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Design Considerations for Engineered Myocardium 

 

Abstract 
 

The fabrication of biomimetic heart muscle suitable for pharmaceutical compound 

evaluation and disease modeling is hindered by limitations in our understanding of how 

to guide and assess the maturity of engineered myocardium in vitro.  We hypothesized 

that tissue architecture serves as an important cue for directing the maturation of 

engineered heart tissues and that reliable assessment of maturity could be performed 

using a multi-parametric rubric utilizing cardiomyocytes of known developmental state as 

a basis for comparison.  Physical micro-environmental cues are recognized to play a 

fundamental role in normal heart development, therefore we used micro-patterned 

extracellular matrix to direct isolated cardiac myocytes to self-assemble into anisotropic 

sheets reminiscent of the architecture observed in the laminar musculature of the heart.  

Comparison of global sarcomere alignment, gene expression, and contractile stress in 

engineered anisotropic myocardium to isotropic monolayers, as well as, adult ventricular 

tissue revealed that anisotropic engineered myocardium more closely matched the 

characteristics of adult ventricular tissue, than isotropic cultures of randomly organized 

cardiomyocytes.  These findings support the notion that tissue architecture is an 

important cue for building mature engineered myocardium.   Next, we sought to develop 

a quality assessment strategy that utilizes a core set of 64 experimental measurements 

representative of 4 major categories (i.e. gene expression, myofibril structure, electrical 
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activity, and contractility) to provide a numeric score of how closely stem cell-derived 

cardiac myocytes match the physiological characteristics of mature, post-natal 

cardiomyocytes.  The efficacy of this rubric was assessed by comparing anisotropic 

engineered tissues fabricated from commercially-available murine ES- (mES) and iPS- 

(miPS) derived myocytes against neonatal mouse ventricular myocytes.  The quality 

index scores calculated for these cells revealed that the miPS-derived myocytes more 

closely resembled the neonate ventricular myocytes than the mES-derived myocytes.  

Taken together, the results of these studies provide valuable insight into the fabrication 

and validation of engineered myocardium that faithfully recapitulate the characteristics of 

mature ventricular myocardium found in vivo.  These engineered tissue design and 

quality validation strategies may prove useful in developing heart muscle analogs from 

human stem cell-derived myocytes that more accurately predict patient response than 

currently used animal models.  
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1 Introduction 

Myocardial development is regulated by an elegantly choreographed ensemble of 

signaling events mediated by a multitude of intermediates that take a variety of forms. 

Cellular differentiation and maturation are a subset of vertically integrated processes that 

extend over several spatial and temporal scales to create a well-defined collective of cells 

that are able to function cooperatively and reliably at the organ level.  Early efforts to 

understand the molecular mechanisms of cardiomyocyte fate determination focused 

primarily on genetic and chemical mediators of this process.  However, increasing 

evidence suggests that mechanical interactions between the extracellular matrix (ECM) 

and cell surface receptors as well as physical interactions between neighboring cells play 

important roles in regulating the signaling pathways controlling the developmental 

processes of the heart.  Interdisciplinary efforts have made it apparent that the influence 

of the ECM on cellular behavior occurs through a multitude of physical mechanisms, 

such as ECM boundary conditions, elasticity, and the propagation of mechanical signals 

to intracellular compartments, such as the nucleus. In addition to experimental studies, a 

number of mathematical models have been developed that attempt to capture the 

interplay between cells and their local microenvironment and the influence these 

interactions have on cellular self-assembly and functional behavior. Nevertheless, many 

questions remain unanswered concerning the mechanism through which physical 

interactions between cardiomyocytes and their environment are translated into 

biochemical cellular responses and how these signaling modalities can be utilized in vitro 

to fabricate myocardial tissue constructs from stem cell-derived cardiomyocytes that 

more faithfully represent their in vivo counterpart.  These studies represent a broad effort 
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to characterize biological form as a conduit for information transfer that spans the 

nanometer length-scale of proteins to the meter length-scale of the patient and may yield 

new insights into the contribution of mechantransduction into heart development and 

disease. 

1.1 Mechanotransduction Influences Cardiomyocyte Form and Function 

A vexing issue in cardiac development is the presence of a three-dimensional 

structural and functional hierarchy that spans several orders of spatial magnitude from the 

centimeter length scale of the myocardium to the nanometer length scale of actomyosin 

motors (Figure 1-1).  One possible mechanism through which architectural and temporal 

synchrony is maintained during cardiac organogenesis is the propagation of mechanical 

forces, encoding multi-scale information, from super-cellular, cellular, and sub-cellular 

networks that are physically connected throughout the heart.  Simplified, qualitative 

models of cellular development often overlook the importance of mechanical cues and 

the bi-directional flow of information between cells and their local microenvironment 

during tissue formation [1].  Physical forces transmitted between cells and the 

extracellular matrix (ECM), as well as between neighboring cells, could prove vital to the 

emergent form and function of the healthy myocardium during cardiac morphogenesis.  

These mechanical cues may be an essential component of a larger biological network that 

integrates chemical and mechanical signals to drive nascent cells to adopt relevant 

phenotypes based on contextual information encoded in the local microenvironment [2].   
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Figure 1-1: Spatial scaling of the functional components of the heart.  

The functional components of the myocardium demonstrate a hierarchical relationship 

that spans several orders of spatial magnitude, from the nanometer length scale of the 

proteins comprising actomyosin cross-bridges to the millimeter length sheets of laminar 

myocardial tissue that make up the muscular walls of the heart chambers. 
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It is now well accepted that epigenetic factors, such as mechanical forces, play a 

fundamental role in regulating organ development [3, 4].  The physical properties of the 

local microenvironment and the contractile activity of cells influence the developmental 

processes that take place during embryogenesis [5].  Individual cells sense external 

mechanical cues primarily through interactions with the ECM via integrin binding and 

from neighboring cells through intercellular junctions [6].  Mechanical tension in the 

cytoskeleton arising from intercellular junctions and ECM adhesions has been shown 

experimentally to contribute to epithelial branching [7] and angiogenesis during lung 

development [8, 9].  Mechanical forces also underlie morphological changes that occur in 

the heart during development, wherein alterations to cardiomyocyte shape and spatial 

organization arising from actin cytoskeletal dynamics influence looping of the embryonic 

heart tube, for example. [10-12].  In the post-natal myocardium, forces endured during 

the contraction cycle are postulated to contribute to development and remodeling through 

cardiomyocyte hypertrophy, in which changes to myofibril and ECM architecture can 

lead to either adaptive or maladaptive growth [13, 14].  This review will examine the 

contributing role of mechanical forces to cellular development within the heart and 

explore the potential benefits of mathematical models for capturing the involvement of 

post-translational cytoskeletal dynamics in recapitulating the development of the 

myocardium in vitro.  Knowledge gained from these models could provide valuable 

insight for designing custom ECM micro-environments that allow the construction of 

functional, patient-relevant engineered tissues from ES- and iPS-derived cardiomyocytes. 
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1.2 Mechanical Cues Associated with Cardiac Development 

During formation of the heart, the cardiac mesoderm arises from the primitive 

streak as a product of temporally-synchronized Wnt, BMP, and activin/Nodal signaling 

events that occur in a spatially-asymmetric manner [15].  In turn, this left-right 

asymmetrical patterning results in activation of distinct gene expression profiles, 

differential proliferation, and cardiomyocyte shape changes that are responsible for 

regionalized myocardial lineage specification and the morphological transition from a 

linear tube to the four-chambered structure that the heart ultimately adopts [15-17].  

Looping of the embryonic heart tube is primarily the product of localized changes in 

cardiomyocyte morphology that have been shown to arise from intrinsic remodeling of 

the actin cytoskeleton, and may also play a role in activating the regional changes in 

proliferation and gene expression observed in subsequent phases of cardiac development 

[16, 18, 19].  Post-natal cardiomyocyte growth and development occurs through a process 

known as ‘hypertrophy’ that is mediated by signaling events that are activated by both 

biochemical and biomechanical stimuli [20].  Cardiac hypertrophy is initiated by 

hemodynamic load and characterized by increased cardiomyocyte size and the expression 

of genes that are believed to act as a compensatory mechanism to normalize ventricular 

afterload [21, 22].  In order to recognize and respond to changes in systolic wall stress, 

the cells comprising the myocardium must possess a communications pathway that 

allows external physical cues to activate intracellular signaling cascades.  

The cytoskeleton is the primary conduit for mechanically-encoded information 

in the cell [23], regulating cell shape [24] and influencing migration, cellular function and 

homeostasis [25-27].  Transmembrane integrin receptors provide a direct mechanical 
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linkage between the ECM and the cytoskeleton within the cell through which external 

physical forces may influence intra-cellular processes (Figure 1-2A) [28].  Over the 

course of development, the heart undergoes coordinated changes in ECM composition 

and expression of α- and β-integrin isoforms that specifically recognize various ECM 

components [29-31].  In the fetal stage, expression levels of fibronectin and α5β1 integrin 

receptors are elevated relative to expression levels observed in the adult myocardium [32-

34].  This differential expression of fibronectin and β1 integrins has been associated with 

the proliferation and spreading that is observed in pre-natal cardiomyocytes, but absent 

post-partum [35, 36].  Variations in β1 integrin splice isoforms also distinguish the 

embryonic and adult myocardium.  Embryonic cardiomyocytes have been shown to 

primarily express the β1A isoform, while adult cardiomyocytes preferentially express the 

β1D variant [37-39].  Furthermore, ablation of β1 integrin expression in the ventricular 

myocytes of transgenic mice revealed that disruption of normal integrin function resulted 

in pathological fibrotic remodeling, increased susceptibility to dilated cardiomyopathy, 

and perinatal mortality [40, 41].  Taken together, this relationship between the shift in 

integrin isoform expression and ECM composition suggests that the integrin-ECM 

interface may serve as a means for the cells of the nascent heart to recognize and respond 

to the ever changing mechanical forces that are present during cardiac organogenesis.   

 

1.3 Signaling through the Integrin-ECM Interface 

Transmembrane integrin receptors form a direct mechanical linkage between the ECM 

and the cytoskeleton [42] and serve as the primary conduit of bi-directional signaling 

between cells and the ECM [43, 44] despite the fact that they lack intrinsic kinase activity  
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[28].  Mechanical forces are transmitted across the integrin-ECM interface to the 

cytoskeleton, where they activate mechano-sensitive signal transducers, such as focal 

adhesion kinase (FAK), that are able to translate the mechanical cue into a biochemical 

response [45-47]. This mode of information transmission has been shown to activate a 

variety of chemical signaling pathways, including the Rho kinase, PI3K, ILK, Src, ERK, 

and MAP kinase pathways that modulate transcriptional activity and direct important 

cellular activities, such as cell cycle entry and the induction of apoptosis [3, 25, 28, 48, 

49].  Many of these signaling intermediates are immobilized on the cytoskeleton, 

particularly at the Z-discs in cardiomyocytes, and are thus subject to mechanical 

perturbations that may modulate their activity and translocation to cellular compartments, 

such as the nucleus [50-52]. Cardiomyocytes express a protein known as melusin that 

flanks sarcomeric α-actinin at the Z lines and interacts with the cytoplasmic domain of β1 

integrins [53]. Melusin has been implicated as an important sensor of myocardial wall 

stress in murine knock-out studies that showed a specific attenuation of glycogen kinase 

3β signaling in melusin-null hearts [54].  Another Z-disc protein that is widely regarded 

to serve as a mechano-sensor is muscle LIM protein (MLP), which is believed to 

transduce mechanical signals via the calcineurin-NFAT pathway to activate the 

hypertrophic response in cardiomyocytes [55, 56].  Titin, a component of the sarcomere 

that regulates diastolic tension, possesses a C-terminal kinase domain that has been 

implicated in cardiomyocyte strain sensing [57].  It has been shown that this catalytic 

domain is involved in regulating the activity of the muscle-specific transcriptional co-

activators MuRF2 and four-and-a-half-LIM-domain (FHL) through changes in titin 

conformation [58-60].  Evidence suggests that MLP stabilizes the interaction between T- 
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Figure 1-2: Bi-directional signaling interfaces in engineered myocardium.  

(A) External mechanical cues are transmitted from the ECM to intracellular 

compartments via transmembrane integrin receptors that physically link it to the 

cytoskeleton.  These mechanical signals elicit a number of biological responses ranging 

from ion channel activity to programmed cell death, and in turn these biological 

processes can feed information back to the extracellular space via the same mechanical 

pathway. (B) Transmembrane integrin receptors form a direct physical linkage between 

the ECM and the cytoskeleton through focal adhesions that provides a conduit for 

transmitting mechanical signals directly to intracellular compartments, such as the 

nucleus. (C) In addition to mechanotransduction through the integrin-ECM interface, 
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(Continued) cardiomyocytes also respond to mechanical signals from neighboring cells 

through intercellular junctions and direct transmembrane ligand-receptor interactions. 

 

cap and titin at the Z-disc, providing an interface through which mechanical forces can be 

transmitted between the ECM and titin to initiate signaling events at the titin catalytic 

domain in response to hemodynamic load [61-63]. 

An intriguing alternative signaling paradigm is the transduction of mechanical 

signals through the ECM-cytoskeletal network to structures deep within the cytoplasm, 

such as the nucleus (Figure 1-2B), where they can alter enzymatic activity or gene 

expression by modulating nuclear shape or physically deforming genomic structures 

within the nuclear compartment [64, 65].  This hypothesis is supported by in situ PCR 

measurements taken from osteoblasts that revealed cell shape-dependent alterations in 

nuclear morphology resulted in differential regulation of osteocalcin expression, 

suggesting that cytoskeletal tension directly impacted transcriptional activity [66].  Given 

the kinetic nature of the myocardium, and observations that cardiomyocyte nuclei 

reversibly deform during each contraction cycle [67], the possibility exists that 

mechanical effects on nuclear morphology may influence the expression of genes in 

cardiomyocytes as well.  

Experimental data suggests that individual filaments of the cytoskeleton bear 

tensile and compressive loads and give rise to a mechanical network under isometric 

tension that propagates physical signals throughout the cell at a velocity far exceeding the 

limits of chemical diffusion [42, 50, 68, 69].  Neonatal rat ventricular myocytes (NRVMs) 

cultured on micro-contact printed ECM substrates that imposed an anisotropic 
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morphology and organization possessed elongated nuclei that demonstrated a high degree 

of mutual alignment across the tissue constructs and underwent dynamic deformation 

during contraction [67].  Genes encoding proteins involved in tissue remodeling 

processes have been found to be susceptible to changes in cellular morphology induced 

as a consequence of direct perturbation of cytoskeletal structure with actin and 

microtubule disrupting agents, such as cytochalasin D and colchicine [70].  Studies of the 

link between cytoskeletal dynamics, motility, and gene expression during myocardial 

development revealed that myocardin-related transcription factors (MRTFs) are 

physically bound to globular actin monomers until they are incorporated into actin 

filaments.  Upon release from actin monomers, the MRTFs are free to translocate to the 

nucleus, where they interact with the transcription factor serum response factor (SRF) to 

promote the expression of genes under its control [71].  This relationship between actin 

cytoskeletal assembly and regulation of cardiac gene expression by MRTF-SRF has been 

shown to be mediated through a Rho-dependent mechanism that may provide a feed-

forward loop for driving the expression of genes necessary for myofibrillogenesis during 

myocardial development and in response to hypertrophic stimuli [72, 73].   

Many genetic markers of vascular smooth muscle-specific differentiation code for 

proteins associated with contractility, giving rise to a potential role for Rho-dependent 

changes in smooth muscle contractility in regulating smooth muscle gene expression 

during vascular development [74].  Experiments conducted on capillary network 

formation by human microvascular endothelial cells in vitro and retinal angiogenesis in 

vivo using the Rho inhibitor p190RhoGAP revealed that Rho-induced changes in 

cytoskeletal architecture regulated angiogenesis by modulating the activities of two 
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antagonistic transcription factors, TFII-1, and GATA2, that govern expression of the 

VEGF receptor in a manner that was sensitive to ECM elasticity [75].  Dynamic 

assembly and disassembly of cytoskeletal elements generates directed forces that perturb 

cell shape and guide the organization of cellular components [23, 49].  The evidence from 

these studies support the notion that mechanical force-balance influences cellular 

behavior by modulating gene expression activity and may be an important factor for 

regulating cell fate decisions during co-development of the heart and circulatory system. 

 

1.4 Signaling through Intercellular Junctions 

In addition to force transmission across the integrin-ECM interface, cells also 

receive biomechanical input from their neighbors via intercellular junctions and through 

direct transmembrane ligand-receptor interactions (Figure 1- 2C)[76, 77].  Cytoskeletal 

tension arising from actomyosin crossbridges plays a key role in the formation and 

maintenance of intercellular junctions during cardiac tissue development [78-80].  In 

vitro studies have shown that the magnitude of tractional forces transmitted through the 

cytoskeletons of adjacent endothelial cells across adherens junctions was correlated to the 

size and strength of these junctions [81].  The phenotype and spatial organization of 

nascent cells during tissue formation require the coordinated regulation of gene 

expression and precise interactions between neighboring cells.  Interactions that typically 

target transmembrane Notch receptors and the Wnt signaling intermediates localize to 

adherens junctions [82, 83].  The activity of the Notch and Wnt/β-catenin signaling 

pathways has been found to have reciprocal effects in cardiac progenitor cells during 

embryonic development of the heart [84-86].  In addition, canonical and non-canonical 



12 

 

Wnt signaling have differential, stage-dependent effects on cardiomyocyte maturation 

during normal heart development [83, 87]. Notch1 signaling promotes differentiation of 

cardiac progenitor cells and negatively regulates the activity of β-catenin.  On the other 

hand, activation of β-catenin by the canonical Wnt pathway inhibits differentiation by 

negatively regulating cardiac transcription factors and instead promotes proliferation of 

cardiac progenitor cells [88].  In addition, Notch1 activation in cardiac progenitor cells 

gives rise to a population of Nkx2.5 expressing transit amplifying myocytes that are 

believed to mediate postnatal growth of the myocardium [85].   

Notch and Wnt/β-catenin signaling pathways also play a role in regulating the 

incidence of endothelial-mesenchymal transformation (EMT) during valve development 

in a potentially mechano-sensitive manner [89, 90].  Formation of the heart valves during 

the early stages of heart development is traditionally considered to be a product of VEGF 

signaling, but it coincides with increased fluid shear stress and mechanical strain [91-93].  

In vitro studies of engineered valve endothelial cells showed that the incidence of EMT in 

these constructs was not only enhanced by the application of chronic cyclic stretch, but 

also that the magnitude of applied strain initiated EMT via different pathways [94].  A 

mechanical load of 10% strain initiated EMT via TGF-β1, while wnt/β-catenin signaling 

was implicated at 20% strain, providing evidence that cells not only respond to external 

mechanical cues, but can also distinguish loads of different magnitudes.  Furthermore, a 

myofibroblast phenotype emerged concomitantly with an increased incidence of EMT in 

valve endothelial cells cultured on an ECM substrate that imposed an anisotropic cellular 

organization and subjected to orthogonal, 20% cyclic strain.  Break down of adherens 

junctions is a hallmark of EMT, along with the expression of factors that inhibit 
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endothelial genes [95], suggesting that the magnitude of tension transmitted across 

intercellular junctions may serve as a mediator of phenotype switching during cardiac 

valve morphogenesis.    

The assembly of gap junction channels in cardiomyocytes has been shown 

experimentally to be closely tied to the formation of adherens junctions [96], in which N-

cadherin and connexin 43 share a temporal relationship in their expression and spatial co-

localization during adherens junction formation [97].  Immunolabeling studies conducted 

on embryonic, adolescent, and adult rat hearts revealed that connexin 43 gap junction-

related immunoreactivity could be observed in the ventricles as early as 10 days post-

conception, and incorporation of connexin 43 gap junctions into the costameres of 

ventricular myocytes proceeded well into adolescence [98].  Dual voltage clamp 

measurements taken on pairs of NRVMs with pre-defined aspect ratios revealed that 

intercellular conductance increased with the volume of observed connexin 43 

immunosignal as cellular aspect ratio increased [99].  Further, mechanical forces acting 

on myocytes during contraction in vivo and pulsatile stretch in vitro were found to cause 

a dramatic increase in the expression of connexin 43 and a concomitant increase in 

conduction velocity due to increased electrical coupling between myocytes [96].  Given 

the relationship between cell alignment and impulse propagation velocity in cardiac 

tissues [100, 101], mechanical forces transmitted between neighboring cardiomyocytes 

could be important for establishing and maintaining the anisotropic conduction pattern 

necessary for proper functioning of the heart.  
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1.5 Effects of the Mechanical Environment on Cardiomyocytes 

When considering the cellular microenvironment, the traditional paradigm has 

been that of the diffusion of soluble mitogens in autocrine and paracrine signaling 

through the interstitial space. Over the last 10 to 15 years, an interdisciplinary group of 

cell biologists and engineers have postulated an alternative and supplementary vision of 

the cellular microenvironment as a mechanical network of cells coupled by the protein 

polymer network of the extracellular matrix that propagates information, encoded as 

mechanical forces, between cells at data rates that far exceed that of chemical diffusion. 

In the embryonic heart, evolving from a pulsatile tube to a cyclically-contracting 4-

chambered structure,  mechanical forces are imposed on maturing cardiomyocytes that 

vary in their magnitude and frequency over the course of development [11, 13].  Regional 

alterations in cell shape have been observed and postulated to contribute to the overall 

morphology that emerges during heart development [16, 102].  The in vitro cellular 

microenvironment can be engineered to force isolated cells to adopt the morphology and 

configuration of their native tissues so that researchers can study the contributions of 

tissue geometry to functionality [2, 100, 103-105].  Interactions between cardiomyocytes 

and the ECM cause changes in cell shape that direct actin filament orientation, sarcomere 

organization, and myofibrillogenesis in vitro [26].  Studies of cultured cardiovascular 

cells have shown that shape also influences a number of functional properties, such as 

voltage-gated ion currents, calcium dynamics, and contractility, suggesting that it is an 

important parameter to consider when designing engineered tissue constructs [106-109].   

Phenomena, such as durotaxis, have led many researchers to postulate that the 

physical properties of the cellular microenvironment can influence cell phenotype and 
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tissue morphogenesis [110, 111].  Experiments conducted on stem cells encapsulated in 

RGD-modified matrices suggest a role for cellular tractional forces generated through 

interactions between the ECM and specific integrin isoforms in guiding lineage 

commitment [112, 113].  In addition, studies of embryonic cardiomyocytes reveal that 

changes in matrix rigidity associated with normal heart development and fibrotic ECM 

remodeling reminiscent of that observed after myocardial infarction dramatically affect 

rhythmic contraction of the cells [114, 115].  Isolated cardiomyocytes cultured on poly-

acrylamide gels with tunable elastic moduli have repeatedly demonstrated increased 

contractile activity and myofibril organization when the stiffness of their underlying 

substrate resembles that measured for the healthy native myocardium (approximately 20 

kPa), as opposed to culturing them on substrates with higher or lower elastic moduli [114, 

116-118].  In the case of marrow-derived mesenchymal stem cells (MSCs), studies have 

shown that culturing naïve MSCs on elastic substrates with a modulus of approximately 

10 kPa specifically induced a myogenic phenotype [119].  It is believed that cells sense 

the mechanical stiffness of the ECM through tractional forces generated by cross-bridge 

interactions between actin and myosin-II.  In vitro experiments utilizing inhibitors of 

non-muscle myosin II isoforms lend support to this hypothesis, demonstrating that 

cytoskeletal tension plays a role in mediating mechano-sensation between focal adhesions 

and the ECM [120].  Force measurements collected on various types of cells cultured on 

elastomeric substrates revealed a linear relationship between apparent focal adhesion size 

and cellular force generation that was dependent upon actomyosin interactions [121].  

While myocardial contractile activity is not considered to play a role in the early stages of 

heart development [10, 11, 122], there is evidence in zebrafish models that hemodynamic 
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load does alter cardiomyocyte shape, leading to aberrations in ventricular morphogenesis 

[91, 123].  Together, these findings demonstrate a clear role for the physical micro-

environment in myocardial development that researchers may potentially harness in the 

creation of artificial tissue constructs.  

Cardiomyocytes are constantly subjected to physical stretching as a result of the 

contractile activity of the heart, presenting the possibility that the motion of the 

myocardium may activate mechano-sensitive signaling pathways that affect the 

characteristics of cardiac cells [124].  Pulsatile stretch has been shown experimentally to 

promote parallel alignment of NRVMs and induce mechanotransductive signaling events 

through the β1 integrin-ECM interface that were responsible for the up-regulation of N-

cadherin and connexin 43 expression via activation of FAK and the ERK1/2 pathway 

[125-127].  Concomitant with the enhanced expression of connexin 43, cyclic stretch was 

also found to increase propagation velocity in NRVM monolayers [128].  Gene 

expression measurements taken on NRVM cultures exposed to pulsatile stretch show that 

the mechanical stimulus gives rise to a hypertrophic phenotype with expression of the 

“fetal gene program” and myosin heavy chain isoform switching that are hallmarks of 

cardiac hypertrophy [129-131].  All together, these studies reveal that the mechanical 

properties of the cellular microenvironment do contribute to the functional maturation of 

the myocardium and that there is a need for computational tools that will allow 

researchers to construct effective strategies for harnessing these mechanical cues to 

optimize engineered cardiac tissue self-assembly and contractile performance. 
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1.6 Computational Modeling of Mechanotransduction 

The working myocardium is comprised of rectangular myocytes organized into a 

laminar arrangement that serves to optimize cooperative sarcomeric force output.  It is 

postulated that the interplay between geometric cues encoded in the ECM and 

cardiomyocyte cytoskeletal dynamics confers these morphological characteristics that are 

vital to the proper functioning of the heart.  Refinements in our understanding of cellular 

mechanobiology, facilitated in large part by advances in soft lithography, have given rise 

to mathematical models of the phenomena and parameters involved in mechano-sensation 

that may contribute to myocardial tissue development.  The most pivotal of these 

experimental methodologies was the development of in vitro techniques to regulate ECM 

composition and geometry [132, 133]  that have made it possible to engineer cells whose 

morphology and function are amenable to computational modeling, thus closing the loop 

between theory and experiment. This is important, because one poorly studied problem in 

cell biology is the post-translational self-assembly and self–organization of multimeric 

intracellular protein structures, such as the cytoskeleton. 

A variety of models have been reported (summarized in Table 1) that examine the 

role of cell architecture and molecular motors in the self-assembly of the cytoskeletal 

network. A simple phenomenological model has been proposed that predicts the 

distribution of bound integrin complexes, and was validated in a square fibroblast cell 

[134]. This model explains possible mechanisms behind the higher concentration of focal 

adhesions (FA) at the edges and corners of cells (Table 1, column 2).  While this simple 

phenomenological model lacks the features to predict fiber distributions in more complex 

cell shapes, it provides insight into actin cytoskeletal dynamics without taking into 
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account the mechanical interactions between the substrate, integrins, and the cytoskeleton. 

Finite element models that include these interactions can replicate myofibril distributions 

in several epithelial and fibroblast cell shapes [135, 136].  A chemo-mechanical model 

that explores the FA complex formation without modeling the cell as a whole produces a 

detailed prediction of both stresses and strains in the FA [137](Table 1, column 3). These 

models predict the simple assembly of the actin network or integrin clustering in the 

vicinity of the focal adhesion in cells with simple cytoskeletal architecture.  However, the 

assembly of myofibrils in cardiac myocytes represents a more challenging phenomenon 

to model due to its heightened complexity.  Cardiomyocytes, like skeletal muscle, are 

striated myocytes that utilize the actin cytoskeleton as a scaffold for the clustering and 

assembly of other proteins in sarcomeres, aligned serially in a contractile structure known 

as the myofibril. To date, most models of myofibrillogenesis are qualitative and give 

detailed descriptions of how sarcomeric proteins sequentially appear in the sarcomere.  

Most computational models of cytoskeletal self- assembly focused on the architecture of 

the actin cytoskeleton and were not designed to recapitulate the rather specialized case of 

striated muscle, where the maturation from pre-myofibril to nascent myofibrils and their 

active mutual alignment in cardiomyocytes represent an important developmental step in 

the spatiotemporal coordination of rhythmic, cellular contraction and ordered cardiac 

myocyte shortening.  

We reported a model that describes the kinetics of myofibrillogenesis in a 

cardiomyocyte subjected to ECM boundary conditions that impose a particular shape on 
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Table 1-1: Contrasting features of a selection of myofibrillogenesis computational 

models.  

Comparison of the strengths and weaknesses of a selection of in silico models proposed 

to model the process of myofibril self-assembly. 

Model Property Novak et al. 

(2004) 

Deshpande et 

al.(2006/(2008) 

Paszek et al. 

(2009) 

Grosberg et 

al. (2011) 

Model type 
Phenomeno-

logical 

Finite element/ 

solid mechanics 

Chemo-

mechanical 

Phenomeno-

logical 

Model compared to 

cell type 

NIH3T3 

fibroblasts 

Retinal pigment 

epithelial human 

cells or 

fibroblast cells 

No specific 

cell type 

Neonatal rat 

ventricular 

myocytes 

Integrins have a free 

and bound state (or 

high/low affinity) 

Yes Yes Yes Yes 

Focal adhesions more 

stable with greater 

force 

Yes Yes Yes Yes 

Myofibrils/stress 

fibers included in 

model 

Yes Yes No Yes 

Fiber length-force 

dependence 
No Not explicitly No Yes 

Differentiating 

between pre-myofibril 

and nascent myofibril 

formation 

No No N/A Yes 

Myofibril actively 

mutually align 
No No N/A Yes 

Testing boundary 

conditions/symmetry 

breaking 

No No No Yes 

Detailed model of 

solid mechanics of the 

interface 

No Yes Yes No 

Substrate mechanical 

load 
No 

Yes, but not the 

deformation of 

the substrate 

Yes and 

Detailed, i.e. 

both stress 

and strain - 

deformation 

Yes, but very 

simply (only 

traction) 

Computationally 

complex 
No Yes Yes No 
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the cell as the product of cooperative interaction between focal adhesions and 

premyofibrils, along with parallel bundling of nascent myofibrils [138] (Table 1, column 

4). This model, borrowing from Novak et al.’s model of focal adhesion distribution, was 

tested with in vitro experiments conducted on engineered NRVMs to gauge its 

effectiveness in predicting the architecture of the myofibrillar network in response to 

extracellular boundary conditions, i.e. cell shape. Unlike previous models, ours accounted 

for the increased force produced by longer myofibrils and their active parallel coupling. 

As a result, our model predicted the steady state localization of focal adhesions. 

Additionally, our model showed that, in the absence of symmetry breaking boundary 

conditions, the myofibrillar network requires a longer period of time to self-organize into 

a steady state configuration.  Thus, the cell never polarizes unless parallel coupling of the 

myofibrils is appropriately accounted for. 

For example, a neonatal mouse ventricular myocyte seeded on a micro-patterned 

square fibronectin  island in culture will reliably self-organize to have a distinct 

myofibrillar network, with the myofibrils aligned along the diagonals of the square, 

anchored at the corners by focal adhesions (Figure 1-3Ai)[26, 138, 139]. Further, when 

seeded on FN islands with homogenous boundary conditions, the myocytes can 

potentially polarize in an arbitrary direction (Figure 1-3Aii)[26, 138, 139]. Using a 

combination of in vitro and in silico methods, we show that, in the presence of mutual 

alignment of myofibrils, it is possible to predict the polarization of cells on islands with 

both homogenous and non-homogenous boundary conditions for cardiomyocytes from 

multiple species (Figure 1-3B)[138].  
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Figure 1-3: Comparison of myofibrillogenesis observed in primary and stem cell-

derived cardiomyocytes in vitro with in silico simulations.  

(A) NMVM on patterned FN at day 3 after seeding (i) square, (ii) circle; (B) 

Computational model of a (i) square and (ii) circular cell with myofibril mutual 

alignment turned on showing polarization in both cell shapes; (C) human iPS-derived 

cardiomyocytes on (i) patterned FN square, and (ii) isotropic FN; (D) Computational 

model of a (i) square and (ii) circular cell with myofibril mutual alignment turned off 

showing polarization only in the cell type with non-homogenous boundary conditions; (A, 

C) scale bar = 10 µm; (B, D) color bar shows normalized traction stress (|T|) see [138] for 

details on the model. 

 

Commercially available human iPS-derived cardiomyocytes (hiPS-CM) do not 

polarize on a square FN island, but instead the myofibrils take on a circular architecture 

with no single direction (Figure 1-3Ci). Furthermore, these cells, when seeded on 

isotropic FN, often take on a pin-wheel circular myofibril architecture (Figure 1-3Cii). 
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The pin-wheel architecture is reminiscent of the non-polarized circular cell produced by 

the model with mutual parallel coupling of the myofibrils turned off (Figure 1-3D). 

However, the current model is unable to predict the other features lacking in the hiPS-

CMs because these cells do not respond to non-homogeneous boundary conditions in the 

same manner as the in silico or primary cardiomyocytes (Figure 1-3Bi & 3Di). This 

example illustrates the gap in knowledge between our current observations of stem cell 

differentiation and maturation in vitro and the state of the art in computational modeling 

of post-translational cellular development. It is intended to elucidate the potential role of 

cellular mechano-modeling in understanding developmental cell biology. 

In addition to mathematical descriptions of single cell in vitro model systems, 

researchers have also begun to develop computation simulations of tissue- and organ-

scale in vivo myocardial environments to guide the development of engineered tissues for 

therapeutic applications [140]. A multi-scale mathematical model of strain-driven 

eccentric growth and stress-driven concentric growth of the myocardium during ischemic 

injury has been reported that allows researchers to explore the effects of local changes in 

stress/strain distribution caused by fibrosis on cardiac function [141]. These models 

suggest a foundation for quantitative descriptions of the role that mechanical forces play 

in the self-assembly of myocardial cells into contractile tissues and serve to guide 

researchers in developing microenvironments that give rise to engineered myocardial 

tissues that can be used to accurately simulate the function of the heart in vitro. However, 

none of these models have been applied to stem-cell derived cardiomyocytes, and as the 

unique physiology of these cells pose new challenges to our understanding of cellular 
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self-assembly, it is essential that the modeling community provide support by creating 

new mathematical descriptions of these phenomena. 

 

 

1.7 Conclusions 

Physical micro-environmental cues are believed to be fundamental to proper 

myocardial development and may be a necessary component to experimental strategies 

for constructing accurate heart tissue analogs from stem cell-derived cardiomyocytes in 

the laboratory.  Mechanical signals are received by cells through integrin-ECM 

interactions and intercellular junctions, where they are transmitted across the 

cytoskeleton to intracellular relays that activate intracellular biochemical processes.  To 

fully realize the impact of mechanical cues on cardiac development, further research is 

necessary to tease apart the contributions of soluble cytokines and physical perturbations 

to myocardial lineage specification and determine how to incorporate appropriate 

mechanical cues into existing in vitro model systems. While the details of 

mechanotransduction remain to be fully elucidated, researchers have developed a basic 

understanding of the role that the cytoskeleton plays in this signaling modality, and are 

beginning to use this information to create custom ECM microenvironments that utilize 

the integrin-ECM interface and intercellular junctions to modulate engineered myocardial 

tissue form and function.  However, these engineered tissues are typically much less 

sophisticated than their in vivo counterpart, consisting of two-dimensional monolayers of 

a homotypic cell population cultured on a matrix comprised of a single type of ECM 

protein.  To better recapitulate the native myocardium, it will be necessary to develop 

new methods for fabricating 3-dimensional tissue constructs with the same diversity in 
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ECM protein composition and cellular phenotypes.  Furthermore, mathematical models 

are emerging that quantitatively describe the effects of mechanical cues on cellular 

processes, such as myofibrillogenesis and contractility.  Refinement of these 

mathematical models to capture the complex interplay between large populations of 

heterotypic cells interacting in a three-dimensional matrix, combined with experimental 

techniques to recapitulate the in vivo microenvironment, may provide researchers with 

the necessary tools to fabricate artificial myocardial tissue constructs with equivalent 

structural and functional characteristics to natural heart tissue, and replace costly animal 

models of cardiotoxicity with cheaper, human-relevant in vitro alternatives.  
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2 Tissue Anisotropy Promotes an Adult-Like Phenotype in 

Engineered Myocardium 

Specification and maturation of the specialized myocardial lineages comprising 

the working myocardium arise from the integration of multiple dynamic chemical and 

mechanical signaling cues present during pre-natal heart development.  Advances in the 

field of cellular biomechanics are beginning to explain how physical forces and 

mechanical structures impact information processing and cellular decision making during 

organogenesis (reviewed in [142]).  In the musculature of the heart, interactions between 

cardiomyocytes and the extracellular matrix (ECM) give rise to changes in cell shape and 

tissue architecture that have vast influence over its functional performance under both 

physiological and pathological conditions [11, 14, 143].  We hypothesized that 

fabricating engineered cardiac tissues to mimic the anisotropic architecture of the 

ventricular myocardium promotes in vitro maturation toward the adult phenotype. To test 

this hypothesis, we constructed anisotropic 2D engineered tissues comprised of neonatal 

rat ventricular myocytes (NRVMs) and compared their gene expression profile, myofibril 

architecture, and contractility to tissues comprised of randomly organized NRVMs that 

are typically used for in vitro studies, and to the adult rat myocardium.  We found that 

anisotropic engineered myocardium exhibited a gene expression profile, sarcomere 

organization, and contractile output that recapitulated what was observed in the adult rat 

myocardium, while isotropic NRVM monolayers did not.  The results of this study 

provide evidence supporting the role of cell-ECM interactions in promoting 

cardiomyocyte maturation in vitro.  These results may provide valuable insight for 
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building engineered cardiac tissues that more accurately represent the native myocardium 

for in vitro cardiotoxicity assays and regenerative medicine applications. 

 

2.1 Introduction 

Cardiomyocytes are the basic working unit of the myocardium and exist as a 

diversity of functional subtypes whose performance characteristics are tuned to the 

developmental stage of the heart as well as their specific location [15].  As embryonic 

development proceeds, cardiac progenitor cells are organized into increasingly complex 

and compartmentalized structures and are exposed to a myriad of mechanical strain 

regimens arising from the contraction of the muscle tissue as it adapts to the increasing 

pressure it must work against to propel blood through the expanding circulatory system.  

To date, there has been a tremendous amount of insight gained on the earliest stages of 

heart development, but much remains to be elucidated about the mechanisms of fetal and 

post-natal cardiomyocyte maturation [15].  During myogenesis, the heart begins as a tube 

then loops to become a four chambered heart [144]. As the architecture of the heart self-

organizes into sheets of laminar muscle wrapping around the two ventricular cavities 

[145-147], cardiomyocytes experience different mechanical cues, and they continue to 

mature post-natally [118, 148].  In vitro, such changes have been shown to impact the 

contractile and electrophysiological function of cardiomyocytes even in two-dimensional 

monolayers [100, 149]. The change in functional output suggests an in vitro maturation 

of the cells, but has not been systematically confirmed. 

A failure to detect cardiotoxicity of drugs during the initial in vitro screening 

process is one of the leading causes of the high attrition rate of drugs [150]. Standard 
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screening assays would hold more predictive power if they were based on more adult 

cardiomyocyte phenotypes, yet neonatal cardiomyocytes are more plastic and can be used 

in a wider range of assays [150, 151].The electrophysiological properties of the rat heart 

during development have been extensively studied [152-155]. It has been shown that at 

the neonatal stage the cardiomyocytes mainly express T-type calcium channels [153], 

while adult rat myocytes express L-type calcium channels [154]. This has significant 

implications on the shape of the action potential [155], and therefore on the accuracy of 

neonatal in vitro models in predicting cardiotoxicity of drugs. It is also known that the 

contractile apparatus of the cardiomyocytes matures during development [156, 157]. 

Measuring contractility of isolated cardiomyocytes with a neonatal phenotype introduces 

a risk of missing a drug’s impact on contractility because the weak contraction might 

mask the effect. We have previously shown that extracellular cues can be used to guide 

myofibrillogenesis [26, 104, 139, 158]. These reports suggest that geometrical cues might 

play an important role in inducing a more mature phenotype thus positively affecting 

function.  

We reasoned that if we used extracellular matrix (ECM) patterns to guide the 

tissue to self-assemble to mimic the organization of the adult myocardium both the 

function and levels of relevant gene expression have to approach a more adult phenotype. 

To this end, we quantitatively compared the organization of sarcomeres in the isotropic 

NRVM tissues, aligned NRVM engineered tissues, and the adult myocardium. We then 

confirmed the impact of different intracellular organization on contractile function. 

Finally, we showed the corresponding change in the expression level of genes that impact 

cardiomyocyte tissue function. This illustrates that the changes in function are not simply 
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an effect of geometry, but they have underlying biological implication. Taken together, 

these results show the potential of utilizing physical microenvironmental cues to create in 

vitro models of the myocardium that provide patient-relevant physiological output. 

 

2.2 Results 

2.2.1 Comparison of Sarcomere Organization in Engineered and Adult 

Myocardium 

Previous studies have shown that tissue architecture influences a  number of 

functional aspects of engineered myocardium, such as Ca2+ transient dynamics, electrical 

activity, and contractile stress generation [158-160].  However, it is still unclear how 

closely the physiological characteristics of these engineered heart tissues match those of 

the native myocardium and what role tissue architecture plays in influencing these 

properties. To examine the relationship between tissue architecture and in vitro 

maturation of engineered myocardium, we used micro-contact printing (Figure 2-1A) to 

fabricate cell culture substrates with ECM patterns designed to promote parallel myocyte 

alignment.  As a control, we cultured isolated cardiac myocytes substrates coated with a 

uniform layer of fibronectin (FN), in the manner typically used for in vitro studies, that 

provided no specific geometric guidance cues to the cells (Figure 2-1B).  In contrast, we 

designed two ECM patterns, 15 μm wide lines of FN spaced 15 μm apart (Figure 2-1C), 

and 15 μm wide lines of FN spaced 2 μm apart (Figure 2-1D) that present cultured 

myocytes with boundary conditions intended to orient them into laminar architectures.  

The 15 μm wide lines spaced 15 μm apart (In vitro Lines) pattern was designed to impose 
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the highest degree of parallel alignment by forcing the cardiac myocytes to grow on FN 

lines just wide enough for them to attach to the substrate end-to-end and form parallel  

 

Figure 2-1: Regulation of engineered myocardium tissue architecture using micro-contact 

printed extracellular matrix. 

(A) The architecture of engineered cardiac tissues was regulated by micro-contact 

printing the ECM protein fibronectin (FN) onto PDMS-coated coverslips into the desired 

pattern.  Cardiac myocytes seeded onto these micropatterned FN substrates self-

assembled into tissues according to the pattern encoded in the ECM. Three distinct ECM 

patterns were chosen for this study to assess the contribution of tissue architecture to the 

maturation of engineered myocardium in vitro.  Fluorescence images of (B) unpatterned, 

isotropic FN coated coverslip, (C) micro-patterned 15 μm wide FN lines spaced 15 μm 

apart to create linear arrays of cardiac myocytes arranged end to end, and (D) micro-

patterned 15 μm wide FN lines spaced 2 μm apart to create confluent, anisotropic sheets 

of cardiac myocytes.  All scale bars = 10 µm.  
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arrays of muscle fibers.  However, the spacing in between these linear constructs does not 

give rise to engineered myocardium that accurately recapitulate the sheet-like architecture 

of the myocardium, so we designed a second pattern of 15 μm wide lines of FN spaced 2 

μm apart (In vitro Aniso) that forces the cardiac myocytes to align in a parallel fashion, 

while still allowing transverse coupling between neighboring cells.  To assess the 

influence of ECM guidance cues on the myofibril architecture of engineered myocardium, 

immunofluorescence imaging of sarcomeric α-actinin was used to visualize z-line 

orientation.  NRVMs cultured on isotropic FN substrates (In vitro Iso) self-assembled 

into monolayers with random cellular organization, as judged by the spread in the z-line 

orientation angles observed in the α-actinin micrographs (Figure 2-2Ai).  In contrast, 

NRVMs cultured on micro-patterned 15 μm wide lines of FN spaced 15 μm apart (Figure 

2-2Aii), and 15 μm wide lines of FN spaced 2 μm apart (Figure 2-2Aiii) exhibited high 

degrees of uniaxial, parallel z-line alignment.  Sarcomeric α-actinin immunofluorescence 

imaging of longitudinal sections taken through the adult rat ventricular myocardium 

(Figure 2-2Aiv) revealed that the z-line organization observed in the In vitro Line and In 

vitro Aniso engineered myocardium resembled the pattern observed in the adult 

myocardium.  To quantitatively compare the differences in global z-line alignment 

between the different conditions, custom image processing software was used to measure 

the orientation angles of the z-lines observed in the α-actinin micrographs and use those 

angles to calculate the orientational order parameter (OOP) for each tissue architecture 

[160].  The OOP can take on a value between zero, representing completely random 

organization, and one, representing perfect parallel alignment, that we used to perform 

statistical comparisons of global sarcomere alignment between our engineered  
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Figure 2-2: Quantification and comparison of global sarcomere alignment in 

engineered and adult myocardium. 

 (A) NRVMs seeded onto FN coated PDMS substrates self-assembled into tissues 

according to the pattern encoded in the ECM. Fluorescence imaging of sarcomeric α-

actinin revealed (i) random z-line orientation in cardiac myocytes cultured on isotropic 

FN substrates, but a high degree of parallel alignment in cardiac myocytes cultured on (ii) 

15 μm wide FN lines spaced 15 μm apart, and (iii) 15 μm wide FN lines spaced 2 μm 

apart similar to what is observed in (iv) histological sections of the adult rat ventricular 

myocardium.  (B) Statistical comparison of global sarcomere alignment quantified using 

the Orientational Order Parameter (i.e. a value of 1 indicates perfect parallel alignment, 

whereas a value of 0 indicates completely random alignment) reveals that the isotropic 

engineered tissues exhibited significantly lower global z-line alignment than both of the 

micro-patterned anisotropic engineered tissues, as well as, the adult rat myocardium.  In 

contrast, the anisotropic engineered myocardium showed similar levels of alignment to 

the adult rat ventricular myocardium. * = p < 0.05 vs. In vitro Iso.  All scale bars = 10 µm.  
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myocardium and histological sections of adult rat myocardium (Figure 2-2B). The 

sarcomeric OOP of the In vitro Iso engineered tissues was close to zero, corresponding to 

the large distribution of z-line orientation angles observed in these samples.  In contrast, 

the sarcomeric OOP values for the In vitro Lines and In vitro Aniso engineered 

myocardium were significantly higher (p<0.05) than those observed in the In vitro Iso 

tissues.  Moreover, the adult rat heart exhibited a sarcomeric OOP value that was 

significantly higher (p<0.05) than the In vitro Iso engineered tissues, but closely matched 

the OOP values for the In vitro Lines and In vitro Aniso engineered myocardium. These 

results indicate that the guidance cues encoded in micro-patterned ECM promote 

sarcomere organization reminiscent of what is found in the in vivo myocardium, 

potentially giving rise to engineered myocardium that better recapitulate the myofibril 

architecture of the adult heart than traditional isotropic cultures.  

 

2.2.2 Comparison of Engineered and Adult Myocardium Gene Expression Profiles 

Alterations in cardiomyocyte shape mediated by cytoskeletal remodeling have 

been shown to influence gene expression during cardiac morphogenesis [16, 18, 19].  We 

postulated that recapitulating the cellular architecture and parallel alignment observed in 

the in vivo myocardium would influence the expression of cardiac genes in vitro toward 

expression levels observed in the post-natal myocardium.  To test this, we performed 

real-time qPCR measurements of the expression of a panel of genes associated with 

myocardial development and function (See table in Appendix 6-2) in isotropic NRVM 

monolayers and micropatterned lines of NRVMs at day 4 in culture when structural and  
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Figure 2-3: Comparison of gene expression profiles in engineered and adult rat 

myocardium. 

Real-time qPCR measurements were made for a panel of genes associated with 

myocardial development (see Appendix 6-2) on isotropic and micropatterned lines of 

NRVMs, as well as explants from the ventricular myocardium of 2 month old rats. (A) 

Heatmap illustrating hierarchical clustering of the three myocardial tissue types based on 

mean 2-ΔCt expression values.  Genes highlighted in yellow and indicated with arrows 

demonstrated expression profiles wherein the expression levels of the adult myocardium 

samples and micropatterned line NRVM tissues were very similar to each other, but 

different from the expression levels of the isotropic NRVM samples. Fold change versus 
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(Continued) adult myocardium was computed for this set of genes in the isotropic and 

micropatterned line NRVM samples and statistical comparison revealed a number of 

significantly differentially expressed genes between the two types of in vitro cardiac 

tissues, including (B) atrial myosin light chain kinase (Myl4), (C) integrin α5 (Itga5), (D) 

T-type calcium channel subunit G (Cacna1g), and (E) cardiac delayed rectifier potassium 

subunit E (Kcne1) that may have important implications for the effects of tissue 

architecture on myocardial development in vitro. n=3 for all samples, * = p<0.05. Data 

presented as mean ± S.E.M.  

 

functional characterization were performed.  In addition, real-time qPCR measurements 

of these genes were carried out on explanted tissue samples from the ventricular 

myocardium of 3 month-old Sprague Dawley rats to serve as a reference profile of 

mature cardiac gene expression. Hierarchical clustering analysis of the in vitro isotropic, 

in vitro lines, and adult ventricular muscle gene expression profiles (Figure 2-3A) 

revealed a number of genes with expression levels that were similar between the in vitro 

lines engineered tissues and the adult ventricular heart tissues, but substantially different 

from the in vitro isotropic tissues (highlighted in yellow boxes).  Calculation of fold 

change versus adult myocardium in the in vitro isotropic and in vitro lines samples for 

this set of genes revealed a number of significantly-differentially expressed (p<0.05) 

genes that play important roles in myocardial development (Figure 2-3B-E).  
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2.2.3 Comparison of Contractile Stress Generation in Engineered and Adult 

Myocardium 

The characteristic shape and organization of cardiac myocytes in the myocardium 

has been shown to have a strong association with the contractile output of the heart 

during the progression of both normal development and disease [14, 123]. Therefore, the 

tissue with better aligned sarcomeres was expected to generate more force than tissues 

with isotropic sarcomeres. The relationship between tissue architecture and contractility 

was assessed in our engineered myocardium using the muscular thin film (MTF) 

contractility assay recently developed in our laboratory [149, 161]. These MTF constructs 

consisted of a layer of cardiac myocytes cultured on top of thin, rectangular elastic films 

attached to a glass coverslip. Once the free edges of the MTFs were released from the 

coverslip, shortening of the cardiac myocytes during each contraction cycle caused the 

films to bend up out of the plane of the coverslip, with the MTFs lying flat against the 

substrate during diastole, and at maximum curvature during peak systole (Figure 2-4A). 

High speed imaging of film curvature allowed visualization of the temporal profile of 

MTF bending, and was used to calculate the amount of contractile stress generated by the 

engineered myocardium attached to it [161]. Isotropic monolayers of NRVMs exhibited a 

flat contractile stress profile, indicative of the inability of the randomly organized cardiac 

myocytes to generate a substantial amount of uniaxial contractile stress capable of 

bending the MTF cantilever (Figure 2-4Bi).  In contrast, the more highly aligned In vitro 

Lines (Figure 2-4Bii) and In vitro Aniso (Figure 2-4Biii) engineered myocardium 

demonstrated contractile stress profiles indicative of greater contractile stress generation  
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Figure 2-4: Measurement and comparison of contractile performance in engineered 

and adult rat myocardium. 

(A) Schematic representation of the muscular thin film (MTF) contractility assay.  

Engineered myocardium is cultured on elastomeric cantilevers that lay flat during 

diastole and curl up during systolic contraction. (B)  High speed video recording allows 

calculation of stress traces during contraction cycles.  Example stress traces for 

engineered tissues (i-isotropic, ii – engineered lines); (C) Comparison of diastolic (rest), 

peak systolic (maximum contraction), and active (difference between systolic and 

diastolic) stresses. Each type of stress is significantly different between lines and 
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(Continued) isotropic tissues (p<0.001) (lines n=12 films, #chips=3; isotropic n=11 films, 

#chips = 3). Data presented as mean ± S.E.M.  

 

with temporal profiles consistent with the 2 Hz pacing stimulus applied to them during  

the experiment.  Statistical comparison of the diastolic and peak systolic stresses 

generated by the In vitro Iso, In vitro Lines, and In vitro Aniso engineered myocardium 

revealed that the In vitro Lines and In vitro Aniso engineered tissues both generated 

significantly (p<0.05) higher values than the In vitro Iso tissues (Figure 2-4C).  

Comparison of the twitch stress (i.e. the difference between the diastolic and peak 

systolic stresses) generated by each type of engineered tissue revealed that the In vitro 

Lines and In vitro Aniso engineered tissues both generated significantly (p<0.05) higher 

values than the In vitro Iso tissues.  Furthermore, comparison of the twitch stress values 

for the engineered myocardium to those reported in the literature for ventricular papillary 

muscle strips showed that the In vitro Lines and In vitro Aniso, but not In vitro Iso 

engineered cardiac tissues exhibited values within the same range [162-164].  Taken 

together, these results indicate that the anisotropic myofibril architecture imposed by the 

micro-patterned ECM cues give rise to engineered myocardium with contractile 

performance on par with isolated adult papillary muscle strips commonly used for studies 

of cardiac contractility and inotropic response to drug compounds [165]. 

 

2.3 Discussion 

In this study, we asked if anisotropic engineered myocardium comprised of 

isolated NRVMs cultured on micro-patterned ECM substrates could recapitulate the 



38 

 

phenotype of the adult rat ventricular myocardium.  We have previously shown that 

geometric cues encoded in the ECM can be used to precisely direct sarcomere 

organization in vitro, [138] and that parallel alignment of sarcomeres directly influences 

the contractile performance of engineered NRVM myocardium [160].  This study 

provides the first evidence that the sarcomere organization and contractile stress 

generation in engineered myocardium matches the adult myocardium. We have 

quantitatively shown that it is possible to tissue-engineer cardiomyocyte two-dimensional 

cultures that are similar to adult myocardium in their distributions of sarcomere 

orientation. This architectural design has implications in the possible force generation of 

the constructs built with these cells. Gene expression analysis reveals that tissue 

architecture influences cardiac gene expression, with aligned cardiomyocytes 

demonstrating an expression profile that more closely resembles the adult expression 

profile than poorly organized cardiomyocytes, supporting the role of cell-ECM 

interactions in promoting cardiomyocyte maturation in vitro. 

These results suggest that two-dimensional micropatterning, which gives intricate 

control over cell and tissue architecture, is sufficient to cause an apparent maturation in 

isolated cardiomyocyte culture. It has been shown previously that three-dimensional 

substrates can induce a genetic change in the cells [166], but our results suggest that it is 

not necessary to provide a three-dimensional environment to induce such changes. Indeed 

providing two-dimensional ECM cues is sufficient to direct self-assembly of specific 

myofibril architecture [158], and therefore affect function through both cell geometry and 

gene expression. 
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A significant body of research exists on the earliest stages of heart development, 

but much remains to be elucidated about the maturation of cardiomyocytes from the late 

fetal stage onwards.  The results of this study provide evidence supporting the role of 

cell-ECM interactions in promoting cardiomyocyte maturation in vitro.  These results 

may provide valuable insight for building engineered cardiac tissues that more accurately 

represent the native myocardium for in vitro cardiotoxicity assays and regenerative 

medicine applications. 

 

2.4 Materials and Methods 

 

2.4.1 Cell Culture Substrate Fabrication 

2.4.1.1 Photolithography 

Photolithographic masks with 15 µm wide ridges separated by 15 µm wide 

grooves, or 15 µm wide ridges separated by 2 µm wide grooves for microcontact printing 

were designed in AutoCAD (Autodesk Inc., Mill Valley, CA) and fabricated at the Center 

for Nanoscale Systems facility. Silicon wafers (Wafer World, West Palm Beach, FL) 

were spin-coated with SU-8 2002 negative photoresist (MicroChem Corp., Newton, MA) 

were exposed to ultra-violet light for 4 seconds. Uncross-linked photoresist was removed 

by rinsing in propylene glycol methyl ether acetate, followed by rinsing in isopropyl 

alcohol, and drying with a nitrogen gun.  Wafers were treated with Tridecafluoro-1,1,2,2-

tetrahydroctyl-1-trichlorosilane (UCT Specialties, Bristol, PA)  under vacuum for 

approximately 12 hours prior to PDMS stamp molding to allow easy separation of the 

cured PDMS from the wafer during stamp fabrication. 
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2.4.1.2 Cell Culture Substrate Fabrication 

For all experiments except contractility measurements, substrates were 

manufactured from 25 mm glass cover slips cleaned by sonication in 50% ethanol in 

distilled, deionized water for 30 minutes, then air dried. Sylgard 184 (Dow Corning, 

Midland, MI) polydimethylsiloxane (PDMS) elastomer was mixed with the curing agent 

(10:1 w/w), and the mixture was spin-coated onto the cover slip (4000 rpm ramp protocol 

over 2 minutes). The PDMS was allowed to cure at 65ºC for at least 12 hours before use. 

2.4.1.3 Muscular Thin Film Substrate Fabrication 

For contractility experiments, muscular thin film (MTF) chips were made by 

covering a large section of glass (7.5x11 cm) on both sides with a protective film (Static 

Cling Film, McMaster-Carr, Robbinsville, NJ). Strips of 5-8 mm were removed from the 

top protective film using a razor blade, and then an excess of poly(N-

isopropylacrylamide), (PIPAAm, Polysciences, Inc., Warrington, PA), dissolved in 99.4% 

1-butanol at 10%wt (w/v), was deposited onto the exposed glass. After the PIPAAm was 

spin coated at 6000 rpm for one minute, the remaining strips of the protective film were 

removed from the top of the glass. PDMS was pre-cured at room temperature for 2-4 

hours before being spin coated onto the whole glass section. After the PDMS was cured 

for at least 12 hours, the bottom protective film was removed, and the glass sections were 

cut into cover slips (~1.5 x 1.2 mm) with a diamond glass cutter.  

 

2.4.1.4 Micro-contact Printing 

Silicone stamps designed to have a pattern consisting of 15 µm wide ridges 

separated by 15 µm wide grooves were sonicated in a 50% solution of ethanol in distilled, 
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deionized water for 30 minutes. The stamps were then air dried within a biosafety cabinet 

to maintain sterility. The patterned surface of the sterilized stamps was coated with a 50 

µg/mL solution of fibronectin (FN)(BD Biosciences, Sparks, MD) in distilled, deionized 

water. The FN solution was incubated on the stamps for one hour at room temperature 

within a biosafety cabinet. The FN was then transferred from the surface of the stamp to 

the PDMS surface of PDMS-coated coverslips that had been UVO treated for 8 minutes 

prior to the transfer (UV ozone Model No. 342, Jelight Company, Inc., Phoenix, AZ). For 

MTF constructs the pattern was placed perpendicular to the PIPAAm strips visible under 

the PDMS. After transfer of the patterned FN, the cover slip was coated with a sterile 1% 

wt/vol solution of Pluronics F-127 (BASF, Florham Park, NJ) in distilled deionized water 

at room temperature for 10 minutes to prevent cell adhesion to unstamped regions of the 

substrate. For isotropic constructs, cover slips that have been UVO treated for 8 minutes 

were submerged in 50µg/mL FN for 1 hour at room temperature. All cover slips were 

rinsed three times with sterile room temperature PBS (Invitrogen, Carlsbad, CA) prior to 

cell seeding. 

 

2.4.2 Cardiac Myocyte Isolation and Culture 

2.4.2.1 Neonatal Rat Ventricular Myocytes 

Ventricular myocytes were isolated from 2-day old Sprague Dawley rats 

(Charles River Laboratories, Wilmington, MA) in accordance with procedures approved 

by the Harvard University Animal Care and Use Committee.  Briefly, excised ventricular 

tissue was incubated in a 0.1% (w/v) trypsin (USB Corp., Cleveland, OH) at 4°C for 12 

hours with agitation.  Ventricular tissue was subsequently dissociated into a single cell 
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suspension via serial 2 minute incubations in a 0.1% (w/v) solution of collagenase type II 

(Worthington Biochemical, Lakewood, NJ) at 37º C.  Two 45 minute pre-plating steps 

were used to enrich the cardiac myocyte population.  Isolated cardiac myocytes were 

maintained in a culture medium consisting of Medium 199 (Invitrogen, Carlsbad, CA) 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS), 10 mM HEPES, 

20 mM glucose, 2 mM L-glutamine, 1.5 µM vitamin B-12, and 50 U/ml penicillin and 

seeded at a density of 200,000 cells/cm
2
. The FBS concentration was reduced to 2% (v/v) 

from the second day of culture onward, and medium was exchanged every 48 hours.  

 

2.4.2.2 Adult Rat Ventricular Myocytes 

For qPCR gene expression measurements, 1 mm
3 

samples of left ventricular 

myocardium weighing between 20-25 mg were surgically excised from 3 month old 

female Sprague Dawley rats (Charles River Laboratories, Wilmington, MA).  Tissue 

samples were submerged in ice cold lysis buffer immediately after isolation and 

homogenized using a LabGEN 125 soft tissue homogenizer (Cole-Parmer, Vernon Hills, 

IL). 

 

2.4.3 Real-Time qPCR Gene Expression Measurements 

Total RNA was collected in triplicate from isotropic and micropatterned 

anisotropic samples using an RNeasy mini kit (Qiagen Inc, Valencia, CA) according to 

the manufacturer’s instructions, and in triplicate from 3 month old Sprague Dawley rat 

ventricular tissue using an RNeasy mini fibrous tissue kit (Qiagen Inc, Valencia, CA).  

Genomic DNA contamination was eliminated by incubating the RNA lysates in DNase I 
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digestion buffer at 37ºC for 15 minutes during the RNA purification procedure. The 

quantity and purity of RNA lysates was assessed using a Nanodrop spectrophotometer 

(Thermo Scientific, Wilmington, DE).  Purified total RNA lysates with OD 260/280 

ratios greater than 1.8 were used for RT-qPCR measurements. Complementary DNA 

strands were synthesized for genes of interest using an RT2 first strand synthesis kit 

(Qiagen Inc, Valencia, CA).  500 ng of total RNA were used from each lysate for each 

first strand synthesis reaction. Expression levels for specific genes of interest were 

measured using custom RT2 Profiler RT-PCR arrays (Qiagen Inc, Valencia, CA) and a 

Bio-Rad CFX96 RT-PCR detection system (Hercules, CA).  Statistical analysis of RT-

qPCR threshold cycle data was carried out with the web-based RT2 Profiler PCR Array 

Data Analysis Suite version 3.5 (Qiagen Inc, Valencia, CA) according to published 

guidelines [167]. 

 

2.4.4 Immunohistochemical Labeling and Fluorescence Imaging 

2.4.4.1 Neonatal Rat Ventricular Myocyte Engineered Myocardium 

Samples were fixed in 4% (v/v) paraformaldehyde with 0.05% (v/v) Triton X-

100 in PBS at room temperature for 15 minutes. Cells were incubated in a solution 

containing 1:200 dilutions of monoclonal anti-sarcomeric -actinin antibody (A7811, 

clone EA-53, Sigma Aldrich, St. Louis, MO), polyclonal anti-fibronectin antibody 

(F3648, Sigma-Aldrich, St. Louis, MO), 4',6'-diamidino-2-phenylindole hydrochloride 

(DAPI, Invitrogen, Carlsbad, CA), and Alexa Fluor 633-conjugated phalloidin 

(Invitrogen, Carlsbad, CA) for one hour at room temperature.  Samples were then 

incubated in 1:200 dilutions of Alexa Fluor 488-conjugated goat anti-mouse IgG and 
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Alexa Fluor 546-conjugated goat anti-rabbit IgG secondary antibodies (Invitrogen, 

Carlsbad, CA) for 1 hour at room temperature. Labeled samples were imaged with a 

Zeiss LSM confocal microscope (Carl Zeiss Microscopy, Jena, Germany).  

 

2.4.4.2 Adult Rat Ventricular Myocardium 

Three naïve male Crl:CD (SD) rats (Charles River Laboratories, Inc., Raleigh, 

NC) aged 10 to 11 weeks were used for immunohistochemical labeling.  Rats were 

euthanized under isoflurane anesthesia and the heart from each rat was removed and 

bisected longitudinally so that each half contained both the left and right atria and the left 

and right ventricles.   Each half of the heart was embedded in Optimal Cutting 

Temperature (OCT) media (BD, Franklin Lakes, NJ), snap-frozen with isopentane, and 

stored at or below -70C prior to sectioning.  Immunohistochemical staining was 

conducted using a Leica Bond Max IHC stainer.  Sections were cut at 5 microns and air 

dried at room temperature for 2 hours, then fixed in 4% paraformaldehyde for 10 minutes 

and transferred to Bond wash buffer (TRIS+Tween).  Following incubation in Rodent 

Block R (Biocare Medical) for 15 minutes at room temperature, the primary antibody 

mouse anti sarcomeric α-actinin (Abcam ab9465) at 1/50 dilution in Bond Antibody 

Diluent was applied for 60 minutes at room temperature.  The secondary antibody 

incubation consisted of donkey anti-mouse Alexa Fluor 647 (Invitrogen) diluted 1/200 in 

Bond wash buffer for 30 minutes at room temperature.  Between each of these steps, 

wash buffer rinses were applied 3 times for 2 minutes each.  The images were collected 

in regions of the left ventricle with that showed longitudinal fibers.  For each rat heart, six 

images were collected using the Zeiss 510 Meta Confocal Microscope (Carl Zeiss 
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Microimaging).  All procedures were conducted in accordance with published guidelines 

(National Research Council’s Guide for the Care and Use of Laboratory Animals) and the 

U.S. Department of Agriculture’s Animal Welfare Act and approved by GSK’s 

Institutional Animal Care and Use Committee. 

 

2.4.5 Quantitative Image Analysis of Sarcomere Organization 

Global sarcomere organization in engineered myocardium and histology slices 

of adult ventricular myocardium was measured using immunofluorescence micrographs 

of sarcomeric α-actinin taken as described above, and processed using custom image 

analysis software.  Fluorescence micrographs were first pre-processed to highlight the 

filamentous structure of the cytoskeleton using a “tubeness” operator [168] that replaced 

each pixel in the image with the largest non-positive eigenvalue of the image Hessian 

matrix. The orientations of sarcomeric α-actinin positive pixels were then determined 

using an adapted structure-tensor method [169] and the orientational order parameter 

(OOP), a measure of the global alignment of the sarcomeres, [170] was calculated from 

the observed orientations.  The sarcomere length, defined as the distance between 

adjacent z-lines, was determined by processing the fluorescence images with a 2D Fast 

Fourier Transform algorithm. 

 

2.4.6 Muscular Thin Film Contractility Measurements 

The muscular thin film (MTF) chips were transferred to a stereomicroscope 

(Model MZ6 with darkfield base, Leica Microsystems, Inc., Wetzlar, Germany) in a 60 

mm Petri dish filled with a normal Tyrode's solution (mM, 5.0 HEPES, 5.0 glucose, 1.8 
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CaCl2, 1.0 MgCl2, 5.4 KCl, 135.0 NaCl, and 0.33 NaH2PO4; reagents from Sigma, St. 

Louis, MO) at 37ºC. The MTF was cut using a straight-blade razor and excess film was 

removed to create an array of 2-8 rectangular films over the PIPAAm area of the chip. 

The rectangular MTFs were 1-2 mm in width, 2-5 mm in length, and were separated by 

0.5-1 mm spacing. Once the temperature of the bath equilibrated to room temperature, 

PIPAAm dissolved and the films were released from the substrate by gently pulling on 

the corner of each film with a pair of tweezers. As a result the films were attached to the 

chip by one edge only, and would bend as the cardiomyocyte contracted. The MTF length 

(prior to peeling the films off) and the projections the MTFs projection on the substrate 

plane was recorded with a fast camera (120 fps) (A602f Basler Inc, Exton, PA) controlled 

by LabView (National Instruments, Austin, TX). The cardiomyocytes were paced at 2 Hz 

(5-10 V, 10 msec pulse) using an external field stimulator (Myopacer, IonOptix Corp., 

Milton, MA) in a temperature controlled bath (34ºC-37ºC) throughout the experiment. 

The stress produced by the engineered cardiac tissues was calculated from the 

amount of bending of the MTF. The bending was measured as a radius of curvature. 

Briefly, the length (L) the projection of the MTFs (x) was measured using ImageJ code 

(NIH). The radius of curvature was numerically calculated according to: 
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The stress produced by the films was numerically calculated using previously 

described methods [161]. The radius of curvature and the thickness of the PDMS layer of 

the MTF were input for every film, analyzed by MatLab (Mathworks, Natick, MA) to 

calculate the stress according to a volumetric growth method [171, 172]. The systolic and 
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diastolic stresses were calculated as the average of the maxima and minima in the 

oscillating stress trace, respectively. The active stress was calculated as the difference 

between the systolic and diastolic stresses. 
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3 Quality Metrics for Stem Cell-Derived Cardiac Myocytes 

Advances in stem cell manufacturing methods have made it possible to produce 

stem cell-derived cardiac myocytes at industrial scales for in vitro muscle physiology 

research purposes. While FDA-mandated quality assurance metrics exist for safety issues 

in the manufacture of stem cell-based products, no standardized guidelines currently exist 

for the evaluation of stem cell-derived myocyte functionality.  As a result, it is unclear 

whether the various stem cell-derived myocyte cell lines on the market exhibit 

comparable performance to one another, or if any of them accurately recapitulate the 

characteristics of native cardiac myocytes.  We propose a multi-parametric quality 

assessment rubric where genetic, structural, electrophysiological, and contractile 

measurements are coupled with comparison against values for these measurements that 

are representative of the ventricular myocyte phenotype. We demonstrated this procedure 

using commercially-available, mass-produced murine ES- and iPS- derived myocytes 

compared against a neonatal mouse ventricular myocyte target phenotype in coupled in 

vitro assays.   

 

3.1 Introduction 

In response to widespread efforts to commercialize differentiated stem cells, [173] 

the U.S. Food and Drug Administration (FDA) established a set of regulations and 

guidelines for manufacturing and quality control evaluation of human cellular and tissue-

based products derived from stem cells [174].  The recommendations outlined for 

evaluating differentiated stem cell phenotype were developed specifically to address 

patient safety concerns, such as tumorigenicity and immunologic incompatibility due to 
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the initial focus of the industry on regenerative medicine applications [175]. Concerns 

over patient safety may have slowed the commercialization of regenerative therapies 

[176], but the use of industrial stem cell-based products for in vitro research, particularly 

pharmaceutical screening applications [177-180] is a promising goal that can potentially 

be reached in the near term.  Due to the mandate to test all drug compounds for potential 

adverse effects on the heart, in vitro cardiac toxicity screening is a particularly important 

application that has prompted the development of commercial stem cell-derived cardiac 

myocytes by a number of companies [181].  In this context, the focus of quality assurance 

shifts from patient safety concerns to the development and adoption of measures that 

ensure these cells reliably mimic cardiac myocytes found in vivo.  

In order to develop quality assurance standards for assessing stem cell-derived 

myocyte differentiation, it is necessary to first establish the set of characteristics that 

reliably define cardiac myocyte identity.  We reasoned that the most effective way to 

delineate these standards was to comprehensively evaluate the aspects of form and 

function that give rise to the contractile properties of cardiac myocytes in the healthy, 

post-natal heart [143]. No standardized approach currently exists for evaluating cardiac 

differentiation. Basic characterization involves the use of one or more assays with 

stringencies ranging from the observation of spontaneous beating activity to 

electrophysiological recordings, wherein the use of gene expression profiling is one of 

the most common [182].  In addition to measuring the expression of cardiac biomarker 

genes, [183, 184] we also examined the organizational characteristics of the contractile 

myofibrils [160], the electrical activity that regulates myofibril contraction [185], and 

contractile force output directly [161].  Since human ventricular myocytes are not readily 
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available, we utilized commercially-available murine ES- (mESC) and iPS- (miPSC) 

derived myocytes and compared them against ventricular myocytes freshly isolated from 

neonatal mice (neonate).  Though the cardiac physiology of humans and mice differ, the 

goal was to determine the utility of comparing industrially manufactured stem cell-

derived myocytes and isolated cardiac myocytes possessing the desired phenotype using 

a multi-factorial comparison of high level myocardial tissue architectural and functional 

characteristics.  

 

3.2 Results 

3.2.1 Gene Expression Profiling of mES, miPS, and Neonate Engineered Tissues 

We previously reported the influence of tissue architecture on the contractile 

performance of engineered myocardium in vitro, so we began our characterization of the 

commercially-available mES and miPS myocytes by evaluating their response to 

geometric cues encoded in the ECM, [160] and measuring the expression of genes that 

are commonly used to delineate the cardiac myocyte lineage [186, 187].  Culturing the 

mES (Figure 3-1Ai) and miPS (Figure 3-1Aii) myocytes on a substrate coated uniformly 

with fibronectin (FN) gave rise to monolayers with an isotropic cellular arrangement 

similar to the arrangement observed when neonate ventricular myocytes (Figure 3-1Aiii) 

were cultured in a similar manner. Moreover, mES (Figure 3-2Ai), miPS (Figure 3-2Aii), 

and neonate (Figure 3-2Aiii)  
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Figure 3-1: Comparison of mES, miPS, and neonate gene expression profiles on 

isotropic and anisotropic ECM substrates.  

(A)  Culturing (i) mES, (ii) miPS, and (iii) neonate myocytes on substrates with a 

uniform coating of FN resulted in isotropic cellular arrangement. (B) Volcano plots 

showing the negative log of p-values (two-tailed T-test, n = 3 for all conditions) versus 

log fold-change values for the comparison of qPCR measurements of cardiac genes 
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(Continued) between (i) mES and neonate isotropic monolayers, (Continued) and 

between (ii) miPS and neonate isotropic monolayers reveal significant differences for a 

number of genes (points on the plot colored green or red represent genes with p < 0.05) 

(C) Culturing (i) mES, (ii) miPS, and (iii) neonate myocytes on substrates with micro-

contact printed lines of FN that were 20 µm wide and spaced 4 µm apart resulted in 

anisotropic cellular arrangement in all three cell types. (D) Volcano plots showing the 

negative log of p-values (two-tailed T-test, n = 3 for all conditions) versus log fold-

change values for the  comparison of qPCR measurements of cardiac genes between (i) 

mES and neonate anisotropic monolayers, and between (ii) miPS and neonate anisotropic 

monolayers reveal slightly fewer genes demonstrating significant differences than in the 

isotropic cultures (points on the plot colored green or red represent genes with p < 0.05) 

(E) Hierarchical clustering of mean 2-ΔCt values for a select panel of cardiac genes 

revealed that the isotropic and anisotropic neonate tissue expression profiles clustered 

together in the center columns of the heatmap, while the anisotropic mES and miPS 

expression profiles formed a separate cluster on the right sides of the heatmap, and the 

isotropic mES and miPS profiles clustered together on the left side of the heat map . 

Scale bars = 100 µm. 

 

myocytes all assumed a pleomorphic morphology when cultured sparsely on isotropic FN 

(Figure 3-2B), even though the neonate cardiac myocytes displayed a smaller surface 

area than the mES and miPS myocytes (Figure 3-2C).  Comparison of the expression 

profiles for isotropic mES (Figure 3-1Bi) and miPS (Figure 3-1Bii) derived tissues versus 

the neonate tissues revealed a number of significant differences associated  
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Figure 3-2: Evaluation of cardiac myocyte morphology on isotropic and anisotropic 

ECM substrates. 

(A) Isotropic cultures of (i) mES, (ii) miPS, and (iii) neonate cardiac myocytes were fixed 

and immunostained for the presence of sarcomeric α-actinin (red), F-actin (green), and 

chromatin (blue). Cardiac myocytes were identified by the presence of sarcomeric α-

actinin positive z-lines, and the boundaries of fully spread, mono-nucleated myocytes 

were manually traced using the polygon tool in ImageJ. The total number of pixels 

contained within each traced polygon was used to calculate (B) cellular aspect ratio, and 

(C) the total spread surface area for each cell type. (D) Similarly, the voltage sensitive 

dye RH237 used for optical mapping experiments allowed identification of myocyte 

boundaries in anisotropic monolayers of (i) mES, (ii) miPS, and (iii) neonate cardiac 

myocytes. The total number of pixels contained in each manually traced outline was used 

to calculate (E) aspect ratio, and (F) total spread surface area for each type of myocyte. 

All results presented as mean ± standard error of the mean. Statistical tests used was 

ANOVA on ranks († = p < 0.05). Scale bars = 20 µm. 
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with ion channel subunits and components of the sarcomere. In particular, the mES 

tissues exhibited significantly higher expression of the L-type Ca
2+

 channel subunit 

Cacna1d (4.9 fold, p<0.05), as well as the T-type subunits Cacna1g (9.0 fold, p<0.05) 

and Cacna1h (42.2 fold, p<0.05) versus neonate tissues. Isotropic mES tissues also 

showed significantly lower expression of Irx4 (-9.1 fold, p<0.001), Myl2 (-3.2 fold, 

p<0.05), and Myl3 (-3.8 fold, p<0.01) commonly associated with the ventricular myocyte 

phenotype [183], and significantly higher expression of the atrial marker genes Myl4 

(40.2 fold, p<0.001), and Myl7 (24.5 fold, p<0.01) than the neonate isotropic tissues.   In 

contrast, the miPS isotropic tissues showed significant differences in expression for 

Cacna1d (5.7 fold, p<0.05), Cacna1h (27.9 fold, p<0.001), Myl4 (14.1 fold, p<0.05) and 

Myl7 (11.1, p<0.05) versus the neonate isotropic tissues.  These observations suggest that 

the miPS-derived myocytes exhibited an expression profile that more closely resembled 

the profile of the neonate ventricular myocytes than the mES-derived myocytes. 

Based on previous studies, we recognized that the gene expression profile of 

cardiac myocytes changed as a function of the tissue architecture within which they are 

embedded [188].  We engineered laminar, anisotropic myocardium from mES (Figure 3-

1Ci), miPS (Figure 3-1Cii), and neonate cardiac myocytes by culturing them on micro-

contact printed FN, where the cells spontaneously formed cell-cell junctions and aligned 

with the geometric cues within the matrix to form a contiguous tissue of high aspect ratio 

cells (Figure 3-2D, E).  After several days in culture, we measured and compared the 

expression profiles of these engineered tissues.  Comparison of the expression profiles for 

anisotropic neonate and mES tissues (Figure 3-1Di) revealed a number of differences 

associated with Ca
2+

 channel subunits, such as the L-type Ca
2+

 channel subunit Cacna1d 
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(37.5 fold, p<0.0001), as well as the T-type subunits Cacna1g (20.2 fold, p<0.05), and 

Cacna1h (23.8 fold, p<0.05).  Additionally, the mES anisotropic tissues showed 

significantly lower expression of the ventricular marker Irx4 (-7.7 fold, p<0.05), and 

significantly higher expression of the atrial markers Myl4 (254.8 fold, p<0.01), and Myl7 

(104.0 fold, p<0.01) versus the neonate tissues.   

In contrast, the miPS anisotropic tissues exhibited significant differences from 

the neonate tissues (Fig. 1Dii) for the Ca
2+

 channel subunits Cacna1d (36.9 fold, p<0.05) 

and Cacna1g (6.6 fold, p<0.05), as well as the atrial myosin light chain kinase gene Myl4 

(105.5 fold, p<0.01).  Hierarchical clustering of neonate, mES, and miPS gene expression 

measurements revealed a distinct separation of the expression profiles for isotropic and 

anisotropic tissues, regardless of myocyte type (Figure 3-1E).  Moreover, the expression 

profiles for mES and miPS myocytes in both the isotropic and anisotropic cellular 

configurations clustered closer to each other than to the neonate tissues. This suggests 

that the mES and miPS myocytes exhibited global transcriptional profiles that were 

unique from the neonate expression pattern, despite differences in the relative expression 

profiles between the mES and miPS tissues.   

 

3.2.2 Characterization of Myofibril Architecture and Global Sarcomere 

Alignment 

One of the defining features of the ventricular myocardium is the laminar 

arrangement of cardiac myocytes that serves to organize and orient the contractile 

sarcomeres to facilitate efficient pump function [14].  We evaluated the ability of mES 

and miPS engineered tissues to self-assemble myofibrils with alignment comparable to 
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neonate ventricular myocytes using custom image analysis software developed in our lab 

(Figure 3-3A).  Immunofluorescence micrographs of sarcomeric α-actinin allowed us to 

visualize the orientations of the z-lines outlining the lateral edges of sarcomeres and  

 

Figure 3-3: Image analysis procedure for sarcomere organization and structural 

characterization.  

(A) Image processing flow: sarcomeric a-actinin immunographs were deconvolved, 

projected onto a single 2D image and then processed with a tubeness operator before 

further processing. (B) The orientations of sarcomeric a-actinin positive pixels were 
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(Continued) detected with a structure tensor method, color coded using the hsv digital 

image representation (i) and finally displayed into a histogram (ii) of the normalized 

occurrences of each orientation (C) The sarcomere length and the overall regularity of the 

cytoskeletal structure were detected processing the immunograph 2D Fast Fourier 

Transform algorithm. The detected power spectrum (i), for representation purpose a 

gamma correction of 0.1 was applied) was then integrated and normalized by the total 

energy. (ii) The sarcomere packing density was defined as the area under the signal peaks 

(red curve) whose location related with the sarcomere length. 

 

quantitatively assess sarcomere organization in our engineered tissues (Figure 3-3Bi-ii). 

Visualization of global z-line registration in isotropic monolayers of mES (Figure 3-4Ai), 

miPS (Figure 3-4Aii), and neonate (Figure 3-4Aiii) myocytes revealed random 

orientation patterns.  In contrast, the anisotropic mES (Figure 3-4Bi), miPS (Figure 3-

4Bii), and neonate (Figure 3-4Biii) tissues demonstrated a greater degree of uniaxial z-

line registration.  To quantify the differences in global sarcomere organization between 

the mES, and miPS tissues, versus the neonate tissues (Figure 3-4C), we utilized a metric 

known as the orientational order parameter (OOP) that is commonly used to characterize 

the alignment of liquid crystals [189], and ranges from zero (random organization) to one 

(perfect alignment).  It has been shown previously that this metric can be successfully 

adapted to measure and compare z-line registration in engineered cardiac tissues, and that 

it provides insight into the contractile strength of the tissues [160].  The anisotropic 

neonate tissues exhibited a significantly higher OOP value than both the mES and miPS 

tissues, suggesting that both types of stem cell-derived cardiac myocytes were unable to  
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Figure 3-4: Comparison of myofibril architecture in mES, miPS, and neonate 

engineered tissues.  

Immunofluorescence visualization of sarcomeric α-actinin in (A) isotropic monolayers of 

(i) mES, (ii) miPS, and (iii) neonate myocytes and (B) anisotropic monolayers of (i) mES, 

(ii) miPS, and (iii) neonate myocytes revealed the pattern of sarcomere organization 

adopted by each cell type in response to geometric cues encoded in the ECM.  Immature 

pre-myofibrils (red arrows) were observed exclusively in mES and miPS engineered 

tissues. Quantitative evaluation of sarcomeric α-actinin immunofluorescence micrographs 
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(Continued) allowed statistical comparison of sarcomere organization and architecture. 

(C) Orientational order parameter (OOP) was used as a metric of global sarcomere 

alignment within the engineered tissues and showed that anisotropic neonate tissues 

exhibited significantly greater overall sarcomere alignment than the mES and miPS 

anisotropic tissues. No significant differences in global sarcomere alignment were 

observed between the isotropic mES, miPS, and neonate tissues. (D) Comparison of z-

line spacing revealed that the neonate anisotropic tissues exhibited significantly greater 

sarcomere length than both the mES and miPS anisotropic tissues. (E) From the 

measurements of sarcomere length, sarcomere packing density was calculated for 

anisotropic tissues of each cell type. All three cell types exhibited significantly different 

sarcomere packing densities from one another. Statistical tests used were either ANOVA 

(* = p < 0.05), or ANOVA on ranks († = p < 0.05). Data are presented as mean ± SEM. 

Scale bars = 10 µm.  

 

generate myofibrils with the same degree of global sarcomere alignment as the neonate 

myocytes.  Isotropic tissues had low OOP values, due to the random organization of the 

cardiac myocytes. Measurement of registered z-line spacing also revealed that the  

anisotropic mES and miPS tissues displayed significantly shorter sarcomere lengths than 

the neonate tissues (Figure3-4D).  Moreover, quantification of “sarcomere packing 

density,” i.e. the proportion of α-actinin localized to z-lines indicative of the presence of 

fully-formed sarcomeres, showed that the anisotropic neonate tissues exhibited 

significantly higher sarcomere packing density than the mES and miPS tissues.  Taken 

together, these analyses revealed that the mES- and miPS-derived myocytes responded to 
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ECM cues in a similar manner to the neonate myocytes, but exhibited sarcomere 

organization reminiscent of immature pre-myofibrils observed in embryonic cardiac 

myocytes [138, 190, 191]. 

 

3.2.3 Measurement of mES, miPS, and Neonate Electrophysiological Performance  

The electrical activity of cardiac myocytes regulates the initiation of myofibril 

contraction and is commonly measured as an indicator of myocyte identity and 

functionality [185, 187, 192].  We used planar patch clamp recordings to compare and 

contrast the action potential characteristics of isolated mES, miPS, and neonate myocytes.  

We identified two different demographics of cell types as demonstrated by action 

potential (AP) morphology [187].  Neonate myocytes primarily demonstrated ventricular-

like APs (Figure 3-5Ai), whereas, mES- and miPS-derived myocytes exhibited APs that 

were evenly distributed between the ventricular-like and atrial-like (Figure 3-5Aii) 

morphologies. Both the mES- and miPS-derived myocytes primarily exhibited APs as 

shown in Figure 3-5Aii, whereas the neonate ventricular myocytes demonstrated APs 

illustrated in Figure 3-5Ai.  Analysis of AP characteristics, such as maximum voltage 

(Vmax), action potential duration at 50% repolarization (APD50), and action potential 

duration at 90% repolarization (APD90), revealed that the mES and miPS myocytes 

exhibited roughly equal incidences of atrial-like and ventricular-like APs, whereas the 

neonate cardiac myocytes displayed ventricular-like AP characteristics (Figure 3-5B).  In 

addition to AP characterization, we also measured the electrical conduction properties of 

the anisotropic mES (Figure 3-5Ci), miPS (Figure 3-5Cii), and neonate (Figure 3-5Ciii) 

tissues using optical mapping and the voltage-sensitive fluorescent dye RH-237 [100, 192, 



61 

 

193] to evaluate the ability of the stem cell-derived myocytes to form the 

electromechanical syncytium that typifies the myocardium [185].  We did not observe 

any significant differences in the longitudinal (LCV) or transverse (TCV) conduction 

velocities between the mES, miPS, and neonate tissues (Figure 3-5D). However, we did 

observe substantial differences in the cellular dimensions (l x w) of mES (72.04 µm x 

12.07 µm) and miPS (82.30 µm x 11.25 µm) versus neonate (44.93 µm x 11.35 µm) 

cardiac myocytes that may influence the magnitude of the LCV and TCV in engineered 

tissues comprised of these cells, making them appear faster than they actually are.  AP 

duration measurements revealed no significant differences at 50% repolarization 

(APD50), but a significant (p<0.05) difference was observed at 90% repolarization 

(APD90) between the neonate and mES anisotropic tissues (Figure 3-5E).  

Ca
2+

 plays a crucial role in coupling myocyte excitation and contractile activity 

[194]. We measured Ca
2+ 

transient activity in engineered anisotropic tissues, as well as 

the Ca
2+

 current profiles of isolated mES, miPS, and neonate myocytes. Ca
2+ 

transients 

measured in anisotropic tissues revealed a significantly (p<0.05) shorter 50% decay time 

in the miPS, but not the mES tissues, as compared to the neonate, and significantly 

(p<0.05) shorter 90% decay time in both the mES and miPS tissues versus the neonate 

tissues (Figure 3-5F). Planar patch clamp recordings of L- (Figure 3-5Gi) and T- (Figure 

3-5Gii) type Ca
2+

 current profiles revealed significantly (p<0.05) higher total (TOT) and 

T-type (TCC) maximum Ca
2+

 current densities in the neonate myocytes versus the mES-

derived, but not the miPS-derived myocytes (Figure 3-5H).  Taken together, these data 

suggest that the mES and miPS myocytes possessed electrophysiological properties  
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Figure 3-5: Comparison of electrical activity in mES, miPS, and neonate engineered 

tissues. 

(A) Patch clamp recordings taken on isolated mES, miPS, and neonate myocytes 

exhibited action potentials (AP) with both (i) ventricular-like, and (ii) atrial-like profiles. 
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(Continued) (B) Characterization of the AP traces revealed no significant differences 

between the three cell types, but the mES and miPS myocytes exhibited an equal 

proportion of ventricular-like (mES-v, miPS-v) and atrial-like (mES-a, miPS-a) AP traces, 

whereas the neonates exhibited primarily ventricular-like (neonate-v) AP profiles. (C) 

The electrophysiological characteristics of anisotropic (i) mES, (ii) miPS, and (iii) 

neonate tissues were assessed using optical mapping and the photovoltaic dye RH237. (D) 

Comparison of conduction properties between the mES, miPS, and neonate tissues 

revealed no significant differences in either longitudinal (LCV) or transverse (TCV) 

conduction velocity. (E) Evaluation of optical AP duration in anisotropic tissues revealed 

no significant differences in APD50, but a significant difference in APD90 between the 

mES and neonate tissues was observed. (F) Comparison of Ca2+ transients measured in 

anisotropic tissues revealed that the 50% decay time of the miPS tissues was significantly 

lower than the both the mES and neonate tissues, but the 90% decay time of both the 

mES and miPS tissues was significantly lower than the neonate tissues. (G) Patch clamp 

recordings were collected on isolated mES, miPS, and neonate myocytes to measure and 

compare (i) L-type, and (ii) T-type Ca2+ current densities elicited at various holding 

potentials. (H) Patch clamp recordings of maximum Ca2+ current density in isolated 

mES, miPS, and neonate myocytes revealed a significant difference in total Ca2+ current 

density (TOT) between the neonate and mES myocytes. No significant differences in L-

type Ca2+ current density (LCC) were observed, but a significant difference in T-type 

Ca2+ current density (TCC) was observed between the neonate and mES myocytes. 

Statistical test used was ANOVA (* = p < 0.05). Data are presented as mean ± SEM. 

Scale bars = 20 µm. 
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similar to neonate cardiac myocytes, aside from differences in funny current and voltage-

gated Ca
2+

 channel subunit expression, illustrated in Figure 3-1. 

 

3.2.4 Measurement of mES, miPS, and Neonate Engineered Tissue Contractile 

Performance 

With the muscular thin film (MTF) contractility assay, it is now possible to assess 

the diastolic (Figure 3-6Ai) and systolic (Figure 3-6Aii) function of engineered 

myocardium directly [149, 161, 170].  Using the “heart-on-a-chip” MTF assay [170], we 

measured the stress generation profiles of the anisotropic mES, miPS, and neonate tissues 

(Figure 3-6B), and compared their contractile performance.  The anisotropic neonate 

tissues generated significantly (p<0.05) higher diastolic, peak systolic, and twitch stress 

than both the mES and miPS tissues (Figure 3-6C), with observed values for the neonate 

tissues within the range measured for isolated murine papillary muscle strips [195, 196].  

The results of the contractility measurements clearly show a functional deficit in the 

mES- and miPS-derived myocytes that was not apparent in the electrophysiological 

measurements.  The combined output of our electrophysiological, calcium transient and 

contractile force experimental measurements were used to create graphical 

representations of the excitation-contraction coupling profiles of the mES (Figure 3-6Di), 

miPS (Figure 3-6Dii), and neonate (Figure 3-6Diii) engineered tissues that clearly 

illustrate the similarities and differences in the excitation-contraction coupling amongst 

the cell types.  These data illustrate that the miPS-derived myocytes are qualitatively 

more similar to the neonate myocytes than the mES-derived myocytes.   
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Figure 3-6: Comparison of contractile performance in mES, miPS, and neonate 

engineered tissues.   

(A) Contractile performance of anisotropic mES, miPS, and neonate tissues was assessed 

using the muscular thin film (MTF) assay wherein the radius of curvature of the MTFs at 

(i) diastole and (ii) peak systole were used to calculate contractile stress. (B) The radius 



66 

 

(Continued) of curvature of the MTFs was used to calculate and compare the temporal 

contractile strength profiles of anisotropic mES (green), miPS (red), and neonate (blue) 

tissues. (C) Comparison of MTF contractile output revealed that neonate anisotropic 

tissues generated significantly greater diastolic, peak systolic, and twitch stress than both 

the mES and miPS tissues. (D) Graphical representation of action potential morphology 

(black solid line), Ca2+ transient morphology (blue dotted line), and contractility profile 

(red dotted line) during a typical excitation-contraction cycle of the mES, miPS, and 

neonate engineered anisotropic tissues. Statistical test used was ANOVA (* = p < 0.05).  

Data are presented as mean ± SEM.  

 

3.2.5 Integration of Experimental Measurements to Evaluate Stem Cell-Derived 

Myocyte Cardiac Phenotype 

To determine how closely the mES- and miPS-derived myocytes matched the 

phenotype of the neonate ventricular myocytes, we computationally-integrated the set of 

gene expression, morphology, electrophysiology, and contractility experimental 

measurements collected on each cell population, and calculate the difference between the 

unknown and target cell populations.  This was achieved by evaluating measures of effect 

size, such as z-factor and Strictly Standardized Mean Difference (SSMD), that have been 

previously used to quantify biological population differences in high throughput 

screening applications [197].  We chose to use SSMD instead of z-factor in this case 

study because the SSMD is more robust to outliers, is not dependent on sample size, and 

can be used to evaluate non-normal data [198].  For each type of experimental 

measurement, we normalized the mean (μnorm) values to the interval [0,1] by identifying 
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the maximum (μmax) and minimum (μmin) mean values observed for that measurement 

from all three cardiac myocyte sources, and calculating: 





max

norm

max min

μ μ
μ

u μ
      (1) 

Using these normalized values, the SSMD (β) quantifying the differences between each 

unknown population (i.e. mES, miPS) and the neonate target population was calculated 

as follows: 

2 2






target unknown

target unknown

μ μ
β

σ σ
     (2) 

where µ represents mean and σ represents standard deviation, to evaluate the magnitude 

of difference, taking into account the variance in the measurements, between the stem 

cell-derived myocytes and the neonate cardiac myocytes (Figure 3-7).  This allowed us to 

identify the parameters that show the greatest degree of similarity and difference from the 

target neonate ventricular myocyte tissues.  We then used the β values from each 

experimental measurement for the mES and miPS tissues and calculated the mean 

squared error (MSE) versus the neonate tissues as follows: 

   2

1

1



 
n

i
i

MSE β
n

      (3) 

where n is the total number of experimental measurement β values included in the 

calculation, to evaluate the differences observed for each measurement category (i.e. the 

β values for gene expression, morphology, electrical activity, contractility used to 

calculate category-specific MSE values), as well as define a single MSE value calculated 

from all of the experimental measurements from all categories combined, that represents 

the total difference between the stem cell-derived and neonate cardiac myocytes based on   
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Figure 3-7: Integrated visual comparison of mES, miPS, and neonate experimental 

measurements.   
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(Continued) Strictly Standardized Mean Difference (β) values were computed for mES- 

and miPS-derived myocytes relative to the neonate cardiac myocytes from the mean and 

sample standard deviations collected for each experimental measurement.  These β values 

were organized by measurement type (i.e. gene expression, myocyte architecture, 

electrophysiology, contractility) and plotted to allow comparison.  Negative β values 

indicate measurements with higher relative magnitude in the neonate cardiac myocytes, 

whereas positive β values indicate measurements that were higher in the mES/miPS 

myocytes relative to the neonate cardiac myocytes based on the measurements performed 

(Table 3-1).  A lower MSE values indicates a better match to the neonate target 

phenotype, with an MSE value of zero indicating a perfect match.  

 

Table 3-1: Mean squared error values calculated for each group of measurements in 

the comparison of the mES- and miPS-derived myocytes to the neonate ventricular 

myocytes.  The strictly standardized mean difference (β) values computed for each 

experimental measurement were used to calculate mean squared error (MSE) values for 

each of the major measurement categories, as well as all of the measurements combined, 

in the comparisons of the mES (MSEmES), and miPS (MSEmiPS) engineered tissues to the 

neonate engineered tissues.  

         Measurement Category MSEmES MSEmiPS 

Gene Expression 5.69 4.25 

Morphology 1.30 1.48 

Electrophysiology 1.16 0.57 

Contractility 6.32 2.95 

All Measurements 4.95 3.60 
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We found that the miPS tissues exhibited lower MSE values than the mES tissues 

for every measurement category, except morphology.  In addition, the overall MSE 

values calculated from all of the experimental measurements combined revealed a lower 

MSE for the miPS engineered tissues than those comprised of mES-derived myocytes. 

This suggests that the miPS-derived myocytes exhibited a global phenotype that was 

slightly closer to the neonate cardiac myocytes than the mES-derived myocytes, although 

both the mES- and miPS-derived myocytes demonstrated substantial differences from the 

neonate cardiac myocytes for a number of characteristics. 

 

3.3 Discussion 

The goal of this study was to define a quality control standard rubric for assessing 

stem cell-derived cardiac myocytes.  We chose a set of experimental measurements that 

provide insight, not only into the expression profile of the cells, but also into 

morphological and functional characteristics that are intimately tied to the contractile 

function of cardiac tissues [100, 160, 185].  We utilized ventricular myocytes isolated 

from post-natal mouse hearts to serve as our reference standard for defining the target 

phenotype, although an inherent limitation to using these cells is the presence of non-

cardiomyocytes, such as fibroblasts, endothelial cells, and smooth muscle cells that may 

confound the interpretation of some experimental measurements, such as gene expression 

profiling. It should also be noted that the mES- and miPS-derived cardiac myocytes used 

in this study were produced using a differentiation protocol that gives rise to a 

heterogeneous population of atrial, ventricular, and pacemaker-like cells that may also 

make interpretation of certain measurements challenging.  However, the quality 
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assessment strategy proposed is not dependent on any particular set of measurements, and 

allows researchers the flexibility to choose the set of experimental measurements that 

best suits their needs.  

Using the experimental measurements described above and isolated neonatal 

ventricular myocytes as our reference phenotype, we developed a “quality index” that 

utilizes the magnitude and variance of these measurements to provide a numeric score of 

how closely the stem cell-derived myocytes match the characteristics of the neonatal 

cardiac myocytes.  The combination of gene expression, morphological evaluation, 

electrophysiological, and contractility measurements employed allowed us to pin-point 

specific differences in the structural and functional properties of the mES and miPS 

engineered tissues versus the neonate tissues that have important implications for their 

utility in in vitro assays. Additional studies of the relationships between these 

measurements and the response of engineered cardiac tissues to compounds that have 

known effects on heart function may provide valuable insight into the combination of 

measurements that offer the most reliable insight into the ability of stem cell-derived 

cardiac myocytes to adopt the desired phenotype.  With a carefully chosen set of 

experimental parameters, this quality assessment rubric may provide a reliable means to 

evaluate strategies employed to improve the differentiation of cardiac myocytes from 

stem cells and drive them towards a more mature phenotype [199]. Further, this “quality 

index” would not only allow researchers to identify the commercial stem cell-derived 

myocyte product lines that are most suitable for their needs, it may also serve the stem 

cell industry as a quality assurance system for ensuring that batches released to customers 

faithfully recapitulate the desired phenotype. 
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3.4 Materials and Methods 

 

3.4.1 Cardiac Myocyte Cell Culture 

3.4.1.1 Murine Stem Cell-Derived Cardiac Myocyte Culture 

Cor.At murine ES- (Lot# CS25CL_V_SN_1M, production date: 2010-02-16) and 

iPS-derived (Lot# CS02CL-i, production date: 2010-11-15; CS07CL-i, production date: 

2011-05-09) myocytes were cultured according to instructions, and with culture reagents 

supplied by the manufacturer (Axiogenesis, Cologne, Germany). Briefly, cells were 

cultured in T25 flasks pre-coated with 0.01 µg/mL fibronectin (FN) (BD Biosciences, 

Bedford, MA) in puromycin-containing culture media at 37ºC and 5% CO2 for 72 hours 

to eliminate un-differentiated stem cells from the culture. After 72 hours, cells were 

dissociated with 0.25% trypsin and seeded onto micro-contact printed substrates at 

densities of 100,000/cm
2
. Cells were cultured for 2 days on micro-contact printed 

substrates to allow formation of a functional syncytium, while preserving the proportion 

of myocytes exhibiting ventricular characteristics prior to experimentation. 

 

3.4.1.2 Neonatal Mouse Ventricular Myocyte Isolation and Culture 

Neonatal mouse ventricular myocytes were isolated from 2-day old neonatal 

Balb/c mice using procedures approved by the Harvard University Animal Care and Use 

Committee.  Briefly, excised ventricular tissue was incubated in a 0.1% (w/v) trypsin 

(USB Corp., Cleveland, OH) solution cooled to 4°C for approximately 12 hours with 

agitation.  Trypsinized ventricular tissue was dissociated into cellular constituents via 

serial exposure to a 0.1% (w/v) solution of collagenase type II (Worthington Biochemical, 
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Lakewood, NJ) at 37º C for 2 minutes.  Isolated myocytes were maintained in a culture 

medium consisting of Medium 199 (Invitrogen, Carlsbad, CA) supplemented with 10% 

(v/v) heat-inactivated fetal bovine serum (FBS), 10 mM HEPES, 20 mM glucose, 2 mM 

L-glutamine, 1.5 µM vitamin B-12, and 50 U/ml penicillin and seeded at a density of 

200,000 cells/cm
2
.  From the second day of culture onward, the FBS concentration was 

reduced to 2% (v/v), and medium was exchanged every 48 hours.  Myocytes were 

cultured for 4 days on micro-contact printed substrates prior to experimentation.     

 

3.4.2 Fabrication of “Heart-on-a-Chip” Micro-Patterned ECM Substrates 

3.4.2.1 Design and Fabrication of Micro-contact Printed ECM Substrates 

Silicone stamps designed for micro-contact printing were prepared as previously 

described. Photolithographic masks were designed in AutoCAD (Autodesk Inc., San 

Rafael, CA), and consisted of 20 µm wide lines separated by 4 µm gaps to impose a 

laminar organization on the myocytes. Polydimethylsiloxane (PDMS, Sylgard 184, Dow 

Corning, Midland, MI) was used to fabricate stamps with the specified pattern. Stamps 

were incubated with 50 µg/mL FN (BD Biosciences, Bedford, MA) for one hour. Glass 

coverslips were spin-coated with PDMS and treated in a UV-ozone cleaner (Jelight 

Company, Inc., Irvine, CA) immediately prior to stamping with FN.  After transfer of the 

FN pattern to the surface of the PDMS-coated coverslips, they were incubated in 1% (w/v) 

Pluronic F-127 (BASF, Ludwigshafen, Germany) to block cell adhesion to un-stamped 

regions. 
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3.4.2.2 Muscular Thin Film Fabrication  

Engineered cardiac tissue contractile performance was measured using a custom 

muscular thin film based platform [149, 161, 170].  Briefly, the "heart-on-a-chip" 

substrates consisted of glass coverslips selectively coated with a thermo-sensitive 

sacrificial polymer, Poly (N-isopropylacrylamide) (PiPAAm, Polysciences, Inc., 

Warrington, PA), and with a second layer of PDMS. The thickness of the PDMS layer 

was found to be in the range of 10-18 µm for all “heart chips” used in this study (Dektak 

6M, Veeco Instruments Inc., Plainview, NY). 

 

3.4.3 Muscular Thin Film Contractility Measurements 

During contractility experiments, samples were submerged in Tyrode's solution 

(mM, 5.0 HEPES, 5.0 glucose, 1.8 CaCl2, 1.0 MgCl2, 5.4 KCl, 135.0 NaCl, and 0.33 

NaH2PO4, pH 7.4). All reagents were purchased from Sigma Aldrich (St. Louis, MO). 

Rectangular films were cut with a razor blade, and the bath temperature was decreased 

below the PiPAAm transition temperature, making possible for the MTF to bend away 

from the glass. Video recording of the deformation of each film were processed to obtain 

the time-course [161] of the tissue-generated stresses. The peak systolic and diastolic 

stresses were calculated as the average of the maxima and minima of the stress profile 

during 10 cycles at a pacing of 3 Hz, and twitch stress was defined as the difference 

between peak systolic and diastolic stresses.  
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3.4.4 Immunohistochemical Labeling 

Samples were fixed in 4% (v/v) paraformaldehyde with 0.05% (v/v) Triton X-100 

in PBS at room temperature for 10 minutes. Cells were incubated in a solution containing 

1:200 dilutions of monoclonal anti-sarcomeric -actinin antibody (A7811, clone EA-53, 

Sigma Aldrich, St. Louis, MO), polyclonal anti-fibronectin antibody (F3648, Sigma-

Aldrich, St. Louis, MO), 4',6'-diamidino-2-phenylindole hydrochloride (DAPI, Invitrogen, 

Carlsbad, CA), and Alexa Fluor 633-conjugated phalloidin (Invitrogen, Carlsbad, CA) for 

one hour at room temperature.  Samples were then incubated in 1:200 dilutions of Alexa 

Fluor 488-conjugated goat anti-mouse IgG and Alexa Fluor 546-conjugated goat anti-

rabbit IgG secondary antibodies (Invitrogen, Carlsbad, CA) for 1 hour at room 

temperature. Labeled samples were imaged with a Zeiss LSM confocal microscope (Carl 

Zeiss Microscopy, Jena, Germany).  

 

3.4.5 Quantitative Evaluation of Sarcomere Organization 

Confocal Z-stacks of sarcomeric α-actinin fluorescence micrographs were de-

convolved with Mediacy Autoquant (MediaCybernetics, Rockville, MD).  Analysis of 

sarcomeric structural characteristics was conducted using custom-designed ImageJ [200] 

and MATLAB (Mathworks, Natick, MA) software (Figure 3-3A).  The orientations of 

sarcomeric α-actinin positive pixels were determined using an adapted structure-tensor 

method [169] and the orientational order parameter (OOP), a measure of the global 

alignment of the sarcomeres, was calculated from the observed orientation values.  The 

orientations observed in the micrographs were color-coded using the HSV digital image 

representation (Figure 3-3Bi) where the Hue channel was used for orientation, the 
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Saturation channel for pixel coherency (i.e. a measure of local contrast), and the Value 

channel for the pre-processed image. The normalized occurrence of orientations that 

demonstrated a coherency higher than a given threshold could then be displayed in a 

histogram (Figure 3-3Bii). The sarcomere length and the overall regularity of the z-lines 

were determined by processing the images with a 2D Fast Fourier Transform algorithm.  

The power spectrum (Figure 3-3Ci) was then radially integrated and normalized by the 

total area under the 1D curve. The sarcomere packing density was defined as the area 

under the periodic component (shaded red in Figure 3-3Cii). 

 

3.4.6 Planar Patch Clamp Electrophysiological Recordings  

Planar patch clamp experiments were conducted as previously described [192].  

Briefly, cells were cultured on fibronectin (BD Biosciences, Bedford, MA) coated T25 

flasks for 5 days, then isolated using .25% trypsin (Invitrogen, Carlsbad, CA), re-

suspended in Extracellular Buffer Solution (EBS: mM, 140 NaCl, 4 KCl, 1 MgCl2, 2 

CaCl2, 5 D-Glucose monohydrate, 10 HEPES, pH 7.4) to a final concentration of 1,000 

cells/µL, and allowed to equilibrate for 5 minutes in EBS. The electronics were calibrated 

in the presence of EBS and Intracellular Buffer Solution (IBS: mM, 50 KCl, 10 NaCl, 60 

KF, 20 EGTA, 10 HEPES, pH 7.2) prior to flowing cells into the chamber. 5 µL of cell 

suspension was then introduced into the chip and the negative pressure automatically 

adjusted to produce a final seal resistance greater than 1 GOhm.  During current clamp 

experiments, cells were subjected to 10 trains of 10 current pulses at 3 Hz; the current 

amplitude was set to 1.5 times the threshold for AP generation. When the signal reached 

steady state, 10 APs were averaged yielding a representative trace for the calculation of 
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action potential duration indicators.  During voltage clamp experiments cells were kept in 

buffers containing TTX (10 µM), Nifedipine (10 µM), 4-AP (1 mM) and TEA (20 mM) 

purchased from Sigma Aldrich (St. Louis, MO). The membrane potential subjected to 2 

voltage clamp protocols, first the membrane potential was held to a value of -90 V for 

250 ms and then stepped from -70 to +40 mV in 10 mV steps for 250 ms, thus eliciting 

the total Ca
2+

 current (TOT). Second, from the same holding potential, cells were stepped 

from -40 to +40 mV, a range in which mostly the L-type Ca
2+

 current (LCC) is active. 

The T-type component (TCC) was then calculated as the difference between TOT and 

LCC.  

 

3.4.7 Optical Mapping of Tissue-Scale Electrophysiology  

Samples were incubated in 4 µM RH237 (Invitrogen, Carlsbad, CA) for 5 minutes 

and washed 3 times with Tyrode’s solution, prior to recording.  Temperature of the bath 

solution was maintained at approximately 35º C using a digital temperature controller 

(TC-344B, Warner Instruments, Hamden, CT) for the duration of the experiment. 10 µM 

Blebbistatin (EMD Millipore, Billerica, MA) was added to minimize motion artifacts 

during recording of electrical activity [201, 202]. Samples were paced at 3 Hz with a 10 

ms biphasic pulse at 10-15 V delivered using an SD-9 stimulator (Grass Technologies, 

Warwick, RI) and a bi-polar, platinum point electrode placed approximately 300 – 500 

µm above the sample and 1 – 2 mm from the top right corner of the field of view (FOV).  

Imaging was performed using a Zeiss Axiovert 200 epifluorescence microscope (Carl 

Zeiss Microscopy, Jena, Germany) equipped with an X-cite Exacte mercury arc lamp 

(Lumen Dynamics, Mississauga, Ontario). Illumination light was passed through a 
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40X/1.3 NA objective (EC Plan-NEOFLUAR, Zeiss, Jena, Germany) and a band-pass 

excitation filter (530-585 nm).  Emission light was filtered at 615 nm with a long-pass 

filter, and focused onto the 100 x 100 pixel chip of a high speed MiCAM Ultima CMOS 

camera (Scimedia, Costa Mesa, CA).  Images were acquired at 1000 fps from 250 x 250 

µm FOV.  Post-processing of the raw data included reduction of drift induced by 

photobleaching by subtracting a linear fit of the baseline, applying a 3 x 3 pixel spatial 

filter to improve signal to noise ratio, and exclusion of saturated pixels.  Activation time 

was calculated as the average maximum upstroke slope of multiple pulses over a 2 – 4 

second recording window.  Longitudinal and transverse conduction velocities (LCV and 

TCV) were calculated through a linear fit of the activation times along the horizontal and 

vertical axes of each FOV respectively.  Optical action potential traces were calculated as 

the average of multiple pulses, while adjusting the offset of each pixel caused by different 

activation times. 

 

3.4.8 Ratiometric Measurement of Ca
2+

 Transients in Engineered Tissues 

Cardiac tissues were incubated in a 5 µM solution of acetoxymethyl (AM) Fura 

Red (Invitrogen, F-3021) reconstituted in Pluronic F-127 (Invitrogen, P-3000MP) for 20 

minutes.  After dye loading, cells were incubated in Tyrode’s solution for 5 minutes, 

rinsed 3 times, and imaged on a Zeiss LSM LIVE (Carl Zeiss Microscopy, Jena, 

Germany) confocal microscope at 40x magnification with an environmental chamber to 

ensure a constant physiological temperature of 37° C. Tissues were field stimulated at 3 

Hz during recordings.  Dual excitation ratiometric recordings were performed by rapidly 

switching (through an acousto-optical tunable filter) excitation laser lights at 405 nm and 
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488 nm and collecting the corresponding emissions through a high-pass filter with cutoff 

at 546 nm. Recordings were constrained to 20 lines, oriented perpendicular to the main 

axis of the cells and ensuring minimal intersection with nuclei to maintain an acquisition 

speed of 250 fps. After background subtraction, two signals were obtained: one (blue line) 

that increases with the Ca
2+

 elevation corresponding to excitation at 405 nm, and one 

(green line) that shows an opposite trend and corresponded to the 488 nm excitation 

wavelength. The ratiometric representation of the Ca
2+

 transient was taken as the ratio of 

the 405 nm and 488 nm signals. Four consecutive transients at steady state were further 

averaged to create a representative single transient. 

 

3.4.9 Real-Time PCR Gene Expression Measurement 

Total RNA was collected in triplicate from both isotropic and micropatterned 

anisotropic samples using a Strategene Absolutely RNA Miniprep kit (Agilent 

Technologies, Santa Clara, CA) according to the manufacturer’s instructions.  Genomic 

DNA contamination was eliminated by incubating the RNA lysates in DNase I digestion 

buffer at 37ºC for 15 minutes during the RNA purification procedure. The quantity and 

purity of RNA lysates was assessed using a Nanodrop spectrophotometer (Thermo 

Scientific, Wilmington, DE).  Purified total RNA lysates with OD 260/280 ratios greater 

than 1.7 were used for RT-qPCR measurements. Complementary DNA strands were 

synthesized for genes of interest using an RT2 first strand synthesis kit (Qiagen Inc, 

Valencia, CA) and custom pre-amplification primer sets (Qiagen Inc, Valencia, CA).  500 

ng of total RNA were used from each lysate for each first strand synthesis reaction. 

Expression levels for specific genes of interest (Table S1) were measured using custom 
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RT2 Profiler RT-PCR arrays (Qiagen Inc, Valencia, CA) and a Bio-Rad CFX96 RT-PCR 

detection system (Hercules, CA).  Statistical analysis of RT-qPCR threshold cycle data 

was carried out with the web-based RT2 Profiler PCR Array Data Analysis Suite version 

3.5 (Qiagen Inc, Valencia, CA) according to published guidelines [167]. 
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4 Conclusion 

The vision of using human stem cells as a limitless source of cells for regenerative 

clinical applications, in vitro disease modeling, and pre-clinical drug screening is rapidly 

coming to pass.  Ever improving differentiation protocols and advances in 

biomanufacturing science now make it possible to produce a number of differentiated cell 

types, such as neurons and heart muscle cells, from human stem cells at vast quantities 

far beyond what could originally be accomplished in the laboratory.  With this forward 

progress in basic stem cell science, funding agencies and the public at large are eager to 

see stem cell therapies trickle into the clinic.  In reality, translation from the academic 

laboratory has dripped into the clinic at best, due to unresolved issues with safety and 

efficacy.  One of the most highly publicized attempts to translate stem cell therapies to 

the clinic was initiated by Geron Corporation in January of 2009, when they received 

FDA approval to begin phase I clinical trials of an embryonic stem cell based treatment 

for spinal cord injuries, known as GRNOPC1[181].  This approval was quickly rescinded 

when rodent studies raised concerns that GRNOPC1 was tumorigenic.  Concerns over the 

safety of stem cell based therapeutics prompted the NIH and FDA to lay the groundwork 

for establishing regulations and guidelines to companies seeking to develop products 

using stem cells [176]. In addition to safety concerns, one of the main challenges in 

scaling up procedures for commercial scale production of stem cell products is quality 

control.  Inherent biological variability and a lack of relevant, quantitative standards 

make it challenging to perform reliable batch validation, especially when quality control 

engineers don’t have a reliable definition of what they should be shooting for. 
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No standardized, quantitative metrics currently exist for judging the quality of 

commercial stem cell-derived cardiac myocytes, so we considered more than 1,000 

experimental parameters and chose 64 that we felt most rigorously define cardiac 

myocyte identity.  These experimental measurements not only include the expression of 

genes important to cardiac myocyte development, they also include tissue-scale measures 

of sarcomere organization, electrical activity, and contractility that provide insight into 

how well the stem cell-derived cardiac myocytes self-organize into a useful mimetic of 

the myocardium. We then developed a tissue engineering test bed for assessing these 

parameters in stem cell-derived cardiac myocytes and comparing them against a “gold 

standard” established using post-natal ventricular myocytes possessing the desired 

phenotypic characteristics and level of maturity.  This target phenotype is important for 

establishing the benchmark that defines whether or not batches of differentiated stem 

cells are suitable for research and therapeutic applications.  Through quantitative 

integration of the magnitude and variance measured for these 64 parameters, we 

developed a “quality index” that scores how closely the stem cell-derived cardiac 

myocytes match the characteristics of the target phenotype.  To validate the utility of our 

quality assessment rubric, we tested commercially-distributed mouse ES- and iPS-derived 

cardiac myocytes against neonatal mouse ventricular myocytes as our target phenotype.  

The combination of gene expression, morphological evaluation, electrophysiological, and 

contractility measurements employed allowed us to pin-point specific differences in the 

structural and functional properties of the ES- and iPS-derived cardiac engineered tissues 

versus the neonate ventricular tissues that have important implications for their utility in 

in vitro assays.  Further, this “quality index” would not only allow researchers to identify 
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the commercial stem cell-derived myocyte product lines that are most suitable for their 

needs, it serves the stem cell industry as a quality assurance system for validating and 

improving manufacturing procedures to ensure that batches released to customers 

faithfully recapitulate the desired phenotype. 

 

4.1 Design Considerations for Fabricating Engineered Myocardium from Stem 

Cell-Derived Cardiac Myocytes 

Advances in stem cell bioprocessing methods and technologies have made 

commercialization of stem cell-derived myocytes for in vitro muscle physiology research 

practical.[203, 204] While quality assurance metrics exist for safety issues in the 

manufacture of stem cell-based products[205], no standardized guidelines currently exist 

for the evaluation of stem cell-derived myocyte functionality.  Traditionally, myocardial 

differentiation is evaluated using methodologies that provide poor predictions of tissue-

level cooperative function and little indication as to how closely stem cell-derived 

myocytes mimic native cardiac myocytes [182].  We hypothesized that the phenotypic 

state of stem cell-derived myocytes could be more accurately assessed by comparing and 

contrasting a combination of quantitative measurements taken on engineered tissues 

fabricated from these cells with the results obtained from tissues comprised of myocytes 

with a confirmed cardiac identity. To test this hypothesis, we fabricated anisotropic 

engineered cardiac tissues from neonatal mouse ventricular myocytes (neonate) to serve 

as our target phenotype, and compared them to engineered tissues comprised of either 

murine ES-derived myocytes (mES), or murine iPS-derived myocytes (miPS). These 

engineered tissues where subjected to a panel of 64 experimental measurements from 4 
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major categories (gene expression, myofibril structure, electrical activity, contractility) to 

assess their myocardial structural and functional characteristics. We also developed a 

quality control assessment strategy that utilizes the magnitude and variance of these 

measurements to provide a numeric score of how closely the stem cell-derived myocytes 

match the excitation-contraction coupling characteristics of a target phenotype, 

represented here by the neonate cardiac myocytes.  This was achieved using a measure of 

effect size, known as Strictly Standardized Mean Difference (SSMD) that allows 

quantification of biological population differences.  We then used the SSMD values from 

each experimental measurement for the mES and miPS tissues and calculated the mean 

squared error (MSE) versus the neonate tissues to evaluate the differences observed for 

each measurement category, as well as an overall score for all categories combined.   We 

found that the miPS cardiac tissues exhibited lower MSE values than the mES cardiac 

tissues for every measurement category, except myofibril structure.  In addition, the 

overall MSE values calculated from all of the experimental measurements combined 

revealed a lower MSE for the miPS engineered tissues than those comprised of mES-

derived myocytes, suggesting that the miPS-derived cardiac myocytes more closely 

matched the phenotype of the neonate ventricular myocytes than the mES-derived cardiac 

myocytes. Taken together, the results presented in chapter 3 show that while the mES- 

and miPS-derived myocytes demonstrated characteristics of the cardiac myocyte lineage, 

they both exhibited substantially different structural and contractile properties from 

neonatal ventricular myocytes.  
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4.2 Opportunities and Challenges for Utilizing Mechanical Cues to Guide 

Engineered Myocardium Fabrication 

The intercellular and cell-ECM interactions within a tissue govern the shape and 

organization that the cells comprising that tissue will ultimately adopt, and these 

interactions clearly play an important role in regulating the survival and functionality of 

those cells [25]. Microcontact printing is a well-established technique for fabricating 

planar cell growth substrates with precisely-defined ECM geometry. An elastomeric 

stamp with micrometer-scale features can be “inked” with an extracellular matrix protein 

of choice, such as fibronectin, laminin, or collagen, and transferred to a flat substrate that 

promotes protein adsorption.  Cells seeded onto these substrates preferentially bind to the 

portions of the substrate coated with the patterned ECM protein, giving rise to a large 

population of cells with shapes defined by the ECM pattern [24].  This technique has 

been used extensively to study the relationship between shape and behavior and a number 

of cell types, including differentiating stem cells.  The results of these studies indicate 

that cell geometry, is indeed and important factor in directing the lineage commitment of 

stem cells and continues to influence their behavior throughout their lifetime.  A critical 

limitation of this technique is the fact that it can only be used with rigid planar substrates 

that do not mimic the mechanical properties of natural tissues and give rise to monolayers 

of cells.  Three-dimensional scaffolds with natural tissue-like mechanical properties need 

to be developed that incorporate precise ECM cues for controlling cell shape in a non-

planar substrate. 

Biomaterials made today are routinely information rich and incorporate 

biologically active components inspired by natural analogs [206].  Researchers have 
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begun to design materials that combine synthetic polymer compounds with peptide 

motifs that can be proteolytically-cleaved by matrix metalloproteinases secreted by cells 

to create scaffolds that can be sculpted by cells during tissue formation [207].  Advances 

in the construction of three-dimensional polymeric scaffolds are also starting to make the 

fabrication of therapeutically-relevant artificial tissue constructs a reality [208-210].  A 

recently developed method derived from the micro-contact printing approach to 

fabricating two-dimensional tissues in vitro allows the fabrication of free-standing protein 

nanofabrics.  These protein nanofabrics are constructed by micro-contact printing 

successive layers of ECM protein onto a rigid substrate coated with a thermosensitive 

polymer.  These nanofabrics can be comprised of a heterogeneous composition of ECM 

proteins and the micro-contact printing technique provides control over the shape, size, 

and orientation of the protein “threads” with respect to one another.  Further, cells will 

readily adhere to these ECM fabrics and stacking of these nanofabrics may allow the 

construction of ECM scaffolds with precise organizational cues throughout the volume of 

the scaffold [211].  Another promising approach for fabricating three-dimensional ECM 

tissue scaffolds with precise geometry is the recently developed rotary jet spinning 

technique for generating fibrous tissue scaffolds [212].  This technique overcomes the 

limitations of the traditional electrospinning technique to produce highly aligned 

nanoscale fibers using a nozzle rotating at high speed to produce a jet of polymer solution 

that undergoes extensive stretching before polymerization.  The primary advantage of this 

technique over other methods of three-dimensional scaffold production is its ability to 

quickly produce large quantities of tissue scaffolds of arbitrary size composed of 

precisely aligned protein nanofibers.  The focus of future biomaterials design will likely 
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be focused on the development of “smart” materials that integrate multiple inputs from 

both chemical and mechanical stimuli to direct their behavior [209].  Such materials 

could simplify and optimize engineered tissue fabrication by more closely reproducing 

the dynamic microenviroment presented to differentiating cells during development, 

allowing researchers to take advantage of the natural interactions between cells and their 

environment during tissue morphogenesis to reproducibly drive the fate commitment of 

cells without the need for complex experimental manipulations.    

 

4.3 Opportunities and Challenges for Assessing the Quality of Mass Produced 

Stem Cell-Derived Cardiac Myocytes 

An important final consideration in the fabrication of engineered tissues from 

uncommitted stem cells is the evaluation of functional performance characteristics of the 

artificial tissue.  Traditionally, differentiation has been assessed by measuring the 

expression of specific marker genes.  However, this metric requires destruction of the 

tissue to isolate mRNA for measurement and is not informative for cells and tissues that 

require the precise assembly and organization of macromolecular structures, such as the 

sarcomeres of striated muscle for their functionality.  Biomimetic microfluidic devices 

are emerging as a promising platform for measuring the performance characteristics of 

engineered tissues in vitro.  A recent study provided the first proof of principle 

demonstration of this approach to model the structural, functional, and mechanical 

properties of the alveolar-capillary interface of the human lung.  This microfluidic device 

was not only able to reproduce the functionality of an alveoli, it also allowed the 

identification of novel mechanosensitive responses of the lungs to nanoparticulates [213].  
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Application of these organ-on-chip devices to the fabrication of tissues using stem cells 

could provide a powerful tool for the quantitative analysis of stem cell derived artificial 

tissues.  Evaluation of the functional characteristics of muscle tissue is especially 

challenging, as traditional assays are not able to provide direct measurements of their 

contractile performance.  A novel muscular thin film assay was recently developed that 

allows direct measurement of the contractile force of engineered muscle tissues [149].  

This assay has been successfully used to demonstrate the myogenic potential of mouse 

cardiac progenitor cells isolated from the primary and secondary heart fields during 

various stages of cardiogenesis [214].  Subsequent modifications to the muscular thin 

film assay have made it amenable to the evaluation of smooth muscle cell contractility, in 

addition to striated muscle contractility, and allow the simultaneous measurement of 

multiple engineered muscle constructs in the same dish [161].  As the field of 

regenerative medicine advances, and the complexity of engineered tissues increase, new 

approaches will be needed to evaluate the utility of these tissues for therapeutic 

applications.  Cell-based biochips represent an attractive test system that negate the need 

for costly animal models and allow quantitative analyses of tissue function that are not 

possible in traditional cell culture systems. 

 

4.4 Dissertation Summary 

In this body of work, we determined that two-dimensional engineered tissues 

comprised of isolated neonatal ventricular myocytes could recapitulate the structural and 

functional aspects of the adult ventricular myocardium.  Furthermore, we showed that 

engineered tissues comprised of neonatal mouse ventricular myocytes could serve as a 
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suitable target phenotype for assessing the ability of murine stem cell-derived cardiac 

myocytes to form functional ventricular tissue analogs using a quantitative rubric of 64 

essential parameters of cardiac myocyte phenotype.  
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6.2 Appendix B: Table of Genes Measured in Custom Rat qPCR Array 

Gene Symbol Refseq # Gene Description 

Hey2 NM_130417 Hairy/enhancer-of-split related with YRPW motif 2 

Irx4 NM_001107330 Iroquois homeobox 4 

Mef2c XM_574821 Myocyte enhancer factor 2C 

Gata4 NM_144730 GATA binding protein 4 

Myocd NM_182667 Myocardin 

Nkx2-5 NM_053651 NK2 transcription factor related, locus 5 (Drosophila) 

Tbx5 NM_001009964 T-box 5 

Nppa NM_012612 Natriuretic peptide precursor A 

Nppb NM_031545 Natriuretic peptide precursor B 

Acta1 NM_019212 Actin, alpha 1, skeletal muscle 

Adra1b NM_016991 Adrenergic, alpha-1B-, receptor 

Adra1d NM_024483 Adrenergic, alpha-1D-, receptor 

Adra2a NM_012739 Adrenergic, alpha-2A-, receptor 

Actc1 NM_019183 Actin, alpha, cardiac muscle 1 

Actn1 NM_031005 Actinin, alpha 1 

Actn2 NM_001170325 Actinin alpha 2 

Pln NM_022707 Phospholamban 

Tnni3 NM_017144 Troponin I type 3 (cardiac) 

Tnnt2 NM_012676 Troponin T type 2 (cardiac) 

Ttn XM_001065955 Titin 

Myh3 NM_012604 Myosin, heavy chain 3, skeletal muscle, embryonic 

Myh6 NM_017239 Myosin, heavy chain 6, cardiac muscle, alpha 

Myh7 NM_017240 Myosin, heavy chain 7, cardiac muscle, beta 

Myl2 NM_001035252 Myosin, light polypeptide 2, regulatory, cardiac, slow 

Myl3 NM_012606 Myosin, light chain 3, alkali; ventricular, skeletal, slow 

Myl4 NM_001109495 Myosin, light chain 4 

Myl7 NM_001106017 Myosin, light chain 7, regulatory 

Cacna1c NM_012517 Calcium channel, voltage-dependent, L type, alpha 1C subunit 

Cacna1d NM_017298 Calcium channel, voltage-dependent, L type, alpha 1D subunit 

Cacna1g NM_031601 Calcium channel, voltage-dependent, T type, alpha 1G subunit 

Cacna1h NM_153814 Calcium channel, voltage-dependent, T type, alpha 1H subunit 

Cacna1s NM_053873 Calcium channel, voltage-dependent, L type, alpha 1S subunit 

Kcna5 NM_012972 Potassium voltage-gated channel, shaker-related subfamily, member 5 

Kcne1 NM_012973 Potassium voltage-gated channel, Isk-related family, member 1 

Kcne2 NM_133603 Potassium voltage-gated channel, Isk-related family, member 2 

Kcnd2 NM_031730 Potassium voltage-gated channel, Shal-related subfamily, member 2 

Kcnd3 NM_031739 Potassium voltage-gated channel, Shal-related subfamily, member 3 

Kcnh2 NM_053949 Potassium voltage-gated channel, subfamily H (eag-related), member 2 

Kcnj2 NM_017296 Potassium inwardly-rectifying channel, subfamily J, member 2 

Kcnj3 NM_031610 Potassium inwardly-rectifying channel, subfamily J, member 3 

Kcnj11 NM_031358 Potassium inwardly rectifying channel, subfamily J, member 11 

Kcnj12 NM_053981 Potassium inwardly-rectifying channel, subfamily J, member 12 

Kcnj14 NM_170718 Potassium inwardly-rectifying channel, subfamily J, member 14 

Kcnq1 NM_032073 Potassium voltage-gated channel, KQT-like subfamily, member 1 

Scn5a NM_013125 Sodium channel, voltage-gated, type V, alpha subunit 

Slc2a1 NM_138827 Solute carrier family 2 (facilitated glucose transporter), member 1 

Slc2a2 NM_012879 Solute carrier family 2 (facilitated glucose transporter), member 2 
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Slc8a1 NM_019268 Solute carrier family 8 (sodium/calcium exchanger), member 1 

Hcn1 NM_053375 Hyperpolarization-activated cyclic nucleotide-gated potassium channel 1 

Hcn3 NM_053685 Hyperpolarization-activated cyclic nucleotide-gated potassium channel 3 

Hcn4 NM_021658 Hyperpolarization activated cyclic nucleotide-gated potassium channel 4 

Gja1 NM_012567 Gap junction protein, alpha 1 

Gja5 NM_019280 Gap junction protein, alpha 5 

Atp1a2 NM_012505 ATPase, Na+/K+ transporting, alpha 2 polypeptide 

Atp1a3 NM_012506 ATPase, Na+/K+ transporting, alpha 3 polypeptide 

Atp2a1 NM_058213 ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 

Atp2a2 NM_001110139 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 

Ryr2 NM_001191043 Ryanodine receptor 2, cardiac 

Ckm NM_012530 Creatine kinase, muscle 

Acsl5 NM_053607 Acyl-CoA synthetase long-chain family member 5 

Ptk2 NM_013081 PTK2 protein tyrosine kinase 2 

Ilk NM_133409 Integrin-linked kinase 

Ctgf NM_022266 Connective tissue growth factor 

Itga1 NM_030994 Integrin, alpha 1 

Itga2 XM_345156 Integrin, alpha 2 

Itga4 NM_001107737 Integrin, alpha 4 

Itga5 NM_001108118 Integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 

Itga6 XM_215984 Integrin, alpha 6 

Itgav NM_001106549 Integrin, alpha V 

Itgb1 NM_017022 Integrin, beta 1 

Itgb3 NM_153720 Integrin, beta 3 

Abra NM_175844 Actin-binding Rho activating protein 

Rhoa NM_057132 Ras homolog gene family, member A 

Cdc42 NM_171994 Cell division cycle 42 (GTP binding protein) 

Rac1 NM_134366 Ras-related C3 botulinum toxin substrate 1 

Rock1 NM_031098 Rho-associated coiled-coil containing protein kinase 1 

Rock2 NM_013022 Rho-associated coiled-coil containing protein kinase 2 

Rnd1 NM_001013222 Rho family GTPase 1 

Vcl NM_001107248 Vinculin 

Ctnnb1 NM_053357 Catenin (cadherin associated protein), beta 1 

Vegfa NM_031836 Vascular endothelial growth factor A 

Ctf1 NM_017129 Cardiotrophin 1 

Itpr2 NM_031046 Inositol 1,4,5-triphosphate receptor, type 2 

Tgfb2 NM_031131 Transforming growth factor, beta 2 

Mylk3 NM_001110810 Myosin light chain kinase 3 

Camk2d NM_012519 Calcium/calmodulin-dependent protein kinase II delta 

Gapdh NM_017008 Glyceraldehyde-3-phosphate dehydrogenase 

Rplp1 NM_001007604 Ribosomal protein, large, P1 

Actb NM_031144 Actin, beta 
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6.3 Appendix C: Table of Genes Measured in Custom Mouse qPCR Array 

Gene Symbol Refseq # Gene Description 

Hey2 NM_013904 Hairy/enhancer-of-split related with YRPW motif 2 

Irx4 NM_018885 Iroquois related homeobox 4 (Drosophila) 

Bmp10 NM_009756 Bone morphogenetic protein 10 

Gata4 NM_008092 GATA binding protein 4 

Myocd NM_145136 Myocardin 

Nkx2-5 NM_008700 NK2 transcription factor related, locus 5 (Drosophila) 

Tbx5 NM_011537 T-box 5 

Nppa NM_008725 Natriuretic peptide type A 

Acta1 NM_009606 Actin, alpha 1, skeletal muscle 

Adra1b NM_007416 Adrenergic receptor, alpha 1b 

Adra2a NM_007417 Adrenergic receptor, alpha 2a 

Actc1 NM_009608 Actin, alpha, cardiac muscle 1 

Actn1 NM_134156 Actinin, alpha 1 

Actn2 NM_033268 Actinin alpha 2 

Pln NM_023129 Phospholamban 

Tnnt2 NM_011619 Troponin T2, cardiac 

Ttn NM_011652 Titin 

Myh6 NM_010856 Myosin, heavy polypeptide 6, cardiac muscle, alpha 

Myh7 NM_080728 Myosin, heavy polypeptide 7, cardiac muscle, beta 

Myl2 NM_010861 Myosin, light polypeptide 2, regulatory, cardiac, slow 

Myl3 NM_010859 Myosin, light polypeptide 3 

Myl4 NM_010858 Myosin, light polypeptide 4 

Myl7 NM_022879 Myosin, light polypeptide 7, regulatory 

Cacna1c NM_009781 Calcium channel, voltage-dependent, L type, alpha 1C subunit 

Cacna1d NM_028981 Calcium channel, voltage-dependent, L type, alpha 1D subunit 

Cacna1g NM_009783 Calcium channel, voltage-dependent, T type, alpha 1G subunit 

Cacna1h NM_021415 Calcium channel, voltage-dependent, T type, alpha 1H subunit 

Kcna5 NM_145983 Potassium voltage-gated channel, shaker-related subfamily, member 5 

Kcne1 NM_008424 Potassium voltage-gated channel, Isk-related subfamily, member 1 

Kcne2 NM_134110 Potassium voltage-gated channel, Isk-related subfamily, gene 2 

Kcnd2 NM_019697 Potassium voltage-gated channel, Shal-related family, member 2 

Kcnd3 NM_019931 Potassium voltage-gated channel, Shal-related family, member 3 

Kcnh2 NM_013569 Potassium voltage-gated channel, subfamily H (eag-related), member 2 

Kcnj2 NM_008425 Potassium inwardly-rectifying channel, subfamily J, member 2 

Kcnj3 NM_008426 Potassium inwardly-rectifying channel, subfamily J, member 3 

Kcnj11 NM_010602 Potassium inwardly rectifying channel, subfamily J, member 11 

Kcnj12 NM_010603 Potassium inwardly-rectifying channel, subfamily J, member 12 

Kcnj14 NM_145963 Potassium inwardly-rectifying channel, subfamily J, member 14 

Kcnq1 NM_008434 Potassium voltage-gated channel, subfamily Q, member 1 

Scn5a NM_021544 Sodium channel, voltage-gated, type V, alpha 

Slc2a1 NM_011400 Solute carrier family 2 (facilitated glucose transporter), member 1 

Slc2a2 NM_031197 Solute carrier family 2 (facilitated glucose transporter), member 2 

Slc8a1 NM_011406 Solute carrier family 8 (sodium/calcium exchanger), member 1 

Hcn1 NM_010408 Hyperpolarization-activated, cyclic nucleotide-gated K+ 1 

Hcn3 NM_008227 Hyperpolarization-activated, cyclic nucleotide-gated K+ 3 

Hcn4 NM_001081192 Hyperpolarization-activated, cyclic nucleotide-gated K+ 4 

Gja1 NM_010288 Gap junction protein, alpha 1 
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Gja5 NM_008121 Gap junction protein, alpha 5 

Atp1a2 NM_178405 ATPase, Na+/K+ transporting, alpha 2 polypeptide 

Atp1a3 NM_144921 ATPase, Na+/K+ transporting, alpha 3 polypeptide 

Atp2a1 NM_007504 ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 

Atp2a2 NM_009722 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 

Ryr2 NM_023868 Ryanodine receptor 2, cardiac 

Ckm NM_007710 Creatine kinase, muscle 

Acsl5 NM_027976 Acyl-CoA synthetase long-chain family member 5 

Ptk2 NM_007982 PTK2 protein tyrosine kinase 2 

Ilk NM_010562 Integrin linked kinase 

Ctgf NM_010217 Connective tissue growth factor 

Itga1 NM_001033228 Integrin alpha 1 

Itga2 NM_008396 Integrin alpha 2 

Itga4 NM_010576 Integrin alpha 4 

Itga5 NM_010577 Integrin alpha 5 (fibronectin receptor alpha) 

Itgav NM_008402 Integrin alpha V 

Itgb1 NM_010578 Integrin beta 1 (fibronectin receptor beta) 

Itgb3 NM_016780 Integrin beta 3 

Abra NM_175456 Actin-binding Rho activating protein 

Rhoa NM_016802 Ras homolog gene family, member A 

Cdc42 NM_009861 Cell division cycle 42 homolog (S. cerevisiae) 

Rac1 NM_009007 RAS-related C3 botulinum substrate 1 

Rock1 NM_009071 Rho-associated coiled-coil containing protein kinase 1 

Rock2 NM_009072 Rho-associated coiled-coil containing protein kinase 2 

Rnd1 NM_172612 Rho family GTPase 1 

Vcl NM_009502 Vinculin 

Ctnnb1 NM_007614 Catenin (cadherin associated protein), beta 1 

Aifm1 NM_012019 Apoptosis-inducing factor, mitochondrion-associated 1 

Atp5j NM_016755 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit F 

Hsp90ab1 NM_008302 Heat shock protein 90 alpha (cytosolic), class B member 1 

Hspa2 NM_008301 Heat shock protein 2 

Hsph1 NM_013559 Heat shock 105kDa/110kDa protein 1 

Bcat1 NM_007532 Branched chain aminotransferase 1, cytosolic 

Ch25h NM_009890 Cholesterol 25-hydroxylase 

Itpr2 NM_019923 Inositol 1,4,5-triphosphate receptor 2 

Tgfb2 NM_009367 Transforming growth factor, beta 2 

Notch1 NM_008714 Notch gene homolog 1 (Drosophila) 

Pou5f1 NM_013633 POU domain, class 5, transcription factor 1 

Nanog NM_028016 Nanog homeobox 

Sox2 NM_011443 SRY-box containing gene 2 

Gapdh NM_008084 Glyceraldehyde-3-phosphate dehydrogenase 

Actb NM_007393 Actin, beta 
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6.4 Appendix D: Table of Experimental Parameters Used for Quality Index  

Measurement Class Measurement Measurement Description 

Contractility Diastolic Diastolic stress 

Contractility Systolic Systolic stress 

Contractility Twitch Twitch Stress (Systolic - Diastolic) 

Electrophysiology LCV Longitudinal conduction velocity 

Electrophysiology TCV Transverse conduction velocity 

Electrophysiology AR Anisotropy ratio 

Electrophysiology APD50 Action potential duration at 50% repolarization 

Electrophysiology APD90 Action potential duration at 90% repolarization 

Electrophysiology TOT Total calcium current density 

Electrophysiology LCC L-type calcium current density 

Electrophysiology TCC T-type calcium current density 

Morphology SPD Sarcomere packing density 

Morphology SL Sarcomere length 

Morphology OOP Orientational order parameter 

Gene expression Hey2 Hairy/enhancer-of-split related with YRPW motif 2 

Gene expression Irx4 Iroquois related homeobox 4 (Drosophila) 

Gene expression Gata4 GATA binding protein 4 

Gene expression Myocd Myocardin 

Gene expression Nkx2-5 NK2 transcription factor related, locus 5 (Drosophila) 

Gene expression Tbx5 T-box 5 

Gene expression Nppa Natriuretic peptide type A 

Gene expression Acta1 Actin, alpha 1, skeletal muscle 

Gene expression Adra1b Adrenergic receptor, alpha 1b 

Gene expression Adra2a Adrenergic receptor, alpha 2a 

Gene expression Actc1 Actin, alpha, cardiac muscle 1 

Gene expression Actn1 Actinin, alpha 1 

Gene expression Actn2 Actinin alpha 2 

Gene expression Pln Phospholamban 

Gene expression Tnnt2 Troponin T2, cardiac 

Gene expression Ttn Titin 

Gene expression Myh6 Myosin, heavy polypeptide 6, cardiac muscle, alpha 

Gene expression Myh7 Myosin, heavy polypeptide 7, cardiac muscle, beta 

Gene expression Myl2 Myosin, light polypeptide 2, regulatory, cardiac, slow 

Gene expression Myl3 Myosin, light polypeptide 3 

Gene expression Myl4 Myosin, light polypeptide 4 

Gene expression Myl7 Myosin, light polypeptide 7, regulatory 

Gene expression Cacna1c Calcium channel, voltage-dependent, L type, alpha 1C subunit 

Gene expression Cacna1d Calcium channel, voltage-dependent, L type, alpha 1D subunit 

Gene expression Cacna1g Calcium channel, voltage-dependent, T type, alpha 1G subunit 

Gene expression Cacna1h Calcium channel, voltage-dependent, T type, alpha 1H subunit 
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Gene expression Kcne1 Potassium voltage-gated channel, Isk-related subfamily, member 1 

Gene expression Kcne2 Potassium voltage-gated channel, Isk-related subfamily, gene 2 

Gene expression Kcnd2 Potassium voltage-gated channel, Shal-related family, member 2 

Gene expression Kcnd3 Potassium voltage-gated channel, Shal-related family, member 3 

Gene expression Kcnh2 
Potassium voltage-gated channel, subfamily H (eag-related), 

member 2 

Gene expression Kcnj2 Potassium inwardly-rectifying channel, subfamily J, member 2 

Gene expression Kcnj3 Potassium inwardly-rectifying channel, subfamily J, member 3 

Gene expression Kcnj11 Potassium inwardly rectifying channel, subfamily J, member 11 

Gene expression Kcnj12 Potassium inwardly-rectifying channel, subfamily J, member 12 

Gene expression Kcnj14 Potassium inwardly-rectifying channel, subfamily J, member 14 

Gene expression Kcnq1 Potassium voltage-gated channel, subfamily Q, member 1 

Gene expression Scn5a Sodium channel, voltage-gated, type V, alpha 

Gene expression Slc2a1 Solute carrier family 2 (facilitated glucose transporter), member 1 

Gene expression Slc2a2 Solute carrier family 2 (facilitated glucose transporter), member 2 

Gene expression Slc8a1 Solute carrier family 8 (sodium/calcium exchanger), member 1 

Gene expression Hcn1 Hyperpolarization-activated, cyclic nucleotide-gated K+ 1 

Gene expression Hcn3 Hyperpolarization-activated, cyclic nucleotide-gated K+ 3 

Gene expression Hcn4 Hyperpolarization-activated, cyclic nucleotide-gated K+ 4 

Gene expression Gja1 Gap junction protein, alpha 1 

Gene expression Gja5 Gap junction protein, alpha 5 

Gene expression Atp1a2 ATPase, Ca++ transporting, cardiac muscle, fast twitch 1 

Gene expression Atp2a2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 

Gene expression Ryr2 Ryanodine receptor 2, cardiac 

Gene expression Ckm Creatine kinase, muscle 
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