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Evolution of Morphology: Modifications to Size and Pattern 

Abstract 

 

A remarkable property of developing organisms is the consistency and 

robustness within the formation of the body plan. In many animals, morphological 

pattern formation is orchestrated by conserved signaling pathways, through a process 

of strict spatio-temporal regulation of cell fate specification. Although morphological 

patterns have been the focus of both classical and recent studies, little is known about 

how this robust process is modified throughout evolution to  accomodate different 

morphological adaptations.  

In this dissertation, I first examine how morphological patterns are conserved 

throughout the enourmous diversity of size in animal kingdom. We explore scaling of 

patterning to variations in embryonic size, and focus on the patterning of ventral 

neurons in the neural tube dorso-ventral axis in three avian species that are drastically 

different in size: Zebra Finch, Chick and Emu. We find that although the three species 

end up with comparable proportions of neuronal domains, the dynamics of patterning 

are very different due to differential response to the morphogen Sonic hedgehog, which 

mediates cell fate induction along the D-V axis. This difference in response to 

morphogen across species is intrinsic to cells, and downstream of the pathway receptor 

Smoothened.  



iv 

 

In the second part of this work, I explore developmental mechanisms involved in 

modifying conserved morphological patterns in order to adapt to a new function 

throughout evolution. Loss of digits in the tetrapod limbs is one such adaptation that has 

arose repeatedly as tetrapods occupied and adapted to different habitats. We focus on 

comparisons between mouse, the three-toed desert rodent Jerboa, and three species of 

hooved ungulates. We find that digit loss occurs early during limb development prior to 

chondrogenesis, either during patterning with down regulation of Ptc1 expression, or 

post-patterning through expansive cell death in the limb. Our findings demonstrate that 

mechanisms to alter pattern are flexible, and can either happen at time of patterning or 

subsequently.  

Taken together, this dissertation explores evolution of modifications to 

morphological patterns. The first part focuses on how alterations to size can evolve 

while conserving pattern, and the second part explores how strictly conserved patterns 

are modified to accomodate adaptations to function.   
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Chapter One 

 
Introduction 

 

 

“But for what purpose was the earth formed?" asked Candide. "To drive us mad," replied Martin.”  

 

from Candide  

http://www.goodreads.com/work/quotes/2833018
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On Growth and Pattern 

 In morphogenesis, a pattern is defined as the complex organization of cells in 

space and time. Pattern formation is a crucial feature of all developing animals and 

occurs at many levels of biological organization from cells to organs to organisms. 

Mechanisms that generate patterns can vary in detail, they share the common feature of 

a ‘signal’ that carries information and varies in space or time.  

Morphological pattern formation is orchestrated by several highly conserved 

signaling pathways in animals, and in all developing organisms patterning dynamics are 

closely related to growth dynamics. In his seminal work ‘On Growth and Form’, D’Arcy 

Wentworth Thompson writes ‘Like any other aspect of form, pattern is correlated with 

growth, and even determined by it’. How, then, can we explain the enormous diversity of 

size in the animal kingdom, whose members share homologous structures with 

common templates or patterns that appear to be perfectly scaled to their size? The first 

part of this thesis deals with this problem, which is interesting in both developmental 

and evolutionary perspectives. 

The second part of this thesis deals with evolutionary modifications to not size, 

but the conserved patterns in morphology. Homologous structures are known to be 

patterned by the same toolkit, or common signaling events, in different animals. Yet we 

see adaptive modifications to patterns, as animals alter conserved morphologies to 

accomodate their specific niche. The tetrapod limb is one such example, where the 

diversity of function produces a deviation from the highly conserved pentadactyl ground 

state in digit number. Vertebrates from a diverse range of taxa have reduced the 

number of their digits in order to meet specific locomotion or other functional 
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adaptations, and it remains to be explored which developmental mechanisms are 

employed.  

This work aims to investigate morphology from an evolutionary perspective, and 

explore mechanisms involved in adapting morphogenesis to variations in size or 

pattern. 

Part 1. Scaling Morphogen Mediated Patterns to Variations in Size 

Morphogen Mediated Pattern Formation 

A fundamental property of developing organisms is the remarkable consistency 

within the formation of the body plan. The plasticity of embryonic development was first 

explored through a set of classical experiments by Hans Spemann and Hilda Mangold 

at the beginning of the 20th century, where they demonstrated that the vertebrate 

embryo is able to adjust to extreme perturbations in size, and thereby scale its 

morphology to size with surprising accuracy(Spemann  H 1924; Spemann 1938; 

Morgan 1895).  

In many species ranging from cnidarians to humans, morphological patterning is guided 

by a spatial gradient of morphogens, long-range extracellular effectors that induce 

different cell fates in a concentration dependent manner. During embryonic 

development, morphogen gradients are launched by evolutionarily conserved molecular 

networks, and correct morphological patterning is established proportional to the 

embryonic size, within or across species. The scale and effect of the morphogen 

gradient is thought to be determined by intrinsic properties (such as degradation rate or 

diffusivity of the morphogen protein) which are extracellular to the target cells. However, 
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the gradient of morphogen response is what ultimately generates pattern, and can be 

modulated both by extracellular components and intracellular components.  

The morphogen gradient model dates back to the theoretical work of Lewis Wolpert 

(Wolpert 2011). The ‘French Flag Model’ he proposed is accepted as the conventional 

view of morphogen mediated pattern formation. According to this model, a morphogen 

signal is secreted from a localized source, spreads through the tissue, and subdivides 

the tissue into domains of differential gene expression. Patterning by a morphogen 

gradient has three distinguishing principles. First, the secreted morphogen can act on 

cells at a distance from the source. Second, cells within the morphogen’s signaling 

range respond to a threshold concentration and are induced to different cell fates. 

Finally, the morphogen concentration should act as the major positional cue for cell fate 

specification(Gurdon & Bourillot 2001). 

Our improved understanding of the morphogen gradient and function has led to 

elaborations on the conventional model, and further questions need to be addressed in 

order to fully grasp the mechanism of signal interpretation by target cells.  One 

important insight that was recently gained is that duration of morphogen signaling is as 

important to cellular response as concentration of morphogen(Dessaud et al. 2007). It 

appears that in the chick neural tube, progenitors convert to specific cell fates upon 

exposure to either different concentrations or durations of the morphogen Sonic 

hedgehog, revealing a new strategy for morphogen interpretation where the 

concentration and duration of a signal are integrated to control differential gene 

expression in responding cells. Similarly, in the vertebrate limb patterning, previous 

studies have reported that it is not just the concentration of the Shh morphogen, but 
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also duration of exposure that determines digit identity and pattern in the autopod(Harfe 

et al. 2004).  

Pattern and Size 

Establishment of a particular morphological pattern by morphogen activity along 

varying signaling ranges is a fundamental process. Classical examples are the 

variations in size of the embryos in avian and amphibian species, wherein even 2-fold 

size differences yield invariant body plans(Cooke 1981).  

The amphibian embryo has been an established classical model for studying 

pattern scaling since the classical Spemann experiments, where dorsal half of newt 

embryos grow to be proportionately patterned tadpoles, albeit smaller. These 

experiments from the early 20th century have been repeated in Xenopus embryos, and 

mainly focus on the early dorsal-ventral gradient of BMP signaling in the Xenopus 

blastula (De Robertis 2009).  In early vertebrate embryos, dorso-ventral patterning is 

guided by four different BMP ligands that are secreted uniformly but eventually form a 

gradient across the D-V axis. Such a gradient is established and is resistant to 

perturbations in size due to a proposed Expander-repressor mechanism. First, a BMP 

ligand inhibitor (chordin) is expressed at the dorsal pole and forms a concentration 

gradient that peaks dorsally. Chordin functions to inhibit BMP ligands on the dorsal pole 

and shuttle BMP ligands towards the ventral pole, such that a BMP activity gradient that 

peaks in the ventral side is effectively established. Second, an expander protein (Admp) 

is expressed at the dorsal pole. Admp is a BMP ligand that eventually expands the BMP 

gradient by competing with other BMP ligands over the ventral shuttling by repressor 

chordin. Third, auto-repression of Admp stabilizes the spread and amplitude of the 

gradient according to the total size of the target field of tissue, thereby fine-tuning the 
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activity gradient to the size of the embryo. This model of expander-repressor 

mechanism is proposed to contribute to the scaling of patterning in size variations of 

early vertebrate embryos (Ben-Zvi et al. 2014; Barkai & Ben-Zvi 2009). 

Scaling to size is not a unique property of vertebrate embryos and the Xenopus 

blastula is certainly not the only case. Studies on the Drosophila wing have provided 

direct evidence that scaling of developmental patterning to variations in size can also be 

achieved at the level of morphogen activity gradient itself (Teleman & Cohen 2000). In 

this study, Teleman et al. show that in mutant flies with variations in size of wing 

compartment, shape of Dpp gradient is adjusted proportionately, as reflected by 

expression domain of target gene Spalt. This size accommodation occurs at the level of 

Dpp activity gradient (and not at level of target gene regulation), because 

phosphorylation status of MAD proteins, the Dpp signal transducers, is reflective of 

Spalt expression.   

Ultimately, development of all multicellular organisms is challenged by changes 

in size and morphology and robustness and flexibility of pattern formation lies at the 

core of this challenge. Coordination of growth and patterning can be achieved if pattern 

itself dictates size, or same mechanism governs both processes. When size is different 

at time of patterning, external physical factors may alter shape of a gradient. Another 

possibility is that scaling is inherent to the the patterning process itself, as is the case in 

establishing the BMP activity in early Xenopus embryo.  
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Sonic hedgehog signaling cascade in the neural tube  

This thesis focuses on pattern and scaling in the vertebrate neural tube dorso-

ventral axis, where morphogen Sonic hedgehog (SHH) acts to specify 5 distinct 

neuronal subtype domains at a distance from the ventral midline. The strength of using 

the vertebrate neural tube dorso ventral axis is that each progenitor domain expresses a 

specific set of transcription factors, thereby providing a molecular read-out for 

mophogen response.   

Sonic hedgehog activity has been well studied in the neural tube and other 

systems. The secreted molecule sonic hedgehog (SHH) is a ligand of the hedgehog 

signaling cascade and acts as a morphogen. It plays a key role in vertebrate 

organogenesis, including limb patterning, organization of the brain, and neuronal 

subtype specification in the vertebrate neural tube(Ingham & McMahon 2001). When 

this evolutionarily conserved pathway is impaired in vertebrates, birth defects and 

tumorigenesis result(Jiang & Hui 2008). 

As with other morphogens, the SHH signaling cascade starts with the release of 

the SHH protein from a localized population of cells (Outlined in Figure 1.1). 

Production and release of Sonic hedgehog involves a series of post-translational 

modifications, in which the precursor protein is cholesterol modified at the C terminus 

and palmitoylated at the N terminus(Chen et al. 2004). The active SHH protein (ShhNp) 

is then released from producing cells through a multi-pass transmembrane protein 

dispatched 1 (DISP1). The formation of this high molecular weight, cholesterol-modified 

ShhNp complex appears to influence the ligand’s diffusion abilities(Zeng et al. 2001; 

Guerrero & Chiang 2007; Y Li et al. 2006).  
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Figure 1.1  : Sonic Hedgehog Signaling Pathway: Figure adapted from Pan et 

al. (Pan et al. 2013). The vertebrate sonic hedgehog signaling pathway, with the 

SHH secreting cell (right) and receiving cell (left) represented. SHH pathway 

receptor PTCH1 inhibits Smoothened in the off-state. When morphogen SHH 

binds PTCH1, this inhibition is relieved, and signaling cascade starts with 

downstream proteins interacting with Smoothened. 
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 Spread of Sonic hedgehog in its target field is influenced by the expression of 

transmembrane proteins that bind SHH, such as ECM heparin sulfate proteoglycans 

(HSPGs) and cell surface proteins PTC1, PTC2, HIP1, GAS1, CDO and BOC  

(Martinelli & Fan 2007; The et al. 1999; Chuang & McMahon 1999; Tenzen et al. 2006; 

Holtz et al. 2013). In the absence of Sonic hedgehog, receptor PTC1 represses the 

activity of a seven-pass transmembrane protein Smoothened (Smo)(Chen et al. 2002). 

As a result, three zinc finger transcriptional factors (GLI1, GLI2, and GLI3) that are 

downstream of SMO in the signaling cascade are proteolytically processed and lose 

their ability to function as transcriptional activators. GLI3 has been shown to be a 

transcriptional repressors in its proteolytically processed form. The binding of SHH to its 

target receptor Patched1 (PTC1) starts the hedgehog signaling cascade and leads to 

the internalization of the morphogen(Incardona et al. 2002). Receptor PTC1 releases its 

repression on SMO, and an accumulation of SMO in the cilium leads to the inhibition of 

GLI processing. GLI3 loses its ability to function as a repressor, whereas the full length 

activator forms of GLI1 and GLI2 activate downstream transcriptional targets(Corbit, KA, 

Singla, V, Norman, A.R., Stainier, D.Y., Reiter 2005). 

 The GLI transcription factors are the vertebrate orthologs of Drosophila Ci, which 

is the main effector of hedgehog signaling in flies(Aza-Blanc & Kornberg 1999). The 

regulation of Ci/GLI processing is a key step in the pathway, and determines 

activator/repressor activity for the downstream targets. As shown in vertebrates, SHH 

gradient is translated into a GLI activator gradient in the developing limb bud and the 

neural tube, two tissues where SHH patterning has been extensively studied(Despina 

Stamataki et al. 2005; Hill et al. 2009). GLI3 function is mostly associated with its 
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repressor form, GLI3R, which is the processed form of GLI3 when SHH ligand is 

absent(Meyer & Roelink 2003; Wang et al. 2000). Conversely, Gli1 and Gli2 mainly 

function in their full-length activator form in presence of SHH signal, most notably during 

the patterning of the neural tube. Recent findings show that ratio of the GLI activator 

form to repressor form (GliA/GliR) is the main effector of the SHH cascade(Despina 

Stamataki et al. 2005), leading to either repression or activation of many transcriptional 

targets that GLI factors regulate. 

 One of the downstream transcriptional targets of GLI activation is PTC1, the 

Hedgehog receptor(Goodrich et al. 1996; Marigo et al. 1996). This is an important 

regulatory strategy used in many morphogen systems, wherein activation of signal 

transduction cascade leads to upregulation of pathway inhibitors in order to tone down 

signaling(Perrimon & McMahon 1999). PTC1 is a negative regulator of the hedgehog 

signaling in two ways: First, it inhibits the activity of SMO in the absence of ligand SHH. 

Additionally, it sequesters the ligand SHH, thus limiting the range over which the 

morphogen can diffuse(Chen & Struhl 1996). 

Patterning of the neural tube by a gradient of SHH  

The activity of SHH in the development of the spinal cord represents an example 

where progress has been made in understanding the dynamics of morphogen action. 

During the dorso-ventral patterning of the vertebrate neural tube, distinct neuronal 

subtype progenitors emerge in precise spatial order upon the long-range graded SHH 

signal that emanates from the ventrally positioned notochord and the floor 

plate(Yamada et al. 1993; Ericson et al. 1995). Genetic evidence in mice shows 

requirement for Shh signaling during specification of most ventral cell types(Chiang et 

al. 1996).In vitro assays indicate that a range of SHH concentrations can induce specific 
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combinations of transcription factors, which result in five distinct progenitor cell fates in 

the ventral half, as outlined in Figure 1.2 (Briscoe et al. 2000). These transcription  

Figure 1.2: Sonic hedgehog mediated patterning in the vertebrate neural tube  

a and b adapted from (Jessell 2000) a. SHH is produced in the notochord underlying the 

neural tube and sequentially in the floor plate at the ventral midline of the neural tube. 

b.It emanates from the source and diffuses into the tissue. c. The morphogen 

concentration gradient induces specific cell types along the ventral half of the neural 

tube, each progenitor domain has a distinct set of transcription factors expressed.  
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Figure 1.2 (continued)  
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factors, which include members of the homeodomain and basic helix-loop-helix families, 

are subdivided into two groups based on their regulation by the Shh pathway(Briscoe et 

al. 2000; Ericson et al. 1997). Expression of class I transcription factors is repressed by 

Shh signaling, while expression of class II factors is activated upon Shh exposure. 

Cross-repression of these factors serves to sharpen the boundaries between the distinct 

progenitor domains(Dessaud et al. 2008).  

The induced pattern of expression is determined by both time and level of 

exposure to SHH concentration(Harfe et al. 2004; Dessaud et al. 2007). The SHH target 

transcription factor NKX2.2 is expressed in the ventral-most progenitor domain, pV3, 

which is closest to the SHH ligand source in vivo. In vitro, the induction of this gene 

requires the highest and longest exposure to recombinant SHH-N. Studies show that all 

transcription factors regulated by SHH follow this pattern. Figure1.2 summarizes some 

of the transcription factors that mark the ventral progenitor domains, induced by a 

gradient of SHH concentration. Both concentration and time of exposure of cells to SHH 

are critical for cell type specification, and recent findings suggest that any absolute SHH 

concentration is converted into duration of hedgehog signaling in the responding 

cell(Nishi et al. 2009; Kutejova et al. 2009).  

One important regulation in many morphogen systems is negative feedback. In 

SHH pathway, signal transduction by SHH ligand binding to receptor PTC1 leads to the 

upregulation of pathway inhibitors and attenuation of signaling(Perrimon & McMahon 

1999). PTC1 exerts its negative feedback effect in two ways: First, by inhibiting SMO 

activity in the absence of SHH, and second, by sequestering SHH ligand and thereby 

affecting morphogen diffusivity across its field of range(Chen & Struhl 1996). Theoretical 
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work on SHH morphogen diffusivity suggests mechanisms that promote intracellular 

degradation of the SHH ligand decrease the spatial SHH concentration profile(Saha & 

Schaffer 2006). Therefore, cell-autonomous and non-cell autonomous effects of ligand-

dependent antagonism together can decrease the magnitude and range of morphogen 

signaling gradient.  

Recent experimental data also supports a model in this direction. Jeong et al. 

2004 have demonstrated that in mouse embryos that lack PTC1 and HIP1 feedback 

activities (in genetic backgrounds a)Ptc1+/- b) Hip-/- and c) Ptc+/-;Hip-/- ) moderate 

patterning defects are observed, consistent with increased magnitude and range of 

SHH signaling(Jeong & McMahon 2005). Most recent work from Ben Allen’s lab defines 

PTCH2 as an additional Hedgehog pathway agonist with a role in ligand-dependent 

feedback inhibition (LDA), a process that they conclude to be governed by PTCH1, 

PTCH2 and HHIP1 collectively in vertebrate embryos (Holtz et al. 2013). They employ a 

combination of mouse and chick in vivo studies in the neural tube, as well as cell-based 

assays to (1) confirm PTCH2 to be a HH antagonist (this has only been shown in cell 

based assays previously) and (2) show that when HH feedback up-regulation function is 

abrogated altogether in MT-Ptch1;Ptc1-/-;HHip1-/-;Ptc2-/- mice, ectopic ventral cell fates 

are observed even in dorsal-most regions of the neural tube, mimicking a constitutive 

Hh activation. This finally reconciles vertebrate data with what was previously observed 

in Drosophila: that PTC1 feedback up-regulation is indispensable for restricting the 

range of pathway activity away from the morphogen source. 

After onset of cell fate specification, the second phase of neural tube patterning 

starts: differentiation. A critical step in the progression of progenitors into differentiated 

Jeong et al., 2004 
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neurons is the expression of distinct proneural bHLH genes in the progenitor domains, 

such as Neurogenin 1 (Ngn1), Neurogenin 2 (Ngn2) and Mash1. These proteins have 

regulatory roles or progenitors to exit cell cycle, move into the mantle zone and induce 

pan-neural characteristics(Hatakeyama et al. 2004; Fior & Henrique 2005). Notably, 

Notch signaling activates the expression of Hes family of bHLH repressors, which 

prevent the expression of proneural bHLH proteins. Misexpression of Notch pathway 

components have been shown to disrupts differentiation dynamics in the neural 

tube(Ohtsuka et al. 2001; Ohtsuka et al. 1999; Handler et al. 2000; Hatakeyama et al. 

2004). Thus, opponent activities of several different families of transcription factors may 

account for how distinct neuronal cell types are organized. In fact, recent studies 

(Kicheva et al., unpublished)  show that differentiation rate is unique for each progenitor 

cell type, and therefore, differentiation dynamics may contribute to the ultimate pattern 

in the neural tube. Figure 1.3 represents distinct phases of cell type induction (phase 1) 

and differentiation (phase 2) in the chick neural tube.  
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Figure 1.3: Two phases of neural tube development in chick Neural tube 

development and patterning can be separated into two distinct phases. The first one is 

the induction of distinct cell types and formation of progenitor domains across the dorso-

ventral axis. Once all domains are distinctly specified, progenitor exit cell cycle, move 

into the mantle zone (outside the area outlined in dashed white lines) and start 

differentiation. Rate of differentiation is distinct for different cell types and is known to 

contribute to patterning dynamics.  
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Chick, Zebra finch and Emu as model species for comparative studies of Shh 

morphogen gradient  

 

In chick and mouse neural tube, despite significant data on how patterning is 

formed along the D-V axis by Shh morphogen activity, little is known about the 

relationship between patterning, size and scaling of the morphogen gradient over 

different distances. In 2005, it was shown that a gradient of GLI transcriptional activity is 

sufficient to orchestrate patterning of the ventral neural tube, even in the absence of 

SHH morphogen(D Stamataki et al. 2005a). This makes the ventral neural tube an ideal 

system to study morphogen activity, as expression profiles of GLI proteins and target 

transcription factors can be used as a read-out for patterning.  Zebra finches 

(Taeniopygia guttata ) have the smallest egg size of all avian species (Paganelli , Ar 

1974), while the Emu eggs (Dromaius novaehollandiae) are among of the largest. 

Exploring patterning dynamics in two ends of the size spectrum, along with the 

commonly used model organism chick (Gallus gallus), provides an opportunity to gain 

insights on how animals retain proportionate patterns while at the same time altering 

tissue size at time of patterning (Supplementary Figure S1.1).  In summary, Zebra 

Finch, Chick, and Emu embryonic neural tube development is one example where 

cross-species size differences entail adjusting the morphogen activity gradient. The 

strength of using avian species is that among members of the same class, we can 

expect signaling pathways to be highly conserved, while at the same time egg size 

diversity in bird species is expected to provide a range of embryonic sizes. 
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Conclusion  

The implications of this study is to further extend our understanding of 

evolutionary processes by identifying mechanisms through which conserved morphogen 

function is adjusted to different embryonic sizes.  

 We use the ventral neural tube as the model system, where morphogen Sonic 

hedgehog patterns 5 different distinct cell types. The advantages of this well-studied 

system are multi-faceted. Firstly, induction of a distinct set of transcription factors 

provides a robust molecular read out for morphogen response. Second, availability of 

an in-vitro explant technique enables the study of morphogen dynamics in a controlled 

environment. Finally, this is a well-conserved structure that is critical to the development 

and survival of all vertebrate species, and exploring the mechanistic of how it adapts to 

size can be universally insightful for animal evolution.  

Part 2. Modifications to Pattern: An Introduction to Evolution of Pentadactyly and 

a Reduction to Digit Number 

 

“The Vertebrated animals enjoy as extensive and diversified a sphere of active 

existence as the Invertebrated. They people the seas and can move swiftly both 

beneath and upon the surface of water: they can course over the dry land, and 

traverse the substance of the earth: they can rise above that surface and soar in 

the lofty regions of aerial space. The instruments for effecting these different 

kinds of locomotion – diving and swimming, burrowing and running, climbing and 

flying – are accordingly very different in their configuration and proportions.” – Sir 

Richard Owen, On the Nature of Limbs, 1849. 

 

Extending from seminal work and theories of Charles Darwin and his 

contemporaries, mid-19th century marks a Renaissance in comparative vertebrate 

anatomy. Many great morphologists of the time draw attention to homology between 

limbs of different species and the deviations from conserved the archetypal pattern that 
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arise in each vertebrate lineage. One such deviation is the variation to the number of 

digits deriving from the pentadactyl count of ancestral tetrapods. In is work ‘On the 

Nature of Limbs’, Sir Richard Owen compares limb elements in a multitude of species 

and notes the homology between the hoof of the horse and the middle digit of  man. 

Today, experimental embryology and modern molecular biology confirm this 

observation and aim to build on these findings to further explore evolutionary 

mechanisms that result in variation to digit count.  

Origins of Limbs and Autopoda 

 To revisit the evolutionary origins of limb, one needs to look at the appearance of 

paired appendages in Agnatha, the jawless fish, 560 million years ago(Kumar & Hedges 

1998). Serially duplicated paired appendages (pectoral and pelvic fins) are homologous 

to the forelimbs and hindlimbs in tetrapods, evidence of which lies in the shared 

morphology and mechanisms of induction for these elements during embryonic 

development. Indeed, both fins and limbs start out as mesenchymal buds, surrounded 

by a layer of ectoderm. Expression of Tbx5 in the forelimb and pectoral fin, and the 

expression of  Tbx4 in the hind limb and pelvic fin is required for the bud 

induction(Garrity et al. 2002). Expression of genes that govern bud outgrowth and 

formation are also comparable (such as Fgf8 and Wnt7a). Additionally, both the limb 

skeleton of tetrapods and proximal fin skeleton of fish forms through endochondral 

ossification, whereby bone mineralization is laid down on a cartilage scaffold. 

Interestingly, homology stops at the distal-most elements, and the distal fin rays in fish 

form by direct ossification in the dermal apical fold. On the other hand, digits in the 

vertebrate autopod are a continuation of the endochondral skeleton. 
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The jawed vertebrates (Gnathostomata) are divided into two branches: the 

cartilaginous fish (Chondrichthyes) and the bony fish (Osteichthyes). Within the bony 

fish, a further subdivision separates the ray-finned (Actinopterygii: the vast majority of 

modern fish) from the lobe-finned fish (Sarcopterygii: lungfish, coelocanths, and all 

modern tetrapods). It is thought that the origin of digits in distal-most part of the paired 

appendages lies early within this branch of Sarcopterygii. Ancestral Sarcopterygians, as 

represented by the species Eusthenopteron that arose about 385 million years ago, 

appear to have a forelimb-like elements with a short and fat basal bone homologous to 

the humerus and a more elongated radial bone that was positioned anteriorly much like 

the radius. The remaining elements, while indicative of a complex endochondral 

skeleton, are difficult to assign homology to modern tetrapods, and none appear similar 

to the serially reiterated jointed digits. Soon after, around 365 myo, a structure 

homologues to the autopod appears in early tetrapods with emergence of Acanthostega 

and Ichthyostega, although it should be noted that these species were still aquatic and 

polydactylous.(Shubin 2002)   

Investigations into the genetic control of digit formation have given us some 

insight into the putative evolutionary mechanisms that gave rise to the autopod. 

Expression analysis and functional studies have uncovered signaling pathways and 

molecular markers that direct the outgrowth and patterning of the limb elements, and 

comparisons between modern limbs, fins, and fossils have revealed homologies 

between these elements(Coates 1994; Butterfield et al. 2010). As the expression 

patterns of certain genes that govern limb growth and patterning, such as Tbx4/5, Fgf8, 

Fgf10 and Wnt7a are spatiotemporally comparable in teleost fins and tetrapod limbs, 
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studies have focused on more downstream patterning events for tackling the 

mechanism responsible for the formation of autopod as a novel structure. One such 

candidate has been the Hox gene cluster, the expression of which can be divided into 

two distinct phases of activity.  

Hox genes are transcriptional regulator genes that play key roles in segmental 

patterning of axial and skeletal elements in vertebrates. The four Hox clusters (a, b, c 

and d) found in vertebrates are highly conserved among species, which suggests that 

the distinct clusters and their relative organization are essential for function. It is now 

well established that HoxA and HoxD genes play a pivotal role during limb development 

and patterning, most notably in allocation of prechondrogenic condensations(Zakany & 

Duboule 1996)  and  the proliferation of skeletal progenitors(Goff & Tabin 1997). In the 

context of paired appendage development, there are two distinct phases to Hox gene 

expression. The early phase (phase I) governs stylopod and zeugopod formation, and is 

initiated by onset of Hox9 expression in the lateral mesoderm prior to the formation of 

the limb/fin bud. Later, the Hox9 expression is maintained and other Hox genes (Hox9-

13) are expressed sequentially along the proximodistal axis of the limb, with the more 5’ 

Hox genes expressed more distally(Tarchini & Duboule 2006; Sordino et al. 1995; 

Nelson et al. 1996). This first wave of expression is transcriptionally regulated by the 

opposing activity of regulatory modules located downstream of the Hoxd cluster, 

orchestrating the process of sequential Hox gene activation from 3’ to 5’ end of the 

complex(Tarchini & Duboule 2006; Spitz et al. 2003). The later phase (phase II) of Hox 

expression is implicated to have a role in autopod patterning, and is extensively studied 

the tetrapod limb. During this phase, the tetrapod limb exhibits sustained proximodistal 
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outgrowth and anterior extension Hox gene  expression. The more posterior (5’) Hox 

genes ( Hoxd11-13) are expressed in the digital anlage, which is positioned in the distal 

margin of the developing bud(Zakany & Duboule 1999). This second phase of Hox 

expression is regulated by enhancer regions located upstream of the Hoxd cluster, in 

enhancer domains called the Global Control Region (GCR) and Prox region(Spitz et al. 

2003; Gonzalez et al. 2007).   

Several studies have reported that while the early phase of Hox gene expression 

is conserved in tetrapod limbs and teleost fins, the second phase of Hox expression is 

missing in the teleost fin(Sordino et al. 1995; Sordino & Duboule 1996; Sordino et al. 

1996).  This lead to the hypothesis that the second wave of sustained Hox expression  

in the distal end of the limb is an evolutionary novelty unique to tetrapods and is 

associated with appearance of novel enhancer sequences located outside the Hoxd 

clusters. Fossil record also supported this idea, suggesting that  the distal autopod and 

digits are neomorphic structures, containing wrist/ankle and digit skeletal elements. This 

model, however, was followed by ambiguity in reports of Hox expression patterns.  

A more detailed look into the expression profile of Hox genes in Zebrafish and 

that of other non-model vertebrates revealed that  Hoxd genes from homology group 13 

are expressed in distal segments of the fin, comparable to their expression pattern in 

the limb despite some differences in spatio-temporal dynamics(Ahn & Ho 2008; Shubin 

et al. 2009; Freitas et al. 2007) . The results indicate that tetrapod digit development 

cannot be associated with a unique distal phase of Hoxd expression, since a similar (but 

not identical) expression pattern is also detected in the shark Scyliorhinus canicula, a 

member of the basal lineage of Gnasthostomes (jawed vertebrates), suggesting that the 



23 

 

second phase of Hox gene expression is a plesiomorphic condition shared by 

chondricthyans and osteichthyans(Freitas et al. 2007).  An alternative scenario, then, for 

the appearance of the autopod and digits in tetrapods is novel modifications to a deeply 

conserved Hox regulation in gnasthostomes, extending an already existing Hoxd 

expression domain(Schneider et al. 2011). Even though distal fins of teleosts and 

tetrapod limbs are not morphologically homologous, they share deep homology in 

genetic and regulatory mechanisms that mediate their formation(Shubin et al. 2009).  

Indeed, a functional homology in Hox gene regulation is supported by conservation of 

cis-regulatory elements between tetrapods, zebrafish and skate, specifically sequences 

that drive Hoxd expression in distal segments. A recent study by Schneider et al. used 

an interspecies transgenesis approach to reveal functional conservation between 

zebrafish, skate and mouse limbs. In this study, Hoxd regulatory element CsB from 

skate and zebra fish were inserted into a lacZ reporter cassette and shown to promote 

distal limb expression in transgenic mice(Schneider et al. 2011).  

Recently, a cis-regulatory element, CsC, has been identified to be tetrapod-

specific and shown to activate 5’ Hoxd transcription(Gonzalez et al. 2007; Montavon et 

al. 2011). CsC promotes expression throughout the autopod and recapitulates 5’Hoxd 

expression domains. Freitas et al. shows that this tetrapod-specific enhancer promotes 

comparable expression in the developing zebrafish fin. Moreover, ectopic expression of 

Hox13a in the distal fin enhances proliferation, distal expansion of chondrogenesis and 

reduction in finfolding(Freitas et al. 2007). These findings, and the identification of a 

tetrapod specific enhancer, support the idea that additional cis-regulatory elements in 
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the tetrapod lineage served to modify a pre-existing and conserved gene expression 

and regulatory network in distal the fin/limb bud. 

An interesting insight gained from extensive Hox gene studies in mice is that 

there is a dose-dependent correlation between Hox11, 12, 13 gene expression and the 

size and number of distal skeletal elements. As summarized, Hox gene loss-of-function 

mutations lead to skeletal alterations such as loss of phalanges, reduction in length of 

elements, or loss of an entire digit. Moreover, targeted expression of Hox13 gene group 

in the limb have led to the ectopic formation of autopodal and digit elements in chick 

embryos(Goff & Tabin 1997; Yokouchi et al. 1995; Gerard et al. 1997; Zakany et al. 

1997), suggesting the role of Hox genes during autopod patterning  and digit growth is 

quantitative. Zákány et al. have further investigated the regulation of digit size and 

number through a step-wise reduction of Hox dosage with mice compound mutant for 

Hoxd11, Hoxd12, Hoxd13 and Hoxa13(Zakany et al. 1997). This study revealed that 

these four genes are the major determinants of digit morphology, and decreasing Hox 

dose in the autopod leads to digit size reductions and transition from pentadactyly to 

polydactyly. An even more dramatic reduction in the Hox dose leads to oligodactyly and 

finally complete loss of digits. However, it appears that particular Hox complexes can 

still possess unique roles in patterning, since polydactylous mice were only obtained via 

disrupting the function of posterior HoxD genes specifically, and oligodactylous mice 

were obtained only by disrupting posterior HoxA genes. 

Ancestral Polydactyly 

Mutations in genes that orchestrate digital patterning in the tetrapod limb show 

that digit number and identity is specified by an intricate network of signaling molecules 
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that is tightly regulated. What remains to be explored is how this robust mechanism can 

be tailored throughout evolution to alter digital pattern to the adaptive needs of different 

tetrapods. A digit can be defined as consisting of several phalanges and the soft tissue 

surrounding it. After the establishment of the anteroposterior pre-pattern in the limb, 

each digit arises as a distinct chondrogenic unit in the autopod. These condensations 

further grow out to form digital rays, while the inter-digital tissue undergoes apoptotic 

cell death (in species with webbed toes, the interdigital mesenchyme differentiates into 

connective tissue). Interdigital cell death has a significant role in sculpting the autopodal 

plate, as shown in mammals, birds, and non-avian reptiles. This defined digit versus 

nondigit cell fate  is regulated by TGFβ and BMP pathways(Macias et al. 1999).    

Each digit is distinct in terms of its morphology and antero-posterior position, but 

digit identities are roughly conserved between different taxa. What appears to be 

different in digit development between different taxa is the timing of digital condensation 

and growth. In amniotes and anurans, for instance, digit condensation starts with the 

penultimate posterior digit, followed by the posterior-most digit, and subsequently the 

anterior digits in a posterior-to-anterior order. In contrast, Urodeles develop their digits 

in an anterior to posterior sequence(Shubin N. 1986; Wake  Shubin, N. 1998).  

The peculiar shared characteristic of the tetrapod autopodium  is the generally 

conserved pentadactyly that appears to be under an evolutionary constraint. A pattern is 

considered to be conservative if, despite modifications to its function, it remains 

unchanged throughout evolution(Wagner  Misof, B.Y. 1993). This is also true for the 

classical definition of homology, defined as the similarity of organs despite differences in 

form and function, as put forward by Owen in the 19th century(Owen 1848). We know 



26 

 

that while the conserved five-digit pattern has gone through digit number modifications 

numerous times in different amniote taxa, it is accepted that they share pentadactylous 

ancestral states, despite ongoing debates over whether the ancestor of all tetrapods 

had stabilized to a pentadactylous ground state in the limbs, as fossil records support 

the idea that amphibians had four digits in their forelimbs(Laurin 1998). Nevertheless, it 

appears that there is a shared ground state to the number of digits. 

Evolution of the Pentadactyl Ground State in Vertebrates 

The earliest autopods evolved with the Devonian sarcopterygians, which are now 

known to be polydactylous. Tetrapod evolution coincides with the origin of autopoda, 

and early polydactylous state of the limbs is thought to be an adaptation to shallow 

water habitats.  Scavangers in tidal swamps, innovation of limbs provided a novel 

locomotion and facilitated transition from aquatic to terrestrial life(Wagner & Chiu 2001). 

Two striking early examples from the fossil record are Acanthostega, with eight digits in 

the forelimb(Coates M.I. 1990), and Ichthyostega with 7 digits in the hindlimb. The only 

other known Devonian tetrapod, Tulerpeton from Russia, has six digits(Lebedev 1984). 

The fossil evidence suggests that the primitive condition for earlier tetrapods is 

polydactyly. Transition to a pentadactyl ground state is first observed in the post-

Devonian, Carboniferous Pederpes, the earliest fossil with an at least functional 

pentadactyly in the hindlimbs. It is distinct from paddle-like hindlimbs of the late 

Devonian tetrapods, appears to be adapted for early terrestrial locomotion and is a firm 

evidence for pentadactyly in an early tetrapod, along with other later examples from 

Carboniferous era such as Greerepeton, Proterogyrinus and Silvanerpeton(Clack 2002). 

It seems that while earlier tetrapods with polydactylous limbs are water-dwelling, later 
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tetrapods with fully terrestrial locomotion exhibit a decrease in number of digits, and the 

pentadactyl ground state seems to arise as an adaptation to land locomotion. 

Although it is now clear that earliest tetrapods were polydactylous, it is still not 

known exactly when digit number was reduced to five or less digits, and there are 

theories on both a diphyletic versus a monophyletic origin to pentadactyly.  Arguments 

for a diphyletic origin have been put forward since the 1930s, with works of Holmgren, 

Save-Söderbergh and Jarvik, and more recently by Coates in the 1990s(Coates 1996). 

Recent modifications to the diphyletic origin hypothesis relies on the assumption that 

the  Devonian tetrapod with six digits, Tulerpeton, is more closely related to 

anthracosaurs (amniotes and their extinct relatives) than stem-amphibians, thereby 

arguing that both amniotes and stem-amphibians underwent reduction to five or less 

digits convergently. However,  reexamination of the phylogeny and the argument that 

Tulerpeton is positioned near the base of anthracosaurs has revealed new insights. 

According to Laurin, 1998, new analysis of the phylogeny suggests Tulerpeton to be  a 

stem tetrapod, thereby making it more likely that reduction to five or fewer digits might 

have occured only once, before the last common ancestor of anthracosaurs and 

amphibians. It should be noted that broader aspects of fin-limb transition are accepted 

to have accumulated within the group of stem tetrapods, and it is only the stabilization to 

pentadactyly where debates remain on the common origin.  

An interesting detail to note in transition from fins to polydactyly and finally to 

pentadactyly is that in contrast to previous theories, appearance of digits and 

pentadactyly seem to be the last adaptations to occur in transitioning from water to land. 

Modifications for transition from water to land involved adaptations for air-breathing, 
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feeding, sensory system, development of a neck, changes to the skeletal structures for 

more weight bearing support, and finally, stabilization to pentadactyly(J A Clack 2009). 

This adaptation to pentadactyly may have occurred through a selection for wrists and 

ankles that are more suited for weight bearing needs of terrestrial life. A refinement or 

restriction to the action of Hoxd13 may have provided autopodal elements that increase 

flexibility and stability on land, while at the same time constraining the number of digits 

to five. For instance, we know that mid-Carboniferous tetrapod Casineria had 

pentadactylous forelimbs that bore phalanges with ligament grooves and claw-like 

terminal elements.  

Interestingly, after the origin and stabilization of pentadactyly, very few species 

have evolved more than five digits, while many have reduced digit numbers, with or 

without modifications to digit identity(Caldwell 2003). Due to the high occurrence rate of 

polydactyly mutations in human and other mammalian populations, as well as the 

results of genetic manipulations, it appears to be a relatively easy process for an 

embryo to increase the number of its digits, through perturbations to the mechanisms of 

antero-posterior patterning in the autopod. A-P patterning of the tetrapod limb is a tightly 

regulated process orchestrated by the sonic hedgehog morphogen, conferring position 

and identity of each digit in the limb primordium. In previous literature, digit identities 

have been assigned according to their position from anterior to posterior, where the 

anterior-most digit is digit number I. Secretion of SHH ligand is activated by Hoxd 

genes(Zakany et al. 2004)  and restricted to the posterior region of the autopod, 

historically defined as Zone of Polarizing Activity (ZPA). Classical experiments have 

shown that when grafted anteriorly, cells of ZPA have the ability to induce 
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supernumerary digits and alter digit identity(Tickle et al. 1975). It was later discovered 

that the polarizing agent in ZPA is the secreted Shh molecule, which diffuses to form a 

concentration gradient along the antero-posterior axis of the limb tissue. Positional 

information across the tissue is thus conferred through exposure of undifferentiated 

mesenchymal cells to different local concentrations of the diffused Shh molecule, and 

distinct threshold concentrations induce distinct cell fates(Gritli-Linde et al. 2001; Zeng 

et al. 2001). Previous studies have reported that digits 3 through 5 arise specifically 

from mesenchymal cells that have expressed Shh as part of ZPA, whereas digit 2 and 

parts of digit 3 are specified by paracrine long-range Shh exposure. This lead to the 

conclusion that digit identities are determined by a combination of: 1) A temporal 

gradient of autocrine activity (digits 3-5), and 2) A spatial gradient of paracrine activity 

(digit 2 and 3). Therefore, it is not just the concentration of the Shh morphogen, but also 

duration of exposure that determines digit identity and pattern in the autopod(Harfe et 

al. 2004).  

The digit primordia accomodate a network of molecular interactions that fine-tune 

the patterning process. Mouse mutations can be considered as natural experiments 

where a gene activity within the tight signaling network in the autopod is disrupted. SHH 

morphogen signaling acts through its downstream GLI proteins (GLI1, GLI2 and GLI3). 

In the absence of SHH, GLI proteins are cleaved in the cytoplasm into their repressor 

forms, and  translocated to the nucleus to inhibit transcription of SHH target genes. 

Upon signaling, full-length GLI proteins activate SHH target genes. In the developing 

autopod, GLI3 is the most prominent GLI, forming a concentration gradient of active 

versus repressor forms: posterior region of the limb (close to the SHH source) has 
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higher levels of GLI3 activator, and the anterior region has higher levels of GLI3 

repressor. Mice that are mutant for Gli3 (Gli3-/-) display polydactylous limbs(Litingtung 

et al. 2002), and several mouse lines with defective Gli processing have strong 

phenotypes in limb patterning(Huangfu et al. 2003; Liu et al. 2005). A known mutation 

that leads to human polydactyly syndrome GCPS (Greig cephalopolysyndactyly 

syndrome) was recapitulated in a mouse model, with the name extratoes (Xt). This 

mutation is a 3’ deletion of Gli3 gene and the mouse model has been instrumental in 

uncovering the function of GLI3 in limb patterning(Hui & Joyner 1993).  Indeed, in a 

subsequent paper, Lopez-Rios et al. investigate the role of GLI3 in cell cycle, and report 

that GLI3 is a negative regulator of digit progenitor proliferation as well as a promoter of 

BMP-dependent exit of digit progenitors to chondrogenesis(Lopez-Rios et al. 2012). In 

cases of mouse polydactyly due to GLI3 malfunction or in human cases of GCP 

syndrome, it is now evident that there are disruptions in Cdk6 mediated entry to cell 

cycle and BMP dependent exit to chondrogenic differentiation, rather than cell fate 

patterning defects. As GLI3 is a target of SHH(Dai et al. 1999), it is not surprising to find 

misexpression of SHH in extratoes (Xt) and many other mouse polydactyly mutants, 

such as hemimelic extra toes (Ht) and Rim4 in which SHH is found to be expressed 

anteriorly and polydactyly manifests itself as a mirror image duplication of the skeletal 

pattern. Such ectopic SHH expression and the resulting mirror image duplication is 

reminiscent of chick transplant experiments where the ZPA region is grafted anteriorly 

and polydactyly is observed(Masuya et al. 1995).  

Notably, mutations in the AER-specific factors affect digital patterning specifically 

and not limb outgrowth. In a mouse study where BMP2, BMP4 and BMP7 activity were 
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removed from the AER specifically, the triple mutants displayed normal stylopod, 

zeugopod and autopod formation; however, polydactyly, interdigital webbing and split 

hand foot malformations were observed. These results confirm that BMP activity in the 

AER is essential for digital patterning and the integrity of AER itself. Other perturbations 

to the signaling events in the autopod have resulted in many different scenarios of 

polydactyly. Disruption of BMP4 in the limb mesenchyme leads to anterior and posterior 

extra digits(Robert 2007). This is suggested to be through the regulation of the AER 

also, since a sustained FGF8 expression is observed in the mutants.For a summary of 

signaling events controlling early limb patterning, see Figure 1.4)   

It should be noted that all cases of polydactyly simply results in a duplicate digit, 

not a distinct digit. Namely, rather than an extra digit with a novel identity, a duplicate 

digit is formed without a unique function. This may be why, although commonly 

occurring in nature, polydactyly is not useful evolutionarily. Instead, changing the 

morphology of another autopodal element, such as a wrist bone, and giving it a novel 

function may enhance the functionality and flexibility of the autopodal elements. Panda, 

mole, and elephant are some examples of animals that are known to alter the identity of 

the sesamoid wrist bone to create a sixth digit with a distinct identity and function(Tabin 

1992).  

A classic example of sesamoid modification is the Panda’s thumb, or Panda’s 

peculiar thumb, as Stephen J. Gould titles it in his essay from 1978(Gould 1978). What 

he calls the peculiar thumb is not actually a thumb or a digit at all, in anatomical sense. 

It is a radial sesamoid bone that is enlarged and lengthened, functional in grasping 

bamboo and flexible enough to help Panda handle its food at maximum ease and 
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efficiency. The rest of the five digits remain functional in the autopod and the regular 

thumb, digit number I, is still not the opposable thumb that has evolved in the human 

autopod. Instead, panda’s solution to digital dexterity comes from modifying a wrist 

bone and re-organizing the muscles to give it a new form and function. 

Similarly, talpid moles (genus Talpa) have modified their radial sesamoid bone 

such that it is a large, sickle-shaped extension anterior to their five digits. The animal 

uses this extra digit-like extension as a means of increasing the autopodal area and 

supporting the animal while digging. There are no phalanges or segments to the bone, 

but it can be moved independently just like an extra digit. As in the case for panda, the 

modified sesamoid bone is equipped with muscle and tendons. Early development of 

this structure is correlated with strong Msx2 expression which hints at the recruitment of 

mechanisms that are normally required for autopodial digital and interdigital sculpting. 

Msx genes are known to play pivotal roles in the patterning of the autopod, such as 

regulating the apoptotic programme, controlling bone development and differentiation. 

However, the extent and integrity of AER does not seem to be affected in the mole  

autopod, and the basic pentadactyl patterning is not interfered(Mitgutsch et al. 2012). 

The elephant’s ‘sixth toe’ is another example of sesamoid bone exaptation 

(modification of existing structures into new form and function). In this case, the 

sesamoid bone is employed as a false digit to provide support for the tip-toed posture of 

the elephant. Similar with the two previous scenarios, musculotendinous structures still 

accompany the elephant false digit, even though it is used for stabilizing posture, and 

not necessarily dactile flexibility(Hutchinson et al. 2011).  
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Mutations in genes that orchestrate digital patterning in the tetrapod limb show that digit 

number and identity is specified by an intricate network of signaling molecules that is 

tightly regulated. What remains to be explored is how this robust mechanism can be 

tailored throughout evolution to alter digital pattern to the adaptive needs of different 

tetrapods. 

Evolutionary History of Digit Loss 

Experimental studies on the mechanisms of digit loss date back to 1949, when 

Bretscher reported that treating early limb buds of Xenopus laevis frogs with the mitotic 

inhibitor colchicine leads to loss of digits, as well as a reduction in the number of 

primordial limb cells(Bretscher 1949). Follow-up work on this study, as repeated in other 

model organisms, suggested that patterning of skeletal elements could depend on 

competition for mesenchymal limb cells during chondrogenesis(Alberch & Gale 1983).  

Consequently, perturbations in limb size can indirectly lead to loss of phalanges or 

complete digits.  This interpretation has additional implications to evolutionary 

perspective to digit loss, as discussed in the next section with the case of urodeles. 

Indeed, the order of digital loss during experimental perturbations to limb size could 

recapitulate phylogenetic pattern of digit loss, suggesting a possible mechanism for 

evolutionary mechanism to digit reduction in certain taxa.  

Other experimental manipulations that lead to digital loss in model systems have 

helped dissect out the gene pathways and regulators that orchestrate limb patterning. 

Gene expression analysis in these mutants has shaped a model wherein BMPs, Ffg4 

and gremlin act within a network to temporally and spatially control Shh mediated 

patterning, a process that regulates number of digital elements. In Shh-/- mice, limb  
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Figure 1.4: Signaling events regulating growh and patterning in the vertebrate 

limb This figure is adapted from (Zeller et al. 2009), outlines signaling pathways that are 

spatio-temporally dynamic and regulate growth and pattern during early limb 

development.  
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development progresses normally in the proximal end, but the distal structures feature 

anomalies in the growth and patterning of skeletal structures, including no digits in the 

forelimb and only one digit (digit I) in the hindlimbs(Chiang et al. 2001; Kraus et al. 

2001). The limb deformity gene mutant mice are known to have impaired AER signaling 

function and result in disrupted FGF4-Shh feedback loop, as well as loss of posterior 

digits(Haramis et al. 1995). In a similar scenario, when Gremlin mediated BMP 

antagonism on Shh is disrupted in gremlin-/- mutants, reduced digit number and loss of 

digit identity is observed(Michos et al. 2004).  

Although phylogenetic and possibly pleiotropic constraints have stabilized digit 

number to five, a number of taxa have independently reduced number of digits in form 

of straightforward digit loss, or in some cases, along with a frame shift in digit identity. 

Birds 

The tridactyl avian wing is a classic example of digit reduction, having evolved 

from the pentadactyl hand of early theropod dinosaurs. However, this transformation is 

of special interest not only due to the reduction in digit number throughout class Aves, 

but also due to the hypothesized homeotic transformation in digit identity. Indeed, 

although the three digits of the avian manus are morphologically homologous to digits I, 

II and III of the theropod dinosaur fossils, embryonic studies show that these digits arise 

at positions II, III, IV in birds(Bever et al. 2011). Interestingly, as the avian manus 

develops, it features five mesenchymal condensations as does any other pentadactyl 

manus. Later in development, the anterior most digit at position I fails to chondrify, and 

the posterior most digit V develops into a short, cartilaginous metacarpal stunt which 

fails to further develop. Digits at positions II, III and IV continue to develop into digital 
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identities I, II and III (Larsson et al. 2010). The fact that tridactyly develops from a 

transitionary pentadactyl stage suggests that there are strong developmental 

constraints to the pentadactyl ground state(Galis F  Metz JAJ 2001)  and that digit loss 

happens secondary to an establishment of pentadactyl pattern.  

There still remains a paradox in digit identity in the avian wing. This has been 

explained by Frame Shift hypothesis, accepting that both developmental studies 

determining digital positions and fossil studies identifying homology were valid, and 

proposing that a homeotic transformation in digit identity occurred in theropod evolution 

before the origin of Aves, leading to mesenchymal condensations of digits I, II and III in 

altered positions(Bever et al. 2011). This hypothesis has been opposed by the 

argument that mechanisms of digital patterning remain too pleiotropic to be 

adapted(Galis et al. 2002; Galis et al. 2005). However, one should note that homeotic 

transformations are common thoughout the evolution of body segments in arthropods 

and vertebrate skeleton. Moreover, comparative expression analysis of Hox genes in 

mouse versus chick manus shows that in both species, HoxD13, but not HoxD10,11 

and 12 are expressed in digit I (Chiang et al. 2001; Vargas AO 2005a; Vargas AO 

2005b). A recent study has also done a detailed transcriptome analysis of the tridactyl 

chick wing, confirming the identities of digits I, II and III, despite the shift in their 

position(Wang et al. 2011). 

Urodeles 

Urodeles, an order of class Amphibia, also show reduced limb morphologies, 

including fewer mesopodial and digital elements. These cases of reductions in urodeles 

are thought to evolve by three  possible evolutionary mechanisms: reduction in size of 
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the limb mesenchyme(Alberch  Gale, EA 1985), failure of digit primordium to separate, 

and fusion of initially separate condensations(Shubin N. 1996; Shubin 2002).  

  All urodeles have less than five digits in the manus, and in salamanders, four-toe 

pattern has evolved independently in several genera. Some species have as few as two 

digits, such as the cave-dwelling salamander Proteus.This species retains digits I and II, 

the first digits of the digital arch to form developmentally. Four-toed salamanders have 

all lost digit V.  Indeed, in almost all cases of digit reduction, the last digits to develop 

are the first ones to be lost in evolution. This phenomenon explains why digits are lost in 

different sequences, specifically in urodeles which are distinct in their order of digit 

development. 

However, it remains to be explored why digits are lost in the first place in all 

urodele species. A study by Alberch and Gale (1985) proposes two hypothesis for this, 

that digit loss in salamanders is associated with either a global developmental arrest 

(such as in dwarfism), or a global slow-down in cellular proliferation (such as in 

paedomorphosis)(Alberch  Gale, EA 1985). Morphometric and phylogenetic analysis 

recently showed that both cases associate with digit loss in salamanders(Wiens 

J.J.  J.T. 2008). 

The association between the evolution of limb size and pattern is an interesting 

phenomenon, especially in the context of digit loss. Miniaturization of body size has 

significant morphological and developmental consequences, mostly because the 

morphogenetic mechanisms of pattern formation are size dependent. Therefore, size 

reduction in embryos is often accompanied by homoplasy, as in the case of digit loss. 
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Not just urodeles, but some frogs also lose digits as a result of miniaturization. Smaller 

limb primordial result in loss of the first digit of the hind limb in frogs, and fifth digit in 

salamanders in numerous cases(Alberch  Gale, EA 1985; Hanken  Wake, D. 1993). The 

difference in sequence of digit loss is, as previously discussed, a result of different 

developmental sequence during digit development. 

Lizards 

Lizards exhibit a wide range of reduction in digital elements, from loss of a single 

phalanx to complete limbness(Greer 1991). Perhaps the most striking case is that of the 

Australian skink from genus Hemiergis, which includes several closely related species 

that populate neighboring habitats but are geographically isolated, and display 

differences in digit numbers. The body plan and limb morphology of these lizards are 

almost identical except for the reduction in digit numbers. These isolated populations in 

close proximity display digit numbers ranging from 2 to 5 in the forelimbs and hindlimbs. 

Shapiro et al. have explored embryological gene expression in the four Hemiergis 

species, and specifically focused on factors involved in limb patterning and tissue 

quantity(Shapiro et al. 2003). They report a change in duration of Shh signaling in the 

ZPA, in correlation with digit reduction. Therefore, rather than a global truncation of 

growth or smaller limb primordium (as was suggested in urodeles), the skinks display 

shortened Shh signaling in limbs with fewer digits. 

This scenario on the mechanistic of digit loss was only shown as correlation in 

Shapiro et al., but remains as a possible scenario, most notably due to some functional 

studies on Ambystoma mexicanum salamanders where Shh signaling was blocked with  
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Figure 1.5:SHH duration in the limb correlated with digit loss in Australian skinks: 

Data from Shapiro et al., 2003 suggests that duration of SHH signaling in the limb is 

correlated with digit number reduction in skinks from genus Hemiergis.  
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drug cyclopamine and digit loss was attained in a pattern that mimicked the order of 

digit loss in natural variation for salamanders(Stopper GF 2007). 

Studies on mechanics of movement in lizards of genus Bachia have lead to 

interesting theories on locomotion, body proportions and number of digits. If pleiotropic 

effects are overlooked and it is assumed that digit number and relative limb length are 

genetically independent, variation on the number of digits observed in Bachia lizards 

can be explained by natural selection for behavioral function of structurally reduced 

limbs(Lande 1978). For instance, rapid undulatory movements require lizards with long 

bodies to fold their limbs to their sides, in order to reduce friction during locomotion. This 

situation would benefit fewer digits. On the other hand, during slow movement or 

resting, digits are employed for balance and propping up the body. In this scenario, too 

few digits would be a hindrance. Thus, it is hypothesized that for a given body size and 

proportion, there is an optimum digit number, and that this is a selective force to 

stabilize digit number(Lande 1978).  

Mammals 

Numerous mammalian species have experienced some form of digital loss 

throughout evolution. Considering the wide range of habitats occupied by mammalian 

species, this is not a surprising strategy for locomotive adaptation. However, despite the 

many different strategies that mammalian species have lost digits, a common 

mechanism to digit loss has not been identified. Some of the current theories on digit 

loss suggest that digital condensations may never form in the first place, they may form 

and then disappear by tissue regression or destruction(Galis et al. 2002; Hamrick 2002), 
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they may fuse with other elements(Sears et al. 2007),  they may develop at relatively 

slow rate or stall growth completely(Hamrick 2002).   

One of the most prominent clades of mammals that have gone through different forms 

and stages of digit loss are undulates, the group animals that use the tips of their toes 

(usually hoofed) to support their weight. Some examples are pig, hippopotamus, deer, 

cattle, camel, giraffe, goat from the artiodactyla (even toed ungulates), and horse, tamir, 

rhinoceros from the perissodactyla (odd toed ungulates). The earliest known ungulates 

were pentadactyls, however, lineages went through stages of digit loss. Some species, 

such as the artiodactylous camel, retain only two digits (digits III and IV), while the 

perissodactylous horse has only a single digit (digit III)(K E Sears et al. 2011). This 

partial reduction or complete loss of lateral digits in different lineages of ungulates was 

an adaptation for increased cursoriality and speed, and was essential for the 

evolutionary success of the clade. The study of this phenomenon can provide insights 

into mechanisms that are employed to evolutionarily modify the constrained pentadactyl 

ground state in different mammalian species.  

To date, the only detailed analysis of the ungulate digit formation has been 

undertaken on the pig (Sus scrofa). These studies have shown that for S. scrofa, digit 

reduction involves a process of pentadactyl patterning and initial condensation in both 

forelimbs and hindlimbs, followed by extreme reduction of digit I, and subsequent 

reductions of digits II and V. The digits that end up growing to full length are III and IV, 

but S. scrofa is still assumed to have four primary digits. Curiously, at the initial 

condensation stage, the relative sizes of digits are same as the adult form, and all digits 

continue to grow at similar rates. This suggests that it is the size of the initial 
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condensations that dictates the ultimate ratio of digits, with later growth occurring 

comparably. On a similar note, the early stage of the limb bud outgrowth, before the 

digital condensations are distinguishable, the pig bud appears to be significantly 

narrower in the A-P axis, compared to the mouse bud. Moreover, patterns of cell death 

zones in the limb palette are similar in the pig and pentadactyl mouse. These findings 

suggest that in pigs, digits I, II and V are reduced through evolutionary modifications in 

the earlier phase of limb development, rather than later differences in growth, 

regression or cell death. This does not rule out presence of other mechanisms for digit 

modifications to other ungulates, and a thorough examination of a range of digit loss in 

different mammalian species should be performed before reaching a conclusion on a 

common mechanism that is employed for digital loss(K E Sears et al. 2011). 

Cetaceans (whales, dolphins and porpoises) are distant relatives of ungulates, 

and constitute another mammalian clade where digit loss and reduction is common. The 

first cetaceans originated in the Eocene era about 50 million years ago, branching off 

from the now extinct group of small artiodactyl ungulates(Bejder & Hall 2002; Thewissen 

et al. 2007). As an adaptation to the aquatic life, and as is the case in most secondarily 

aquatic tetrapods, cetaceans have evolved to hyperphalangy and digit loss(L N Cooper 

et al. 2007), along with embedding of the digits into the skin tissue and complete loss of 

the hindlimb(Thewissen et al. 2006). Odontocetes (toothed whales) and some 

mysticetes (baleen whales) have maintained their pentadactyous forelimbs, however, 

other cetaceans have lost digit I completely and retain only four digital rays in their 

flipper(L N Cooper et al. 2007). Another common digital modification in cetaceans is the 

loss of phalangeal elements in digits I and V, and increase in the number of phalanges 
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in digits II-IV. This unique morphology of the forelimbs provides to be suitable for the 

mammalian aquatic locomotion where a strong yet flexible, rigid, and narrow flippers 

function to steer the dorsoventral oscillatory locomotion.  

A completely different clade of mammals, the rodents, also show examples of 

digit reduction. The jerboa, a close relative of the birch mice and jumping mice from the 

order Rodentia, is a family of rodents that comprise 33 species. They are distinguished 

with their drastically elongated hindlimbs, fused metatarsals and a range of hindlimb-

specific digit reductions, adapted for a bipedal, jumping locomotion. While the forelimb 

morphology is highly comparable to the that of the Mus musculus and most other small 

rodents, the hindlimbs feature a range of digit reductions in different populations. Most 

remarkable is the Jaculus jaculus (the lesser Egyptian jerboa) which has lost its to 

lateral digits (digits I and V) and provides to be an excellent model system to study 

mechanisms of digit loss.  

Human oligodactyly 

Medical reports on supernumerary digits and loss of digits in humans date to 

many centuries ago(Klaassen et al. 2011), and digital malformations are still one of the 

most common congenital anomalies. In clinical medicine, human digital malformations 

are of special importance not only because it may necessitate surgical treatment, but 

also because it can be an easily recognizable indicator of another congenital anomaly 

syndrome(Biesecker 2010).  Therefore, human cases of oligodactyly and polydactyly 

can be considered as natural experiments where a gene activity within the tight 

signaling network in the autopod is disrupted. So far, such mutations have helped 

dissect out the gene pathways and regulators that orchestrate limb patterning. 
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Biesecker et al., 2002 (updated 2010) have done cataloguing of clinical entities that 

include polydactyly as one of the manifestations(Biesecker 2002; Biesecker 2010).  

Among the 310 entities listed, 80 are associated with causative mutations in 99 genes. 

These genes include GLI2, GLI3, FGFR2, PTCH1, BMP4, HOXA13 and many others 

that have already been outlined in this review as part of the digital patterning network. 

Even though human oligodactyly is rarer and usually familial, there are also extensive 

studies on cases of digit loss in humans and the syndromes they are associated with, 

including Weyer’s Ulnar Syndrome and Poland syndrome(Turnpenny et al. 1992; 

Bronfen et al. 1994). As one would expect, disruption of the intricate gene network in 

the autopod leads to different cases of patterning defects, when regulation of either the 

proliferation of limb tissue or patterning of digits is defective.   

Etiology of human digital malformations has helped developmental biologists with 

the characterization of key pathways in limb development. An example is the Greig 

cephalopolysyndactyly syndrome (GCPS), which was recapitulated in a mouse model 

extratoes (Xt). As mentioned previously in this review, this mutation is a 3’ deletion of 

the Gli3 gene, and its study has revealed key roles for Gli3 in cell cycle regulation and 

digit primordial proliferation. Other genes catalogued in the Biesecker report for 

polydactyly include proteins involved in cell signaling (21 genes), and genes that 

encode for proteins in the basal body and cilium (13 genes), DNA repair genes (15 

genes) and transcription factors (16 genes). Genes encoding structural and catalytic 

proteins, immunoglobulin superfamily proteins, chaperones and gap junctions have also 

been identified. We can anticipate the study of these syndromes and causative 

mutations in model systems will reveal new insights into mammalian development. 
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In contrast to numerous cases of digit reduction throughout evolution, polydactyly is not 

a trait that has been evolutionary adapted, and it is not common for a species to 

increase its digit number from a pentadactyl ground state. Due to the high occurrence 

rate of polydactyly mutations in human and other mammalian populations, as well as 

the results of genetic manipulations, it appears to be a relatively easy process for an 

embryo to increase the number of its digits. Medical examinations of cases of random 

mutations that lead to polydactylous phenotypes suggests that pentadactyly may as well 

have a pleiotropic constraint where the genetic changes that lead to a polydactylous 

phenotype may be affecting another physical characteristic. Curiously, digital 

phenotypes can be manifestation of clinical cases that have also been associated with 

fertility problems or genital phenotypes, and therefore may be directly linked to 

reproductive success 

 Conclusion 

From ancient fossil records to current human medical reports, the evolutionary 

and clinical perspectives to digit number and identitiy have significantly deepened our 

understanding of the developmental mechanisms that regulate limb formation. The non-

lethal nature of digit number anomalies has also made it possible to examine 

experimental perturbations to model organisms, as well as a wide range of evolutionary 

adaptations among vertebrates, to study how an embryonic structure’s form and 

function can be modified genetically. Therefore, digit patterning poses to be an excellent 

system to study form and function at cross roads of comparative morphology and novel 

genetic tools to study mechanism.  
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Therefore, any modifications to digit pattern, such as reduction in number of 

digits, can provide great insights into developmental mechanisms of evolutionary 

adaptation. Moreover, digit reduction is a convergent adaptation observed in different 

animals from a range of taxa, and it would be very important to see whether convergent 

developmental modifications are employed , or if animals display flexibility and 

mechanistic variation in generating the same phenotype. 
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Chapter Two 
 

Scaling Pattern to Variations in Size during Vertebrate Neural Tube 

Development 
 

 

 

 

 

 

“It was much pleasanter at home," thought poor Alice, "when one wasn't always growing 

larger and smaller, and being ordered about by mice and rabbits. I almost wish I hadn't 

gone down the rabbit-hole -and yet- it's rather curious you know, this sort of life.”  

― Lewis Carroll, Alice in Wonderland   

http://www.goodreads.com/author/show/8164.Lewis_Carroll
http://www.goodreads.com/work/quotes/2933712
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Summary 

Mechanisms of morphogen mediated pattern formation are largely conserved 

across vertebrate species, however, little is known about how they are adapted to 

generate essentially identical morphological structures in varying embryonic sizes. We 

explored this question using a comparative approach and analyzed the dynamics of 

patterning in chick (Gallus gallus), zebra finch (Taeniopygia guttata) and emu (Dromaius 

novaehollandiae), three species that are drastically different in embryonic size starting 

at a very early time point in development. We focused on the patterning dynamics of the 

neural tube dorso-ventral axis, where neuronal cell fate specification induced by Sonic 

hedgehog is one of the best-studied examples of morphogen mediated organization and 

expression domains of distinct transcription factors provide an excellent read out for 

morphogen response.  

Our findings suggest that there is a difference to cellular morphogen response in 

the three avian species, observed both in vivo and in vitro.  In vivo, temporal dynamics 

of patterning are shifted, where the neural tube of the smaller bird, the zebra finch, is 

patterned fastest and the neural tube of the bigger bird, the emu, is patterned slowest. 

In vitro, naive neural plate explant assays suggest that morphogen sensitivity decreases 

as embryonic size increases: Finch cells are most sensitive to a given Shh 

concentration or duration, while the emu cells are the least sensitive. This differential 

response is intrinsic, as suggested by generation of chimeric embryos at 12 hr of 

development. Cells from different species in  the neural tubes of chimeric embryos 

retain their potential of differential response.  
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We believe this difference in response is crucial to scaling pattern to size in three 

species and that temporal adjustment is essential for conserving spatial organization of 

cell types in the neural tube dorso-ventral axis. We are further exploring the mechanism 

of this and have strong evidence that the differential it is due to intrinsic differences in 

GLI activity. A mechanistic understanding of differences in morphogen mediated 

patterning in species of different sizes will provide important insights into how pattern is 

adapted to size throughout evolution. 

Introduction 

There is an enormous variation in size throughout the animal kingdom. Across 

species, embryonic development is orchestrated by conserved signaling events, yet 

morphological patterns arise in proportion with the size of the developing embryo. 

Scaling form and function to size is a fundamental question that arises repeatedly when 

we think about evolution of size variation across species at time of patterning, 

embryogenesis. 

In many species ranging from cnidarians to humans, morphological patterning is 

guided by a spatial gradient of morphogens, long-range extracellular effectors that 

induce different cell fates in a concentration dependent manner. During embryonic 

development, morphogen gradients are launched by evolutionarily conserved molecular 

networks, and correct morphological patterning is established proportional to the 

embryonic size, within or across species. Work on morphogen mediated patterning 

dates back to theoretical studies of Lewis Wolpert(Wolpert 1969) several decades ago, 

where the term ‘French flag model’ was first coined. According to this classical view of 

morphogens, distance from source is an integral component of positional information 
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and cell fate specification, as it dictates the concentration and duration of morphogen 

exposure (Fig 2.1a). However, an interesting problem arises when same pattern is to be 

established in tissues of different sizes. How do we integrate inter-species size 

differences at time of patterning to the classical view of morphogen? We set out to 

explore this question, and suggest two different strategies through which this can be 

achieved. Our first model is to alter shape of the gradient, such that each threshold 

concentration is reached at a shorter distance from morphogen source. A faster decay 

rate of the morphogen molecule along the tissue is one way to achieve this. Another 

possibility is to alter the threshold concentration values at which cell type induction 

occurs, such that, regardless of the amplitude or shape of the morphogen concentration 

gradient, same pattern can be established.(Fig 2.1b) 

We set out to explore this question in a model system that is widely used to study 

morphogen mediated patterns, the vertebrate neural tube. The ventral neural tube is an 

excellent system to study different aspects of morphogen mediated patterning due to 

the availability of a molecular read-out for morphogen activity. During neural tube 

development, morphogen Sonic hedgehog is secreted by the ventrally located 

notochord and floorplate, and diffuses to form a concentration gradient across the 

dorso-ventral axis(Jessell 2000). Distinct sets of transcription factors are expressed in 

progenitor domains as cell fate specification occurs at threshold concentrations(Yamada 

et al. 1991; Yamada et al. 1993; Dessaud et al. 2007). Dorsal expansion of these 

domains are also markers of stronger morphogen response in the tissue: as the tissue 

is exposed to a higher concentration of SHH for a longer duration, cells that are more 

dorsally located from the source can reach a specific threshold concentration and 
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undergo cell type specification. At the end of patterning, 5 distinct ventral cell types are 

produced, with the more ventrally located cells reaching higher threshold 

concentrations, and more dorsally located cells reaching lower threshold values. 

Availability of an in vitro explant technique pioneered by the Jessell and Briscoe groups 

makes it possible to study morphogen activity in a more controlled environment and 

assess response with known molecular markers(Yamada et al. 1993). 

To explore dynamics of size and pattern in the developing ventral neural tube, we 

picked three different avian species that are remarkably different in egg size. Members 

of Class Aves show a large variation in egg size, and therefore an expected variation in 

embryonic size, but are still related close enough that we can expect general 

mechanisms governing morphogen mediated patterning to be conserved. Zebra Finch 

(Taeniopygia guttata ), Chick (Gallus gallus) and the Emu bird (Dromaius 

novaehollandiae) lay eggs that cover a large range of sizes, making it possible to 

perform comparative and molecular studies in varying embryonic sizes 

(Supplementary Figure S1.1 and S1.2).  
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Figure 2.1: Classical morphogen model and suggested models on pattern 

scaling: a. According to the classical french flag model of morphogen mediated 

patterning, distance of a cell from morphogen source dictates the concentration and 

duration of morphogen exposure, where cells closer to the source are exposed to higher 

level of the morphogen protein, which forms a concentration gradient along the tissue. 

At specific threshold concentrations, cells are induced to specific fates. Therefore, size 

of the tissue is an integral component of pattern. b. We have come up with two distinct 

models to resolve pattern scaling problem in systems where size is different but 

eventual pattern is proportionate. First strategy is to change the shape of the gradient 

but keep threshold values the same. A second strategy is to alter threshold 

concentration values, such that pattern can be conserved regardless of the amplitude or 

shape of the gradient.  
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Results 

Before assessing dynamics of patterning in the neural tubes of the Finch, Chick 

and Emu, we wanted to quantify size and growth across the D-V axis at comparable 

stages. As the size of the neural tube D-V axis is not uniform along the antero-posterior 

axis, we picked somite 15 as reference point for all developmental time points in the 

three species, and analyzed patterning at this A-P level so as to stay consisted between 

samples and species. Formation of somite 15 was designated as t=0, and data for 

subsequent time points are plotted as hours after formation of this somite. 

Size measurements show that growth along D-V axis is not comparable in the 

three species (Figure 2.2a). Towards the end of neural tube development the biggest 

bird, Emu, has the largest number of neurons in the neural tube, while the smallest bird, 

Zebra Finch, has the smallest. Surprisingly, for a brief time at the very early stages of 

development, size is comparable in three species. However, our analysis of % PH3 in 

neural tube progenitors of the three species shows that the smallest bird Zebra Finch 

goes through growth arrest earlier, while the biggest bird has prolonged proliferation in 

the ventral neural tube, even at time points at which cellular proliferation in Zebra Finch 

ventral neural tube has completely stopped (Figure 2.2b). Size of the progenitor cells, 

analyzed by membrane-GFP as well as DAPI stainings show that it is comparable in all 

three species (data not shown). 
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Figure 2.2: Neural tube dorso ventral axis growth dynamics in Finch, Chick and 

Emu a. Cell number along dorso-ventral axis in is plotted against time, and hours after 

formation of somite 15. All sections are along the level of somite 15, and t=0 is when 

somite 15 forms. Surprisingly, within the first few hours, size of the neural tube is 

comparable among the three species. Shortly after, chick neural tube grows bigger than 

Finch and ends up becoming significantly larger. Emu, on the other hand, grows more 

gradually but surpasses chick (at the latest stage we were able to sample). b. Analysis 

of cellular proliferation  (%PH3 in progenitors) in ventral neural tube shows that this 

difference in size stems from early growth arrest in the Finch ventral neural tube, and 

prolonged growth  in the Emu ventral neural tube. * p<0.05 
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Knowing that the growth dynamics are different in three species, we wanted to 

map out patterning dynamics. In order to characterize progression of pattern, we 

analyzed the expression domains of several transcription factors that mark distinct 

neuronal progenitors. OLIG2 expression marks motor neuron progenitors (pMN), 

NKX2.2 expression marks ventral-most v3 inter neuron progenitors (pV3) and NKX6.1 

expression marks all ventral progenitor domains (pV3-pV0). We collected neural tube 

tissue at the antero-posterior position adjacent to somite 15 across developmental 

stages (roughly forelimb level for all species), thereby avoiding  stage specific 

differences in timing or differences in signaling dynamics across the A-P axis. 

Expansion of the signal in progenitor domains was measured from the ventral midline. 

A prevailing notion on scaling of morphogen mediated patterning events is that 

pattern is inherently scaled to size throughout growth. In the three species we analyzed, 

we realized that progression of pattern does not necessarily scale to D-V axis size, 

except for at the end of patterning process. (Figure 2.3) We noticed that even though all 

three species end up with proportionate patterning of their progenitor domains to their 

final size before differentiation begins, the speed at which progenitor domains expand is 

entirely different. For all transcription factors we analyzed, domain expansion and 

patterning is accelerated in the smaller bird Zebra Finch and drastically decelerated in 

the Emu. This is true not only for the percent dorsal expansion of the domains, but also 

for the total number of cells that are induced to express any specific marker gene 

(Figure 2.3e, Supplementary Figure S1.3 and S1.4 ). This indicates that progression 

of pattern is not scaled among species throughout the process of patterning, but rather,  



69 

 

Figure 2.3: Dorsal expansion of distinct progenitor domains across 

developmental time Percent dorsal expansion of progenitor domains along the D-V 

axis of neural tube shows accelerated domain progression in the Finch neural tube, in 

contrast to a dramatically decelerated Emu patterning process. a-c: Dorsal expansion of 

the domains of specific  transcription factors that are known to be upregulated by Shh 

exposure. All follow a similar pattern where patterning is most rapid in the Finch tissue 

and slowest in the Emu. d. We also wanted to analyze a dorsal transcription factor, 

Pax7, whose expression is initially suppressed by exposure to Shh. Indeed, Pax7 is 

excluded from ventral domains in the Finch tissue, while it can expand more ventrally in 

the chick. e. Olig2 pattern progression by cell number, not percent expansion. Again, 

progenitors expressing Olig2 are greater in number in the Finch neural tube from an 

earlier time point.   
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regulated differently such that final outcome to scale. Since we know the growth 

dynamics are also entirely different between these embryos, this strategy may help the 

smaller bird couple patterning to an early arrested growth, while the bigger bird can slow 

down its patterning process so as to accommodate an elongated growth period.  

Interestingly, we also observe the expression of motor neuron differentiation 

marker isl-1 earliest in the Finch neural tube and latest in the Emu (Supplemental 

Figure S1.5). However, it remains to be explored whether the difference in timing of 

differentiation is due to species-specific differences in rate of differentiation, or simply 

due to the differences in the patterning phase. When assessed with OLIG2 expressing 

progenitor numbers throughout development, it seems that an earlier expression of Isl-1 

may be a result of Olig2 expression that is induced earlier in Finch progenitors, as 

opposed to differences in rate of differentiation.   

The observation that the three different species regulate patterning differently 

lead us question differences in source of morphogen. Both the notochord size and 

notochord cell number increases as we move from the smaller bird to the bigger bird. If 

we assume each cell in the notochord to secrete comparable levels of SHH, we would 

expect the Zebra Finch notochord to produce the least amount of the morphogen, and 

the Emu to produce the most. To address this, we performed an in vitro assay where we 

plant a naïve Chick neural plate intermediate explant adjacent to the same length of 

either Zebra Finch, Chick or Emu notochord (Figure 2.4). Embedded in collagen and 

grown in vitro in media for 24 hr, the initially naïve explants are later assayed for 

expression of NKX2.2 and OLIG2. We chose these two transcription factors in particular 

because previous studies have shown that NKX2.2 is a higher threshold response gene  
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Figure 2.4:Exposure of tissues to the morphogen Shh is lowest in the Finch and 

highest in the Emu: a. Size of the notochords in the three species at two different 

developmental time points. b. Notochord-naïve chick explant incubations are 

immunostained after 24 hours for transcription factors Nkx2.2 (higher response) and 

Olig2 (lower response).   
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and requires a higher concentration of SHH for longer, whereas Olig2 is a lower 

threshold response gene(Dessaud et al. 2008). Thus, we have a direct molecular read 

out for morphogen response in explants, and both of these antibodies work equally well 

for the three species, as shown in vivo. The expression analysis of the in vitro chick 

explants show that when a naïve intermediate neural plate tissue is incubated with 

notochords from all three species, Finch notochords induce the lowest morphogen 

response, and the Emu notochords induce the strongest. As shown in Figure 2.4, cells 

in the explants planted adjacent to the Finch notochord express the lower threshold 

response gene OLIG2, while the explants planted adjacent to the Chick notochord has 

higher threshold response gene NKX2.2 expression as well as OLIG2. The emu 

notochord, on the other hand, induces very strong Nkx2.2 and Olig2 response in the 

explant tissues. Thus, we can conclude that the morphogen activity the naïve neural 

tube tissue is exposed to is least potent in the smallest bird Finch, and most potent in 

the biggest bird Emu.  

These findings so far present a paradoxical situation such that the Finch has the 

smallest notochord and lowest morphogen activity but patterns its neural tube tissue 

most rapidly, whereas the Emu has the largest notochord and strongest morphogen 

activity, but patterns most gradually. This prompted us to explore the response of the 

tissue in the three species to the morphogen SHH. We isolated naïve intermediate 

neural plate explants from Finch, Chick and Emu embryos and incubated in vitro with 

different concentrations of recombinant SHH-N. After 24 hours, explants were harvested 

and immunostained for NKX2.2 and OLIG2 expression (Figure 2.5). Lower 

concentrations of SHH were sufficient to induce high threshold response gene NKX2.2 
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in the Finch explants, while same concentrations induced  OLIG2 expression in the 

Chick explants and no response in the Emu. At higher concentrations, both Finch and 

Chick were saturated for NKX2.2 response, however, emu explants still did not 

upregulate expression of either OLIG2 or NKX2.2. At a much higher concentration, we 

were able to see NKX2.2 induction in the Emu explants. We also assayed for PAX7 

expression in the explants for a lower threshold concentration, and observed that Emu 

explants continue to express Pax7 upon exposure to SHH at 60 nM, a concentration 

that is high enough to suppress PAX7 in both Finch and Chick tissues, which are more 

sensitive to the same level of the morphogen. In vitro assays show us that the Zebra 

Finch is most sensitive to a given concentration of SHH, while Emu is the least 

sensitive. This differential response to morphogen can explain why the smaller bird has 

accelerated patterning, while the overall process is slower in the Chick and drastically 

slower in the Emu. 

Previous studies have shown that it is not only the absolute concentration of the 

morphogen, but also the duration of exposure that is integrated into a cell’s 

interpretation of the morphogen signal(Harfe et al. 2004; Dessaud et al. 2007). 

Therefore, we wanted to test how different tissues behaved when exposed to the same 

concentration of morphogen, but for varying durations. At 12 hours of exposure to a 

fixed concentration of SHH, the Finch tissue was saturated for the high threshold 

NKX2.2 response, whereas for the same duration of exposure at same concentration 

the Chick tissue only expressed the low threshold OLIG2 (Supplementary Figure 

S1.6). At 24 hr, explants from both species were saturated for NKX2.2. It is evident that 

differential response also has a temporal component. 
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Figure 2.5: Naïve intermediate neural plate explants: Naïve neural plate tissue from 

all three species is isolated and grown in vitro in presence of recombinant Shh-N at 

different concentrations.  Tissues are then stained for Olig 2 and Nkx2.2, or Pax7. Finch 

tissue is most sensitive to any given concentration, while Emu is the least sensitive. 

n>10 for each Finch and Chick panel, results are representative. n>5 for each emu 

panel, results are representative. 
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Next, we wanted to test whether the differential response we observe in species 

is intrinsic to the cells, or due to other signals that the cells may be exposed to 

throughout development. We generated chimeric animals so that the developing neural 

tube can incorporate cells from different species, and that throughout development 

these cells get exposed to the exact same signals. As shown in Figure 2.6a, at first 12 

hours of development (HH stage 3) a piece from the tip of the Hensen’s node is 

dissected out from a GFP-Chick donor and transplanted into Finch host. In the neural 

tube tissue of the resulting chimeric animal, any cell expressing GFP is from the Chick-

GFP donor, while non-GFP cells belong to the Finch host. Strikingly, as was observed 

in the in vitro explant assays, Finch cells in the chimeric animals are much more 

sensitive to the endogenous morphogen compared to the chick cells. As shown in 

Figure 2.6, Finch cells much further away from the source can upregulate expression of 

SHH target gene NKX6.1, while Chick cells are still expressing PAX7, a gene that is 

repressed by SHH. Differential response appears to be cell autonomous, since not just 

clones of cells but also isolated single Chick cells appear to be less sensitive to 

morphogen (arrow, Figure 2.6b). We repeated the same chimeric experiments using 

Finch-GFP donors and Chick hosts, and saw similar results in this reciprocal 

experiment. GFP expressing Finch donors were more responsive to SHH, while Chick 

host cells were less responsive. These results confirm that the effects we see with in 

vitro explants are intrinsic to cells, and that species show differential response to a 

morphogen as an intrinsic property of the cells. 

These findings prompted us to investigate the mechanism of differential response 

that is intrinsic to cells. The Sonic hedgehog signaling pathway has extracellular and  
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Figure 2.6: Chimeric embryos show differential response is an intrinsic property 

of cells. a. At 12 hours of development, tip of the Hensen’s node from a GFP donor 

embryo is transplanted into a host embryo to generate a chimeric animal with cells from 

both species inside a chimeric neural tube. b. A chimeric neural tube with GFP cells 

from the Chick donor and non-GFP cells from the Finch host. Expression of Shh target 

genes is differential. n>3, results representative for all embryos we assayed c. The 

reciprocal experiments, with GFP cells coming from a Finch-GFP donor and non-GFP 

cells from the Chick host. n=2 due to unavailability of Fch-GFP embryos, results 

representative for all embryos we assayed. Scale bar: 100 um, same for all panels  
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Figure 2.6, continued  
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intracellular components, but Smoothened receptor is the pivot point between these 

two. We activated the SHH pathway in all species with a Smoothened agonist, SAG, to 

test if differential response is upstream of SMO (extracellular components) or 

downstream of SMO (intracellular components including SMO receptor) (Figure 2.7). 

SAG treated explant assays indicated that mechanisms of differential response are 

downstream of the receptor Smoothened, as Finch cells are still more sensitive to a 

given concentration of SAG, whereas the Emu is the least sensitive. At a lower 

concentration of SAG, Finch tissue expresses OLIG2 and NKX2.2, while the Chick 

tissue is saturated with OLIG2 response. At a higher concentration, Finch tissue is 

expressing mainly NKX2.2, while the Chick has mainly OLIG2 and a few cells 

expressıng NKX2.2. The emu explants are have upregulated the expression of neither, 

as was observed with recombinant SHH-N concentrations that induced similar response 

in Finch and Chick. 

We extended our analysis of the mechanisms that are responsible for the 

differential response and focused on SHH target genes and pathway effectors. Naïve 

explants from Finch, Chick and Emu were incubated at a fixed Shh-N concentration and 

harvested at various time points (t= 0, 6, 8, 12 and 24 hr). We then tested target gene 

upregulation with qRT-PCR using species specific primers. For each species specific 

primer set, we ran standard curves to interpret relative amounts of transcripts precisely, 

and normalized each experimental data point to actin levels (Therefore, each data point 

represents units of transcript per units of actin).  

As shown in Figure 2.8 and Supplemental Figure S1.7, for all time points, 

levels of Smoothened in all three species appear to be comparable, as well as the initial  
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Figure 2.7: Differential respond persists when pathway is activated through 

Smoothened. Naïve intermediate neural tube explants from the three species were 

grown in vitro. Shh pathway was activated with Smoothened agonist, SAG. Differential 

response persists, Finch cells are expressing the higher response transcription factor, 

NKX2.2, at 0.25 mM. n>5 for each panel. 
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Figure 2.8: Expression profiles of SHH target genes upon exposure to the 

morphogen. a. PTC1 transcript upregulation in three species across time. b. OLIG2 in 

Finch and Chick. c. NKX2.2 in Finch and Chick. Each data point in graphs represents 

15-25 explants pooled together for analysis.  
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levels of Ptc1 at t=0. Interestingly, Ptc1 upregulation in all three species follows a similar 

trend. Similar starting levels of Ptc1 in Finch, Chick and Emu are upregulated to 

comparable levels as early as t=6.  Notably, levels stay elevated in the Finch at 24 hrs, 

whereas they decline sharply in the Chick, as was shown previously in 

literature(Dessaud et al. n.d.; D Stamataki et al. 2005b). 

Next, we narrowed down our analysis to two species, Zebra Finch and Chick, as 

availability of Emu embryos is limited. We assayed levels of GLI transcription and SHH 

target transcription factors, OLIG2 and NKX2.2.  As expected, expression of both 

OLIG2 and NKX2.2 peaked earlier in the Finch (Figure 2.9), which is what we observed 

with the in vitro explant immunostaining assays (Supplemental Figure S1.6). 

Interestingly, Finch naïve explants at t=0 have relatively high levels of OLIG2 transcript, 

the expression of which is only induced upon SHH exposure in the chick. We are 

confident that Finch explants at t=0 have not been exposed to SHH, since levels of Ptc1 

transcript are basal. 

Genetic data from literature suggests that mice with Shh-/- Gli3xt/xt double mutant 

background have spontaneous OLIG2 expression in intermediate neural tube(Persson 

et al. 2002; Litingtung & Chiang 2000). This phenotype is not surprising because OLIG2 

activity is mainly repressed by GLI3. In chick neural tube, SHH morphogen activity 

functions to deplete levels of GLI3 and relieve the repression from OLIG2 locus (Bai et 

al. 2004). In the absence of both SHH and GLI3, spontaneous OLIG2 expression is 

observed in these mice. Importantly, when we assayed GLI transcription levels in Finch 

and Chick, we found that while GLI2 levels were not significantly different in the two 

species, GLI3 levels were strikingly low in the Finch, when tested with two different sets  
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Figure 2.9: Dynamics of Gli signaling and Gli3 activity in the Finch versus Chick 

neural tube. a. Electroporation of GBS-GFP gli reporter construct into the Finch neural 

tube shows GFP activity in more than 50% of the neural tube tissue. Green: GFP, Red: 

β-gal electroporation control b. Electroporation of the GBS-GFP  Gli reporter construct 

in the chick shows activity only up to 40% in the Chick neural tube, as was shown 

previously in literature. c-d. Electroporation of Gli3-ires-GFP construct into chick neural 

tube down-regulates expression of Olig2 and attenuates patterning in the electroporated 

side. e. Electroporation of CAGG-GFP control construct in the Finch neural tube does 

not alter Gli3 expression. f. Preliminary data on Gli3-ires-GFP electroporation into Finch 

neural tube down-regulated expression of Olig2 in one cell where it is expressed.   
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Figure 2.9, continued  



87 

 

of species specific primers (Supplemental Figure S1.7). In chick samples, initially high 

GLI3 levels are eventually depleted to basal levels within 24 hours of SHH exposure. In 

Finch neural tube tissue, initial levels of GLI3 appear to be basal. 

Initial differences of OLIG2 and GLI3 levels in the naïve explants and the genetic 

data from mice led us to hypothesize that globally lower GLI3 levels in the Finch neural 

tube progenitor cells could explain intrinsic differential response at a GLI activity level. 

This prompted us to further investigate and test GLI activity in vivo. We used a GBS-GLI 

reporter construct to electroporate Finch and Chick neural tube. We found that while we 

can detect GFP activity from the GLI reporter only up to 50% of the neural tube in the 

Chick, we could detect reporter activity much dorsally in the Finch neural tube (Figure 

2.9a-b). Since GBS reporter is sensitive to both GLI2 activation and GLI3 

repression(Tsanev et al. 2009), these results agree with our previous findings that Chick 

and Finch tissues have differential levels of GLI activity along the D-V axis, due to lower 

levels of GLI3 in the Finch. 

To confirm that levels of GLI3 can affect dynamics of patterning in the neural 

tube, we moved on to functional tests. We hypothesized that if globally higher levels of 

GLI3 can alter patterning dynamics in the Chick neural tube, then electroporation of full 

length GLI3 into the developing neural tubes of Chick and Finch should similarly alter 

patterning dynamics. As expected, a GLI3-ires-GFP reporter, when injected, down-

regulated cellular response to SHH, in both Chick and Finch embryos (Figure 2.9c-f). In 

cells that uptake the construct, OLIG2 expression is repressed especially in more 

dorsally located cells, while this never happens in CAGG-GFP control electroporations. 

Due to less efficient electroporation in the Finch neural tube as well as weak GFP 
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expression from the IRES promoter, these assays need to be repeated and quantified. 

Preliminary results, however, are promising that increased levels of GLI3 affect cellular 

response and overall patterning.  

Discussion 

In summary, we provide a comprehensive view of how embryos with neural tubes 

of different sizes regulate their patterning dynamics in order to attain proportionate 

morphology at the end of development.  

An interesting property of all three embryos is that at the first few hours of 

patterning, initial size is similar across species, but rate at which pattern is established 

is not. This may be due to constrains on size of the embryo at earlier patterning events, 

when the neural plate is first formed. Alternatively, size similarity may have significance 

for the formation and initial activity of the morphogen gradients, both the SHH gradient 

emanating from the notochord and the BMP gradient diffusing out from the roof plate. 

However, soon after the establishment of gradients, we do observe differences in 

progression of pattern. With in vitro explant assays and in vivo chimera analysis, we 

were able to pinpoint this difference to to a cell-autonomous and intrinsic differential 

response to the morphogen. The chimeras present solid evidence that even when the 

cells from two different species are exposed to identical developmental signals, they 

retain differential response to SHH. 

Due to the limited availability of the Emu embryos, we tried to define a general 

trend using all three species, and narrowed down our mechanistic analysis between 

finch and chick. For all three species, we know the differential response to be 

downstream of SMO receptor, and specific to either the intracellular component of SHH 
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pathway, or at level of gene regulatory network. Our findings on OLIG2 expression in 

naïve Finch explants at t=0, as well as similarities in PTC1 upregulation and  differences 

in GLI3 levels suggest that the differential response may be controlled at the GLI 

repressor levels. Our functional data with GBS-GFP reporter constructs and full length 

GLI3 electroporations further strengthen our hypothesis. While alteration to morphogen 

response through modifications to GLI activator or repressor activity is not new in 

literature, this is a novel finding for its employment in evolutionary adaptations. 

Our work presents an alternative to scaling models that focus on scaling of the 

morphogen gradient itself(Hamaratoglu et al. 2011; De Robertis 2009). While gradient 

scaling can still be occurring in the three species, we are also confident that differential 

response contributes to rate and timing of patterning, and that intrinsic difference in 

repressor levels can be a strategy to scale spatio-temporal organization of cells at 

different embryonic sizes. Whether if such modifications at the level of intrinsic and cell-

autonomous differential response can account for pattern scaling in more evolutionary 

distant vertebrates remains as an open question. However, scaling at the level of 

morphogen response, rather than morphogen gradient is a distinct alternative that we 

are proposing with the nuerual tube SHH mediated patterning in vertebrates, and 

suggests that it recapitulates our second model in Figure 2.1b, where we theoretically 

outlined strategies to overcome pattern scaling problem in embryos of different sizes.  

Materials and Methods 

 

Emrbyos and Embryonic staging 

Finch eggs were obtained from Dr. Tim Gardner at Boston University, and Chick and 

Emu eggs were obtained from commercial sources (Charles River, MA and Floeck 
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Farm, NM). All eggs were incubated at 38°C and embryos were staged with reference 

to Hamburger Hamilton (chick), Zebra Finch and Emu staging series(Hamburger & 

Hamilton 1992; Murray et al. 2013; Nagai et al. 2011). However, for comparing growth 

and pattern in earlier stages, somite number was the main reference point. To stay 

consistent across antero-posterior level and across species, all measurements were 

made at the level of somite 15. Formation of somite 15 is time zero, and developmental 

time after 15 somite stage is calculated as measure of ‘time after adjacent somite 

formation’. Somite 15 is also roughly where forelimb forms in all three species, and Dye-

I analysis show that during development, neural tube tissue and adjacent somite remain 

relatively close to each other, in other words, tissues do not shift (data not shown). 

Immunohistochemistry and imaging 

Embryos were fixed in 4%PFA at 4 °C for 1 hr for stages up to HH 20, and 2-3 hrs for 

older stages. After 3x PBS washes, they incubated in 15% sucrose overnight at 4 °C. 

Next day, sample were embedded in 7.5% gelatin/ 15%sucrose/PBS, flash frozen in 

cold isopentane and cryosectioned at 14 um.  

For immunostaining, gelatin was cleared from slides by incubation at 42 °C waterbath 

for 3 x 5 min. Blocking solution (1%BSA in PBS 0.1% Triton) for 1 hr, primary antibody 

(in blocking solution) overnight at 4 °C and secondary antibody (in blocking solution) for 

2 hr at room temperature were performed. Table 2.1 shows the list of antibodies used 

for neural tube staining.  

Imaging was performed using Zeiss Confocal and analyzed with NIH ImageJ. 
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Naïve neural plate explant surgery 

Neural plate tissue was isolated from 10-13 somite stage Chick, Finch and Emu 

embryos as described previously in chick(Yamada et al. 1993).  Recombinant Mouse 

Shh-N from R&D Systems C25II (464-SH-025) and SAG (Millipore, 364590-63-6) were 

dissolved as instructed added to the medium.When harvested (t= 0,6,8,12 or 24) 

explants were either processed for qRT-pcr or immunostained as described.  

qRT-PCR on explants 

Naive explants embedded in collagen (PureCol, Advanced Biomatrix) were dissociated 

with extration buffer (Buffer XB) in PicoPure RNA Extraction kit and RNA isolation was 

performed as described in kit protocol. Immediately following RNA extraction, cDNA 

was made using superscript II kit. Species specific primers were used for each set, as 

listed in table X. 

Chimera Transplants 

To generate embryos with chimeric neural tubes, GFP-Chick donor and Finch host, or 

GFP-Finch donor and Chick host embryos were dissected in Thyrode’s 

saline(Voiculescu et al. 2008) at 12 hrs of development (Stage HH 3). One half of the tip 

of the Hensen’s node was transplanted from the donor into the host embryo, as 

described previously(Selleck & Stern 1992). Embryos were placed on stretched out 

vitelline membranes, and incubated on albumin containing petri dishes for 24 hrs in a 

humidified chamber at 38°C. They were fixed at 4% paraformaldehyde, embedded in 

gelatin and cryosectioned at 12-14 um. 

Electroporations 

Constructs CMV-Gli3-flag, CAGG-Gli3 and 8XGBS-GFP Gli reporter were obtained 

from James Briscoe, and used with control CAGG-GFP construct to electroporate 
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embryos at stage HH11-12. For Finch electroporations, we let the egg sit in a 12-well 

humidified dish, since sealing the delicate shell was tricky. Both chick and finch were 

harvested 24 hours post electroporation, fixed at 4%PFA and immunostained.  
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Table 2.1: List of Antibodies Used for This Project 

Antibody Source Cat. # Concentration Used 

Nkx 2.2 DSHB 74.5A5 1:25 

Olig 2 Millipore AB9610 1:1000 

Nkx6.1 DSHB F55A10 1:1000 

Pax 7 DSHB PAX7 1:20 

Isl-1 DSHB 39.4D5 1:1000 

PH3 Millipore 06-570 1:250 

GFP Millipore AB16901 1:1500 

Shh DSHB 5E1 1:20 
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Chapter Three 

 

Patterning and Post-patterning Modes of Evolutionary Digit Loss in 

Mammals 

 

 

 

“I think that the fascination so many people feel for evolutionary theory resides in […] its 

properties. […] It stands in the middle in a continuum stretching from sciences that deal 

in timeless, quantitative generality to those that work directly with the singularities of 

history. Thus, it provides a home for all styles and propensities, from those who seek 

the purity of abstraction (the laws of population growth and the structure of DNA) to 

those who revel in the messiness of irreducible particularity (what, if anything, 

did Tyrannosaurus do with its puny front legs anyway?). […] And then, of course, there 

are all those organisms: more than a million described species, from bacterium to blue 

whale, with one hell of a lot of beetles in between—each with its own beauty, and each 

with a story to tell.”  

Stephan Jay Gould, The Panda’s Thumb  
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Summary  

 A reduction in the number of digits has evolved multiple times in tetrapods, 

particularly in cursorial mammals that travel over deserts and plains, yet the underlying 

developmental mechanisms have remained elusive. Here we show that digit loss can 

occur both during early limb patterning and at later post-patterning stages of 

chondrogenesis. In the “odd-toed” jerboa and horse and the “even-toed” camel, 

expansive cell death sculpts the tissue around the remaining toes. In contrast, digit loss 

in the pig is orchestrated by earlier limb patterning mechanisms including down 

regulation of Ptch1 expression but no increase in cell death. Together these data 

demonstrate remarkable plasticity in the mechanisms of vertebrate limb evolution and 

shed light on the complexity of morphological convergence, particularly within the 

artiodactyl lineage.  

Introduction  

 Tetrapod limbs evolved adaptations for running, swimming, flying, and a myriad 

of other tasks, each reflected in functional modifications to their morphology. Digit 

reduction, a decrease in the number of digits from the basal pentadactyl, or five-digit, 

morphology, arose repeatedly in tetrapod evolution(Jennifer A. Clack 2009). In broad 

strokes, there are two plausible developmental mechanisms by which this could take 

place. The first would be to specify fewer digit primordia during the time when 

developmental fates are patterned in the early limb bud. The second would be to initially 

organize the limb bud in a normal pentadactyl pattern but then fail to elaborate the full 

set of digits by resculpting the nascent limb through differential proliferation or cell 

death.  
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 To date, the molecular developmental mechanism of evolutionary digit reduction 

has been explored in only one tetrapod group - the skinks of the genus Hemiergis. 

Distinct species of Hemiergis range in digit number from two to five(Skinner et al. 2008; 

Shapiro 2002) with evolutionary progression to fewer digits correlating with increasingly 

early termination of Sonic hedgehog (Shh) expression in the posterior limb bud(Shapiro 

et al. 2003). Shh serves a dual purpose in limb development, both to pattern the digits 

and to expand the hand/foot plate to allow for the formation of a full complement of 

digits(Harfe et al. 2004; Towers et al. 2008; Zhu et al. 2008). Experimental truncation of 

the developmental timing of Shh expression removes digits in the reverse order of their 

formation(Zhu et al. 2008) thus providing a convenient way to evolutionarily tweak digit 

number without disturbing the overall structure of the limb, a mechanism first suggested 

by Alberch and Gale(Alberch & Gale 1983). However, this mechanism would not, in a 

simple manner, generate the symmetrical reduction of anterior (pre-axial) and posterior 

(post-axial) digits seen, for example, in the evolution of the horse lineage.  

Results 

 To investigate how digit reduction evolved in other adaptive contexts we 

examined the mode of digit loss in a bipedal three-toed rodent and in three ungulates: 

the single-toed horse, an odd-toed ungulate or perissodactyl, and the pig with four toes 

and the camel with two, each representing the even-toed ungulates or artiodactyls 

(Figure 3.1a, b).  

 We first focused on the three-toed jerboa, Dipus sagitta (Figure 3.1f). This 

species has several advantages in identifying meaningful alterations to ancestral 

developmental mechanisms. First, it has a close evolutionary relationship to the 
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laboratory mouse and to a five-toed species of jerboa, Allactaga elater(Walker 1964) 

(Figure 3.1d). Moreover, digit loss in D sagitta is limited to the hind limb while fore limbs 

maintained five fully formed fingers(Shenbrot et al. 2008; Cooper 2011). This provides a 

unique opportunity to identify differences specific to morphological divergence of the 

hind limb among a potential plethora of species-specific modifications shared in the 

development of both sets of paired appendages.  

 In the adult D sagitta, the three central metatarsals are fused into a single 

element that trifurcates distally and articulates with each of the three digits(Shenbrot et 

al. 2008). However, in the neonate, alcian blue and alizarin red staining of the 

chondrogenic skeleton reveals that the three complete digits and their associated 

metatarsals are flanked by small, truncated cartilage remnants of the first and fifth 

metatarsals (Figure 1c; Supplemental Figure S2.1). This suggests that at least the 

proximal-most portion of each of the five digit rays is patterned early in development 

and that digits I and V are either not fully patterned distally or are truncated at a 

subsequent differentiation stage.  

 To gain a better sense of when the patterning and/or morphogenesis of the 

lateral digits begins to diverge in the three-toed jerboa hind limb, we compared the 

contours of various staged limb buds between mice and D sagitta. We found that when 

scaled for size, the fore limbs of mice and three-toed jerboas are consistently identical 

in morphology. In contrast, the D sagitta hind limb starts to be noticeably narrower as 

early as E11.5 (Supplemental Figure S2.2).  
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Figure 3.1: Convergent evolution of the embryonic limb skeleton in multiple 

mammal species. a-b, Phylogeny of (a) mammals and of (b) artiodactyls representing 

the major groups that have independently lost digits, based on Meredith et al(Meredith 

et al. 2011). Parenthetical lettering references skeletons in accompanying panels. 

Orange circles indicate an evolutionary incidence of digit loss. Purple circles represent 

the shift from mesaxonic to paraxonic limbs in basal artiodactyls. Species that sculpt the 

limb by cell death are highlighted in red, and those that show a restriction of Ptch1 

expression are highlighted in green. C Alcian blue and alizarin red stained skeleton of 

postnatal day 0 three-toed jerboa, D sagitta with the ankle (proximal) at the top. 

Posterior view (left) highlights the fifth metatarsal (arrow). Anterior view (right) highlights 

the first metatarsal (arrow head). d, Alcian blue stained skeletons of the approximately 

16 dpc five-toed jerboa, A elater, hind foot; e, 30 dpc pig fore foot; f, approximately16 

dpc D sagitta hind foot; g, 50 dpc camel hind foot; h, 34 dpc horse fore foot; c, d, f, 

scalebar  =  0.5 mm. e, g, h, scalebar = 1 mm.  
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Figure 3.1, continued   
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Accordingly, we conducted an expression screen of a series of genes known to 

be involved in limb patterning just prior to and at the time of morphological divergence in 

hind limb bud shape. None of the patterning genes we examined showed a significant 

difference in expression in the D sagitta hind limb, including SHH, PTCH1, GLI1, and 

HoxD13 (Figure 3.2a, b). Turning to post-patterning stages, cell proliferation was 

assessed by phospho-histone H3 antigen detection. However, we did not see a 

decrease in proliferation in the hind limb of the three-toed jerboa, either at early stages 

of autopod expansion or later during digit out growth in any domain of the developing 

limbs (Supplemental Figure S2.3). In contrast, we saw derived expanded domains of 

TUNEL positive nuclei, a marker for programmed cell death, specific to the jerboa 

hindlimb as early as 12.5 days post conception (dpc) (Supplemental Figure S2.6). 

These domains further expand by 13.5 dpc to encompass all of the tissue distal to what 

would become the truncated cartilage condensations (Figure 3.3b). Thus digit loss in 

this species appears to result from the sculpting of anterior (pre-axial) and posterior 

(post-axial) tissues at the distal ends of properly patterned nascent digits.  

 Apoptosis is used in basal tetrapods to sculpt the digits, removing interdigital 

tissue late in limb development(Zuzarte-Luis & Hurle 2005). This suggests that a 

potential evolutionary route for achieving cell death in the D sagitta hind limb digit I and 

V primordia might be through cooption of the apoptotic pathways normally used to direct 

interdigital cell death. The transcription factor Msx2 is strongly expressed in the 

interdigital tissue of the embryonic mouse and chicken(Fernández-Terán et al. 2006), 

and retroviral misexpression in chicken embryos induces a dramatic increase in cell 

death and loss of  digit condensations(Marazzi et al. 1997; Ferrari et al. 1998, p.2).  
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Figure 3.2: Expression of early patterning genes: Shh, Ptch1, Gli1, and HoxD13. a, 

mouse hind limb (HL). b, three-toed jerboa, D sagitta, hind limb. c,  horse hind limb. d, 

mouse fore limb (FL). e, camel fore limb. f, pig fore limb. Scalebars = 1 mm. 
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Figure 3.2, continued  
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We found that Msx2 is strongly expressed in the D sagitta hind limb in tissue 

surrounding and distal to the truncated first and fifth metatarsals and completely 

overlaps with domains of TUNEL-positive nuclei (Figure 3.4a-c). In different contexts 

within the limb bud, the secreted protein Bmp4 can act both upstream and downstream 

of Msx2(Pizette et al. 2001; Ferrari et al. 1998).  We observe a transient spatial increase 

of Bmp4 expression specific to the D sagitta hind limb autopod starting at 12 dpc that 

resolves at 12.5 dpc into two strong and discrete domains of expression precisely 

prefiguring the proximal positions of the first and fifth digits (Supplemental Figure 

S2.4). However, Msx2 is expanded in the D sagitta hind limb prior to expanded Bmp4 

expression, as early as 11 dpc (Supplemental Figure S2.5). This is when the D sagitta 

hind limb first shows signs of narrowing relative to limbs that will develop five digits 

(Supplemental Figure S2.2), consistent with altered Msx2 expression potentially being 

the primary causal mechanism of digit loss in this species. 

 As the interdigital tissue begins to undergo apoptosis during mouse limb 

development, Fgf8 expression is lost in the overlying apical ectodermal ridge (AER), 

while Fgf8 expression is maintained above the growing digits (Figure 3.5a). Fgf8 is both 

necessary and sufficient for digit outgrowth in mouse and chicken embryos(Lewandoski 

et al. 2000; Mariani et al. 2008; Sun et al. 2002; Sanz-Ezquerro & Tickle 2003).  From 

about 12.75 dpc in the D sagitta hind limb, Fgf8 expression regresses away from the 

posterior and then anterior AER as well as the interdigital domains, persisting only over 

the digits that continue to develop to completion (Figure 3.5a, b; Supplemental Figure 

S2.6).  
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Figure 3.3 Patterns of cell death. DAPI (blue), Sox9 IHC (green), TUNEL (red). a, 

approximately 13.5 dpc three-toed jerboa, D sagitta, fore limb; b, approximately 13.5 

dpc D sagitta hind limb (white dashed line indicates truncated metatarsals I and V); c, 

45 dpc camel fore limb; d, approximately 13.5 dpc  five-toed jerboa, A elater, hind limb 

e, mouse E13.5 with Sox9 and TUNEL; f, magnification of boxed region in (e) 

demonstrating the absence of TUNEL+ nuclei in the nascent mouse digit; g, 34 dpc 

horse fore limb; h, magnification of boxed region in (g) highlighting cell death in the 

Sox9+ condensation at the position of horse digit IV; i, 42 dpc camel fore limb; j, 

magnification of boxed region in (i) highlighting cell death in the Sox9+ condensation at 

the position of camel digit V. Scalebar in (a) = 0.5 mm for a-d, e, g, and i. Scalebar in (f) 

= 0.1 mm for f, h, and j. 
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Figure 3.3, continued 
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The three-toed jerboa hind limb remarkably resembles the limb structure of some of the 

early ancestral equine species with three toes(Romer 1936).  To test possible 

mechanisms for digit reduction in the horse, we once again started by examining the 

expression of genes known to be involved in patterning the early limb bud. We observed 

no obvious differences in expression of Shh, Ptch1, Gli1, or HoxD13 relative to those 

previously described in mice (Figure 3.2c). In contrast, we did observe TUNEL-positive 

nuclei entirely surrounding the central toe and within the distal ends of nascent Sox9+ 

truncated condensations of metacarpals 2 and 4 (Figure 3.3g, h), a condition not 

observed in mouse (Figure 3.3 e, f). Moreover, we found expanded Msx2 expression in 

domains correlating with those regions of anterior and posterior cell death (Figure 

3.4d). We also observed increased posterior expression of Msx2 earlier in development 

(Supplemental Figure S2.5) and distal expansion of Bmp4 in both fore and hind limbs 

(Supplemental Figure S2.4) similar to D sagitta hind limbs. Fgf8 expression is also 

maintained in the horse AER only over the nascent central digit III (Figure 3.5d). Thus, 

in the horse as in the three-toed jerboa, digit reduction appears to have a post-

patterning contribution involving expanded domains of lateral apoptosis, possibly in part 

through similar molecular mechanisms. It is likely that mechanisms yet to be identified 

eliminate the first and fifth digits while a jerboa-like carving away of digits II and IV 

occurs by transforming cells from a chondrogenic to an apopototic fate. A more 

extensive investigation of early patterning may be worthwhile with additional precisely 

staged early horse embryos. 

 The even-toed ungulates present yet another opportunity to explore the possible 

convergence of digit reduction mechanisms in the context of additional skeletal 
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remodeling. The distal artiodactyl limb has shifted the central axis of symmetry from 

digit III in the ancestral mesaxonic limb to a derived paraxonic limb where the axis of 

symmetry runs through the interdigital space between digits III and IV(Prothero & Foss 

2007). To explore whether digit loss in these species occurs via patterning and/or post-

patterning changes, we obtained embryos from two species of artiodactyls, the pig and 

camel. While this work was in progress, we learned of similar studies by Lopez-Rios et 

al(Lopez-Rios et al. n.d.) in a third artiodactyl species with convergent digit loss to two 

toes, the cow. The accompanying paper identifies a gene regulatory control region for 

Ptch1 expression in the limb that is altered in the cow. The resulting expression of Ptch1 

is reduced and more posteriorly restricted than in non-artiodactyl species. One role that 

Ptch1 expression serves is to restrict the movement of the morphogen Shh across the 

limb bud(Chen & Struhl 1996; Yina Li et al. 2006). As a consequence of the change in 

Ptch1 expression in the cow, Shh targets, including Gli1 and the Hoxd genes, are 

expressed more uniformly across the limb bud(Lopez-Rios et al. n.d.). Mice in which 

Ptch1 expression is reduced in the limb display similar changes in downstream genes 

and a concomitant shift in the central axis of the limb to the space between digits III and 

IV and loss of the first digit(Butterfield et al. 2009). Importantly, after learning of our 

results with the three-toed jerboa and horse, Lopez-Rios and colleagues looked closely 

and saw no evidence of expanded apoptosis in the developing cow limb(Lopez-Rios et 

al. n.d.). Together these results suggest that, as in Hemiergis, the even-toed ungulates 

might have lost digits through a Shh-dependent patterning mechanism, albeit by a 

different genetic alteration, allowing the digits to be lost in an asymmetrical manner in 

the artiodactyls.  
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 As would be expected if mutations affecting Ptch1 regulation play a prominent 

role in artiodactyl limb evolution, we find Ptch1 expression in the pig is also posteriorly 

restricted and down-regulated concomitant with an up-regulation of Gli1 (Figure 3.2f). 

Further, as in the cow, there is no evidence of increased cell death in developing pig 

limbs(Karen E Sears et al. 2011). Surprisingly, however, Ptch1 expression is not down-

regulated and restricted in the camel and is instead expressed much like non-

artiodactyls (Figure 3.2e). Additionally, Shh, Gli1, and HoxD13 exhibit ancestral 

patterns of expression indicating early patterning of the digit field by this subset of 

molecules is conserved in the camel (Figure 3.2e). In contrast, when we examined 

patterns of cell death in the camel, we found expansive apoptosis throughout 

outgrowths of tissue flanking digits III and IV at 45 dpc (Figure 3.3c) as well as at 42 

dpc within small Sox9+ pre-cartilaginous nodules in the positions of missing digits II and 

V (Figure 3.3i, j). As in the three-toed jerboa and horse, this correlates with domains of 

Msx2 expression in the anterior and posterior limb bud at the time of digit condensation 

(Figure 3.4e), though earlier expression of Bmp4 and Msx2 does not correlate 

suggesting a distinct initiating mechanism for camel (Supplemental Figures S2.4, 

S2.5).  

 Regardless of the mechanism by which digit loss occurs, at patterning or post-

patterning stages, Fgf8 expression is lost from the AER anterior and posterior to the 

digits that continue to develop in the pig, camel (Figures 3.5c, e), and cow(Lopez-Rios 

et al. n.d.) as seen with the three-toed jerboa and horse. Regression of Fgf8 in the pig 

and cow, two species that lack expanded domains of cell death, uncouples this  
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Figure 3.4. Expression of Msx2 at the start of digit chondrogenesis.  

Fore limb and hind limb of a, mouse at 13 dpc; b, five-toed jerboa, A elater, at about 13 

dpc; c, three-toed jerboa, D sagitta, at about 13 dpc; d, horse at 34 dpc; e, camel at 42 

dpc. Scalebar = 1 mm. 
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Figure 3.4, continued 
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expression change from the direct cause of apoptosis and may rather reflect an 

independent requirement for its elimination to allow for digit termination in all species. 

These data indicate that at least two mechanisms of digit reduction are employed 

in the even-toed ungulates, one (exemplified by the pig and cow) involving changes in 

early patterning by Shh and not involving apoptosis, and a distinct mechanism (seen in 

camels) involving changes in domains of apoptosis that resculpt the limb after the 

patterning phase. These data do, however, present a paradox in the context of the well-

established artiodactyl phylogeny and fossil record (Figure 3.1b). Although the 

morphology of the cow and pig is remarkably similar to the mouse phenotype when 

Ptch1 is lost from the limbs, both in the reduction of digits and shift in the symmetry of 

toes to the interdigit of III-IV(Lopez-Rios et al. n.d.), it cannot have been responsible for 

both phenotypes in the artiodactyls as they occurred at different stages evolutionarily. 

The fact that a change in Ptch1 regulation is seen in both pigs and cattle indicates that it 

was likely present in their last common ancestor.  As such, it cannot have been solely 

responsible for the loss of digit 1, as this occurred convergently in these two lineages.  

Indeed, digit reduction occurred at multiple independent times within the artiodactyl 

clade (Figure 3.1b, orange circles), as the stem group of each major lineage was 

pentadactyl at least in the forelimb(Clifford 2010). The common ancestor of pigs and 

cattle would also have been ancestral to the hippos and their Cetacean relatives, the 

dolphins and whales (Figure 3.1b). Like extinct basal artiodactyls, hippos and basal 

Cetaceans have a relatively small first digit (Lisa Noelle Cooper et al. 2007; Karen E 

Sears et al. 2011; Prothero & Foss 2007). Thus, a restriction of Ptch1 in a basal  

  



115 

 

Figure 3.5. Fgf8 expression is restricted to the AER overlying nascent digits. Fore 

limb and hind limb of a, mouse at 13 dpc; b, three-toed jerboa, D sagitta, at about 13 

dpc; c, pig fore limb at 25 dpc; d, horse hind limb at 34 dpc; e, camel fore limb at 42 

dpc;. Scalebar = 1 mm. 
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Figure 3.5, continued  
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member of the group including pigs, hippos, cetaceans, and cattle may have served to 

reduce the size of the first digit and predispose the limb to further digit loss. 

Perhaps even more striking is the absence of altered Ptch1 regulation in the 

camel. Without this information, one might have speculated that the Ptch1 mutation was 

responsible for the reorientation of the axis of symmetry in artiodactyls similar to the 

mutant mouse. However, the shift in the position of digits from paraxonic to mesaxonic 

is believed to be ancestral to the split of modern artiodactyl suborders (and indeed is a 

defining characteristic trait for this clade(Rose 1982; Rose 1996; Theodor et al. 2007)) 

(Figure 3.1b, purple circle). Given the camel evidence, one has to either conclude that 

the shift actually arose independently in the ancestors of the camels and those of other 

artiodactyl lineages, or alternatively, any role Ptch1 may have in the establishment of 

digit position in the pig and cow arose secondary to a separate mechanism established 

prior to the split of camels and their relatives.  

 The identification of several distinct molecular and cellular mechanisms of digit 

loss with recurring motifs suggests the developmental program of the tetrapod limb is 

fairly plastic. This would have provided some flexibility to allow adaptation in different 

circumstances and ultimately contributed to the diversity of limbs seen today. 

Methods Summary 

 All embryos were collected in accordance with the appropriate Institutional 

Animal Care and Use Committee guidelines. Alcian blue(Rasweiler et al. 2009a) and 

alcian blue/alizarin red(Ovchinnikov 2009) skeletal stainings were performed as 

previously described. Whole mount in situ hybridizations were performed for mouse, 

three and five-toed jerboa, horse, and camel as in Riddle et al(Riddle et al. 1993). 
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Whole mount in situ hybridizations were performed in pig embryos as in Rasweiler et 

al(Rasweiler et al. 2009b). Riboprobes were generated by PCR amplifying from cDNA 

of the appropriate species, cloning into pGEMT-Easy (Promega), sequence verification, 

and expression testing first in mouse embryos. Primers used for probe generation are 

listed in Supplementary Table S2.1. Each experiment was performed in at least two 

limb buds. For TUNEL and IHC, embryos were embedded in paraffin or gelatin and 

sectioned at 12 or 80 um thickness. TUNEL was performed using the TMRed In Situ 

Cell Death Detection Kit (Roche) according to the manufacturer’s instructions and 

counterstained with DAPI or Sox9 immunohistochemistry. Sox9 and PH3 IHC were 

each performed after boiling antigen retrieval in citrate buffer using a 1:500 dilution of 

rabbit anti-Sox9 (Millipore AB5535) or 1:200 dilution of rabbit anti PH3 (Cell Signal 

#9701) followed by a Cy2 or Alexa594 conjugated secondary respectively. Fluorescent 

images were captured by confocal microscopy, and images of sequential sections were 

overlaid in NIH ImageJ. 
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Chapter Four 
 

Concluding Discussion 

 

 

 

 

Marty McFly: Wait a minute, Doc. Ah... Are you telling me that you built a time machine... out of 

a DeLorean? 

Dr. Emmett Brown: The way I see it, if you're gonna build a time machine into a car, why not do 

it with some style? 

  

http://www.imdb.com/name/nm0000150/?ref_=tt_trv_qu
http://www.imdb.com/name/nm0000502/?ref_=tt_trv_qu
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This thesis explores morphogenesis in an evolutionary context, focusing on 

adapting pattern to differential growth and form. The two projects set out to investigate 

these two variable properties of morphology by using a comparative approach and 

multiple model and non-model species.  

Pertaining to Chapter Two on Scaling Morphogen Mediated Patterns to Variations 

in Size  

The first question I looked into is how morphogen mediated pattern formation is 

scaled to variations in embryonic size throughout animal kingdom. The three species 

selected from Class Aves, Zebra Finch, Chick and Emu have different embryonic sizes 

as well as distinct dynamics of growth and patterning along the neural tube dorso-

ventral axis. The smaller bird Zebra Finch, which goes through growth arrest earlier, 

accelerates its patterning process while the bigger bird Emu, which has a vastly 

elongated developmental timeline, patterns its neural tube D-V axis more gradually. 

Through in vitro explant assays and in vivo chimeric animals, we pinpoint that this 

difference in timing of patterning is due to a differential response to the morphogen and 

that this is intrinsic to the cells. Activation of the pathway through Smoothened receptor 

reveals that it is downstream to the Smo receptor, and we have strong evidence that Gli 

repressor activity is different, as shown in Finch and Chick both in terms of transcript 

levels and in vivo reporter activity.   

Previous studies explore patterning dynamics in the context of how perturbations 

to size as intra-species variation can be buffered(Hamaratoglu et al. 2011; De Robertis 

2009). While alterations in morphogen gradients or interaction of two opposing signals 

can fine-tune patterning events, we have investigated size variation as a question of 

evolutionary biology. Importantly, we wanted to explore how much flexibility is inherent 
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to strictly conserved signaling pathways that orchestrate pattern formation. Avian 

species have proved to be a perfect system to study this, birds are related close enough 

that components of patterning events should be highly conserved, but they also exhibit 

a wide range of egg size variation.  

In the three species we investigated, there was not only a difference in size, but 

also differences in growth dynamics and temporal regulation of growth. However, it 

appears that differential response to morphogen in the neural tube is independent of the 

animal’s developmental environment, as is shown in the chimeric animals. This 

suggests that while we assume growth and patterning to be inherently coupled and 

dependent on the developmental context, cell-autonomous differences among species 

can alter patterning independent of the growth environment. Interestingly, recent work 

on quail, duck and emu craniofacial patterning revealed that species-specific and cell 

autonomous differences in the neural crest mesenchyme dictate differences in timing 

and patterning of osteogenesis(Hall et al. 2014). It appears that our findings represent a 

phenomenon not entirely limited to the patterning of the ventral neural tube, but possibly 

a repeated trend within evolution of pattern. Prior to this work, inter-species variability of 

morphogen response had not been explored. 

While our work was in progress, we exchanged ideas with James Briscoe’s 

group in London, who had data that changes in cell cycle length do not alter morphogen 

response in the chick neural tube. Moreover, forcing progenitors in the neural tube to 

keep cycling has been shown to be insufficient to alter cell fate decision(Lobjois et al. 

2008). Along with our findings on differences in Gli activity levels, data suggests that 

changes in cell cycle length or temporal differences in growth dynamics are not drivers 
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of differential patterning dynamics. Rather, differential response is an intrinsic property 

of cells and likely due to differences to the intracellular dynamics of Shh signaling. We 

were able to track this down to differences in Gli activity levels. Since Gli2 levels and 

notably Ptc1 upregulation seems very similar in Finch and Chick, we focus on the very 

low Gli3 levels in the Finch tissue. Since Gli3 acts mainly as a repressor, it appears that 

Finch neural tube tissue inherently has lower Gli repression activity, hence the 

spontaneous upregulation of Olig2 transcripts in naïve explants. Indeed, when we 

increase repressor levels in Finch and Chick neural tubes, patterning is decelerated. 

Therefore, by bringing down the levels of a repressor, the smaller bird, Zebra Finch, can 

increase its responsiveness to a morphogen gradient. Other possible scenarios for how 

different species can display differential response to a signal can be through dynamics 

of the gene regulatory networks or expression and activity of some pan-neural genes 

like Sox2 (Peterson et al. 2012), but this remains to be explored. 

In some systems, such as the Drosophila wing disc, early vertebrate embryo or 

the Xenopus gastrula, it is reported that the morphogen gradient itself is scaled to size 

of the tissue, thereby scaling the tissue pattern to size(Hamaratoglu et al. 2011; Gregor 

et al. 2005; Cheung et al. 2014; Inomata et al. 2013; Ben-Zvi et al. 2008). While scaling 

models that rely on scaling of the morphogen gradient itself may be valid for a range of 

biological systems, it appears that in the neural tube, neither the morphogen gradient 

nor the Gli activity gradient scale to perturbations in size. Rather, a complex dynamical 

gene regulatory network, differentiation rate and anisotropic growth of the neural tube 

seem to explain how pattern adapts to size variability within individuals (Kicheva, A., 

Bollenbach, T., Ribeiro, A., Perez Valle, H., Lovell-Badge, R., Episkopou, V., Briscoe 
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n.d.). Therefore, along with work from the Briscoe group, our scaling models for inter-

species and intra-species size variation in the neural tube propose an alternative to 

models that focus on scaling of the gradient. However, how the gradient shape and 

amplitude differ in Finch, Chick and Emu is also an interesting question that we aim to 

address in the near future. We have been able to visualize the Shh morphogen gradient 

in all species, and hope to quantify the amplitude of the gradient at different stages of 

development. 

 Another noteworthy difference within the neural tubes of the three species was 

the circumferential growth, or in other words, thickness of the neural tube tissue along 

the apico-basal direction. As neurons proliferate, differentiate and migrate basally, the 

pseudostratified progenitor layer changes in thickness (Saade et al. 2013). Even though 

cell size is comparable between species, we noticed that especially in earlier stages, 

ventral midline apico-basal thickness of the neural tube is smallest in the Finch, and 

greatest in the Emu. While this is correlated with proliferation and differentiation 

dynamics, it is important to investigate how it contributes to shape of the morphogen 

gradient or reception of the morphogen protein by the cells. Size and shape of the 

progenitor domains, as expected, can also be altered with differences in the depth of 

the tissue.  

Follow up questions on patterning and anisotropic growth in the neural tube 

brings us to the issue of whether dynamics of growth, cell cycle length and 

differentiation are also inherently different in the three species. The early arrest of 

growth cycle in the Finch neural tube compared to chick, and the extended duration of 

growth in the Emu suggest entirely different growth dynamics for the three species, 
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which is intuitive considering the overall difference in size at the end of development. 

Some candidate pathways to study include Notch signaling, Hippo pathway, and certain 

pan neural genes that may regulate differentiation. In the future, it would be interesting 

to tackle the mechanisms of differences in growth. 

Pertaining to Chapter Three on Digit Reduction in Vertebrate Limb Evolution 

The second part of this thesis, evolutionary mechanisms of digit reduction, is the 

flip side of the medallion compared to the work in the first part. With this project, we 

addressed how a conserved pattern is modified, as opposed to how it is maintained 

throughout evolution as was explored in the scaling project. A recurrent adaptive 

modification to the vertebrate limb is digit reduction, observed in a wide range of 

animals from different taxa of tetrapods. In collaboration with Dr. Kim Cooper, we 

explored whether the developmental mechanisms underlying this convergent adaptation 

is shared between animals. Our findings show that lateral cell death is a post-patterning 

mechanism to sculpt the autopod, and employed as a modification mechanism by the 

odd-toed jerboa, horse and the even toed camel. On the other hand, the pig and the 

cow  have achieved a convergent phenotype through down-regulation of Ptch1 

expression with a conserved change in Ptch1 enhancer region (as is shown in Lopez-

Rios et al). Together, these data demonstrate that there is a remarkable plasticity in 

how patterns can be modified to achieve a convergent phenotype. Reduction to digit 

number can be achieved either through changes during the patterning process, or 

subsequent to it. 

Previous research on tetrapod digit reduction is limited, but Shapiro et al. have 

explored digit reduction in closely related populations of Australian skinks from the 
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genus Hemiergis, inhabiting 4 different isolated areas in Western Australia. The skink 

populations are unique in that each isolated habitat is home to a species with a unique 

number of digits, ranging from 2 to 5. Shapiro et al.’s work reveals early termination of 

Shh expression in species with reduced digit number, with 2-digit embryo having the 

shortest period of Shh expression. This is thought to be what drives reduction in digit 

number, especially because the digits are reduced in the reverse order that they 

develop. Notably, functional studies on Ambystoma mexicanum salamanders  where 

Shh signaling was blocked with drug cyclopamine also result in digit loss in a pattern 

that mimicks the reverse order of digit formation(Stopper GF 2007).   

Yet, what we observe with the odd-toed jerboa and odd-toed horse is 

symmetrical digit loss, where lateral digits are the first ones to be reduced. Identities of 

the outgrowing digits are homologous to the central digits. Then, an entirely different 

strategy for digit reduction, one that is post- patterning, can explain how the digit 

number is reduced in these animals. The expansive cell death we identified in lateral 

limb mesenchyme of jerboa and horse autopoda is preceded by extended BMP4 and 

Msx2 expression in the earlier stages, suggesting that pathways that are known to 

regulate cell death in the limb mesenchyme are involved with the lateral apoptotic 

cascade that prevents digit outgrowth. Functional studies in model organisms can 

complement these results. Importantly, a work that is to be followed up by Kim Cooper 

involves identification of regulatory differences and test expression with reporter BACs, 

using jerboa-specific sequences. Finally, functional tests will be performed with specific 

knock-in mice at these regulatory sites, to recapitulate phenotype. 
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In parallel, work from Lopez-Rios et al. reports an alternative strategy through 

which digit number is regulated. In bovine limbs, they identified an evolutionary 

alteration to a Ptch1 cis-regulatory module, as a consequence of which Ptch1 

upregulation is disrupted and Gli1 expression is uniform along the limb bud. 

Interestingly, we have observed the same phenomenon within the pig limb buds. As 

Bovidae (includes cows) and Suidae (includes pigs) have both diverged early during 

artiodactyl evolution, modification to the Ptch1 cis-regulatory module may have 

emerged before this diversion, as a shared characteristic of even-toed ungulates with 

reduced digit number and shifted axis. 

However, the camel, which is another even-toed ungulate that has diverged early during 

the artiodactyl evolution, does not follow this trend. Instead, Ptch1 upregulation is not 

disrupted, and the embryos have expanded cell death on the lateral sides of the 

autopod. Curiously, this expanded apoptosis is not preceded by distal expansion of 

BMP4 that we observe for three toed jerboa and horse, leaving the camel with an 

entirely unique strategy for digit reduction. Moreover, with these finding, we cannot 

assume Ptch1 rotation to be responsible for the shift in axis of symmetry. The axis shift 

either arose independently in even-toed ungulates, or, Ptch1’s role in digit reduction 

was secondary to a separate mechanism that caused axis shift prior to split of camels 

from this cluster.   

Distal restriction of AER-Fgf8 expression is a convergent phenotype for all 

species we studied. Interestingly, Lopez-Rios et al. have observed a similar distal 

restriction of Fgf8 expression in bovine limb buds. This makes it likely that regression of 

Fgf8 expression is a consequence of signaling events subsequent to mechanisms that 
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inhibit outgrowth of lateral digits, such as elevated Bmp signaling or Grem1 levels. In 

this case, Fgf8 restriction is correlated, not causative, during digit reduction, even 

though its elimination would likely contribute to failure of chondrogenesis for lateral 

digits. 

Fossil record shows that primitive artiodactyls, just like most rodents, are indeed 

pentadactylous. The fact that animals from different taxa have converged on 

mechanism of post-patterning sculpting suggests that extreme developmental 

modifications to the earliest stages of limb formation may be selected against.  The 

initial formation of the limb bud and the set of pentadactyl pattern is constrained to some 

degree, making it more likely that evolutionary modification to later stages of limb 

formation is what generates diverse adult morphologies and digit number variation(Galis 

F  Metz JAJ 2001; Sears 2011). It is also noteworthy to mention that the earliest phase 

of limb bud outgrowth and onset of pentadactyl pattern have been reported to be 

maintained the pig embryonic development, as well as in other artiodactyls that have a 

similar functional loss in lateral digits, such as cows(K E Sears et al. 2011). 

Among the species we investigated, digit identities are roughly conserved 

between taxa, and each digit is distinct in terms of its morphology and position along the 

antero-posterior axis. What appear to be different in digit development between different 

taxa is slight differences in timing of digital condensation and growth, as well as notable 

differences in size of the digits. This was particularly impressive with the horse limbs, 

where the middle toe, while retaining its identity, was remarkable larger in size. When 

looked into at early stages with the lateral condensations, it was also evident that not 

just the digit, but the non-digit spacing is also quite large. In the future, it could be 
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interesting to explore what could be causing differences in digit and non-digit sizes in 

different species.  

It is important to note that while we investigated patterns of digit reduction 

extensively and have seen repeated examples of it in nature, we hardly ever see  gain 

of digit, even though polydactyly is a common anomaly. One reason may be that 

common mutations of polydactyly in animals have pleiotropic effects that prevent it from 

being selected. Moreover, polydactyly does not provide a new digit identity, but 

duplicates an existing one. Therefore, duplication of an existing form is not likely to 

reveal a new function for the animal(Tabin 1992). Instead, what we observe in nature is 

exaptation (modification of existing structures into new form and function).  The panda 

bear, mole and elephant all have modified a sesamoid bone so it appears as an extra 

digit with a unique form and function, while retaining the functionality of their pentadactyl 

digital palette(Mitgutsch et al. 2012; Gould 1978; Hutchinson et al. 2011) .  

In summary, it appears that morphogen mediated patterning in animal 

development provides a robust, species specific morphology with great precision for 

proper form and function. Yet, we also observe a remarkable plasticity to this process in 

evolution, whereby patterns can be scaled to the overall size of the animal or modified 

to fit form to function.  

Taken together, I hope this dissertation can expand our understanding of how 

conserved pathways of morphogen mediated patterning can be adapted to modify 

morphogenesis and generate new forms and functions throughout evolution. 
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Appendix  

Part I: Supplementary Figures for Chapter Two 
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Figure S1.1 Finch, Chick, Emu eggs and development.  Eggs of the three bird 

species used for this study. They cover a range of embryonic sizes from an early time 

point in development. While developmental timing is more similar between Finch and 

Chick, Emu is more delayed.
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Figure S1.2: Chick versus Finch development across stages: Developmental series 

of Chick versus Finch embryos, compared at equivalent stages starting from stage HH8 

through HH28. Difference in size is noticeable from stage 8 (day 1) through hatching 

(not shown).  
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Figure S1.2, continued 

   Chick                           Finch            

Finch 
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Figure S1.3: OLIG2 dorsal expansion across time. Dorsal expansion of pattern, as 

shown for OLIG2 at 10.5 hours post formation of somite 15.  
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Figure S1.4: Pattern progression in the three species plotted as number of 

progenitors: Instead of % dorsal expansion of the transcription factor expression 

domains, this graph plots the number of progenitors expressing the specific TF, plotted 

against time. 
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Figure S1.5: Isl-1 expression starts earlier in Finch: Expression of the motor neuron 

differentiation marker Isl-1 starts earlier in Finch, with a few cells already expression Isl-

1 at stage HH14. For all earlier stages we quantified, Isl-1 in Finch tissue is more 

advanced than Chick and Emu (Emu tissue does not start Isl-1 expression for a long 

time). While an inherent different in differentiation rates is possible, this trend could also 

stem from earlier peak of Olig2 expression in the Finch, and latest in the Emu. More 

advanced patterning in the Finch at same time point may mean a naturally earlier 

initiation for differentiation phase.  
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Extended Figure S1.6: Finch and Chick naïve explants grown in vitro with a fixed 

concentration of Shh, for different durations. Duration of morphogen exposure has 

been shown to be critical to morphogen response as much as morphogen 

concentration, as discussed in text. When naïve explants from Finch and Chick are 

incubated at a fixed concentration that elicits differential response at 24 hours (Finch 

explants saturated for NKX2.2 response and Chick explants expressing both NKX2.2 

and OLIG2), we find that this altered response can be observed as early as 12 hours. At 

6 hours, tissue from both species did not stain for either of the markers. At 12 hrs, Finch 

is saturated with NKX2.2 response, while Chick is saturated with OLIG2 response. We 

later did a qRT-PCR series for these genes and saw a similar trend (See Figure 2.7). 

 n > 5 for all panels. Results are representative.  
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Extended Figure S1.7: Expression of different SHH pathway components 

Expression of several SHH pathway components in Finch versus Chick as assayed by 

qRT-PCR. a-b. GLI3 levels are drastically different in the two species, when assayed by 

two different sets of species specific primers c. Smoothened levels are comparable, and 

d. GLI2 levels do not appear to be significantly different. Each data point represents 15-

25 explants pooled together. 
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Table S1.1 Primers used for qRT-PCR assays 

Gene Species FW primer REV primer 

Actin Finch GCGCGAGATCGTGCGCGACA TCTTCTCCAGCGAGGAGGAG 

 
Chick GAGGGAGATCGTCCGTGATA TTTTCTCCAGGGAGGAGGAT 

 
Emu AAGGGAGATTGTCCGTGACA TCTTCTCAAGGGAGGAGGAA 

GAPDH Finch CACACAGAAGACAGTGGATG CGGAAAGCCATTCCAGTAAG 

 
Chick CACACAGAAGACGGTGGATG CGGAAAGCCATTCCAGTAAG 

 
Emu CACCCAGAAGACAGTGGATG CGGAAAGCCATTCCAGTAAG 

Ptch1 Finch AAGCGAACAGGAGCAAGTGT TGCTGCTTGGAGTGAAAATG 

 
Chick AAGCGAACAGGAGCAAGTGT TGCTGCTTGGAGTGAAAATG 

 
Emu TTGCCTTTTCTTGCTCTTGG AGCACAGGGAAAATCAGCAGAA 

Smo Finch TTTGTCATGCTCACCTATGC ACCAGGTGATGAGGTGGAAG 

 
Chick TTTGTCATGCTGACCTACGC ACCAGGTGATGAGGTGGAAG 

 
Emu TTCGTCATGCTCACCTACGC ACCAGGTGATGAGGTGGAAG 

Gli2 Finch GCAACTAAGGAAACACATGA CCCATGAGCAGGAATCCTTA 

 
Chick 

  

 
Emu GCAGTCTAATGAAACACATGA 

 Gli3 set#1 Finch ATTTCCCCGCACCGAAAT C AATGTATGGGTGAGGGGTGC 

 
Chick TCCCCACACAGAGCCTTATC AATGTACGGGTGAGGAGTGC 

    Olig2 Finch GGATGCACGACCTCAACC CTTCATCTCCTCCAGGGAGT 

 
Chick GGATGCACGACCTCAACA CTTCATCTCCTCCAGCGAGT 

    Nkx2.2 Finch ACGCAGGTGAAGATCTGGTT TTGTACTGCATGTGCTGCTG 

 
Chick ACCTTCCAGACGGGCATC TGTAATGGGCGTTGTATTGC 

    Gli3 set#2 Finch ACAGGAGGGACAGCAATACT CTGCAACGCTCACATCTTGT 

  
ACAGGAGGGACAGCAATACG CTGCAACGCTCACATTTTGT 
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Part II: Supplementary Figures for Chapter Three 
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Extended Data Figure S2.1. The proximal remnants of truncated skeletal elements 

in D sagitta are correctly patterned.  Alcian blue and alizarin red stained skeletons of 

postnatal day 0 mouse (left) and three-toed jerboa, D sagitta (right) with proximal 

(ankle) at the top. c, Anterior view highlights the first metatarsal (arrow head). d, 

Posterior view highlights the fifth metatarsal (arrow). e, Dissected first tarsal-metatarsal 

elements demonstrate the morphology of the truncated first metatarsal of D sagitta 

(right, arrow head) compared to mouse (left). Joint interzone indicated by white dashed 

line.  
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Extended Data Figure S2.1, continued 
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Extended Data Figure 2.2. The shape of the three-toed jerboa hind limb differs 

from the mouse as early as 11.5 dpc Trace outlines of limb buds of the mouse (black) 

and three-toed jerboa, D sagitta (green) over a developmental time series.  



150 

 

 

Supplementary Figure S2.2, continued 
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Extended Data Figure 2.3. Cell proliferation is unchanged in the D sagitta hind 

limb bud. Phospho-histone H3 detection in sections of mouse and three-toed jerboa, D 

sagitta, limb buds. a, fore limbs; b, hind limbs. 
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Extended Data Figure 2.4. Developmental time course and species comparisons 

of Bmp4 expression. a, Fore limb buds (FL) and b, hind limb buds (HL) of mouse and 

the three-toed jerboa, Dipus sagitta, at 10.5, 11, 11.5, 12, and 12.5 dpc. c, Fore limb 

and hind limb of the five-toed jerboa, A elater, at approximately 12.25 dpc. d, Fore limb 

and hind limb of the horse at 30 dpc (approximately equivalent to mouse 12 dpc). e, 

Fore limb and hind limb of the camel at 38 dpc (approximately equivalent to mouse 12.5 

dpc). Scalebar = 1 mm. 
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Extended Data Figure 2.5.  Developmental time course and species comparisons 

of Msx2 expression. a, Fore limb buds (FL) and b, hind limb buds (HL) of mouse and 

the three-toed jerboa, Dipus sagitta, at 10.5, 11, 11.5, 12, and 12.5 dpc. c, d, Msx2 

expression in the (c) mouse and (d) D sagitta embryo at 10.5 dpc. e, Fore limb and hind 

limb of the five-toed jerboa, A elater, at approximately 12.25 dpc. f, Fore limb and hind 

limb of the horse at 30 dpc (approximately equivalent to mouse 12 dpc). g, Fore limb 

and hind limb of the camel at 38 dpc (approximately equivalent to mouse 12.5 dpc). 

Scalebar = 1 mm for D sagitta, A elater, horse, and camel and 0.8 mm for mouse limbs. 

  



154 

 

Extended Data Figure 2.6.  Time series of Fgf8 expression a. in the mouse and three-

toed jerboa, D sagitta, hind limb. b, Fgf8 expression in the pig (25 dpc) and camel (42 

dpc) hind limbs of embryos in Figure 7. TUNEL labeling of cell death in the 12.5 dpc D 

sagitta hind limb. Limbs in (b) are aligned with the closest stage matched embryos in 

(a). 
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Extended Data Figure 2.6, continued  
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Table S2.1 Primers used to generate species specific probes 
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Shh Forward Reverse 

mouse GACCCCTTTAGCCTACAAGCAGTTT GCGTCTCGATCACGTAGAAGACCT 

jerboa GACCCCTTTAGCCTACAAGCAGTTT GCGTCTCGATCACGTAGAAGACCT 

horse CTGGTGGTTCTGGTCTCCTC CCCTCGTCCGATCACGTA 

camel used horse probe   

pig CCGGCTGATGACTCAGAGAT     GCAGGTCCTTCACCAGCTT 

Ptch1     

mouse CTTCGCTCTGGAGCAGATTT GCATGGTTAAACAGGCATAGG 

jerboa CTTCGCTCTGGAGCAGATTT GCATGGTTAAACAGGCATAGG 

horse CGCCAGAAGATTGGAGAAGA CCTGAGTTGTTGCAGCGTTA 

camel CGCCAGAAGATTGGAGAAGA CCTGAGTTGTTGCAGCGTTA 

pig GGAGCAGATTTCCAAGGGGA     CGGAGAGCTTCTGTGGTCAG 

Gli1     

mouse TACATGCTGGTGGTGCACAT GGCTGTGGCGAATAGACAGA 

jerboa TACATGCTGGTGGTGCACAT GGCTGTGGCGAATAGACAGA 

horse GTGACCACTCCCCAGCAG GATTCAGACCACTGCCCATC 

camel TACATGCTGGTGGTGCACAT GGCGGTCAAGAGAAACTGG 

Hoxd13     

mouse CTATGGCTACCATTTCGGCAAC ACTGGTAGCCCTCCATGGAAAT 

jerboa CTATGGCTACCATTTCGGCAAC ACTGGTAGCCCTCCATGGAAAT 

horse TTCCCGGTGGAGAAGTACA TTGAGCTTGGAGACGATTTTC 

camel TTCCCGGTGGAGAAGTACA TTGAGCTTGGAGACGATTTTC 

Msx2     

mouse CTCTCGTCAAGCCCTTCGAGAC AGCCATTTTCAGCTTTTCCAGTT 

jerboa CTCTCGTCAAGCCCTTCGAGAC AGCCATTTTCAGCTTTTCCAGTT 

horse TCGCTTAGGGTGGTGTAAGC TTGCTAATTCACCCCTCTCTG 

camel used horse probe   

Bmp4     

mouse AGTGAGAGCTCTGCTTTTCGTTTC GGCAGTAGAAGGCCTGGTAGCC 

jerboa AGTGAGAGCTCTGCTTTTCGTTTC GGCAGTAGAAGGCCTGGTAGCC 

horse CCAGCGAAAACTCTGCTTTT  GATCAATATGGTCAAAACATTTGC 

camel CCAGCGAAAACTCTGCTTTT  GATCAATATGGTCAAAACATTTGC 

Fgf8     

mouse TGCTGTGCCTGCAGGCNCARGARGG CAGCTTGCCCTTCTTGTTCATRCADAT 

jerboa TGCTGTGCCTGCAGGCNCARGARGG CAGCTTGCCCTTCTTGTTCATRCADAT 

horse CCTAATTTTACACAGCATGTGAGG GGCGGGTAGTTGAGGAACTC 

camel CCTAATTTTACACAGCATGTGAGG GGCGGGTAGTTGAGGAACTC 

pig CAGGGTGTTTCCCAACAGGT     GGCAATCAGCTTCCCCTTCT 



158 

 

 


