| and ||q||2WP =

´
X
ρ−2|q|2 where ρ is the hyperbolic

metric on X. The Teichmüller and Weil-Petersson lengths of tangent vectors are

defined by duality, i.e. ||µ||T := sup||q||T=1

∣∣∣´X µq∣∣∣ and ||µ||WP := sup||q||WP=1

∣∣∣´X µq∣∣∣.
The Teichmüller and Weil-Petersson metrics are invariant under the mapping class

group Modg,n. Unlike the Teichmüller metric, the Weil-Petersson metric is not com-

plete.

For the Teichmüller space of a punctured torus T1,1
∼= H, the mapping class group

is Mod1,1
∼= SL(2,Z). Let us denote the Weil-Petersson metric on T1,1 by ωT (z)|dz|.

To describe the metric completion of (T1,1, ωT ), we need a system of disjoint horoballs.

Let B1/0(η) denote the horoball {z : Im y ≥ 1/η} that rests on ∞ = 1/0 and Bp/q(η)

denote the horoball of Euclidean diameter η/q2 that rests on p/q. For a fixed η ≥ 0,
1



⋃
p/q∈Q∪{∞}Bp/q(η) is an SL(2,Z)-invariant collection of horoballs. When η = 1,

the horoballs have disjoint interiors but many mutual tangencies. We denote the

boundary horocycles by Hp/q(η) := ∂Bp/q(η) and H1/0(η) := ∂B1/0(η).

Consider H with the usual topology. Extend this topology to H∗ = H ∪Q ∪ {∞}

by further requiring {Bp/q(η)}η≥0 to be open sets for p/q ∈ Q ∪ {∞}. Let us also

consider a family of incomplete SL(2,Z)-invariant model metrics ρα on the upper

half-plane: for α > 0, let ρα be the unique SL(2,Z)-invariant metric which coincides

with the hyperbolic metric |dz|/y on H\
⋃
p/q∈Q∪{∞}Bp/q(1) and is equal to |dz|/y1+α

on B1/0(1).

Lemma 1.1. For α > 0, the metric completion of (H, ρα) is homeomorphic to H∗.

Sketch of proof. To see that the irrational points are infinitely far away in the ρα

metric, notice that the horoballs Bp/q(2) cover the upper half-plane while by SL(2,Z)-

invariance, the distance between Hp/q(2) and Hp/q(3) is bounded below in the ρα

metric. Therefore, any path γ that tends to an irrational number must pass through

infinitely many protective shells Bp/q(3) \Bp/q(2). In fact, this argument shows that

an incomplete path γ is trapped within some horoball Bp/q(3), from which it follows

that it must eventually enter arbitrarily small horoballs. By the form of ρα in Bp/q(1),

it is easy to see that the completion attaches only one point to the cusp at p/q. �

Theorem 1.1 (Wolpert). The Weil-Petersson metric on T1,1 is comparable to ρ1/2,

i.e. 1/C ≤ ωT/ρ1/2 ≤ C for some C ≥ 0.

Corollary. The metric completion of (T1,1, ωT ) is homeomorphic to H∗.

For background on Teichmüller theory and more information on the Weil-Petersson

metric, we refer the reader to the books [Hub], [IT] and [Wol].

2



1.2. Main results. In this thesis, we replace the study of Fuchsian groups with

complex dynamical systems on the unit disk D = {z : |z| < 1}. Inspired by Sullivan’s

dictionary, we are interested in understanding the Weil-Petersson metric on the space

(1.1) B2 =

 f : D→ D is a proper degree 2 map

with an attracting fixed point

 /
conjugacy by Aut(D)

The multiplier at the attracting fixed point a : f → f ′(p) gives a holomorphic isomor-

phism B2
∼= D. By putting the attracting fixed point at the origin, we can parametrize

B2 by

(1.2) a ∈ D : z → fa(z) = z · z + a

1 + az
.

All degree 2 Blaschke products are quasi-symmetrically conjugate to each other on

the unit circle, and except for the special map z → z2, they are quasi-conformally

conjugate on the entire disk. For this reason, it is somewhat simpler to work with

B×2 := B2 \ {z → z2}, the quasi-conformal moduli space M(f) of a rational map

described in [MS].

Given a map f ∈ B×2 ∼= D∗, an f -invariant Beltrami coefficient on the unit disk

µ ∈ M(D)f defines a tangent vector in TfB2. An f -invariant Beltrami coefficient

descends to a Beltrami coefficient on the quotient torus of the attracting fixed point:

M(D)f ∼= M(Tf ). According to [MS], µ defines a trivial deformation in B×2 if and

only if it defines a trivial deformation of Tf ∈ T1,1. With this correspondence, T1,1 is

naturally the universal cover of B×2 . We can pullback the Weil-Petersson metric ωB

on B2 by a(τ) := e2πiτ to obtain a metric on T1,1
∼= H, which we also denote ωB.

Conjecture. The metric ωB on T1,1
∼= H is comparable to ρ1/4 on {τ : Im τ < 1}. In

particular, the metric completion of (T1,1, ωB) is homeomorphic to H∗.

In this thesis, we show that 1/4 is the correct exponent in the conjecture above.

More precisely, we show that:
3



Theorem 1.2. The Weil-Petersson metric ωB on T1,1
∼= H satisfies:

(a) ωB ≤ Cρ1/4.

(b) There exists Csmall > 0 such that on
⋃
p/q∈QBp/q(Csmall), ωB ≥ Cρ1/4.

Corollary. The Weil-Petersson metric on B2 is incomplete. In fact, the Weil-

Petersson length of the line segment e(p/q) · [1− δ, 1) is finite.

Corollary. The space H∗ naturally embeds into the completion of (T1,1, ωB).

Remark. The cusp at infinity is somewhat special: for y > 1,

(1/C)e−y|dz| ≤ wB ≤ Ce−y|dz|.

Along radial rays a→ e(p/q), we have a more precise estimate:

Theorem 1.3. For every rational number p/q ∈ Q, there exists a constant Cp/q such

that as τ = p/q + it→ p/q, ωB/ρ1/4 → Cp/q.

Conjecture. We conjecture that Cp/q is a universal constant, independent of p/q.

1.3. Properties of the Weil-Petersson metric. In this section, we give a defini-

tion of the Weil-Petersson metric on B×2 ⊂ B2 in the form most useful for our later

work. In Section 1.6, we will give equivalent definitions which work on the entire

space B2. For example, we will describe the Weil-Petersson metric as the second

derivative of the Hausdorff dimension of certain Julia sets.

It is convenient to put the Beltrami coefficient on the exterior unit disk. For a

Beltrami coefficient µ ∈ M(D), we let µ+ denote the “reflection” of µ in the unit

circle:

(1.3) µ+ =

 0 for z ∈ D

(1/z)∗µ for z ∈ S2 \ D
4



Suppose X ∈ Tg,n is a Riemann surface and µ ∈M(X) is a Beltrami coefficient. If

X ∼= D/Γ, we can consider µ as Γ-invariant Beltrami coefficient on the unit disk. Let

v be a solution of ∂v = µ+. Since the set of all solutions is of the form v+sl(2,C), the

third derivative v′′′ uniquely depends on µ+. Since v′′′ is an infinitesimal version of the

Schwarzian derivative, it is naturally a quadratic differential. In [McM2], McMullen

observed that

(1.4) ||µ||2WP = lim
r→1−

4

3
· 1

2π

ˆ
|z|=r

∣∣∣v′′′(z)

ρ(z)2

∣∣∣2dθ.
Similarly, given a Blaschke product f ∈ B×2 , we can solve the equation ∂v = µ+

for µ ∈M(D)f . As above, a solution v of the equation ∂v = µ+ is well-defined up to

adding a holomorphic vector field in sl(2,C), and so v′′′ is uniquely defined. Following

[McM2], we define the Weil-Petersson metric ||µ||2WP using the integral average (1.4),

provided that the limit exists. In Chapter 7, we will show that the limit exists for all

degree 2 Blaschke products other than z → z2.

1.4. A glimpse of incompleteness as a→ 1 radially. In this section, we sketch

the proof of the upper bound in Theorem 1.2. To establish the incompleteness of

the Weil-Petersson metric, we consider “half-optimal” Beltrami coefficients µλ ·χG(fa)

which take up half the attracting torus, but are sparse near the unit circle.

µ

Figure 1. The support of the Beltrami coefficient takes up half of the
quotient torus.

5



Figure 2. Gardens G(fa) for the Blaschke products with a = 0.5 and 0.8.

Figure 3. A blow-up of G(f0.5) near the boundary. A circle {z : |z| = r}
with r close to 1 meets G(f0.5) in small density.

The garden G(fa) ⊂ D is a certain invariant subset of the unit disk. To construct

the garden G(fa), we pick an annulus A = G(fa)/fa ⊂ Ta which takes up half of

the Euclidean area of the quotient torus at the attracting fixed point. To give upper

bounds for the Weil-Petersson metric, we will estimate the length of the intersection

of G(fa) with Sr := {z : |z| = r}. We will show that

(1.5)
( ωB
ρD∗

)2

≤ C · lim sup
r→1

|G(fa) ∩ Sr|

In order for the estimate (1.5) to be efficient, we take A to be a collar neighbourhood

of the shortest p/q-geodesic in the quotient torus T×a . To prove part (a) of Theorem

1.2, we will show that for a = e2πiτ with τ ∈ Hp/q(η),

(1.6) lim sup
r→1

|G(fa) ∩ Sr| = O(η1/2).

Combining (1.5) and (1.6), we see that ωB ≤ Cρ1/4 as desired.
6



Remark. The trick of truncating the support of the Beltrami coefficient can be found

in the proof of Corollary 1.3 in [McM1].

1.5. A glimpse of the convergence ωB/ρ1/4 → Cp/q. In this section, we give

a sketch of the proof of Theorem 1.3. To understand the behaviour of the Weil-

Petersson metric as a→ e(p/q) radially, we study the convergence of Blaschke prod-

ucts to vector fields. For example, as a → 1 along the real axis, while the maps

fa(z) = z · z+a
1+az

tend pointwise to the identity, the long-term dynamics tends to the

flow of a holomorphic vector field κ1 = z · z−1
z+1
· ∂
∂z

. For the radial approach a→ e(p/q),

the maps fa(z)→ az converge pointwise to a rotation, and therefore f ◦qa (z) tends to

the identity. We can extract a limiting vector field κp/q by taking limits of the high

iterates of f ◦qa . It turns out that the limiting vector field κp/q is a q-fold cover of the

vector field κ1.

Figure 4. The vector fields κ1 and κ1/3.

From the convergence of Blaschke products to vector fields, it follows that the

flowers that make up the gardens G(fa) for a ≈ e(p/q) have nearly the same affine

shape. We use this to show that ||µλ ·χG(fa)||2WP is proportional to the “flower count”

limr→1
n(r,fa)

1−r where n(r, fa) is the number of flowers that intersect the circle Sr. By

renewal theory, limr→1
n(r,fa)

1−r ∼ C ′p/q · (1− |a|)1/2 as a→ e(p/q).
7



Remark. Intuitively, for the integral average (1.4) to exist, when we replace r = 1− δ

by r = 1 − δ/2 say, we expect to intersect twice as many flowers to “replenish” the

integral, i.e. we expect that the number of flowers is inversely proportional to δ.

1.6. Notes and references. In this section, we describe the space of Blaschke prod-

ucts of higher degree and equivalent definitions of the Weil-Petersson metric.

Blaschke products of higher degree. Similar to B2, we can define the space Bd

of marked degree d Blaschke products which have an attracting fixed point modulo

conformal conjugacy. By moving the attracting fixed point to the origin as before,

we can parametrize Bd by

(1.7) {a1, a2, . . . , ad−1} ∈ D : z → fa(z) = z ·
d−1∏
i=1

z + ai
1 + aiz

.

We let a = a1a2 · · · ad−1 = f ′a(0) be the multiplier of the attracting fixed point. It is

because the maps are marked that we can distinguish the conformal conjugacy classes

of a = {a1, a2, . . . , ad−1} and ζ · a = {ζa1, ζa2, . . . , ζad−1}. See [McM3] for more on

markings.

Mating. It is a remarkable fact that given two Blaschke products fa, fb, one can

find a rational map fa,b(z) – the mating of fa, fb – whose Julia set is a quasi-circle

Ja,b which separates the Riemann sphere into two domains Ω−,Ω+ such that on one

side fa,b(z) is conformally conjugate to fa, and to fb on the other. The mating is

unique up to conjugation by a Möbius transformation. One can prove the existence

of a mating by quasi-conformal surgery (see [Mil2] for details) and that the mating

Bd × Bd → Ratd varies holomorphically with parameters. A natural way to put a

complex structure on Bd is via the Bers embedding Bd →Pd which takes a Blaschke

product and mates it with zd to obtain a polynomial of degree d. Here the space

Pd
∼= Cd−1 is considered modulo affine conjugacy. The image of the Bers embedding

is the generalized main cardioid in Pd.
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Question. What is the completion of Bd with respect to the Weil-Petersson met-

ric? Are the additional points precisely the geometrically finite parameters on the

boundary of the generalized main cardioid? What is the topology on Bd?

Remark. Wolpert showed that the metric completion of (Tg,n, ωT ) is the augmented

Teichmüller space Tg,n, the action of the mapping class group Modg,n extends iso-

metrically to (Tg,n, ωT ) and the quotient Mg,n = Tg,n/Modg,n is the Deligne-Mumford

compactification.

Figure 5. The Mandelbrot set

Equivalent definitions of the Weil-Petersson metric. For a smooth path {ft}

in Bd, one can form the vector field v = dH0,t/dt|t=0 where H0,t : D→ Ω−(f0,t) is the

conformal conjugacy between f0 and f0,t. For a Blaschke product other than z → zd,

one can define ||ḟt||2WP by the integral average (1.4), while for z → zd, one can use a

more complicated integral average described in [McM2].

Remark. The definition of the Weil-Petersson metric via mating is slightly more gen-

eral than the one via quasi-conformal conjugacy given earlier because quasi-conformal

deformations do not exhaust the entire tangent space TfBd at the special parameters

f ∈ Bd that have critical relations.
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In [McM2], McMullen showed that

||ḟt||2WP =
Var(φ̇,m)´
log |φ′|dm

=
4

3
· d

2

dt2

∣∣∣
t=0

H. dimJ0,t(1.8)

= −1

3
· d

2

dt2

∣∣∣
t=0

H. dim(Ht,t)∗m(1.9)

where

J0,t is the Julia set of f0,t,

Ht,t : S1 → S1 is the conjugacy between f0 and ft on the unit circle,

(Ht,t)∗m is the push-forward of the Lebesgue measure,

φt = log |f ′0,t(H0,t(z))|,
´

log |φ′|dm is the Lyapunov exponent,

Var(h,m) := limn→∞
´
|Snh(x)|2dm denotes the “asymptotic variance” in the

context of dynamical systems.

Remark. Since J0,t is a Jordan curve, H. dimJ0,t ≥ 1, so d
dt
|t=0 H. dimJ0,t = 0 and

d2

dt2
|t=0 H. dimJ0,t ≥ 0. Similarly, since (Ht,t)∗m is a measure supported on the unit

circle, H. dim(Ht,t)∗m ≤ 1, d
dt
|t=0 H. dim(Ht,t)∗m = 0 and d2

dt2
|t=0 H. dim(Ht,t)∗m ≤ 0.

1.7. Related ideas and open questions.

Quasi-conformal geometry. The characterizations (1.8) and (1.9) of the Weil-

Petersson metric are reflected in quasiconformal geometry in the duality between

quasi-conformal expansion and quasi-symmetric compression.

Theorem 1.4 (Smirnov [S]). For a k-quasi-conformal map f : S2 → S2,

H. dim f(S1) ≤ 1 + k2.

Remark. If the dilatation µ(z) = ∂f
∂f

is supported on the exterior unit disk, one has

the stronger estimate H. dim f(S1) ≤ 1 + k̃2 where k = 2k̃
1+k̃2

.
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Theorem 1.5 (Smirnov, Prause [PrS]). For a k-quasi-conformal map f : S2 → S2,

symmetric with respect to the unit circle, one has H. dim f∗m ≥ 1− k2.

From (1.8) and (1.9), it is easy to deduce weaker forms of the infinitesimal state-

ments of Theorems 1.4 and 1.5 in the dynamical setting, i.e. H. dim f(S1) ≤ 1 +Ck2

and H. dim f∗m ≥ 1−Ck2 with a constant C > 1. Conversely, using either Theorem

1.4 or Theorem 1.5, it is easy to see that:

Corollary. The Weil-Petersson metric on B2 is bounded above by
√

1/6 · ρD.

Proof. For a map fa ∈ B2, the Bers embedding βfa gives a holomorphic motion of

the exterior unit disk Ha : B2 × D+ → C given by Ha(b, z) := Hb,a(z). Note that

the motion Ha is centered at a since Ha(a, ·) is the identity. By the λ-lemma (e.g.

see [AIM, Theorem 12.3.2]), one can extend Ha to a quasi-conformal motion H̃a

of the Riemann sphere satisfying ||µH̃a(b,·)||∞ ≤ b−a
1−ab . Observe that as ρ(b, a) → 0,

b−a
1−ab ∼

1
2
·ρD(b, a). Since H̃a(b, ·) is conformal on the exterior unit disk, by the remark

following Theorem 1.4, it follows that ||ḟt||2WP ≤ 1
6
· ||ḟt||2ρD as desired. �

The pressure metric. In the context of complex dynamics, the expression

||φ̇||2P :=
Var(φ̇,m)´
log |φ′|dm

appeared in the works [PUZ1], [PUZ2] which is based on the earlier work of Makarov

[Ma] on the law of the iterated logarithm of harmonic measure. It was also studied

on spaces of metric graphs in [PoS] and in higher Teichmüller theory in [BCLS].

Why degree 2 ? In this thesis, we stick to the degree 2 case for concreteness. Many

arguments presented here extend almost verbatim to Bd, or even to spaces of infinite

degree maps – for example, to spaces of universal covering maps of finite complements

(while the forward orbits of these infinite degree maps are very wild near the unit

circle, backward iteration is nearly affine).
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Some useful notation. Let Bp/q(η) := a(Bp/q(η)). For small η > 0, Bp/q(η) is

approximately a horoball in the unit disk of Euclidean diameter 2πη resting on e(p/q).

For z1, z2 ∈ D, let dD(z1, z2) = inf
´
γ
ρ denote the hyperbolic distance between z1 and

z2, and [z1, z2] denote the hyperbolic geodesic connecting z1 and z2. To compare

quantities, we use:

∗ A . B means that A < const ·B

∗ A ∼ B means that A/B → 1

∗ A � B means that C1 · B < A < C2 · B for some constants C1, C2

∗ A ≈ε B means that |A/B − 1| . ε

(For the convenience of the reader, we provide a full index of notation at the back of

the thesis.)
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2. Background in Analysis

In this chapter, we explain how to bound the integral average (1.4) in terms of the

density of the support of a Beltrami coefficient. We also discuss a version of Koebe’s

distortion theorem for maps that preserve the unit circle.

2.1. Teichmüller theory in the disk. For a Beltrami coefficient µ, let v(z) = vµ(z)

be a solution of the equation ∂v = µ. The following formula is well-known (e.g. see

[IT, Theorem 4.37]):

(2.1) v′′′(z)dz2 =

(
− 6

π

ˆ
C

µ(ζ)

(ζ − z)4
|dζ|2

)
dz2.

for z 6∈ supp µ. To obtain upper bounds for the Weil-Petersson metric, we will use

the following estimate:

Theorem 2.1. Suppose µ is a Beltrami coefficient with ||µ||∞ < 1 supported on the

exterior of the unit disk. Then,

(2.2) lim sup
r→1

1

2π

ˆ
|z|=r

∣∣∣∣v′′′µ (z)

ρ(z)2

∣∣∣∣2dθ ≤ 9

4
· ||µ||2∞ · lim sup

r→1+

∣∣suppµ ∩ Sr
∣∣.

Lemma 2.1. For z1, z2 ∈ C and γ ∈ Aut(D),

(2.3)
γ′(z1) · γ′(z2)

(γ(z1)− γ(z2))2
=

1

(z1 − z2)2
.

For a point z in the unit disk, let z+ denote its mirror image with respect to S1.

From formula (2.1), it is easy to see that:

Theorem 2.2. Suppose µ is a Beltrami coefficient with ||µ||∞ < 1 supported on the

exterior of the unit disk. Then,

(a) |v′′′/ρ2| ≤ 3/2 · ||µ||∞.

(b) If ρ(z+, supp(µ)) ≥ R then |(v′′′/ρ2)(z)| . e−R.

(c) v′′′/ρ2 is uniformly continuous in the hyperbolic metric.
13



Proof. By Möbius invariance (Lemma 2.1), it suffices to prove these assertions at the

origin. Clearly,

|v′′′(0)| ≤ 6

π

ˆ
|ζ|>1

1

|ζ|4
· |dζ|2 ≤ 12

ˆ ∞
1

dr

r3
= 6.

Hence |v′′′/ρ2(0)| ≤ 3
2
. This proves (a). For (b), recall that ρ(0, z) = − log(1− |z|) +

O(1). Then,

|v′′′(0)| ≤ 6

π

ˆ
1+Ce−R>|ζ|>1

1

|ζ|4
· |dζ|2 . e−R.

For (c), one needs to notice that the kernel 1
(ζ−z)4 is uniformly continuous at z = 0

for {ζ : |ζ| > 1}. �

We now prove Theorem 2.1:

Proof of Theorem 2.1. Let Vµ := 6
π

´ |µ(z)|
|ζ−z|4 . The proof of part (a) of Theorem 2.2

shows that |Vµ/ρ2| ≤ 3/2 · ||µ||∞. Define µθ := |µ(e−iθz)| and µ∗ := 1
2π

´
µθ(z)dθ.

Since ||µ∗||∞ ≤ ||µ||∞ · lim supr→1+

∣∣suppµ ∩ Sr
∣∣,

1

2π

ˆ
|z|=r

∣∣∣∣Vµ(z)

ρ(z)2

∣∣∣∣dθ =
1

2π

ˆ
|z|=r

∣∣∣∣Vµ∗(z)

ρ(z)2

∣∣∣∣dθ ≤ 3

2
· = ||µ||∞ · lim sup

r→1+

∣∣suppµ ∩ Sr
∣∣.

Equation (2.2) follows from the Cauchy-Schwarz inequality. �

2.2. A distortion theorem. The classical Koebe’s distortion theorem says that if

h : B(0, 1)→ C is univalent, then |h′(z)−1| . |z|. We will need a version of Koebe’s

distortion theorem for maps which preserve the real line or the unit circle:

Theorem 2.3. Suppose h : B(0, 1) → C is a univalent function which satisfies

h(0) = 0, h′(0) = 1 and takes real values on (−1, 1). For t < t0 sufficiently small, on

the ball B(0, t), h is nearly an isometry in the hyperbolic metric, i.e. h∗ρH ≈t ρH.

Here “A ≈ε B” denotes that |A/B − 1| . ε. For a set E ⊂ B(0, t), we call a set of

the form h(E) a t-nearly affine copy of E.
14



Sketch of Proof. Write z = x + iy. By the classical version of Koebe’s distortion

theorem, we see that |h′(x)− 1| . t. Applying the classical Koebe’s distortion again,

but this time centered at x, we see that h(x+ iy) ≈t h(x) + iy. �

For two points z1, z2 ∈ H, let dH(z1, z2) := inf
´
γ
ρ denote the hyperbolic distance

between z1 and z2. We note two useful consequences of Theorem 2.3:

Lemma 2.2. For two points z1, z2 ∈ B(0, t)∩H, dH(z1, z2) = dH(h(z1), h(z2))+O(t).

Proof. To see this, consider the geodesic γ that connects z1 and z2. We partition γ

into several pieces: γn := γ ∩ {w : t/2n+1 ≤ Imw < t/2n}. Each γn consists of at

most two geodesic segments of hyperbolic length O(1). By Theorem 2.3,∣∣∣∣ˆ
h(γn)

ρ−
ˆ
γn

ρ

∣∣∣∣ = O(t/2n).

Summing over n = 0, 1, 2, . . . , we see that dH(h(z1), h(z2)) < dH(z1, z2) + O(t). The

reverse inequality may be obtained by applying this argument to h−1. �

Lemma 2.3. The map h distorts the Euclidean area of a ball

Bhyp(z,R) := {w : dH(w, z) < R}

contained in B(0, t) ∩H by a multiplicative factor of at most 1 + C(R) · t.

Remark. In the above lemma, we can replace “Euclidean area” with “hyperbolic area”

or “area with respect to the volume form |dz|2/y”.

Suppose µ is a Beltrami coefficient supported on the half-ball B(0, 1) ∩ H. Set

µh := h∗µ = µ(h(z)) · h′(z)
h′(z)

. It is easy to see that on the half-ball B(0, t) ∩ H,

|µh(h(z))− µ(z)| . t · ||µ||∞. Slightly less evident is the fact that:
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Lemma 2.4. On the lower half-ball B(0, t) ∩H, we have:

(2.4)
∣∣∣v′′′µ
ρ2

(z)−
v′′′µh
ρ2

(h(z))
∣∣∣ . φ1(t) · ||µ||∞

where φ1(t)→ 0 as t→ 0.

Proof. By Lemma 2.3, for any R > 0, we can choose t > 0 sufficiently small so

that h distorts the hyperbolic area on the ball Bhyp(z,R) by an arbitrarily small

multiplicative factor and h−1 distorts the hyperbolic area on the ball Bhyp(h(z), R) by

an arbitrarily small multiplicative factor. This observation implies equation (2.4) with

µ replaced by µ · χBhyp(z,R). However, by part (b) of Theorem 2.2, the contributions

of µ · χBhyp(z,R)c and µh · χBhyp(h(z),R)c to vµ/ρ
2(z) and vµh/ρ

2(h(z)) respectively are

exponentially small in R. This completes the proof. �

Applications to Blaschke products. We will apply Koebe’s distortion theorem

to the inverse branches of Blaschke products. For a Blaschke product f ∈ Bd, set

δc := 1−maxc |c| where c ranges over the critical points. By the Schwarz lemma, for

a point ζ ∈ S1, the ball B(ζ, δc) is disjoint from the post-critical set, and therefore

all possible inverse branches f−n are well-defined univalent functions.

Define the “linearity zones” Ut := {z : 1− t · δc ≤ |z| < 1} for t ≤ 1. For Blaschke

products, we have the following version of Lemma 2.4:

Lemma 2.5. If µ is an invariant Beltrami coefficient supported on the exterior unit

disk, and if the orbit z → f(z) → . . . f ◦n(z) is contained in some Ut with t < t0

sufficiently small, then:

(2.5)
∣∣∣v′′′µ
ρ2

(z)−
v′′′µ
ρ2

(f ◦n(z))
∣∣∣ . φ2(t) · ||µ||∞

where φ2(t)→ 0 as t→ 0.

Lemma 2.5 follows from part (b) of Theorem 2.2 and Lemma 2.4.

16



3. Blaschke Products

In this chapter, we give background information on Blaschke products. We discuss

the quotient torus at the attracting fixed point, and special repelling periodic orbits

called “simple cycles” on the unit circle. In the next chapter, we will examine the

interface between these two objects.

3.1. Attracting tori. The dynamics of forward orbits of a Blaschke product

(3.1) fa(z) = z · z + a

1 + az

is very simple: all points in the unit disk are attracted to the origin. If the multiplier

of the attracting fixed point a 6= 0, near the origin, the linearizing coordinate ϕa(z) :=

limn→∞ a
−n · fna (z) conjugates fa to multiplication by a. This means that

(3.2) ϕa(fa(z)) = a · ϕa(z).

In fact, (3.2) determines ϕa uniquely up to the normalization ϕ′a(0) = 1.

Let Ω× denote the unit disk with the grand orbits of the attracting fixed and critical

point removed. From the existence of the linearizing coordinate, it is easy to see that

the quotient ϕ̂a : Ω× → T×a := Ω/(fa) is a torus with one puncture. We denote the

underlying closed torus by Ta. Let πa : C∗ → Ta ∼= C∗/(· a) denote the intermediate

covering map defined implicitly by ϕ̂a = πa ◦ ϕa.

Remark. For a Blaschke product fa ∈ Bd with a = f ′(0) 6= 0, the quotient torus T×a

has at most (d − 1) punctures but there could be less if there are critical relations.

We let B×d ⊂ Bd denote the space of Blaschke products for which T×a ∈ T1,d−1.

3.2. Multipliers of simple cycles. On the unit circle, a Blaschke product has

many repelling periodic orbits or cycles. Since all Blaschke products of degree 2 are

quasi-symmetrically conjugate on the unit circle, we can label the periodic orbits of

fa by the corresponding periodic orbits of z → z2.
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A cycle is simple if f preserves its cyclic ordering. In this case, we say that

〈ξ1, ξ2, . . . , ξq〉 has rotation number p/q if f(ξi) = ξi+p (mod q).

Examples of cycles of degree 2 Blaschke products:

• (1, 2)/3 has rotation number 1/2,

• (1, 2, 4)/7 has rotation number 1/3,

• (1, 2, 4, 3)/5 is not simple.

In degree 2, for every fraction p/q ∈ Q/Z, there is a unique simple cycle of rotation

number p/q. We denote its multiplier by mp/q := (f ◦q)′(ξ1) which is a positive

real number since Blaschke products preserve the unit circle. It is sometimes more

convenient to work with Lp/q := log(f ◦q)′(ξ1) which is an analogue of the length of a

closed geodesic of a hyperbolic Riemann surface.

To show lower bounds for the Weil-Petersson metric in small horoballs Bp/q(Csmall),

we will use the fact that the multiplier of the p/q-cycle changes at a “definite rate”

when moving in a direction transverse to the horocycle Hp/q(η):

Theorem 3.1. There exists a constant Csmall > 0 such that for τ ∈ Hp/q(η) with

η < Csmall,

(i) mp/q − 1 ∼ (2πη)/2 as η → 0,

(ii) d
dv

logmp/q � dη
dv

where v ∈ TτH2 is a vector orthogonal to Hp/q(η).

Theorem 3.1 is essentially found in [McM4]. For the convenience of the reader, we

will give a sketch of the arguments in Chapter 9. The main idea is to compare the

“petal correspondence” with the holomorphic index formula.
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4. Petals and Flowers

In this chapter, we give an overview of petals, flowers and gardens. As suggested

by the terminology, gardens are made of flowers, and flowers are made of petals. We

begin this section by giving a general definition of gardens, but then we specify to

“half-flower gardens” which will be used throughout this thesis.

In fact, for a Blaschke product fa ∈ B×2 , one can draw infinitely many half-flower

gardens Gp/q(log aq) – one for every choice of rotation number p/q and a choice of

logarithm τq := log aq. However, for a ∈ Bp/q(Csmall) := a(Bp/q(Csmall)), the “correct”

garden is G(fa) := Gp/q(τq) with τq ≈ 0 – it is for this choice of half-flower garden

that an estimate of the form (1.6) holds.

For example, when studying radial degenerations with a → 1, it is natural to

use gardens where flowers have only one petal (see Figure 2). However, for other

parameters, it is more natural to use gardens where the flowers have more petals (see

Figure 6 below).

Figure 6. The gardens G1/2(f−0.6) and G1/3(f0.66·e2πi/3).

4.1. Curves on the quotient torus. Inside the first homotopy group π1(Ta, ∗) ∼=

Z ⊕ Z, there is a canonical generator α represented by “counter-clockwise” loops

ϕ̂a(ε · eiθ) with ε sufficiently small. By a neutral curve, we mean a curve whose

homotopy class in π1(Ta, ∗) is an integral power of α. We classify all non-neutral

curves as either incoming or outgoing.
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A curve γ ⊂ Ta is outgoing if every lift γ∗i = π−1
a γ satisfies

γ∗i (t+ 1) = (1/a)q · γ∗i (t) for some q ≥ 1.

In other words, a curve is outgoing if γ∗(t) → ∞ as t → ∞. A curve is incoming if

the opposite holds, i.e. if γ∗(t)→ 0 as t→∞.

A complementary (out-going) generator β is canonically defined up to an integer

multiple of α. In terms of the basis {α, β}, we say that an out-going curve (q−p)α+pβ

has rotation number p/q. If we don’t specify the choice of β, then p/q is only well-

defined modulo 1.

4.2. Lifting out-going curves. Suppose γ is a simple closed outgoing curve in T×a

of rotation number p/q mod 1. Its has q lifts to C∗ under the projection πa : C∗ →

Ta, which we denote γ∗1 , γ
∗
2 , . . . γ

∗
q . The γ∗i are “spirals” that join 0 to ∞. Each

individual spiral is invariant under multiplication by aq. We index the spirals so that

multiplication by a sends γ∗i to γ∗i+p. Let γ̃i := ϕ−1
a (γ∗i ) be (further) lifts in the unit

disk emanating from the attracting fixed point.

Lemma 4.1. Suppose γ is a simple closed outgoing curve in Ta of rotation number

p/q. Then, γ̃i joins the attracting fixed point at the origin to a repelling periodic point

ξi ∈ S1 of of rotation number number p/q.

Proof. Pick a point z1 on γ̃i, and approximate γ̃i by the backwards orbit of f ◦q:

z1 ← z2 ← · · · ← zn ← . . . By the Schwarz lemma, the backwards orbit is eventually

contained in some Ut = {z : 1 − t · δc ≤ |z| < 1}, i.e. zn ∈ Ut for n ≥ N . Since a

Blaschke product is asymptotically affine, the hyperbolic distance between successive

points dD(zn, zn+1) is bounded and hence zn converges to some point ξ on the unit

circle. The same argument shows that the hyperbolic length of the arc of γ̃i from zn

to zn+1 is bounded, and therefore γ̃i converges to ξ as well. Since f(γ̃i) = γ̃i+p, we

see that f(ξi) = ξi+p. �
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4.3. Definitions of petals and flowers. An annulus A ⊂ T×a homotopy equivalent

in T×a to an out-going geodesic of rotation number p/q has q lifts in the unit disk

emanating from the origin. We call these lifts petals and denote them PAi , i =

1, 2, . . . , q. Each petal connects the attracting fixed point to a repelling periodic

point. A flower is the union of petals: F =
⋃q
i=1PAi . We refer to the attracting fixed

point as the center of the flower and to the repelling periodic points as the ends .

By construction, flowers are forward-invariant regions. The garden is the invariant

region obtained by taking the union of all the repeated pre-images of the flower:

G = F̂ :=
∞⋃
n=0

f−na (F).

We shall refer to (iterated) pre-images of petals and flowers as pre-petals and pre-

flowers respectively. In degree 2, a flower has two pre-images: itself and an immediate

pre-flower which we denote F∗. Each pre-flower has two distinct pre-images. We

define the centers and ends of pre-flowers as the pre-images of centers and ends of the

flower. We typically label by a pre-petal by its end and a pre-flower by its center.

4.4. Half-flower gardens. An out-going homotopy class [γ] ∈ π1(Ta, ∗) determines

a foliation of the quotient torus Ta by parallel lines. More precisely, we first foliate

the punctured plane C∗ by logarithmic spirals that are invariant under multiplication

by aq:

γ∗θ := {et log aq · eiθ : t ∈ [−∞,∞)}

where the choice of log aq is determined by [γ]. We then foliate the torus Ta by

“lines” γθ := πa(γ
∗
θ ). By construction, γθ = γθ+2π/q. We say that γθ is regular if it

is contained in T×a and singular if it passes through a puncture. The singular lines

partition the Ta into annuli; the lifts of which we call whole petals . (In degree 2,

there is one singular line).
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If a whole petal P1 consists of linearizing rays with arguments in (θ1, θ2) = (x−y
2
, x+y

2
),

define the α-petal Pα to consist of the linearizing rays with arguments in (x−αy
2
, x+αy

2
).

By default, we take α = 1/2 and we write P = P1/2. We define the half-flower F as

the union of all half-petals. It consists precisely of half the linearizing rays.

Remark. For the rest of the thesis, we use this system of flowers. When working with

a ≈ e(p/q), we let F = Fp/q denote the flower constructed from a foliation of the

quotient torus by p/q-curves, arising from the choice of log aq ≈ log 1 = 0.
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5. Quasiconformal Deformations

In this chapter, we describe the Teichmüller metric on B×2 and define pinching

deformations. We also define the half-optimal Beltrami coefficients, which are sup-

ported on the half-flower gardens defined in the previous chapter.

For a Beltrami coefficient µ with ||µ||∞ < 1, let wµ be the quasi-conformal map

fixing 0, 1, ∞ whose dilatation is µ. For a Beltrami coefficient supported on the

unit disk (the exterior unit disk) define the symmetrized version wµ to be the quasi-

conformal map which has dilatation µ(z) on the unit disk (the exterior unit disk) and

is symmetric with respect to inversion in the unit circle.

Given a rational map f(z) and an invariant Beltrami coefficient µ ∈ M(S2)f , we

can form new rational maps by: ft = wtµ◦f0◦(wtµ)−1. For a Blaschke product f ∈ Bd,

given µ ∈M(D)f , we often use the symmetric deformations ft = wtµ ◦ f0 ◦ (wtµ)−1 so

that ft ∈ Bd; however, the asymmetric deformations fs,t := wµs,t ◦ f ◦ (wµs,t)
−1 with

µs,t := sµ + (tµ)+ are also useful. The formula for the variation of the multiplier of

a rational map will play a fundamental role in this work:

Lemma 5.1 (e.g. Theorem 8.3 of [IT]). Suppose f0(z) is a rational map with a fixed

point at p0 which is either attracting or repelling. If µ is an f -invariant Beltrami

coefficient, ft = wtµ ◦ f0 ◦ (wtµ)−1 has a fixed pt = wtµ(p0) and

(5.1)
d

dt

∣∣∣
t=0

log f ′t(pt) = ± 1

π
·
ˆ
Tp0

µ(z)

z2
· |dz|2,

where Tp0 is the quotient torus at p0. The sign is “ +” in the repelling case and “−”

in the attracting case.

Remark. Lemma 5.1 is a statement purely about the Teichmüller space T1
∼= H of

the quotient torus. In fact, the right hand side of (5.1) is nothing more than the

pairing 〈µ,±q〉 where q = 1
2π
· dz2
z2

is the unique quadratic differential on Tp0 satisfying

||q||Tp0 =
´
|q| = 1.
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5.1. Teichmüller metric. As noted in the introduction, T1,1 is the universal cover

of B×2 arising from taking a Blaschke product to its quotient torus T×a ∈ T1,1. The

Teichmüller metric on B2 makes this correspondence a local isometry. More precisely,

for a Beltrami coefficient µ ∈M(D)fa representing a tangent vector in TfaB×2 , we set

(5.2) ||µ||T (B2) := ||ϕ̂(µ)||T (T1,1).

A well-known result of Royden says that the Teichmüller metric on T1,1 is equal to

the Kobayashi metric; therefore, the Teichmüller metric on B×2 is half the hyperbolic

metric on B×2 ∼= D∗. (We use the convention that the hyperbolic metric on the unit

disk is ρD = 2|dz|
1−|z|2 while the Kobayashi metric is |dz|

1−|z|2 .)

Recall that for a tangent vector v ∈ TT×a T1,1, the Teichmüller coefficient associated

to v is the unique Beltrami coefficient of minimal L∞ norm which represents v.

In particular, this implies that ||µ||T = ||µ||∞. It is well known that Teichmüller

coefficients have the form λ·q/|q| with q ∈ Q(T×a ) where Q(T×a ) is the set of integrable

holomorphic quadratic differentials on the punctured torus T×a .

Let Q(Ta) ⊂ Q(T×a ) be the set of integrable holomorphic quadratic differentials

on the closed torus Ta. If π : C∗ → C∗/(· a) denotes the projection map, then the

Teichmüller coefficients on Ta are {π(µ∗λ), λ ∈ C} where µ∗λ = λ · w
w
· dw
dw
. Therefore,

µλ := ϕ∗(µ∗λ) are invariant Beltrami coefficients on the unit disk. We refer to the

µλ as the optimal Beltrami coefficients. Here, “optimal” is short for “multiplier-

optimal” which refers to the fact that the fact that µλ maximizes (d/dt)|t=0 log at out

all Beltrami coefficients with L∞-norm λ (cf. Lemma 5.1).

Remark. For a degree 2 Blaschke product, the quotient torus T×a ∈ T1,1 and so

Q(Ta) = Q(T×a ). For a Blaschke product fa ∈ B×d of degree d ≥ 2, the quotient

torus has (d−1) punctures, and so Q(Ta) ( Q(T×a ). Therefore, the optimal Beltrami

coefficients represent only a complex 1-dimensional set of directions in TT×a T1,d−1.
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Given a half-flower garden G(fa), we define the half-optimal Beltrami coefficient to

be µλ · χG. Using Lemma 5.1, is easy to see that:

Lemma 5.2. The half-optimal pinching coefficients µλ ·χG are half as effective as the

optimal pinching coefficients µλ, i.e. the map ft(µ) := wtµ◦f0◦(wtµ)−1 is conformally

conjugate to f2t(µ · χG) := w2tµ·χG ◦ f0 ◦ (wtµ·χG)−1 .

5.2. Pinching coefficients. It is a natural to endow a closed torus X ∈ T1 with the

flat (Euclidean) metric of area 1. Given a Euclidean geodesic γ ⊂ X ∈ T1, we define

the pinching deformation {Xt}t≥0 as “the most efficient deformation” that shrinks

the Euclidean length of γ. More precisely, Xt ∈ T1
∼= H is the marked Riemann

surface with dT (X,Xt) = t for which `Xt(γ) is minimal (where dT is the Teichmüller

distance in T1).

If we write X = Xτ = C/〈1, τ〉 with τ ∈ H, a pinching deformation is a geodesic in

T1,1
∼= H which joins τ to a number p/q ∈ Q∪{∞} determined by [γ]. Alternatively,

if we represent X ∼= C/(· a), then pinching is given by the Beltrami coefficients

µpinch = t · λpinch · ww ·
dw
dw

with λpinch ∈ S1. In this model, λpinch = λpinch(p/q, τq)

depends on a choice of p/q and τq = log aq. It is possible but not necessary to

compute λpinch explictly.

It is also useful to define the notion of pinching deformations for annuli: given an

annulus A = A0, the pinching deformation {At} is the deformation which shrinks

the length of the core curve in A0 the fastest (alternatively, the modulus of At grows

as quickly as possible). For the annulus Ar,R := {z : r < |z| < R}, the pinching

deformation is given by the Beltrami coefficient µpinch = −t · w
w
· dw
dw

. It is easy to

see that pinching a torus X with respect to geodesic γ is the same as pinching the

annulus A = X \ γ.
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6. Incompleteness: Special Case

In this section, we give a simple proof of the incompleteness of the Weil-Petersson

metric in B2 when we take a → 1 along the real axis. Our goal is not to give the

most general argument, but to give the fastest route to the result. As noted in the

introduction, to show that ωB/ρD∗ . (1− |a|)1/4 on (1/2, 1], it suffices to prove that:

Theorem 6.1. For a Blaschke product fa ∈ B2 with a ∈ [1/2, 1), we have:

(6.1) lim sup
r→1

|G(fa) ∩ Sr| = O(
√

1− |a|).

We will deduce Theorem 6.1 from:

Theorem 6.2. For a Blaschke product fa ∈ B2 with a ∈ [1/2, 1),

(a) Every pre-petal lies within a bounded hyperbolic distance of a geodesic segment.

(b) The hyperbolic distance between any two pre-petals exceeds dD(0, a)−O(1).

Recall that a horocycle connecting two points is exponentially longer than the geo-

desic: if −x+ iy, x+ iy ∈ H, then the hyperbolic length of the horocycle joining them

is 2 · x/y while the length of the geodesic joining them is
´ π−θ
θ

dθ
sin θ

= 2 log(cot(θ/2))

where cot θ = x/y. As cot θ ≈ 1/θ for θ small, this is approximately 2 log(2 · x/y).

With this in mind, we argue as follows:

Proof of Theorem 6.1. By part (a) of Theorem 6.2, the hyperbolic length of the inter-

section of Sr with any single pre-petal is O(1). By part (b) of Theorem 6.2, whenever

the circle Sr intersects a pre-petal, an arc of hyperbolic length O
(√

1− |a|
)

is dis-

joint from the other pre-petals. Therefore, only the O(
√

1− |a|)-th part of Sr can

be covered by pre-petals. �
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6.1. Quasi-geodesic property. We first verify the quasi-geodesic property for petals:

Lemma 6.1. For a ∈ [1/2, 1), the petal P(fa) lies within a bounded hyperbolic neigh-

bourhood of a geodesic ray.

Proof. By symmetry, the linearizing ray r0 = ϕ−1
a ([0,∞)) is precisely the line segment

(0, 1) which lies within a bounded hyperbolic neighbourhood of a geodesic ray. It

remains to show that the petal P(fa) lies within a bounded hyperbolic neighbourhood

of r0. Suppose z ∈ P lies outside a small disk D(0, δ). Let F be the fundamental

domain bounded by {z : |z| = δ} and its image under fa. Under iteration, z eventually

lands in F , e.g. z0 = f ◦Na (z) ∈ F . Pick a point x0 ∈ r0 for which dT×a (z0, x0) = O(1).

(Here, we are using the fact that the limiting angle of the critical point is bounded

away from 0, i.e. limn→∞ arg f ◦n(c) 6= 0. In fact, the forward orbit of the critical

point lies on the segment (−1, 1)). Let x = f−N(x0) be the N -th pre-image of x0

along r0. Clearly,

(6.2) dD(z, x) ≤ dΩ(z, x) = dT×a (z0, x0) = O(1).

This completes the proof. �

6.2. The structure lemma. The quasi-geodesic property for pre-petals is an im-

mediate consequence of the “structure lemma”. The structure lemma says that the

pre-petals are near-affine copies of the immediate pre-petal, while the immediate pre-

petal is a near-Möbius copy of the petal – more precisely, f : P−1 → P is nearly the

involution about the critical point: m0→c ◦ (−z) ◦mc→0.

Given a Blaschke product f , define its critically-centered version as f̃ = mc→0 ◦

f ◦ m0→c where m0→c = z+c
1+cz

and mc→0 = z−c
1−cz . We define the critically-centered

versions of petals and pre-petals in the obvious way.
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Lemma 6.2 (Structure lemma). For a ∈ [1/2, 1) on the real axis,

(i) The critically-centered petal P̃ ⊂ B
(

1, const ·
√

1− |a|
)

.

(ii) The immediate pre-petal P−1 ⊂ B
(
−1, const · (1− |a|)

)
.

Proof. Part (i) follows from Lemma 6.1. To pin down the size and location of the

immediate pre-petal, we use the fact that c is the hyperbolic midpoint of [0,−a].

In the critically-centered picture, the center of the petal is mc→0(0) = −c while the

center of the immediate pre-petal is mc→0(−a) = c. Therefore, part (ii) now follows

from Koebe’s distortion theorem. �

Figure 7. Half-petal families for the Blaschke products f0.8 and f̃0.8.

6.3. Petal separation. We now turn to showing that the petals are far apart:

Proof of part (b) of Theorem 6.2. Since the petal P is contained in a bounded hy-

perbolic neighbourhood of (0, 1) and the immediate pre-petal P−1 is contained in a

bounded hyperbolic neighbourhood of (−1,−a), we see that dD(P ,P−1) = dD(0,−a)−

O(1). By the Schwarz lemma, given two pre-petals Pζ1 and Pζ2 with f ◦n1(ζ1) =

f ◦n2(ζ2) = 1 with n1 6= n2 (say n1 > n2),

dD(Pζ1 ,Pζ2) ≤ dD

(
f ◦(n1−1)(Pζ1), f ◦(n1−1)(Pζ2)

)
≤ dD(P−1,P1).
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To complete the proof, it suffices to show that pre-petals Pζ1 and Pζ2 are far apart

in the case that they have a common parent, e.g. when f(ζ1) = f(ζ2) = ζ. This

argument is topological. Observe that −1 and 1 separate the unit circle in two arcs,

each of which is mapped to S1\{1} by fa. Choose a curve γ contained in P1
1∪P1

−1 that

joins −1 and 1 – for example, the segment (−1, 1) will do. Since ζ1 and ζ2 are located

on the opposite sides of γ, any path from Pζ1 to Pζ2 must pass through γ. However,

we already know that the distance between Pζi to either P1 and P−1 is greater than

dD(0, a)−O(1) which tells us that the hyperbolic (1
2
·dD(0, a)−O(1))–neighbourhood

of γ is disjoint from Pζ1 and Pζ2 . This completes the proof. �
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7. Renewal Theory

In this section, we show that for a Blaschke product other than z → zd, the integral

average (1.4) defining the Weil-Petersson metric converges. The proof is based on

renewal theory, which is the study of the distribution of repeated pre-images of a

point. In the context of hyperbolic dynamical systems, this has been developed by

Lalley [La]. We will apply his results to Blaschke products (thinking of them as

maps from the unit circle to itself). Using an identity for the Green’s function, we

extend renewal theory to points inside the unit disk. Renewal theory will also be

instrumental in giving bounds for the Weil-Petersson metric.

For a point x on the unit circle, let n(x,R) denote the number of repeated pre-

images y (i.e. f ◦n(y) = x for some n ≥ 0) for which log |(f ◦n)′(z)| ≤ R. Also let µR,x

be the probability measure on the unit circle which gives equal masses to each of the

n(R, x) pre-images. We show:

Theorem 7.1. For a Blaschke product f(z) ∈ Bd other than z → zd, we have:

(7.1) n(x,R) ∼ eR´
log |f ′|dm

as R→∞.

Furthermore, as R→∞, the measures µR,x tend weakly to the Lebesgue measure.

For a point z ∈ D, let N (z, R) be the number of repeated pre-images of z that lie

in the disk centered at the origin of hyperbolic radius R. Then,

Theorem 7.2. Under the assumptions of Theorem 7.1, we have:

(7.2) N (z, R) ∼ log
1

|z|
· eR´

log |f ′|dm
as R→∞.

As before, when R →∞, the N (z,R) pre-images become equidistributed on the unit

circle with respect to the Lebesgue measure.
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7.1. Green’s function. Let G(z) = log 1
|z| be the Green’s function of the disk with

a pole at the origin. It is uniquely characterized by three properties:

(i) G(z) is harmonic on the punctured disk,

(ii) G(z) tends to 0 as |z| → 1,

(iii) G(z)− log 1
|z| is harmonic near 0.

Lemma 7.1. For a Blaschke product f ∈ Bd, we have:

(7.3)
∑

f(wi)=z

G(wi) = G(z), z ∈ D.

To see this, observe that
∑

f(wi)=z
G(wi) also satisfies the three properties above.

From equation (7.3), it follows that the Lebesgue measure on the unit circle is in-

variant under f . Indeed, for a point x ∈ S1, we apply the lemma to z = rx. Taking

r → 1, we see that
∑

f(y)=x |f(y)|−1 = 1 as desired. (Alternatively, one can apply ∂
∂z

to both sides of equation (7.3) to obtain
∑

f(w)=z
f(w)
wf ′(w)

= 1.)

In fact, the Lebesgue measure is ergodic. The argument is quite simple (see [SS]

or [Ha]); for the convenience of the reader, we reproduce it here: if E ⊂ S1 is an

invariant set, we can form the harmonic extension uE(z) = χE∗Pz. As uf−1E = uE◦f ,

we see that uE is a harmonic function in the disk, invariant under f . But since 0 is

an attracting fixed point, uE must actually be constant, forcing E to have measure

0 or 1 as desired.

From the ergodicity of Lebesgue measure, it follows that conjugacies of distinct

Blaschke products are not absolutely continuous.

7.2. Weak mixing. For the map z → zd, the pre-images come in packets and so

n(x,R) is a step function. Explicitly, n(R, x) = 1 + d+ d2 + · · ·+ dblogR/ log dc. While

n(R, x) has exponential growth, due to the lack of mixing, some values of R are

special. For all other Blaschke products, we do have the required mixing property

and Theorem 7.1 follows from [La, Theorem 1 and formula (2.5)].
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In the language of thermodynamic formalism, we must check that the potential

φf (z) = − log |f ′(z)| is non-lattice, i.e. that there does not exist a bounded function

γ such that φ = ψ+γ−γ◦f with ψ valued in a discrete subgroup of R. (To be honest,

in [La], this equation holds not on S1 but on the shift space Σ = {0, 1, . . . , d − 1}N

that codes the dynamics of f).

Sketch of Proof of Theorem 7.1. We consider the suspension flow f : S1 → S1 by

φf = log |f ′|. If this flow is not weak-mixing, by [PP, Proposition 6.2], there exists a

function w that is Hölder continuous on the shift space satisfying

(7.4) w(f(x)) = eiaφf (x)w(x).

However, if we work directly on the unit circle and repeat the proof of [PP, Proposition

4.2], we see that we can find a function w(x) satisfying (7.4) which is continuous on

the unit circle. Since w(x) is non-vanishing and has constant modulus, we can scale

it by a constant if necessary so that |w(x)| = 1. Therefore, w admits a continuous

branch of logarithm: w(x) = e2πiv(x). We obtain v ◦ f = a · φf + v + 2πM(x) where

M(x) is integer-valued. By continuity, we see that M is constant and therefore, φf

is cohomologous to a constant.

This tells us that the Lebesgue measure m must also be the measure of maximal

entropy. However, the measure of the maximum entropy is a topological invariant,

thus if we have a conjugacy h between zd and f(z), the measure of the maximal

entropy is h∗m. However, we know that the conjugacies of distinct Blaschke products

are not absolutely continuous, therefore, we must have f(z) = zd. �

7.3. Computation of entropy. Since the dimension of the unit circle is equal to 1,

the entropy h(f,m) of the Lebesgue measure coincides with the Lyapunov exponent

1
2π

´
log |f ′(eiθ)|dθ. We can compute the entropy using Jensen’s formula:
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Lemma 7.2. The entropy of the Lebesgue measure for the Blaschke product fa(z)

with critical points {ci} is given by

(7.5)
1

2π

ˆ
log |f ′a(eiθ)|dθ =

∑
G(ci)−G(a) =

∑
cp

G(ci)−
∑
zeros

G(zi).

In particular, for degree 2 Blaschke products, as a tends to the unit circle, the

entropy h(fa,m) ∼ 1− |c| ∼
√

2(1− |a|).

7.4. Laminated area. For a compact subset E in the disk, let Ê be its saturation

under taking pre-images, i.e. Ê = {ζ : f ◦n(ζ) ∈ E for some n ≥ 0}. For a saturated

set Ê, define its laminated area as Â(Ê) = limr→1−
1

2π
|E ∩ Sr|. We say that “E

subtends the Â(Ê)-th part of the lamination.” By Koebe’s distortion theorem (see

Section 2.2), we have the following useful estimate:

Lemma 7.3. Suppose E is a subset of Ut := {z : 1 − t · δc ≤ |z| < 1} with t < t0

sufficiently small. If E is is disjoint from all its pre-images, then

(7.6) Â(Ê) ≈1/t
1

2πh

ˆ
E

1

1− |z|
· |dz|2

(The notation “A ≈ε B” means that |A/B − 1| . ε.)

Sketch of Proof. By breaking up E into little pieces, we can assume that E ⊂ B(x, t)

for some x ∈ S1. We claim that
´
E

1
1−|z| · |dz|

2 ≈1/t

´
f−n(E)

1
1−|z| · |dz|

2 uniformly in n.

Indeed, for each n-fold pre-image y (i.e. f ◦n(y) = x), consider the t-affine copy Ey.

By Lemma 2.3,

ˆ
Ey

1

1− |z|
· |dz|2 ≈1/t |(f ◦n)′(y)|−1 ·

ˆ
E

1

1− |z|
· |dz|2.

The claim follows in view of the the identity
∑

f◦n(y)=x |(f ◦n)′(y)|−1 = 1 (recall that

the Lebesgue measure is invariant). Therefore, we may assume that E ⊂ Ut′ with

t′ > 0 arbitrarily small, i.e. we can pretend that f−1 is affine.
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By approximation, it suffices to consider the case when E = R is a “rectangle” of

the form{
z : 1− |z| ∈

(
(1− ε1

2
)δ, (1 +

ε1
2

)δ
)
, arg z ∈

(
θ0 −

ε2
2
δ, θ0 +

ε2
2
δ
)}

with ε1, ε2 small. For k large, the circle S1−δ/k = {z : |z| = 1−δ/k} intersects ≈ ε1k/h

pre-images of R. As the hyperbolic length of S1−δ/k is ∼ 2πk/δ and each pre-image

has “horizontal” hyperbolic length of ≈ ε2, the laminated area Â(R̂) ≈ ε1ε2
2πh
· δ as

desired. �

Recall from [McM2] that a continuous function h : D → C is almost-invariant if

for any ε > 0, there exists r(ε) < 1, so that for any orbit z → f(z) → · · · → f ◦n(z)

contained in {z : 1 − r ≤ |z| < 1}, we have |h(z) − h(f ◦n(z))| < ε. The argument

above also tells us that:

Theorem 7.3. Suppose f is a Blaschke product other than z → zd, and h is an

almost-invariant function. Then the limit limr→1−
1

2π

´
|z|=r h(z)dθ exists.

Sketch of Proof. Let E be a backwards fundamental domain near the unit circle, e.g.

take E = f−1(D(0, s)) \ D(0, r) with s ≈ 1. Split E into many pieces on which h

is approximately constant. By applying Lemma 7.3 to each piece and summing over

the pieces, we see that as r → 1, 1
2π

´
|z|=r h(z)dθ oscillates within an arbitrarily small

multiplicative factor. Hence, the limit converges. �

Applying the lemma to h = |v′′′/ρ2|2 which is almost-invariant by Lemma 2.5, we

see that:

Corollary. Given a Blaschke product f ∈ Bd other than z → zd, the limit in the

definition of the Weil-Petersson metric (1.4) exists for v associated to any tangent

vector in TfBd.
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8. Lower bounds for the Weil-Petersson metric

In this section, we explain how to obtain lower bounds for the Weil-Petersson metric

using the (gradients of the) multipliers of the repelling periodic orbits on the unit

circle. We first consider the “Teichmüller case” and then handle the “Blaschke case”

by linear approximation. However, the approximation argument comes with a price:

unlike in the Teichmüller case, to give a lower bound for the Weil-Petersson metric

we must insist that the quotient torus of the repelling cycle changes at a definite rate

in the Teichmüller metric.

This might seem like a fairly minor detail, however it prevents us from showing

that the completion of the Weil-Petersson metric on B2 attaches precisely the points

e(p/q) ∈ S1. We will show that in Teichmüller space, the Weil-Petersson length of a

curve X : [0, 1]→ Tg,n with `X(0)(γ) = m and `X(0)(γ) = M > m is bounded below by

a definite constant Cg,n. However, we are unable to prove the analogous statement

for the Weil-Petersson metric on Bd where we replace the “length of a hyperbolic

geodesic” by “the (logarithm of the) multiplier of a periodic orbit.”

8.1. Lower bounds in Teichmüller space. Consider the map f(z) = λz where λ

is a positive real number not equal to 1. Suppose µ ∈M(H)f is a Beltrami coefficient

supported on the upper half-plane. We can form the maps ft = wtµ ◦ f0 ◦ (wtµ)−1.

Since we use the asymmetric deformations wtµ, λt = f ′t(0) may no longer be real.

We think of v = dwtµ/dt as a holomorphic vector field on the lower half-plane. Let

πλ : C→ C/(·λ) be the quotient map.

Our goal is to give a lower bound for |v′′′/ρ2| in terms of ||πλ(µ)||T (T1) = |L̇0/(2L0)|

where Lt = log λt and L̇t = (d/dt)|t=0 log λt. We first consider the case when µ is a

radial Beltrami coefficient, i.e. µ is of the form

(8.1) µ(z) = k(θ) · z
z
· dz
dz
.
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Lemma 8.1. For a radial Beltrami coefficient µ given by (8.1) and z ∈ H,

(8.2) v(z) =
d

dt

∣∣∣
t=0
wtµ(z) = − 1

2π
z log z ·

ˆ
k(θ)dθ

and therefore,

(8.3) v′′′(z) =
1

2π
· 1

z2
·
ˆ π

0

k(θ)dθ.

Proof. One computes:

v(z) =
1

2π

ˆ
z(z − 1)

ζ(ζ − 1)(ζ − z)
· k(θ) · (ζ/ζ)|dζ|2

=
z

2π

ˆ π

0

k(θ)

ˆ ∞
0

(z − 1)eiθ

(reiθ − 1)(reiθ − z)
drdθ

=
z

2π

ˆ π

0

k(θ)

ˆ ∞
0

eit
(

1

reiθ − 1
− 1

reiθ − z

)
drdθ

=
z

2π

ˆ π

0

k(θ)

ˆ ∞
0

(
1

r − e−iθ
− 1

r − ze−iθ

)
drdθ

=
z

2π

ˆ π

0

k(θ) · (− log z)dθ.

(Since we are working in C\(−∞, 0], the branch of the logarithm is well-defined). �

By Lemma 5.1, it follows that in the sector {z : arg z ∈ (π/4, 3π/4)}, we have

(8.4)

∣∣∣∣v′′′(z)

ρ2

∣∣∣∣2 � ∣∣∣∣(d/dt)|t=0 log λt
log λ0

∣∣∣∣2 � ||πλ(µ)||2T .

Now suppose µ ∈ M(C)f is an arbitrary Beltrami coefficient. While we don’t

have a pointwise lower bound, an averaged version of (8.4) suffices for our purposes.

Suppose that R = Sθ1,θ2 ∩ Fr1,r2 is an “annular rectangle” where

Sθ1,θ2 = {z : arg z ∈ (θ1, θ2)} and Fr1,r2 = {z : r1 < |z| < r2}

with (θ1, θ2) ⊆ (π/4, 3π/4) and r2/r1 ≥ λ0.
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By averaging across radial rays and using the fact that the map µ→ v′′′ is linear,

we see that:

(8.5)

 
R

∣∣∣∣v′′′(z)

ρ2

∣∣∣∣2 · ρ2|dz|2 &
∣∣∣∣(d/dt)|t=0 log λt

log λ0

∣∣∣∣2 � ||πλ(µ)||2T

We apply this observation to the study of the Weil-Petersson metric in Teichmüller

space. Suppose X ∈ Tg,n is a Riemann surface and γ ⊂ X is a simple geodesic whose

length is bounded above and below, e.g. λ1 < `X(γ) < λ2. Let p : H → X = H/Γ

be the universal covering map chosen so that the imaginary axis covers γ. By the

collar lemma [Hub], there exists an annular rectangle R with (r1, r2) = (1, e`X(γ))

and (θ1, θ2) = (π/2− ελ1,λ2 , π/2 + ελ1,λ2) which has definite hyperbolic area, and for

which p|R is injective. It follows that for a Beltrami coefficient µ ∈M(H)Γ, we have

||p(µ)||WP & ||πλ(µ)||T .

8.2. Lower bounds in complex dynamics. We now return to complex dynamics.

Recall that for a Blaschke product f(z) and µ ∈M(D)f , the asymmetric deformation

is given by fs,t := wµs,t ◦ f ◦ (wµs,t)
−1 where µs,t := sµ+ tµ+. Also recall that L(ξ) =

log(f ◦q)′(ξ) denotes the logarithm of the multiplier of a periodic orbit f ◦q(ξ) = ξ.

Theorem 8.1. Suppose f(z) ∈ B2 is Blaschke product and f ◦q(ξ) = ξ is a repelling

periodic point on the unit circle with (f ◦q)′(ξ) < M2. If µ(z) ∈ M(D)f is an f -

invariant Beltrami coefficient such that |L̇0,t(ξ)/L(ξ)| � 1, there exist a ball

(8.6) B = B
(
ξ · (1− c1 · δc), c2 · δc

)
for which

 
B

∣∣∣v′′′
ρ2

(z)
∣∣∣2 · |dz|2 � 1.

Theorem 8.1 follows from the previous section and Koebe’s distortion theorem. It is

in the use of Koebe’s distortion theorem that we need to know that |L̇0,t(ξ)/L(ξ)| � 1.

Theorem 8.1 produces one ball on which the quadratic differential
ffl

B
|v′′′/ρ2| � 1.

However, by Lemma 2.5, the same estimate holds on the inverse images of B.
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Lemma 8.2. If we additionally assume that M1 < (f ◦q)′(ξ), then

(8.7) lim sup
r→1−

1

2π

ˆ
|z|=r

∣∣∣∣v′′′(z)

ρ(z)2

∣∣∣∣2dθ � 1.

To see this, notice that since the multiplier is bounded from below, we can choose c1

and c2 so that the (repeated) inverse images of B are disjoint from B (and thus from

each other). By Lemma 7.3, the inverse images of B spread over a definite portion

of the Riemann surface lamination (i.e. the Lebesgue measure of the intersection of

B̂ with a circle {z : |z| = r} for r sufficiently close to 1 is bounded below).

In Chapter 10, we will explain how to give effective lower bounds using a repelling

periodic orbit whose multiplier is small (f ◦q)′(ξ) < M1.

Remark. To give lower bounds for the Weil-Petersson metric, we used the gradient

of the multiplier of a periodic orbit in the µ+ direction. In view of the the identities

(d/dt)|t=0 log(f ◦qt,t )
′(ξt,t) = 2 · Re(d/dt)|t=0 log(f ◦q0,t)

′(ξ0,t),

(d/dt)|t=0 log(f ◦qit,it)
′(ξit,it) = −2 · Im(d/dt)|t=0 log(f ◦q0,t)

′(ξ0,t),

we can also use the gradient of the multiplier in the Blaschke slice, i.e. in the µ+µ+

or iµ+ (iµ)+ directions.
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9. Multipliers of Simple Cycles

In this chapter, we prove Theorem 3.1. We first make some useful definitions. Let

Tp/q denote the quotient torus associated to the repelling periodic orbit of rotation

number p/q and T in
p/q ⊂ Tp/q be the half of the torus which is associated to points

inside the unit disk. Let Pp/q ⊂ T in
p/q be the footprint of F in T in

p/q. The footprint of

the whole flower F1 is then defined to be the part of T in
p/q filled by the whole flower

F1. The proof of Theorem 3.1 is based on the following lemma:

Lemma 9.1. There exists a constant Csmall > 0, so that for a ∈ Bp/q(η), we have:

(i) The footprint P 1
p/q of the whole petal contains an angle of opening at least

0.99 π.

(ii) The footprint Pp/q of the half-petal is contained in a central angle of 0.51 π.

9.1. Conformal modulus of an annulus. To prove Lemma 9.1, we need two pre-

liminary facts. We begin with a formula for the conformal modulus of an annulus.

We use the convention that the annulus Ar,R := {z : r < |z| < R} has modulus

log(R/r)
2π

, which is the extremal length of the curve family Γ↑(Ar,R) consisting of curves

that join the two boundary components of Ar,R. We denote the dual curve family by

Γ	(Ar,R), consisting of curves that separate the two boundary components.

If B ⊂ A is an essential sub-annulus of A, we say that B is round in A if the pair

(A,B) is conformally equivalent to a pair of concentric round annuli (Ar,R, Ar′,R′). Al-

ternatively, B ⊂ A is round if the pinching deformations for A and B are compatible,

i.e. µpinch(B) = µpinch(A)|B.

Lemma 9.2. Suppose S∗ = {z = eiθ · eR logα : θ1 < θ < θ2} ⊂ C∗ where |α| < 1 and

a branch of the logarithm logα has been chosen. Then the annulus

S∗ / {z ∼ αz} has modulus (θ2 − θ1) · Re
( 1

logα

)
.
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Proof. If we take apply the map log z/ logα, we see that S∗ / {z ∼ αz} is conformally

conjugate to a parallelogram with vertices 0, 1, i(θ2−θ1)
logα

, 1 + i(θ2−θ1)
logα

, where the sides

[0, i(θ2−θ1)
logα

] and [1, 1 + i(θ2−θ1)
logα

] are identified by parallel translation. Using a cut-and-

paste surgery, we see that this parallelogram is conformally conjugate to the rectangle

with vertices 0, 1, i ·Re θ2−θ1
logα

, 1+i ·Re θ2−θ1
logα

. Applying the map z → e2πiz, we find that

this rectangle is conformally conjugate to the annulus of modulus (θ2−θ1) ·Re
(

1
logα

)
as desired. �

Conversely, for a region T ∗ ⊂ C∗ bounded by two Jordan curves γ1, γ2 that is

invariant under multiplication by α, we define the generalized angle between γ1 and

γ2 as

β :=
mod(T ∗ / {z ∼ αz})

Re
(

1
logα

) .

9.2. Holomorphic index formula. We now turn to the holomorphic index formula.

Recall that if g(z) is a holomorphic map with a fixed point g(ζ) = ζ, the index of ζ

is defined as

(9.1) Iζ :=
1

2πi

ˆ
γ

dz

z − g(z)

where γ is a small counter-clockwise loop around ζ. If the multiplier λ = g′(ζ) is not

1, this expression reduces to 1
1−λ . By the residue theorem, one has:

Theorem 9.1 (Holomorphic Index Formula). Suppose R(z) is a rational function

and {ζi} is the set of its fixed points. Then,
∑
Iζi = 1.

For a Blaschke product f ∈ Bd, the holomorphic index formula says:

(9.2)
∑ 1

ri − 1
=

1− |a|2

|1− a|2

where the sum ranges over the repelling periodic points on the unit circle, and a is

the multiplier of the attracting fixed point.
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9.3. Petal correspondence. Since a whole petal joins the attracting fixed point to

a repelling periodic point, it provides a conformal equivalence between an annulus

A1 ⊂ Ta with P 1
p/q ⊂ Tp/q. As there are q whole petals at the attracting fixed point,

we have:

(9.3)
β

logmp/q

= Re
1

q
· 2π

log(1/aq)

where β is the generalized angle representing the modulus of modP 1
p/q. The holomor-

phic index formula gives a lower bound on mp/q:

(9.4)
1

mp/q − 1
≤ 1

q
· 1− |aq|2

|1− aq|2

Following [McM4], we compare the equations (9.3) and (9.4):

Proof of Lemma 9.1. Suppose a ∈ Hp/q(η). If η > 0 is small, then aq ∈ H1(η+θ
q

)

with |θ| small. On this “horocycle”, Re 1
log(1/aq)

≈ q
2πη+θ

while the Poisson kernel

1−|aq |2
|1−aq |2 ≈

2q
2πη+θ

. Comparing (9.3) and (9.4), we see that if η is sufficiently small, then

β can be made arbitrarily close to π. By the standard modulus estimates (Lemmas

9.3 and 9.4 below), it follows that the footprint P 1
p/q must contain an angle of opening

close to π. They also show that the footprint of the half-petal Pp/q is contained in an

angle of opening 0.51π. This proves (i) and (ii). �

We now prove Theorem 3.1:

Proof of Theorem 3.1. For (i), we plug in β ≈ π into (9.3) to obtain

1/ logmp/q ≈ 2/(2πη) or mp/q ≈ 1 + (2πη)/2.

Part (ii) is somewhat harder. Since the footprint of the whole petal P 1
p/q con-

tains a definite angle of size > 0.51π, it is easy to construct some Beltrami coef-

ficient ν which effectively changes the multiplier of the repelling periodic orbit, i.e.

dmp/q(f
tν)/dt|t=0 � 1. As B2 is one-dimensional, we see that for any optimal Beltrami
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coefficient µ, we must have either

(9.5) dmp/q(f
tµ)/dt|t=0 � 1 or dmp/q(f

itµ)/dt|t=0 � 1.

This is sufficient for applications to the Weil-Petersson metric; however, for complete-

ness, we will show that the first alternative holds when µ = µpinch ∈ M(D) is the

optimal pinching coefficient built from the attracting torus.

As the dynamics of f is approximately linear near the repelling fixed point, µ =

µpinch descends to a Beltrami coefficient ν ∈M(Tp/q), with supp ν ⊂ T in
p/q. Since µ|A1

is the optimal pinching coefficient for A1, ν|P 1
p/q

is the optimal pinching coefficient

for the annulus P 1
p/q. By Lemma 9.1, when η > 0 is small, the footprint P 1

p/q takes

up most of T in
p/q, and as T in

p/q is a round annulus in T p/q, ν is approximately equal

to the optimal pinching coefficient for Tp/q on T in
p/q. When we consider deformations

f tµ in the Blaschke slice, we use the Beltrami coefficient µ + µ+, which corresponds

to ν + ν+ ∈ M(Tp/q). As ν + ν+ ∈ M(Tp/q) is approximately equal to the optimal

pinching coefficient for Tp/q (at least away from the trace of the unit circle in Tp/q),

it is clear that dmp/q/dη � 1 when η is sufficiently small. �

9.4. Standard modulus estimates. For convenience of the reader, we state the

standard estimates for annuli that we have used in the proofs of Lemma 9.1. The key

to these estimates is the fact that if B ⊂ A = Ar,R is an essential sub-annulus, then

modB ≥ Area(B, |dz|
2π|z|) :=

´
B

( |dz|
2π|z|)

2 with equality if and only if B ⊂ A is a round

sub-annulus.

Lemma 9.3. Suppose A = Ar,R has modulus modA < M and B ⊂ A is an essential

sub-annulus. For any ε > 0, there exists a δ(ε,M) > 0 such that if

modB ≥ (1− δ) modA,

then B contains the “middle” annulus of modulus (1− ε) modA.
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Proof. By symmetry, it suffices to show that if B avoids a curve γ that joins z1 ∈ SR

to z2 ∈ SR−(R−r)ε, then B has modulus less than (1 − C(M)ε2) modA. Giving an

upper bound on the extremal length of Γ↑(B) is equivalent to finding a lower bound

on the extremal length of the curve family Γ	(B). For this purpose, consider the

metric

(9.6) ρ =


|dz|

2π|z| on Ar,R \B(z1,
ε
3
· (R− r))

0 on Ar,R \B(z1,
ε
3
· (R− r))

Observe that the ρ-length of any curve in Γ	(B) is at least 1, but we have saved

C1(M)ε2 area as measured in the round metric |dz|
2π|z| , so

(9.7) λΓ	(B) > λΓ	(A) + C2(M)ε2.

As λΓ↑(B) · λΓ	(B) = 1, we see that λΓ↑(B) < (1− C(M)ε2) modA as desired. �

Essentially the same argument shows that:

Lemma 9.4. Suppose A = Ar,R has modulus modA < M and B1, B2, B3 ⊂ A are

three essential disjoint annuli, with B2 sandwiched between B1 and B3. For any ε > 0,

there exists a δ(ε,M) > 0 such that if

modB2 ≥ (1/2− δ) modA and modB1 + modB3 ≥ (1/2− δ) modA,

then B2 is contained within the “middle” annulus of modulus (1/2 + ε) modA.

We leave the details to the reader.
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10. Incompleteness: General Case

In this chapter, we prove Theorem 1.2. It suffices to show that for a ∈ Hp/q(η) with

η < Csmall, we have ||µ · χG||2WP � η1/2. For a ∈ Bp/q(Csmall), the petals and flowers

are still well-separated; however, they no longer satisfy the quasi-geodesic property.

Nevertheless, we can still estimate the intersection of G(fa) with a circle {z : |z| = r}

for r close to 1 using renewal theory. They gateway to our estimates is the following

lemma:

Lemma 10.1 (Fundamental Lemma). Suppose that 〈ξ1, ξ2, . . . , ξq〉 is a repelling pe-

riodic orbit of a Blaschke product f ∈ B2 whose multiplier is m < Msmall := 1.01.

There exists a constant K sufficiently large such that the branch of (f ◦q)−1 which

takes ξi to itself, maps B(ξi, R) strictly inside of itself, where R := δc
K
√
m−1

.

Corollary. In particular, for each i = 1, 2, . . . , q, the formula

(10.1) ϕξi(z) := lim
n→∞

m−n·
(

(f ◦nqa )−1(z)− ξi
)

defines a univalent holomorphic function on B(ξi, R) satisfying

ϕξi ◦ f = m−1 · f, ϕξi(ξi) = 0, (ϕξi)
′(ξi) = 1.

By Koebe’s distortion theorem, Lemma 10.1 implies that the dynamics of f ◦q is

nearly linear in the balls B(ξi, R), i.e. if z, f ◦q(z), f ◦2q(z), . . . , f ◦nq(z) ∈ B(ξi, t · R)

with t ≥ 1, then:

(10.2)

∣∣∣∣ |(f ◦nq)′(z)|
mn

− 1

∣∣∣∣ . 1/t and arg(f ◦nq(z)− ξi)− arg(z − ξi) . 1/t.

Remark. Lemma 10.1 is only significant for repelling periodic orbits which have small

multipliers. For m > Msmall, we can apply Koebe’s distortion theorem to the inverse

branch (f ◦q)−1 on B(ξi, δc) to see that there exists a constant K such that (f ◦q)−1

maps the ball B(ξi, δc/K) inside of itself.
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From Lemma 10.1, it follows that:

Theorem 10.1 (Flower bounds). For fa ∈ B2 with a ∈ Bp/q(Csmall),

(10.3) F ⊂
q⋃
i=1

S
(
ξi, 0.52 π,R

)
∪B

(
0, 1− 0.5 ·R

)
=:
⋃

Si ∪B.

Remark. We do not need to know any information about the behavior of the flower

within the ball B(0, 1− 0.5 ·R).

Using Theorem 10.1, we extend the petal separation and structure lemmas to the

wider class of parameters. Since the statements are interrelated, we state them as a

single theorem:

Theorem 10.2. For a ∈ Hp/q(η) with η < Csmall,

(a) The hyperbolic distance dD(F , c) ≥ 1
2

log η −O(1).

(b) The hyperbolic distance dD(F ,F∗) ≥ log η −O(1).

(c) The hyperbolic distance between any two pre-flowers exceeds log η −O(1).

(a′) The critically-centered flower F̃ ⊂ B(−ĉ, const · η1/2) where ĉ := c/|c|.

(b′) The immediate pre-flower F∗ lies within B(ĉ, const · δc · η1/2).

Using Theorems 10.1 and 10.2, it is easy to deduce Theorem 1.2. We give the

details in Section 10.4.

10.1. Preliminaries. In this section, we collect some useful facts that will enable us

to prove Lemma 10.1. We begin with a simple observation from hyperbolic geometry:

Lemma 10.2. Suppose z1, z2 ∈ D ∩ {z : Re z < 0} are two points in the left half

of the unit disk satisfying |z1 − (−1)| � |z2 − (−1)|. Suppose p ∈ (−1, 0). Then,

|mp→0(z1)− 1| � |mp→0(z2)− 1| where mp→0 = z+p
1+pz

.

To see Lemma 10.2, one simply needs to draw a picture of the geodesics orthogonal

to (−1, 1). Next, we recall a formula for the derivative of a Blaschke product:
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Lemma 10.3 (Equation (3.1) of [McM4]). Given a Blaschke product fa ∈ Bd, for a

point ζ on the unit circle, one has:

(10.4) |f ′a(ζ)| = 1 +
d−1∑
i=1

1− |ai|2

|ζ + ai|2

From Lemma 10.3, it easily follows that:

Lemma 10.4. Given a degree 2 Blaschke product f ∈ B2, for a point ζ ∈ S1 on the

unit circle with |f ′(ζ)| < M , we have

(10.5)
∣∣∣ζ − (−a)

∣∣∣ � δc√
|f ′(ζ)| − 1

Given any constant L > 0, there exists a constant K(M,L) such that the hyperbolic

distance from the critical point c to the ball B(ζ, δc

K
√
|f ′(ζ)|−1

) exceeds 1
2

log 1
|f ′(ζ)|−1

−L.

From the bound on the |f ′(ζ)|, it is evident that |ζ − ĉ| = |ζ − â| � |ζ − a|.

To see the estimate on the hyperbolic distance, observe that mc→0 maps the ball

B(ζ, δc

K
√
|f ′(ζ)|−1

) inside B(−ĉ, C

K
√
|f ′(ζ)|−1

). We will also need a lemma from [McM5]

which roughly says that away from the critical points, Blaschke products are close

to hyperbolic isometries. For points a and b in the unit disk, we let [a, b] denote the

hyperbolic geodesic segment joining a and b.

Lemma 10.5 (Theorem 10.11 in [McM5]). There is a constant R > 0 such that for

any proper holomorphic map f : D→ D of degree d,

(1) If dD([a, b], C(f)) > R, then dD(f(a), f(b)) = dD(a, b) +O(1).

(2) If dD([a, b], f(C(f))) > R, then dD(f−1(a), f−1(b)) = dD(a, b) +O(1)

where f−1 is any branch of the inverse chosen continuously along [a, b].
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In practice, we will use the following consequence of Lemma 10.5:

Lemma 10.6. For f ∈ B2, let f̃ denote its critically-centered version, i.e.

f̃ = mc→0 ◦ f ◦m0→c

where m0→c = z+c
1+cz

and mc→0 = z−c
1−cz . Given any point ζ ∈ S1, f̃ is injective on a

ball B(ζ, Cinj) of definite size.

Finally, we need an estimate on the derivative of a Blaschke product inside the

unit disk:

Lemma 10.7 (Proposition 3.2 in [McM4]). Given a Blaschke product f ∈ Bd, for a

point ζ ∈ S1, we have

(10.6) max
0≤r≤1

|f ′(rζ)| ≤ 4|f ′(ζ)|.

10.2. Linearization at repelling periodic orbits. With these preliminaries in

mind, we show Lemma 10.1:

Proof of Lemma 10.1, when q = 1. We first prove the lemma in the special case when

q = 1 as the computation in that case is slightly simpler. Let ξ̃ = mc→0(ξ). Then,

mc→0(B(ξ, R)) is a ball inside B(ξ̃, C
√
m−1
K

) of a comparable radius. By Lemma

10.6 and Koebe’s distortion theorem, we see that on the ball B(ξ̃, C
√
m−1
K

), we have

| f̃
′(z)
m
− 1| ≤ C2

√
m−1
K

. In particular, it follows that |f̃ ′(z)−mz| ≤ C3/K · (m− 1). By

choosing K sufficiently large, we can make C3/K << 1, which tells us that f̃−1 maps

the ball B(ξ̃, C
√
m−1
K

) into itself.

To check that f̃−1 mapsmc→0(B(ξ, R)) into itself, we use the fact thatmc→0(B(ξ, R))

is ball inside B(ξ̃, C
√
m−1
K

) of a comparable radius. When we contract the ball

mc→0(B(ξ, R)) by a factor of m with respect to ξ̃, and make an error of at most

C3/K(m− 1), we are still inside mc→0(B(ξ, R)). �
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In the general case, let m = m1m2 · · ·mq where mi = |f ′(ξi)|. Set ξ̃i = mc→0(ξi).

Like in the q = 1 case, we first show that if K sufficiently large, then (f̃ ◦q)−1 maps

mc→0(B(ξi, R)) into itself. For this purpose, we show the following a priori estimate:

Lemma 10.8. If K is sufficiently large, then for k = 1, 2, . . . , q, we have

(10.7) f ◦k(B(ξi, R)) ⊂ B(ξi+k, C0 ·R).

Proof. Let us first check that f ◦k(B(ξi, R)∩S1) ⊂ B(ξi+k, 2R)∩S1. If K is sufficiently

large, then |f ′(ζ)| < 1 + 2(mi− 1) on B(ξi, 2R)∩S1. Thus, in one step, B(ξi, R)∩S1

can be bloated by a factor of at most 1+2(mi−1). Therefore in q steps, B(ξi, R)∩S1

can be bloated by a factor of at most
∏

1 + (2(mi − 1)). Since
∏
mi = m < 1.01,

this is less than 2. Equation (10.7) now follows from Lemma 10.7 with C0 = 8. �

Proof of Lemma 10.1, general case. By the estimate on hyperbolic distance, we know

that mc→0(B(ξi, R)) is a ball contained in B̃i := B(ξ̃i,
C(mi−1)

K
√
m−1

) where the radii of

mc→0(B(ξi, R)) and B̃i are comparable. Set 2C0(M) · B̃i := B(ξ̃i, 2C0(M) · C(mi−1)

K
√
m−1

).

In the critically-centered picture, the a priori estimate tells us that for k = 1, 2, . . . q,

f̃(B̃i) ∈ 2C0(M) · B̃i+k. By Koebe’s distortion theorem, on 2C0(M) · B̃i, we have

|f̃ ′(z)/µi − 1| ≤ C(mi−1)

K
√
m−1

where µi = f̃ ′(ξ̃i). Since
∏
µi = m,∣∣∣∣(f̃ ◦q)′(z)

m
− 1

∣∣∣∣ ≤ C2

∑
i

mi − 1

K
√
m− 1

≤ C3

√
m− 1

K
.

It follows that (f̃ ◦q)−1 maps B̃i into itself. As in the q = 1 case, we can deduce that

(f̃ ◦q)−1 maps mc→0(B(ξi, R)) into itself. �

10.3. Bounds on flowers. Let fa ∈ B2 be a Blaschke product with a ∈ Bp/q(Csmall).

Denote the p/q-cycle by 〈ξ1, ξ2, . . . , ξq〉. We have seen that if Csmall is sufficiently

small, then the footprint of the flower F in the quotient torus Tp/q is contained in

the central angle of width 0.51 · π. Since the dynamics of fa is nearly linear within
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B(ξi, R), it follows that if K is sufficiently small, then

F ∩B(ξi, R) ⊂ S(ξ, 0.52 · π,R).

This proves Theorem 10.1.

Proof of Theorems 10.2. Part (a) from Theorem 10.1, from which (a′) follows easily.

Since f̃−1 has an inverse branch on the ball B(ĉ, 1) of definite size, by Koebe’s dis-

tortion theorem, we see that F̃∗ is a near-affine copy of F̃ . To pin down the size and

location of the immediate pre-flower in the critically-centered picture, we use the fact

that c is the hyperbolic midpoint of [0,−a]. It follows that in the critically-centered

picture, the center of the flower is mc→0(0) = −c while the center of the immediate

pre-flower is mc→0(−a) = c. This proves (b′) from which (b) is an easy consequence.

Finally, (c) follows from the Schwarz lemma and the trick used in the proof of part

(b) of Theorem 6.2. �

10.4. Proof of the main theorem. We are now ready to show that

||µ · χG||2WP . η1/2 for a ∈ Hp/q(η) with η < Csmall.

When we reflect (10.1) about the critical point, we see that the immediate pre-flower

F∗ is contained in the union of the reflections
⋃
S∗i ∪B∗. We claim that:

(10.8)

ˆ
F∗

|dz|2

1− |z|
. δc
√
m− 1

Assuming the claim, Lemma 7.3 tells us that Â(G(fa)) .
δc
√
m−1

h(fa,m)
�
√
m− 1 � η1/2,

which tells us that ||µ · χG||2WP . η1/2 as desired. To prove the claim, we need to

carefully reflect the petal about the critical point.

The reflection B∗ of the ball B(0, 1− 0.5 ·R) is contained in a horoball of diameter

� δc ·K
√
m− 1. Therefore,

´
B∗
|dz|2
1−|z| . δc

√
m− 1. Similar reasoning shows that the
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reflection S∗i of Si is contained in the sector S(ξ∗i , 0.53 · π,R∗i ) with

(10.9) R∗i � δc ·
√
mi − 1 ·

√
mi − 1√
m− 1

= δc ·
mi − 1√
m− 1

.

The total contribution of these sectors to the integral (10.8) is roughly

(10.10)

ˆ
⋃
S∗i

|dz|2

1− |z|
� δc

∑ mi − 1√
m− 1

� δc
√
m− 1.

This proves the upper bound. For the lower bound, observe that by Theorems 8.1

and 3.1, there exist balls

(10.11) Bi = B

(
ξi ·
(

1− c1 ·
δc√
m− 1

)
, c2 ·

δc√
m− 1

)
lying in the sectors Si on which

ffl
Bi
|v′′′/ρ2(z)|2 � 1. The reflection B∗i of Bi is

essentially a ball of definite hyperbolic size whose Euclidean center is located at

height � δc ·
√
mi − 1 ·

√
mi−1√
m−1

= δc · mi−1√
m−1

. Since the (repeated) pre-images of B∗i are

disjoint, and each repeated pre-image is a near-affine copy of B∗i , the laminated area

of
⋃
i B̂
∗
i is �

∑
mi−1√
m−1
�
√
m− 1 � η1/2. Thus, the lower bounds match the upper

bounds up to a multiplicative constant. This concludes the proof of Theorem 1.2.

50



11. Limiting Vector Fields

In this chapter, we study the convergence of Blaschke products to vector fields. For

a Blaschke product fa(z) = z
∏d−1

i=1
z+ai
1+aiz

, set zi := −ai. By a radial degeneration , we

mean a sequence of Blaschke products fa ∈ Bd such that:

(1) The multiplier of the attracting fixed point tends (asymptotically) radially to

e(p/q), i.e. arg(e(p/q)− a)→ arg(e(p/q)).

(2) Each zi converges to some point e(θi) ∈ S1.

(3) The limiting ratios of speeds at which the zeros escape are well-defined, i.e.

1− |zi| ∼ ρi · (1− |a|)

with
∑
ρi = 1.

To a radial degeneration, one can associate a natural measure µ on the unit circle

which takes the escape rates into account: µ gives mass ρi/q to e(θi + j/q). (We use

the convention that if some of the points coincide, we sum the masses.) We show:

Theorem 11.1. One can compute:

(11.1) κ(z) = lim
a→1

f ◦qa (z)− z
1− |a|

→ −z
ˆ

ζ + z

ζ − z
dµζ .

Furthermore,

(11.2) f ◦qa (z)− z − (1− |a|)κ(z) = O
(

(1− |a|)2
)

uniformly in the closed unit disk away from supp µ.

Examples:

(1) As a→ 1 radially in B2, fa → κ1 := z · z+1
z−1
· ∂
∂z

.

(2) As a→ e(p/q) radially in B2, f ◦qa → κp/q = ((−1)q+1 · zq)∗κ1.
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Let {gη}0<η<1 be the semigroup generated by κ written in multiplicative notation,

i.e. gη1 ◦ gη2 = gη1η2 , normalized so that (gη)′(0) = η. Using (11.2), we promote the

algebraic convergence in (11.1) to the dynamical convergence of the high-iterates of

fa to the flow generated by κ(z):

Theorem 11.2. For 0 < η < 1, if we choose high iterates Ta,η so that (f
◦q·Ta,η
a )′(0)→

η, then f
◦q·Ta,η
a → gη uniformly in the closed unit disk away from supp µ.

For applications, it is convenient to use the convergence of linearizing coordinates:

Corollary. As a→ e(p/q) radially, the linearizing coordinates ϕa : D→ C converge

to the linearizing coordinate ϕκ := limη→1− g
η(z)/η for (the semigroup generated by)

the limiting vector field κ.

Remark. More generally, one can consider linear degenerations where a → e(p/q)

asymptotically along a linear ray, e.g. a ≈ e(p/q)(1 − δ + δ · Ti). In this case, the

limiting vector field takes the more general form:

(11.3) κ(z) = lim
a→1

f ◦qa (z)− z
1− |a|

→ −z
ˆ

ζ + z

ζ − z
dµζ + Ti · z.

We call µ the driving measure and T the rotational factor.

11.1. Blaschke vector fields. Before proving Theorem 11.1, let us examine the

vector fields that may be obtained by this process. Recall that for a holomorphic

vector field κ, the poles of κ are the saddles of the vector field, while the zeros are

sources if Re κ′(z) > 0 and sinks if Re κ′(z) < 0 (if Re κ′(z) = 0, then z is a “center”

but in our case, it does not occur).

Observe that for ζ ∈ S1, the map z → ζ+z
ζ−z takes the disk to the right half-plane.

Therefore,
´

ζ+z
ζ−zdµζ is purely imaginary and monotone decreasing in arg z (except

at the poles of κ). It follows that κ = −z
´

ζ+z
ζ−zdµζ is tangent to the unit circle, has

simple poles and in between any two poles has a unique zero. Since aq → 1 radially, it
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Figure 8. The vector fields z · z−1
(z+1)

· ∂
∂z

and
(
z · z−1

(z+1)
+ iz

)
∂
∂z

.

follows that κ′(0) = −1 and so 0 is a sink. It can be shown that the converse is true:

any vector field which satisfies the above properties comes from a radial degeneration

of Blaschke products, but we will not need this fact so we won’t prove it here.

Lemma 11.1. Let Ma(z) = z+a
1+az

. Suppose a ≈ A ∈ S1 with a = A(1 − δ + δ · Ti)

where δ. Then,

(11.4)
Ma(z)/A− 1

1− |a|
=
(
−A− z
A+ z

+ Ti
)

+O
(

(1− |a|)2
)
.

where the estimate is uniform for a in any non-tangential sector at A.

Proof. This is an exercise in differentiation. One simply needs to compute

∂

∂δ

∣∣∣
δ=0

1

A
· z + A(1− δ + δ · Ti)

1 + (1/A)(1− δ − δ · Ti)z
=
z − A
z + A

+ Ti

and use the fact that 1− |a| ≈ δ. �

We first prove Theorem 11.1 in the case when a → 1. For a Blaschke product

fa(z) = z
∏d−1

i=1
z+ai
1+aiz

, let Ai = âi, A = â and T = T (fa) = −i · A−1
1−|a| . The idea

is to compare fa(z) to the vector field κ(fa) given by (11.3) with driving measure

µ(fa) =
∑ 1−|ai|

1−|a| · δ−Ai and rotational factor T (fa) :
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Lemma 11.2. We have the estimate:

(11.5) fa(z)− z − (1− |a|)κ(z) = O
(

(1− |a|)2
)

uniformly in the closed unit disk away from supp µ.

Proof. Using that z+ai
1+aiz

≈ Ai,
∏
Ai = 1 and

∏
(1 + δi) = 1 +

∑
δi +O(max |δi|2),

fa(z)− z = z

(∏ z + ai
1 + aiz

−
∏

Ai

)
+ z(A− 1) ≈ z

∑( 1

Ai

z + ai
1 + aiz

− 1
)

+ z(A− 1).

Therefore,

fa(z)− z
1− |a|

≈ −z
∑

ρi ·
(Ai − z
Ai + z

)
+ Ti · z = −z

ˆ
ζ + z

ζ − z
dµζ + Ti · z

as desired. �

Theorem 11.1 now follows in the case when a → 1 since for radial degenerations,

the rotational factor T (fa)→ 0.

Radial degenerations with a→ e(p/q). As noted above, for a radial degeneration

with a → e(p/q), we consider the limiting vector field of f ◦qa rather than of fa. To

show that f ◦qa converges to a vector field κ whose driving measure gives mass ρi/q to

each point e(θi + j/q), it suffices to analyze the zero set of f ◦qa .

Let us first consider the case of a generic radial degeneration (i.e. when the points

e(θi + j/q) are all different). The zero set of f ◦qa consists of the zeros of fa and

their 1, 2, . . . , (q − 1)-fold pre-images. We omit the trivial zero at the origin and

split the remaining zeros of f ◦qa into two groups: the dominant zeros and subordinate

zeros. The dominant zeros are the zeros zi = zi,0 of fa(z) and their shadows zi,j near

zi ·e(−j ·p/q). We will refer to all other zeros as the subordinate zeros. From formula

(7.3), it follows the heights of the subordinate zeros are insignificant compared to

the heights of the dominant zeros. Thus, only the dominant zeros contribute to the

limiting vector field.
54



Let us now consider the general case. For a point z ∈ D with |z| ≥ a, say that w is

a dominant pre-image of z under fa if it is located near e(−p/q)ẑ and is a subordinate

pre-image otherwise. By a dominant zero of f ◦qa , we mean a point z ∈ D which is the

k-fold dominant pre-image of zi for some 0 ≤ k ≤ q − 1. To show that the driving

measure µ has the desired expression, it suffices to show that the subordinate zeros

have negligible height. We prove this in two lemmas:

Lemma 11.3. Suppose fa(z) = z
∏

z+ai
1+aiz

is a Blaschke product with |a| = |f ′(0)| ≈ 1.

For K sufficiently large, in the ball B(0, 1 − K
√

1− |a|), the map fa is close to

rotation by â. More precisely, ρD(f(z), â · z) < C(K) with C(K)→ 0 as K →∞.

Proof. The map z → z+ai
1+aiz

takes the ball B(0, 1−K
√

1− |a|) inside the ball

B
(
âi, (C1/K) ·

√
1− |a| · 1− |ai|

1− |a|

)
.

Therefore, |fa(z)− âz| ≤ (C2/K) ·
√

1− |a| as desired. �

Lemma 11.4. Suppose w satisfies f(w) = z yet |ŵ − e(−p/q)ẑ| ≥ ε. Then,

(11.6)
G(w)

G(z)
= Oε(1− |a|).

Proof. Consider the hyperbolic geodesic [0, w]. Set w0 := (1 − K
√

1− |a|) · w and

write [0, w] = [0, w0]∪ [w0, w]. Since fa restricted to the first segment [0, w0] is nearly

rotation by e(p/q), we see that during the first part of the journey from f(0) = 0 to

f(w) = z along f([0, w]), we have moved in the wrong direction, i.e.

dD(f(w0), f(w)) = dD(0, w0) + dD(0, f(z))−Oε(1).

Since a Blaschke product is a contraction in the hyperbolic metric, we must have

dD(w0, w) ≥ dD(f(w0), f(w)) to make up for this detour. �
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11.2. Asymptotic semigroups. By an asymptotic semigroup , we mean a family

of holomorphic maps {ft}t≥0 converging uniformly to the identity map as t → 0 on

compact subsets of a domain Ω, such that

(11.7)
∣∣∣ft(z)− ft1(ft2(z))

∣∣∣ ≤ OK(t2), (t = t1 + t2),

where the notation OK denotes that the implicit constant is uniform on a compact

subsets of Ω. It turns out that (11.7) is equivalent to the apparently stronger condition

that there exists a holomorphic vector field κ on Ω satisfying

(11.8) ft = z + t · κ(z) +OK(t2).

In this section, we will show that the condition (11.7) implies that the short term

iteration of ft approximates the flow of κ :

Theorem 11.3. For z ∈ B(z0, R) compactly contained in Ω, for small time t, the

limit

(11.9) gt(z) := lim
max ti→0

ftn(ftn−1(· · · (ft1(z)) · · · ))

over all possible partitions t1 + t2 + · · · + tn = t exists, and defines a holomorphic

function.

Remark. By uniqueness, {gt} satisfies gs ◦ gt = gs+t as long as gs+t is well-defined.

We can recover κ be the generator of {gt}.

Proof. Choose two balls B(z0, R
′′) ⊃ B(z0, R

′) ⊃ B(z0, R) compactly contained in Ω.

We will first show that if t is sufficiently small, then for z ∈ B(z0, R), all intermediate

computations of (11.9) stay within B(z, R′).

Now we make the following “partitioning” argument: we first consider very simple

partitions with n = 2k and all the ti = t/2k. We imagine that we begin with one

interval of length t. We split this interval in half and pay the cost of C · t2. We now
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have two intervals of size t/2. We split both of those intervals in half and pay the cost

C · (t/2)2 for each splitting. We continue doing this until we have intervals of length

t/2k. We see that the total splittings that occur at a j-th step cost C · t2/2j−1. Thus

the total cost of all splittings that are used to form our subdivision is bounded by

2C · t2. Clearly, this argument also applies to any “balanced” subdivision where all

ε ≤ ti ≤ 2ε (with a larger constant). However, for any “unbalanced” subdivision, we

can pay the cost O(max ti) to make it balanced: namely, we keep splitting intervals in

half whose size exceeds twice the smallest interval. Thus any subdivision (balanced

or otherwise) costs O(t2).

Since ft(z) converges uniformly to the identity on B(z0, R
′′), it is easy to see that

when t > 0 is sufficiently small, all the intermediate compositions ftk ◦ · · · ◦ ft1(z)

stay in B(z0, R
′). Therefore,

dB(z0,R′′)

(
z, ftn ◦ · · · ◦ ft1(z)

)
≤

n∑
k=1

dB(z0,R′′)

(
ftk ◦ · · · ◦ ft1(z), ftk−1

◦ · · · ◦ ft1(z)
)
.

To combine the “costs,” we use the fact that on B(z0, R
′), the hyperbolic metric

ρB(z0,R′′) is comparable to the Euclidean metric. Therefore, the partitioning argument

above shows that the limit (11.9) converges. �

Theorem 11.2 is a special case of Theorem 11.3, where Ω = C \ P(κ) is the com-

plement of the set of poles of κ(z). By the Schwarz lemma, inside the unit disk, gt(z)

can be defined for all time, where as on the unit circle, we can only define gt(z) until

we hit a pole of κ(z).

57



12. Asymptotics of the Weil-Petersson metric

In this chapter, we show Theorem 1.3 which says that as a → e(p/q) radially in

B2, the ratio ωB/ρD∗ → C ′p/q(1−|a|)1/4. As noted in the introduction, the key to this

result is the convergence of Blaschke products to vector fields. By the corollary to

Theorem 11.2, it follows that:

Lemma 12.1. As a→ e(p/q) radially,

(i) The flowers Fp/q(fa)→ Fp/q(κp/q) in the Hausdorff topology.

(ii) The optimal Beltrami coefficients µλ(fa) = ϕ∗a(λ · z/z · dz/dz) converge uni-

formly to ϕ∗κp/q(λ · z/z · dz/dz) on compact subsets of D∗.

Together with Lemma 10.1, this implies:

Lemma 12.2 (Quasi-geodesic property). As a→ e(p/q) radially, each petal Pξi(fa)(fa)

lies within a bounded distance of the geodesic ray [0, ξi(fa)]. Alternatively, the flower

F(fa) lies within a bounded neighbourhood of the hyperbolic convex hull of the origin

and the ends ξi(fa).

Since the flowers of the maps fa (with a close to e(p/q)) have nearly the same shape,

it follows that the pre-flowers of all fa must also have nearly the same affine shape. Let

n(r, fa) denote the number of pre-flowers that intersect the circle Sr = {z : |z| = r}

and µr be the probably measure which gives equal mass to the n(r, fa) pre-images of

the repelling fixed point. Using renewal theory (Chapter 7), it is easy to see that:

Theorem 12.1. As a→ e(p/q) radially,

(a) The limit c(fa) = limr→1
n(r,fa)

1−r exists.

(b) As a→ e(p/q), c(fa) ∼ C ′p/q(1− |a|)1/2.

(c) The measures µr tend weakly to the Lebesgue measure on the circle.

Proof. To see part (b), observe that the size of the immediate pre-flower decays like

∼ (1− |a|). As the entropy h(fa) ∼
√

1− |a|, it follows that c(fa) ∼
√

1− |a|. �
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Flower counting hypothesis. To prove Theorem 1.3, we will show that as a →

e(p/q) radially, ||µ · χG||2WP ∼ c(fa). Intuitively, for r close to 1, the circle Sr inter-

sects pre-flowers at “hyperbolically random” locations. However, we must be slightly

careful since the pre-flowers whose size is less than 1 − r (i.e. ones which do not

intersect the circle Sr) still contribute to the integral average (1.4). To justify the

intuition, we must show three things:

∗ The contributions of the pre-flowers are more or less independent.

∗ All pre-flowers of the same size contribute roughly the same amount.

∗ Most of the integral
´
|z|=1−r |v

′′′/ρ2|2dθ comes from pre-flowers whose size is

� 1− r.

12.1. Decay of correlations. In this section, we use “flower” to mean either a flower

or a pre-flower. Write the half-optimal coefficient µ =
∑
F µF with µF supported on

F . For a flower F , set

v′′′F (z) =

ˆ
F

µ(ζ)

(ζ − z)4
dAζ .

Then v′′′(z) =
∑
F v
′′′
F (z). We wish to show that the integral average in (1.4) is

proportional to the flower count. The main difficulty is that (1.4) features the L2 norm

so we have “correlations”
∑
F1 6=F2

´ v′′′F1
(z)

ρ2
·
v′′′F2

(z)

ρ2
. We claim that these correlations

are insignificant compared to the main term
∑
F
´ ∣∣∣v′′′F (z)

ρ2

∣∣∣2.

For a point z ∈ D, let Fz be the flower which is closest to z in the hyperbolic

metric and Rz be the union of all the other flowers. The integral average (1.4) splits

as follows:

ˆ ∣∣∣v′′′Fz(z)

ρ2

∣∣∣2 +
v′′′Fz(z)

ρ2
·
v′′′Rz(z)

ρ2
+
v′′′Rz(z)

ρ2
·
v′′′Fz(z)

ρ2
+
∣∣∣v′′′Rz(z)

ρ2

∣∣∣2
By the lower bounds established in Chapter 10, the first term is bounded below by

the flower count which decays roughly like ∼
√

1− |a|. Each of three other terms

contribute on the order of O(1 − |a|), and so are negligible. Take for instance the
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second term. By the triangle inequality, for any z ∈ D,

v′′′Fz(z)

ρ2
·
v′′′Rz(z)

ρ2
. e−dD(z,Fz) · e−dD(z,Rz) ≤ e−dD(Fz ,Rz)

This is bounded by e−ρ(0,a) ∼ (1− |a|). The estimate for the other two error terms is

similar.

12.2. Convergence of Beltrami differentials. For a Blaschke product with a ≈

e(p/q), define the idealized flower as F id(fa) := F(gη). Define the idealized immediate

pre-flower F id
∗ (fa) as the Möbius involution of F(gη) about c(fa). For all the other

pre-flowers, let F id
z (fa) be an affine copy of F id

∗ (fa) centered at z. We define the

idealized half-optimal Beltrami coefficient in a similar manner: on F id(fa), we let

µid · χF id be the half-optimal Beltrami coefficient for the limiting vector field; while

on the pre-flowers, we define µid ·χF id
z

by scaling µid ·χF id appropriately. Let us denote

the genuine half-optimal Beltrami coefficient by µhalf := µ · χG. We claim that:

Lemma 12.3. The difference

lim
r→1

ˆ
|z|=r
|vµid/ρ2|2dθ − lim

r→1

ˆ
|z|=r
|vµhalf/ρ2|2dθ ≤ ε(a)

√
1− |a|

where ε(a)→ 0 as a→ e(p/q).

There are two sources of error. First, the pre-flowers don’t quite match up with

their idealized counterparts. Secondly, since the linearizing maps ϕa and ϕκ are

slightly different, the Beltrami coefficients µhalf and µideal themselves are slightly

different.
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Estimating the Symmetric Difference. Let us examine the symmetric difference

between the (pre-)flowers and their idealized counterparts. For this purpose, given

δ > 0, we split the flower Fα into three parts: the core Cαδ , the body Bαδ and the ends

Eαδ =
⋃
i E

α,i
δ :

Cαδ = Fα ∩ {z : |z| < δ},

Bαδ = Fα ∩ {z : δ < |z| < 1− δ},

Eαδ = Fα ∩ {z : 1− δ < |z|}.

When a is sufficiently close to e(p/q), the symmetric difference of F(fa) and F id(fa)

is contained in

(12.1) S(F) := C(fa) ∪ C(gη) ∪
(
B1/2+ε(gη) \ B1/2−ε(gη)

)
∪ E(fa) ∪ E(gη).

We can define the core, body and ends of a pre-flower Fz as the pre-image of the

corresponding part of F . Similarly, we construct a set S(Fz) which contains the

symmetric difference between the pre-flowers and their idealized versions. Let S =⋃
S(Fz).

Write µhalf = µhalf · χS + µhalf · χSc and v′′′half = v′′′µhalf ·χS + v′′′µhalf ·χSc . The triangle

inequality tells us that

(12.2) |v′′′µhalf ·χS |
2 − |v′′′µhalf ·χSc |

2 ≤
∣∣∣v′′′µhalf ·χS + v′′′µhalf ·χSc

∣∣∣2 ≤ |v′′′µhalf ·χS |2 + |v′′′µhalf ·χSc |
2

By Theorem 2.1, the integral average over |v′′′µhalf ·χSc |
2 is insignificant as the proportion

(12.3) lim sup
r→1

| suppµhalf ∩ Sc ∩ {z : |z| = r}|
| suppµhalf ∩ {z : |z| = r}|

≤ ε(δ),

with ε(δ)→ 0 as δ → 0. The same trick allows us to replace µid by µid · χS.
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Estimating the Difference between Beltrami Coefficients. The other source

of error comes from the fact that the Beltrami coefficients µhalf and µid are slightly

different as the linearizing maps ϕa and ϕ(gη) are slightly different. However, if a

is sufficiently close to e(p/q), the L∞ norm of |µhalf − µid| is arbitrarily small on

(Bid)1/2+ε(fa) := B1/2+ε(gη). Hence, the same is true for pre-flowers. Since the

difference |µhalf −µid| is small in L∞ sense, by part (a) of Theorem 2.2, the difference
´
|v′′′half−v′′′id|2 dθ is small. Using the triangle inequality as before completes the proof.

12.3. Flowers: large and small. We now show that for r sufficiently close to 1,

most of the integral average
´
Sr
|v′′′/ρ2|2dθ comes from petals whose size is � (1− r).

By mixing, for any ε > 0, we can find an rmix = rmix(ε) < 1 such that for r ∈ [rmix, 1),

n(r,fa)
(1−r) ≈ε c(fa). For a point z with |z| = r, write:

(12.4) v′′′(z)/ρ2 = v′′′small(z)/ρ2 + v′′′med(z)/ρ2 + v′′′large(z)/ρ2 + v′′′huge(z)/ρ2

where 

small flowers have size s ≤ (1− r)/k

medium flowers have size (1− r)/k ≤ s ≤ k(1− r)

large flowers have size k(1− r) ≤ s ≤ 1− rmix

huge flowers have size s ≥ 1− rmix

From the the lower bound, it follows that the integral average v′′′med(z)/ρ2 over

only the medium flowers is � c(fa). We claim that if we choose the “tolerance” k

sufficiently large, then the other flowers contribute at most ε2(k) · c(fa) where ε2(k)

can be made arbitrarily close to 0. By inspecting the proof of Theorem 2.1, it is easy

to show that the small flowers contribute . c(fa)/k to the integral average. Since

there are finitely many huge flowers and they satisfy the quasi-geodesic property,

their contribution decays to 0 as r → 1. Finally, the large flowers also satisfy the
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quasi-geodesic property, and by Theorem 2.1, they also contribute at most . c(fa)/k.

This completes the proof of the claim and therefore, the theorem.

12.4. An alternate route. In this section, we give a slightly different approach to

Theorem 1.3. For a set K ⊂ D, let K(R) := {z : dD(z,K) < R} and K(R1, R2) :=

{z : R1 ≤ dD(z,K) < R2}. We will show that most of the integral average comes

from Ĝ(R). In particular, this tells us that we can use renewal theory to estimate the

integral average (1.4):

Theorem 12.2. For any ε > 0, there exists an R > 0 such that when a is sufficiently

close to e(p/q),

lim
r→1

1

2π

ˆ
|z|=r
|v′′′/ρ2|2dθ ≈ε lim

r→1

1

2π

ˆ
Sr∩G(R)

|v′′′/ρ2|2dθ(12.5)

≈ε
1

2πh(fa)

ˆ
F∗(R)

|v′′′/ρ2|2

1− |z|
· |dz|2.(12.6)

To prove the above theorem, we need the following simple observation:

Lemma 12.4. The hyperbolic distance dD(G, {̂c}) ≥ dD(0, c)−O(1).

Proof. The proof follows from the Schwarz lemma. Suppose we want to estimate the

hyperbolic distance dD(Fz, c′) from a (pre-)flower to a (pre-)image of a critical point.

Then either dD(Fz, c′) ≥ dD(F , c) or dD(Fz, c′) ≥ dD(F∗, B(0, |c|)). In either case,

dD(Fz, c′) ≥ dD(0, c)−O(1) as desired. �

Proof of Theorem 12.2. By Lemma 2.5, for any ε > 0, we can choose t(ε) > 0 so that

the dynamics in Ut := {z : 1− t · δc ≤ |z| < 1} is sufficiently affine to guarantee that:

(12.7) lim
r→1

ˆ
Sr∩F̂1

∗∩Ut
|v′′′/ρ2|2dθ ≈ε

1

2πh(fa)

ˆ
F1
∗∩Ut

|v′′′/ρ2|2

1− |z|
· |dz|2

It remains to estimate the error terms.
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By Lemma 12.4, on the saturation of E1 = F1
∗ ∩ U c

t , we have |v′′′/ρ2|2 = O(δa).

Therefore, the part of the integral average over Ê1 is insignificant compared to the

main term. Write:

(12.8) E2 = (F1
∗ ∩ Ut) \ F∗(R) =

∞⋃
n=0

En
2 = F∗(R + n,R + n+ 1) ∩ Ut.

Observe that on Ên
2 , we have |v′′′/ρ2|2 . e−2(R+n), while by Lemma 7.3, the laminated

area Â(Ên
2 ) = O(eR+n · δc). Therefore,

(12.9) lim sup
r→1

ˆ
Sr∩Ên2

|v′′′/ρ2|2dθ . e−R · δc.

Summing n from 0 to infinity, we see that Â(Ê2) = O(e−R · δc) as desired. �
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Index of Notation

∗ Tg,n – Teichmüller space of Riemann surfaces of genus g with n punctures

∗ Modg,n – the mapping class group

∗ ||µ||WP, ||µ||T – Weil-Petersson and Teichmüller norms of a Beltrami coeffi-

cient

∗ Q(X) – holomorphic quadratic differentials with at worst simple poles on

X ∈ Tg,n

∗ M(X) – bounded measurable Beltrami coefficients on X ∈ Tg,n

∗ M1(X) – unit ball in M(X), i.e. Beltrami coefficients with ||µ||∞ < 1

∗ ρ = 2|dz|
1−|z|2 – the hyperbolic metric on the unit disk

∗ ρα – for α > 0, incomplete model metrics on the upper half-plane invariant

under SL(2,Z)

∗ dD(z1, z2) – the hyperbolic distance between z1 and z2

∗ [z1, z2] – for z1, z2 ∈ D, the geodesic connecting z1 and z2 in the hyperbolic

metric

∗ Bd – the space of degree d Blaschke products

∗ A . B means that A < const ·B

∗ A ∼ B means that A/B → 1

∗ A � B means that C1 · B < A < C2 · B for some constants C1, C2

∗ A ≈ε B means that |A/B − 1| . ε

∗ Sr – the circle {z : |z| = r}

∗ S(ζ, θ, R) = {z : arg(z/ζ − 1) ∈ (π − θ
2
, π + θ

2
)} ∩B(ζ, R) – sector at ζ ∈ S1

∗ Bp/q(η) – a horoball in the upper half-plane resting at e(p/q) of diameter η/q2

∗ Hp/q(η) := ∂Bp/q(η) – a horocycle in the upper half-plane

∗ Bp/q(η/q2) = a(Bp/q(η/q
2)),Hp/q(η/q

2) = a(Hp/q(η/q
2)) where a(τ) = e2πiτ

∗ δa = 1− |a| for f ∈ B2, more generally, δa = infi(1− |ai|) for f ∈ Bd

∗ c – the critical point of a Blaschke product f ∈ B2 in the unit disk
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∗ δc = 1− |c| for f ∈ B2, more generally, δc = infi(1− |ci|) for f ∈ Bd

∗ Ut := {z : 1− t · δc ≤ |z| < 1} where t < 1 – linearity zone

∗ f̃ = mc→0◦f ◦m0→c – critically-centered version of a Blaschke product f ∈ B2

∗ ϕa(z) := limn→∞ a
−n · fna (z) – the linearizing map of a Blaschke product fa

∗ G(fa),F(fa), {Pi(fa)} – the garden, flower, petals of a map f ∈ B2

∗ F∗(fa),P∗(fa) – immediate pre-flower, immediate pre-petal

∗ mc→0(z) = z+c
1+cz

, m0→c(z) = z−c
1−cz .

∗ G̃(fa), F̃(fa), {P̃i(fa)} – critically-centered versions of the garden, flower and

petals

∗ mp/q = |(f ◦q)′(ξ1)| – the multiplier of the p/q-cycle of a Blaschke product

f ∈ B2

∗ G(z) = log 1
|z| – the Green’s function of the unit disk with a pole at the origin

∗ Ê = {ζ : f ◦n(ζ) ∈ E for some n ≥ 0} – where E ⊂ D is a set

∗ ẑ = z/|z| – when z ∈ C∗ is a point

∗ z+ = 1/z is the reflection of a point z in the unit circle

∗ µ+ = (1/z)∗µ is the reflection of a Beltrami coefficient in the unit circle

∗ κ1(z) = z · z+1
z−1
· ∂
∂z

and κp/q(z) = ((−z)q)∗κ1

∗ {gη} with η ∈ (0, 1) – semigroup generated by a vector field: gη1η2 = gη1 ◦ gη2

∗ ϕκ(z) := limη→1− g
η(z)/η – the linearizing map of (the semigroup generated

by a) radial Blaschke vector field κ
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[Wol] Wolpert, S. Families of Riemann surfaces and Weil-Petersson geometry, AMS, 2010.

67


