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Abstract 

 This thesis explores mechanical behavior of microelectronic devices and 

lithium-ion batteries.  We first examine electromigration-induced void formation in 

solder bumps by constructing a theory that couples electromigration and creep.  The 

theory can predict the critical current density below which voids do not form.  Due 

to the effects of creep, this quantity is found to be independent of the solder size and 

decrease exponentially with increasing temperature, different from existing theories. 

 We then investigate the interplay between mass transport, deformation, 

stress, and fracture in lithium-ion battery electrodes.  First, we model fracture of 

elastic electrodes by combining ideas from diffusion kinetics and fracture mechanics.  

Next, we examine mechanics of high-capacity lithium-ion batteries, which 

demonstrate inelastic deformation, by constructing a model that accounts for 

diffusion and elastic-plastic deformation.  These models suggest that fracture is 

prevented in small and soft electrode materials that are cycled slowly.  

To investigate crystalline silicon electrodes, we construct a continuum model 

of concurrent reaction-controlled kinetics and plasticity.  To quantify the kinetics of 
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the lithiation process, we perform electrochemical experiments on crystalline silicon 

wafers of various orientations.  Using the velocities measured in these experiments 

and our continuum model, we correctly predict anisotropic morphologies and 

fracture patterns developed in crystalline silicon nanopillars.  

We then measure the fracture energy of lithiated silicon, finding it to be 

similar to that of pure silicon and essentially independent of the lithium 

concentration.  These findings demonstrate that lithiated silicon has a peculiar 

ability to flow plastically but fracture in a brittle manner.  To investigate this 

interesting combination of properties, we measure stresses in silicon thin films as a 

function of charging rate.  Increasing the rate of lithiation resulted in a 

corresponding increase in the flow stress, indicating rate-sensitive plasticity. 

Microelectronics and lithium-ion batteries are rich in mechanics, requiring 

considerations from large deformation, plasticity, creep, kinetics, and fracture 

mechanics.  These systems involve an intimate coupling between mechanics and a 

number of other fields, such as chemical reactions, electric fields, mass transport, and 

electrochemistry.  Thus, it is believed that this thesis will provide general insight 

into systems that involve coupling between mechanics and other disciplines. 
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Chapter 1 

Introduction 

 

 This thesis investigates the mechanical behavior of microelectronic devices 

and lithium-ion batteries.  These systems are rich in mechanics, as they require 

considerations from large deformation, plasticity, creep, kinetics, and fracture 

mechanics.  Moreover, they involve an intimate coupling between mechanics and a 

number of other fields, such as chemical reactions, electric fields, mass transport, and 

electrochemistry.  In these systems, electric fields can drive mass transport and 

promote chemical reactions.  As atoms move and rearrange, the material deforms.  

Under constraint, this deformation creates a field of stress, which may lead to 

damage in the material, such as fracture, void formation, or undesired morphological 

change.  Meanwhile, the mechanical stresses generated can significantly affect other 

processes in the system.  For example, atoms tend to be transported from regions of 

relatively high compressive stress to regions of relatively low compressive stress.  

Similarly, if large enough stresses are built up, chemical reactions can be shut off 

entirely.  The remainder of this chapter provides an introduction to microelectronics 

and lithium-ion batteries.  
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1.1 Electromigration-induced damage in microelectronic devices 

 Under an applied electric potential, electrons move through a metal from the 

negative terminal to the positive terminal.  Owing to the delocalization of electrons 

in metals, this motion is mostly unimpeded, as indicated by the path of the leftmost 

electron in Figure 1.1.  However, due to thermal vibrations or defects, such as 

vacancies (black square in Figure 1.1), electrons can collide with the metal atoms, as 

indicated by the path of the rightmost electron in Figure 1.1.  During these collisions, 

electrons impart momentum to the metal atom.  Since the mass of the electron is 

small compared that of the nucleus of the atom, the transferred momentum is usually 

too small to permanently displace the atoms.  However, as the current density 

increases, the number of electrons colliding with atoms increases, thereby increasing 

the rate of atomic displacement.  Such conditions result in mass transport under the 

influence of the electric field, which is termed electromigration.  

 

Figure 1.1.  Under an electric field, atoms usually move freely through a metal lattice 

electron).  Due to imperfections, such as vacancies (black square), electrons may collide with 

atoms, imparting momentum to them (rightmost electron). 



 3 

 Integrated circuits are microelectronic devices used in virtually all electronic 

equipment today.  These devices consist of a set of electronic circuits on a single 

semiconductor chip.  As this technology advances, the constituent components of 

these devices continue to decrease in size.  Meanwhile, the power requirements for 

these components tend to stay the same or even increase.  This combination of 

factors results in larger current densities, which have led to electromigration-induced 

damage in some devices.  As an example, in aluminum films, electromigration was 

found to result in device failure due to the opening of interconnections.[1]  

Interestingly, in aluminum interconnect lines, Blech observed a critical current 

density, below which electromigration does not cause damage.[1]  This phenomenon 

was attributed to the stresses that are built up during mass transport.[2]  As material 

is transported from the cathode to the anode, a state of compression develops near 

the anode while a state of tension develops near the cathode.  This resulting gradient 

in stress along the length of the line drives atoms back toward the cathode, 

counteracting electromigration.   As the current density increases, larger stresses 

must be built up to counteract the diffusional flux from electromigration.  However, 

at some point, the stress at either end of the interconnect is limited by some 

mechanism of failure, such as the formation of voids or the extrusion of the metal 

into the surrounding dielectrics.  Thus, there is a so-called “critical current density,” 

above which damage of the device occurs. 

 Blech made his observations in metallic interconnect lines.[1],[2]  Another 

component typically found in semiconductor devices is that of a solder bump (Figure 
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1.2).[3]  A solder is a fusible metal alloy that is used to interconnect the 

semiconductor device (e.g., an integrated circuit) to a circuit board.  During 

fabrication, the solder is deposited onto a pad of the integrated circuit and then 

aligned with a corresponding pad on the circuit board.  The solder is then heated 

above the melting point and allowed to cool back to room temperature to create a 

mechanical and electrical connection between the components.  Since the solder 

must be melted during the fabrication process, it is desirable for the solder to have a 

relatively low melting point. 

 

Figure 1.2.  Micrograph of a flip chip solder joint.  Figure adapted from Reference [3]. 

 

 During operation of the microelectronic devices, current flows from the chip 

side, through the solder, and to the external circuitry (or vice-versa).  Under certain 

conditions, this “current stressing” can lead to void formation and eventual failure of 

the connection.[4]  For instance, in Figure 1.3, electrons are moving in the direction 
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as indicated by the arrow.  After some time, voids are formed in the upstream region 

of the electron flow (red oval in Figure 1.3a).  Once these voids are formed, they 

quickly propagate across the cross-section of the bump, leading to an open circuit 

and hence failure of the interconnect (Figure 1.3b).[4] 

 

Figure 1.3.  (a) Voids (red oval) can form in solders during operation.  (b) These voids can 

propagate across the solder, leading to an open circuit (red oval).  Figure adapted from 

Reference [4]. 

 To model this electromigration-induced damage, Blech’s analysis[1],[2] may 

seem appropriate.  However, solder bumps present a further complication.  Due to 

their low melting points, solders can reach ¾ of their melting point in terms of the 

absolute scale during operation.  At these temperatures, significant deformation via 

a creep mechanism may occur.  Thus, an additional rate process, creep, must be 

considered for proper analysis of electromigration in a solder bump.  To do so, in 

Chapter 2 we construct a theory that couples electromigration and creep.  Using 

material data, we demonstrate that creep effects are significant for proper analysis of 

practical solder systems.  Furthermore, we find vastly different scaling of the critical 

current density on various physical parameters when the effects of creep are 

considered. 

(a) (b) 
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1.2 Kinetics, deformation, and fracture of lithium-ion battery 

electrodes 

 A lithium-ion battery is an electrochemical transducer, converting chemical 

energy to electrical energy and vice-versa.  Within the battery, two electrodes are 

separated by an electrolyte (Figure 1.4).  The electrodes host lithium atoms.  The 

electrolyte conducts lithium only as an ionic species and does not conduct electrons.  

The electrodes are also connected by a wire that conducts only electrons.  One of the 

electrodes (the negative electrode) has a large chemical potential of lithium relative to 

the other (the positive electrode).  As a result, there is a driving force for lithium to 

move from the negative electrode to the positive one.  To do so, a lithium atom must 

dissociate into a lithium ion and an electron.  The lithium-ion then moves through 

the electrolyte and enters the positive electrode.  Meanwhile, to maintain 

electroneutrality, an electron moves through the wire, powering an external device 

during the process.  Upon reaching the positive electrode, the electron combines 

with the lithium-ion to form neutral lithium.  This process is known as discharge 

(Figure 1.4).  During charge, the battery is connected to an external power source, 

and the process is reversed.   



 7 

Figure 1.4. A schematic of a lithium-ion battery during discharge. 

 Lithium-ion batteries are known for their large energy and power densities, as 

compared to various existing battery technologies (Figure 1.5).[5]  As a result, they 

have found widespread use in practice for applications sensitive to size as weight, 

such as electric vehicles and portable electronics – cellular phones, laptop computers, 

and power tools, among others.[6],[7]  Within the context of these applications, there 

remains a demand for lower cost, longer lifetime, larger rate capabilities, and larger 

capacities.[8],[9]  As a familiar example, cellular phones have to be charged every day 

or two, and laptop computers have to be charged every few hours.  Increases in the 

volumetric capacities of lithium-ion batteries would extend the operating time 

between charges.  Similarly, battery packs in all-electric cars account for a 

substantial portion of the weight of the car.  Increases in the gravimetric capacities 

of the batteries would reduce the weight.  As another example, larger 
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rate-capabilities would decrease the time required to charge the system and would 

improve performance in applications that have high demands for power, such as 

power tools and electric vehicles.   

 
Figure 1.5. Comparison of various battery technologies in terms of specific power (vertical 

and specific energy (horizontal axis).[5] 

 Fortunately, a number of electrode materials with better performance exist.  

As an example, Table 1.1 shows a number of candidate materials for anodes.[10]  The 

anode most commonly used in commercial lithium-ion batteries is that of graphite (C 

in Table 1.1).  As can be seen in the Table 1.1, a number of alternative materials have 

better substantially characteristics than those of graphite.  For instance, Si has more 

than ten times the theoretical specific capacity and charge density (i.e., gravimetric 

and volumetric capacities) than those of C.[10]  However, mechanical degradation has 

been a bottleneck in commercializing many of these high-capacity systems.  During 

charge and discharge, the amount of lithium in the host electrode varies significantly, 

resulting in deformation of the electrode.  Materials with larger capacities tend to 
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deform more. For instance, from Table 1.1, graphite expands by only 12% while 

silicon expands by 320% upon full lithiation.[10]  This deformation is often 

constrained by various means, such as grain boundaries, different phases of active 

and inactive materials, and phase boundaries.[11]  Similarly, poor kinetics within the 

active materials can result in an inhomogeneous distribution of lithium and hence a 

mismatch in strain.[12] This constrained deformation generates stress, which can lead 

to fracture of the electrode materials.  Indeed, fracture has been observed during 

cycling of a number of electrode materials, as shown in Figure 1.6.[13]-[15]  This 

mechanical degradation can lead to the fading of the capacity of the battery, either by 

isolating active materials, increasing the electrical resistance, and/or by creating new 

surface area on which detrimental chemical reactions occur.[16]-[18]  As previously 

mentioned, this mechanical degradation has been a bottleneck to the development of 

high-capacity electrodes.  Thus, a proper understanding of how electrodes can 

sustain electrochemical cycling without mechanical degradation is vital for the 

development of high-capacity lithium-ion batteries. 

 

 

 

 

 

 

Figure 1.6. Fracture of (a) a LiCoO2 particle after 50 electrochemical cycles,[13]  (b) a LiFePO4 

particle after 50 electrochemical cycles,[14] and (c) a thin film of Si after one electrochemical 

cycle.[15] 

(b) (c) (a) 
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Materials  Li  C  Li4Ti5O12  Si  Sn  Sb  Al  Mg  Bi  

Density 

(g/cm
3
)  

0.53  2.25  3.5  2.33  7.29  6.7  2.7  1.3  9.78  

Lithiated 

phase  
Li  LiC6  Li7Ti5O12  Li4.4Si  Li4.4Sn  Li3Sb  LiAl  Li3Mg  Li3Bi  

Specific 

capacity 

(mAh/g)  

3,862  372  175  4,200  994  660  993  3,350  385  

Charge 

density 

(mAh/cm
3
)  

2,047  837  613  9,786  7,246  4,422  2,681  4,355  3,765  

Volume 

change (%)  
100  12  1  320  260  200  96  100  215  

Potential vs. 

Li (~V)  
0  0.05  1.6  0.4  0.6  0.9  0.3  0.1  0.8  

 

Table 1.1.  Comparison of a number of properties of various anode materials.  The table is 

adapted from Reference [10]. 

 

 This thesis examines the interplay between mass transport, deformation, 

stress, and fracture in lithium-ion battery electrodes.  In Chapter 3, we model 

fracture of electrodes by combining ideas from diffusion kinetics and fracture 

mechanics.  We perform a numerical simulation to examine how to prevent fracture 

of a LiCoO2 particle.  In Chapter 4, we develop a mechanical model that 

demonstrates the importance of inelastic deformation in high-capacity electrodes.  

In particular, the model suggests that fracture of high-capacity electrodes can be 

prevented in small and soft electrode materials that are charged/discharged slowly.  

In Chapter 5, we investigate a promising design for high-capacity lithium-ion 

batteries: hollow, coated nano-structures. We analyze conditions to prevent fracture 

of active materials and debonding between the active and inactive materials.  In 

20 μm 
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Chapters 6-7, we examine the initial lithiation of crystalline silicon electrodes, which 

is found to occur by a two-phase reaction mechanism.  Chapter 6 builds a 

mechanical model that accounts for concurrent reaction-controlled kinetics and 

plasticity.  The stresses that develop are found to contribute substantially to the 

driving force for lithiation, potentially shutting off lithiation completely.  Chapter 7 

provides an experimental investigation that quantifies the anisotropy of lithiation 

kinetics in crystalline silicon electrodes.  A kinetic model accounting for coupling 

between redox reactions, diffusion, and chemical reactions is also presented.  In 

Chapter 8, we develop an experimental technique to measure the fracture energy of 

high-capacity electrodes.  We use this technique to measure the fracture energy of 

lithiated silicon electrodes as a function of lithium concentration. In Chapter 9, we 

measure stresses in silicon thin films as a function of charging rate.  Increasing the 

rate of lithiation resulted in a corresponding increase in the flow stress, indicating 

rate-sensitive plasticity.  Rate-sensitive material parameters are quantified, 

providing insight into the unusual ability of lithiated silicon to flow plastically but 

fracture in a brittle manner. 
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Chapter 2 

Concurrent Electromigration and Creep in Solders 

 

2.1 Introduction 

 In microelectronic devices, intense electric currents motivate atoms to 

diffuse—a process known as electromigration.  Although electromigration is present 

in many components of the devices, the current density needed to cause 

electromigration in solder bumps is much smaller than in any other components.[19] 

Electromigration can cause the bumps to form voids, leading to failure.[20]  

 Blech observed in an interconnect line a critical current density, below which 

electromigration does not cause damage.[1]  This observation was interpreted by 

Blech and Herring as follows:[2]   as the electric current causes atoms to migrate 

from one end to the other along the interconnect, a gradient of stress builds up, 

counteracting electromigration.  After some time, the interconnect develops a 

steady-state stress gradient, and net migration of atoms stops.  The magnitude of 

the stress at either end of the interconnect is limited by some mechanisms of failure, 

such as the formation of voids and extrusion of the metal into the surrounding 

dielectrics, so that the achievable stress gradient is large in short interconnects.  

Consequently, short interconnects are immortal, immune from 

electromigration-induced failure[21]-[24].  This consideration has played a significant 

role in the design of interconnects.[19],[25]-[27]  
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 It is tempting to apply the Blech-Herring analysis to solder bumps.  However, 

solder bumps require an additional consideration.  During operation, a bump can 

reach ¾ of its melting point,[28] and the bump creeps.[29]  The bump is often 

surrounded by relatively compliant molding compounds, possibly allowing creep to 

relax the stress in the bump.  By contrast, an interconnect is often confined by 

relatively stiff dielectrics, which enables the interconnect to retain hydrostatic stress 

in the presence of creep.[30]  

 To apply the Blech-Herring analysis to solder bumps, this chapter considers 

concurrent electromigration and creep.  When electric current flows in the bump, 

stress is generated by electromigration, but relaxed by creep.  After some time, the 

bump develops a steady-state stress field.  To determine this steady-state stress field, 

Section 2.2 reviews a theory of concurrent electromigration and creep.  Section 2.3 

shows that the relative rates of the two processes—electromigration and creep—can 

be quantified by an intrinsic length.  When the height of the bump is small 

compared to the intrinsic length, electromigration is fast relative to creep, and the 

theory recovers the classical prediction of Blech and Herring, in which the 

steady-state stress is linearly distributed in the bump.  When the height of the bump 

is large compared to the intrinsic length, electromigration is slow relative to creep, 

and the theory reveals a unique situation, in which the steady-state stress nearly 

vanishes in the bump, except in a thin layer around the boundary of the bump.   

 These two limiting cases, as well as the intermediate behavior, are illustrated 

in Section 2.4 with a thin film.  Section 2.5 then establishes a critical stress above 
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which voids will grow, based on the Laplace condition.  Section 2.6 uses Pb-free 

solder data to investigate how the critical current density needed to cause void 

nucleation depends on various parameters of the solder.  We find that, at normal 

operating temperatures, for a SnAg4Cu0.5 solder bump larger than ~1 μm, creep is 

important, and the Blech-Herring analysis is inadequate.  Section 2.7 compares the 

theoretical predictions to experimental observations.  Finally, in Section 2.8 we 

justify our approximation of the solder bump as a thin film by comparison to 3D 

simulations. 

 

2.2 Theory of concurrent electromigration and creep 

 When electric current passes through a solder bump, the flow of 

electrons—the electron wind—motivates atoms of the bump to diffuse.  As atoms 

relocate from the cathode to the anode, a field of stress builds up in the bump, tensile 

at the cathode, and compressive at the anode.  While electromigration generates 

stress, creep tends to relax it.  After some time, the concurrent electromigration and 

creep set up a steady-state stress field in the bump.  This section summarizes a 

previously developed theory of concurrent creep and diffusion.[31]  

 Following Darken[32], we imagine that inert markers are scattered throughout 

a material.  These markers do not diffuse; rather, they move along with the 

deformation of the material.  It should be noted that this idea is not merely 

hypothetical.  Movements of markers in solder bumps have been visualized with 

diamond particles and arrays of nanoindentations.[33],[34]  Let  321 ,, xxx  represent 
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the coordinates of a fixed space, and  txxxvi ,,, 321  be the velocity vector of the 

marker at position  321 ,, xxx  at time t .  The gradient of the marker velocity 

defines the strain-rate tensor: 

   ijjiij vvd ,,
2

1
 . (2.1) 

 Let   be the volume per atom in the body. Imagine a plane fixed in space and 

perpendicular to the axis ix  .  The net atomic flux, iN , is the number of atoms that 

move across the plane, per unit area and per unit time, as shown in Figure 2.1.  We 

can independently measure this net atomic flux and the marker velocity.  The 

convection flux, /iv , is the number of atoms moving with the marker across the 

plane, per unit area per unit time. The difference between the two fluxes defines the 

self-diffusion flux iJ , namely,  

  


 i
ii

v
JN . (2.2) 

This equation states that the net flux, iN , is the sum of the diffusion flux, iJ , and 

the convection flux, /iv . 

Figure 2.1.  The marker velocity determines the convection flux, vi/Ω.  The net atomic flux, 

Ni, can also be independently measured.  The atomic flux in excess of the convective flux 

defines the diffusion flux, Ji. 
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 To emphasize the main features of this theory with minimum complication, 

we neglect elasticity.  We also know that abundant sources and sinks, such as grain 

boundaries and dislocations, exist in a solder bump, as illustrated in Figure 2.2.  As 

noted by Balluffi, these sources and sinks tend to maintain equilibrium 

concentrations of vacancies, which are usually small.[35]  Therefore, a fixed volume 

will contain a constant number of atoms at all time, and the net atomic flux is 

divergence free,  

  0, kkN . (2.3) 

 

Figure 2.2.  Two possible scenarios exist for growth of a void.  In (a), flux divergence 

generates vacancies, which coalesce to form voids.  In (b), sinks/sources keep vacancy 

concentrations at the equilibrium level.  Flux divergence generates stress under constraint, 

leading to growth of a void. 
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
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A combination of Equations (2.2) and (2.3) gives 

  kkkk Jv ,,  . (2.4) 

This equation states that even though the material is incompressible, the marker 

velocity has a divergence to compensate for the divergence in the diffusion flux.   

 We take the strain-rate to be the sum of that due to creep, 
C

ijd , and that due 

to diffusion, 
D

ijd ,
 

  
D

ij
C

ijij ddd  . (2.5) 

We assume that the divergence in diffusion flux causes an equal strain rate in all 

three directions:   

  ijkk
D

ij Jd ,
3


 , (2.6) 

where 1ij  
when ji   and 0ij  

otherwise.  We adopt this rule based on 

experimental evidence of its validity:  it is consistent with observations of lateral 

shrinkage of thin foils during selective evaporation[36], and it correctly predicts the 

bending of a thin foil diffusion couple.[37]  However, it can be modified, if for some 

reason atoms are preferentially placed on certain crystal planes.[38]  

 Combining Equations (2.1) and (2.4) – (2.6) gives the creep strain rate in 

terms of the marker velocity field: 

   , , ,

1 1

2 3

C

ij i j j i k k ijd v v v    . (2.7) 

 Since creep generates negligible acceleration, the force balance equations can 

be written as 

    
,

0,  in the volume
ij j

 (2.8) 

    ,  on the surface
ij j i
n t . (2.9) 
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 The mean stress is defined as 

   332211
3

1
 m . (2.10) 

The chemical potential induced by this mean stress is m  .  This quantity 

represents the free energy change associated with moving an atom in a stress-free 

reference body to a point in the material subject to mean stress m .  Following 

Blech and Herring4, both the electron wind force and the gradient of the chemical 

potential drive diffusion:  

    imii F
kT

D
J ,


 , (2.11) 

where D  is the self-diffusion coefficient, kT  is the temperature in the unit of 

energy, and iF  is the electron wind force.  The electron wind force relates to the 

electric current through the relation ii jZeF  , where Z  is the effective valence of 

atoms, e  is the elementary charge,   is the resistivity, and j  is the current 

density.[39] 

 The deviatoric stress tensor is given by 

  ijmijijs   . (2.12)  

The equivalent stress is defined as 

  2/3 ijije ss
.
  (2.13) 

The creep strain rate is commonly written as the product of the deviatoric stress and 

some function of the equivalent stress 

    ije
C

ij sd  . (2.14) 

The function )( e  is determined by fitting the relation between stress and strain 

rate measured under a simple stress state.  For instance, performing a uniaxial 
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tension test, experimentalists may obtain a constitutive equation with the general 

form 

  














0

11

0

11






f

d
C


, (2.15) 

where 
C

d11  and 11  are the strain rate and stress in the loading direction, 0  is a 

reference stress, and 0  is the strain rate in the loading direction at the stress 0 .  

For a uniaxial tensile test the equivalent stress is 11 e  and the deviatoric stress is 

3/2 1111 s .  Thus, equating (2.14) and (2.15) gives      eee f  2//3 00
 , 

and the general 3D constitutive equation is 

  














00 2

3






e

e

ij
C

ij
f

sd


. (2.16) 

Define the effective creep strain rate as   2/1
3/2 C

ij

C

ij

C

e ddd  .  This definition, in 

combination with (2.12), (2.13) and (2.16), gives that  00 //  e

C

e fd  .  Thus, the 

function relates the effective creep strain rate to the effective stress. 

 

2.3 Scaling and limiting cases 

 This theory has a characteristic length, as can be seen through a scaling 

analysis.  Inserting the creep model (2.16) and the creep strain rate expression (2.7) 

into the force balance (2.8), we obtain 

  
 

  0
3

2

/3

1
,

,

,,,

00



















im

j

ijkkijji

e

e vvv
f







. (2.17) 

Inserting the diffusion law (2.11) into the kinematic constraint (2.4), we obtain 

    
k

kmkkk F
kT

D
v

,

,,









  . (2.18) 
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As mentioned above, the effective stress e  is related to the effective strain rate C

ed  

through the function f.  The effective strain rate is defined as   2/1
3/2 C

ij

C

ij

C

e ddd  , and 

the creep strain rate tensor C

ijd  is related to the velocity field by (2.7).  

Consequently, (2.17) and (2.18) consist of four partial differential equations that 

govern the four fields 1v , 2v , 3v  and m .  Under the special condition that the 

diffusion flux is divergence-free, 0, kkJ  and 0, kkv , (2.17) recovers Stokes’s 

equation for creep, and (2.18) recovers Herring’s equation for self-diffusion. 

 Let   be the length to be determined.  Scale the stress by 0 , the marker 

velocities by 0 , the wind forces by  /0  , and the spatial coordinates by  .  

Equations (2.17) and (2.18) become dimensionless and parameter-free provided we 

set 

  
0

0





kT

D
 . (2.19) 

This length characterizes the relative rate of creep and diffusion.  Let H  be a 

length scale in the boundary-value problem, e.g., the height of a solder bump.  Large 

values of H/  indicate that the time necessary for diffusion across the material is 

fast relative to the time necessary for creep. 

 We now wish to investigate how H/  affects the steady-state stress field in 

a solder bump.  Since the electron wind force is roughly constant through the 

thickness of the solder, it alone does not result in a divergence in diffusion flux.  

However, different materials contact the solder at its boundaries, and atoms diffuse 

at different rates on each side of the boundary.  For instance, the diffusivity of Sn in 

Sn is much faster than that of Sn in Cu.  This results in a divergence in the diffusion 
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flux of Sn at the boundary between Sn and Cu.  For a steady state to be reached, a 

stress gradient must be built up to counteract this divergence in diffusion flux.  The 

length over which this stress gradient will be built up depends on the ratio H/ .   

 In one limit, 1/  H , diffusion is so much faster than creep that the effect 

of creep can be neglected.  In this limit, the theory outlined in Section 2.2 will 

reduce to the analysis of Blech and Herring.[2]  For a steady state to be reached, the 

diffusion flux must vanish, 0iJ .  For a 1D wind force in the 3x  direction, 

Equation (2.11) then gives   0/ 33  dxdF m  in the steady state.  The stress 

gradient is a constant governed by the boundary conditions and is built up through 

the entire thickness of the solder.   

 In the other limit, 1/  H , creep is extremely fast relative to diffusion.  

Since creep tends to relax stress, in this limit it seems that the stress may be zero 

everywhere in the solder.  However, as previously mentioned, there is a flux 

divergence at the boundary.  To satisfy this boundary condition, a stress gradient 

must be built up to offset this flux divergence.  Since the characteristic length   is 

small relative to the size H  of the boundary value problem, this stress will be 

localized near the boundary of the solder, as illustrated in Figure 2.3. 

 

 

 

 

 



 22 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  Solder bump with stress distribution for a rapidly creeping material.  The 

horizontal axis is the stress level and the vertical axis is the position through the thickness of 

the solder bump.  The blue line shows the stress distribution through the thickness of the 

solder σm(x3).  The black, dotted line indicates zero stress; to the left of this curve the 

material is in compression and to the right of the curve the material is in tension.  Stress is 

nearly zero everywhere but deviates from zero near the boundaries to counteract the flux 

divergence there.  The flux divergence is illustrated in the red boxes, which represent 

differential volume elements at three locations through the thickness. 

 

2.4 Stress in a thin film 

 To see how the physical ideas developed in Section 2.3 arise mathematically, 

let us consider a thin film of a solder material sandwiched between two other 

materials, as illustrated in Figure 2.4.  Let us also assume the material under 

uniaxial tension obeys power-law creep      0 0/
n

.  An electron wind force will 

cause atoms to diffuse in the direction of the wind force, creating a state of 

compression near the anode and tension near the cathode.  This stress state is 

biaxial with 2211   , and the equivalent stress is 11 e .   
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Figure 2.4.  A thin film of a solder material, height H, is subject to a through-thickness 

electron wind force, F2.  The film is sandwiched between two materials that constrain it.  

Atoms do not diffuse into the two surrounding materials, so that there is no diffusion flux into 

or out of the solder.  As atoms migrate through the solder, they create a state of compression 

near the upper boundary and tension near the lower boundary. 

 

 Equation (2.11) gives the diffusion flux as 

    31133 /3/2/ dxdFkTDJ  .  This diffusion flux induces a strain rate 

  3311 /3/ dxdJd
D

 .  The bounding materials above and below the film constrain 

it from deforming laterally, so that the total strain rates vanish in the lateral 

directions: 011 d .  Scaling the stresses by 0  and the spatial coordinates by the 

thickness H , we obtain 

  0~
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~

9

4
112

3

11
22
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




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
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xd

d

H



, (2.20) 

where   is the characteristic length given in Equation (2.19) and the tildes 

represent non-dimensional quantities.  We have dropped the absolute value by 

examining this expression on the domain 0~2/1 3  x  where the material is under 

tension. 
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 The boundary conditions are such that atoms do not diffuse out of the solder 

and into the bounding materials.  Thus, the diffusion flux vanishes at the faces of the 

film, or 

   
 

0

3

3

311

2

3
~

2/1~~








 HF

xd

xd
. (2.21) 

 From Equation (2.20), two clear limits exist.  For 1/  H , the second 

term is negligible, and the stress field will be linear in 3
~x , namely 

     303311
~2/3~~ xHFx   .  This limit is consistent with the seminal analysis of 

Blech in which the stress is distributed linearly along the length of the material.4  

 For 1/  H , it seems tempting to entirely drop the first term in Equation 

(2.20). However, this would result in 0~
11   everywhere and would not satisfy the 

boundary conditions (2.21).  Instead, we have a boundary-layer effect in which the 

stress in nearly zero everywhere through the thickness of the film but deviates rapidly 

from zero near the boundaries to satisfy the boundary conditions.  In Equation 

(2.20), let 
3
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Separating the variables and integrating results in 
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C
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
, where C  is an integration constant.  As 

previously argued, for 1/  H , the stress is essentially zero over most of the 

domain.  Thus,   00~~
311 x  and   00~~/~

3311 xxdd  so that 0C .  We now 

have  



 25 

  
  

1

112

2

3

11 ~

/12

9
~

~

















 n

Hnxd

d



.   (2.22) 

 The maximum tensile stress will be located at the boundary, 2/1~
3 x .  

Substituting the boundary condition (2.21) into (2.22) gives: 
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Fn


 . (2.23) 

Hence, for a power-law creep material with 1/  H , the maximum stress in the 

film scales as  1/2  n and is independent of the thickness H . 

 To get a better sense of how stress varies through the thickness, Equation 

(2.20) subject to the boundary conditions (2.21) was solved using the finite-element 

software COMSOL Multiphysics.  In this software, the 1D General Form in the PDE 

Modes was selected to perform the analysis.  We have used 3n  and 

 
3 0

/ 86.9F H , which are representative values for a SnAgCu solder during 

operation (with  8 210 /j A m ,  100T C ,  50 μmH ).[28] The stress distribution 

through the film thickness is plotted in Figure 2.5 as a function of H/ .  The stress 

is zero at the middle of the film, is tensile on one side, and is compressive on the 

other.  We can clearly see a transition from the boundary layer regime to the Blech 

regime (linear stress distribution) as H/ increases.  Also from Figure 2.5, we 

observe that a large H/ , or fast diffusion relative to creep, results in a relatively 

large stress.  Likewise, slow diffusion relative to creep results in a relatively small 

stress.  We can interpret this observation in the following way:  if atomic diffusion 

is fast relative to creep, a large stress is built up before it can be relaxed by 

deformation (creep).  Conversely, if creep is fast relative to diffusion, the material is 
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liquid-like and can deform very rapidly to prevent large stress build-up. 

 

Figure 2.5.  Stress distribution through the film thickness as a function of characteristic 

length Λ for a material with power law creep.  The stress distribution changes from a 

boundary layer-type distribution to a linear one as Λ/H increases.  Also, the maximum stress 

increases as Λ/H increases. 

 

2.5 Void formation in solder bumps 

It is commonly suggested that voids are formed in the solder by 

supersaturation of vacancies at the cathode.[4]  The idea is that atoms diffuse by a 

vacancy mechanism in the direction of the electron flow; hence, vacancies migrate in 

the direction opposite to atomic diffusion.  When enough vacancies accumulate near 

the cathode, they can condense to form a void, as shown in Figure 2.2a.  The void 

can grow as additional vacancies are supplied to it.  Once the voids propagate across 

the length of the contact, the bump fails.  This physical picture is adopted by most 

researchers in the area.   
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 The above picture, however, is inconsistent with the following consideration.  

A solder bump has numerous sources and sinks of vacancies spread throughout it, 

such as grain boundaries and dislocations.  As noted by Balluffi, these sources and 

sinks tend to keep vacancy concentrations at equilibrium levels, as illustrated in 

Figure 2.2b.[35]  Hence, vacancy supersaturation is unlikely.  Instead, we adopt an 

alternative physical picture for the formation of voids.  In our picture, conduction 

electrons motivate atoms in the solder to diffuse, which can result in flux divergence.  

Under constraint, this flux divergence creates stress in the solder.  Stress acts on the 

initial flaws in the material that were created during the manufacturing process.  

According to the Laplace equation, these flaws will grow provided: 

  
a




2
 , (2.24) 

where   is the surface tension and a  is the initial flaw radius, as in Figure 2.6.  

We assume that the material will fail (have a big change in resistance) when these 

initial flaws grow.  Conversely, the material will be immortal as long as the stress 

everywhere in the material is less than the critical stress, ac /2  .  A similar 

physical picture has long been used in analyzing the formation of voids during tensile 

creep, or the removal of pores during sintering.[40]  
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Figure 2.6.  For voids to grow we have the condition σ > 2γ/a , where γ is the surface tension 

and a is the initial flaw radius. 

 

2.6 Analysis using Pb-free solder data 

We now desire to perform a similar analysis of an actual solder system.  Under 

a uniaxial tensile test, a double power law form commonly is found to represent the 

creep behavior in a solder.  For instance, Wiese gives the relation for SnAg4Cu0.5 as 
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where   is the creep rate in the loading direction, MPa 10  is a reference stress, 

/sec1 04 7
1

A , /sec1 01 12
2

A , 
1
=exp(-3223/T)D , and 

2
=exp(-7348/T)D .[41]  

The first term on the right hand side of (2.25) corresponds to the creep behavior in 

the low-stress regime, where dislocation climb processes dominate the deformation 

behavior.[41]  The second term corresponds to the creep behavior in the high-stress 

regime, where combined glide/climb processes dominate.[41]  Other parameters 

needed for the simulation include:  1 8Z ,[28]  -191.602×10 Ce , 
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  -7

100 C
1.48×10 Οhm-m ,[42]   -29 32.705×10 m

Sn
, and 

    -3 21.07×10 exp -105,000/RT m /sD .[43]  It is worthwhile to note that the 

diffusivity given is the self-diffusivity of Sn.  This value was used because the solder 

bumps of interest are composed of primarily Sn and because Sn is the dominate 

diffusing species in an important mode of electromigration failure.[44]  Also, the 

diffusivity used in the simulation is for diffusion along the a-axis (body-centered 

tetragonal crystal structure).  The diffusivity along the c-axis is comparable, with an 

activation energy of 107 kJ/mol .[43] 

 With these data, the characteristic length   is plotted as a function of 

temperature in Figure 2.7.  From this figure, we see that for the above data, the 

characteristic length   increases as the temperature increases.  This occurs 

because the diffusivity increases more rapidly with temperature than the creep rate 

does.  Also, in the plotted temperature range, the characteristic length is in the 

micron scale, which is roughly comparable to the size of a typical solder bump 

(~50 μm ). 
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Figure 2.7.  Characteristic length as a function of temperature.  For SnAg4Cu0.5 with 

constitutive law (2.25), Λ increases with T, meaning diffusion increases more rapidly than 

creep does as the temperature increases. 

 

For the constitutive law (2.25), the governing ODE is 
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 The boundary conditions are 

  
 






2

32/ 3

3

311 F

dx

Hxd
. (2.27) 

 As mentioned in Section 2.5, we hypothesize that a critical stress exists above 

which voids will grow.  This critical stress is given by the Laplace equation:  

ac /2  .  For Sn,  0.5 N/m [45] and assuming that the initial flaw has a radius 

of 100 nm, a representative value for this critical stress is   10 MPa
critical .  It 

should be noted that this is a simple model to estimate the critical stress.  

Alternatively, the creep strengths of the material may be used if these data are 
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available.  For instance, the creep strength of a SnAg3.5 solder at 100°C is about 5 

MPa.[28]  This value is comparable to the value estimated from the Laplace equation.  

The main point for the purposes of this chapter is that a critical stress exists and is a 

constant on the order of 10 MPa.  This critical stress depends on material properties 

of the solder and on the manufacturing process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8.  Critical current density as a function of thickness and temperature for 

SnAg4Cu0.5.  The pink region indicates the Blech regime, and the light blue region 

represents the boundary-layer regime. 

 

 We would like to calculate the current density necessary to reach this critical 

stress.  For each film thickness and temperature, the current density (from 

ii jZeF  ) was varied in COMSOL until a maximum stress of   
max

   10 MPa
c  

was achieved, and this current density was recorded as the critical current density cj .  

The critical current density as a function of thickness and temperature is plotted in 

Figure 2.8.  From this figure, for a given thickness, the critical current density 
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decreases as the temperature increases.  The explanation for this observation can be 

ascertained by examining Figure 2.7; the characteristic length   increases as the 

temperature increases.    As previously discussed, for a given current density, an 

increase in   results in an increase in max .  A larger maximum stress for each 

current density means it requires a smaller current density to reach c .  Thus, the 

critical current density will decrease as temperature increases. 

 It is also interesting to note the functional form of  Tjc  when 1/  H .  

Although SnAg4Cu0.5 in general obeys a double power law relation given by 

Equation (2.25), for the stress levels and temperatures of interest, the first term 

usually is much larger than the second.  Thus, it can be approximated by single 

power-law creep, as analyzed in Section 2.4, and we can rewrite Equation (2.23) as 

  
 

 

 1/2

1/2

02

1 



















 n

n

c
c

jZen




 , (2.28) 

and therefore 

   /1cj . (2.29) 

Also, since   is given by 




    
      

   

0
0 0

0

exp exp cD
D QQ

D C
kT kT kT kT

, one 

obtains 
 

  
 

exp
2
D C

c

Q Q
j kT

kT
.  We can further simplify this relationship by 

noticing that the square root term is quite weak.  For instance, for an increase from 

100 C to 200 C , cj  will increase only by 13% due to the contribution from the 

kT term.  The dependence on the exponential term is much stronger.  Thus, we 

approximately have  
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 

  
 

exp
2
D C

c

Q Q
j

kT
. (2.30) 

Therefore, in the boundary layer regime, we expect an exponential dependence of the 

critical current density on temperature.  Such a dependence cannot easily be 

explained in terms of Blech’s analysis.  In his analysis, he attributed this dependence 

to the increase in flow stress, i.e. a change in the maximum compressive/tensile 

stresses the material can withstand.  Albeit a possible explanation, our theory has a 

more straightforward explanation, as given in the derivation above.  Specifically, for 

a material in the boundary layer regime, the critical current density scales with the 

reciprocal of the characteristic length,  /1cj .  The characteristic length depends 

on the diffusivity and creep law of the material, which exhibit Arrhenius-type 

relations.  Consequently, the critical current density scales exponentially with 

temperature, as given in Equation (2.30). 

 The critical product Hjc as recognized by Blech is plotted as a function of the 

thickness H  in Figure 2.9.  In his analysis, Blech claims this product should be a 

constant above which electromigration damage will occur.[2]  The product should be 

independent of the size.  This figure demonstrates that for a given temperature, 

there is a transition from the Blech regime to the boundary-layer regime as the film 

thickness increases.  Specifically, between 100-150°C, using experimentally 

determined solder properties, this transition occurs between 1-10 μm.  This means 

that according to the data and the simulation, a solder larger than 10 μm is actually in 

the boundary layer regime during operation.  Thus, it appears that this boundary 

layer effect may be important in proper analysis of the stress distribution in Pb-free 
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solder bumps.   

Figure 2.9.  Critical product as a function of film thickness and temperature. 

 

2.7 Comparison with experimental results 

Comparison with experiments is difficult due to the lack of data for critical 

current densities in actual solder bumps.  However, we can still make some 

comparisons to solder materials with slightly different geometries.  For instance, 

Hsu et al measured the critical current density as a function of temperature for 350 

μm long Blech-type SnAg3.8Cu0.7 solder stripes.[46]  This material is in the 

boundary layer regime for the testing conditions so we expect   Tjc /1ln   as given 

in Equation (2.30).  A comparison of the simulated results (for a 350 µm 

SnAg3.8Cu0.7 solder stripe) and the experimental data is given in Figure 2.10.  The 

apparent activation energy, Q , found from the simulation is 0.385 eV.  The 

experimental data also shows an exponential dependence with Q = 0.333 eV, 
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comparable to the predicted value. 

Figure 2.10.  Critical current density as a function of temperature.  The experimental data is 

for a 350 μm SnAg3.8Cu0.7 solder stripe. 

 

 As another example, Yoon et al examined the dependence of the threshold 

current density on line length.[47]  In these experiments, five SnPb solder lines were 

tested with lengths ranging between 100 and 1000 µm at a temperature of 140˚C.  

Their experiments found that the critical current density is a constant independent of 

line length.  Using the creep and law and diffusivity from Siewert et al, the 

characteristic length of SnPb is found to be  0.199 μm at 140˚C .[28]  Thus, 

1/  H  for these experiments and we predict the SnPb solder to be well within the 

boundary layer regime.  As was suggested in Section 2.4, for a solder in the 

boundary layer regime, we predict the critical current density to be independent of 

size, as was found in the experiments. 
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2.8 3D solder versus thin film 

 In the previous sections, we have approximated the solder bump as a thin film.  

Initially, we desired to solve the full set of 3D governing equations, (2.17) and (2.18), 

using the finite element software COMSOL Multiphysics.  However, it was found 

that the creep law for the solder is highly nonlinear, leading to some convergence 

and/or memory problems.  We then realized that we should be able to approximate 

the solder bump as a thin film, making the problem 1D.  A 1D problem has a 

drastically reduced number of degrees of freedom, which allowed for a much finer 

mesh and ultimately for convergence in COMSOL. 

 However, we need to justify this approximation of the solder bump being 

represented as a thin film.  To do so, we implemented Equations (2.17) and (2.18) in 

COMSOL using the general form of the PDE modes module.  However, the 

constitutive law used was a linear relation, namely 2/ij
C

ij sd  , where   is the 

viscosity of the material.  This linear problem is much easier to solve with the finite 

element software.  The boundary conditions used are no flux through any surfaces, 

traction-free lateral surfaces, and no marker velocity on the upper and lower 

boundaries: 

  



 



0            all surfaces

0    lateral surfaces

0                top/bottom surfaces

i i

i ij j

i

J n

t n

v

 (2.31) 

Typical stress distributions resulting from the simulation are shown in Figure 2.11. 
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Figure 2.11.  Typical stress distributions for linear creep using the 3D model in COMSOL. 

 

 Physically, differences between the 3D model and the thin film one will arise 

due to stress relaxation via creep on the lateral surfaces of the 3D model.  Such 

relaxation cannot occur in the 1D model since the material is constrained from 

deforming laterally.  However, for 1/  H , we expect the stress to be confined to 

thin layers near the upper and lower boundaries.  Since we also have a no marker 

velocity boundary condition at these boundaries, in these layers we roughly have no 

lateral deformation.  Thus, in the region where stress exists, the material is 

constrained laterally, suggesting that the thin film approximation is appropriate.  

Likewise, for 1/  H , creep is very slow compared to diffusion.  Thus, stress 

relaxation via creep is negligible, and the thin film approximation seems valid.  The 

comparisons given in Figure 2.12 confirm these ideas.  From this figure, we can see 

that in these two limiting cases, 1/  H  and 1/  H , the 3D and 1D 

simulations agree quite well.  Thus, these physical justifications and simulations 

suggest that the approximation of the solder bump as a thin film is valid for the two 

1/  H 1/  H
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limiting cases, 1/  H  and 1/  H .   

 

Figure 2.12.  Comparison of stress in 3D and 1D simulations plotted through the thickness. A 

close up view of the green boxed region is given in the bottom left corner of the plot. 

 

2.9 Summary 

  To determine the stress field in a solder bump, we have presented a theory 

that couples creep and electromigration.  This theory results in governing equations 

(2.17) and (2.18), a set of coupled PDE’s that allow for the calculation of the stress 

and deformation fields.  From these equations, an intrinsic length emerges, (2.19), 

which characterizes the relative rates of creep and diffusion.  When diffusion is slow 

relative to creep, we find the stress is relatively small and localized to the boundary of 

the solder.  We suggest that when stress exceeds a threshold value, voids will form in 

the solder.  Using Pb-free solder data, we discover that the effects of creep are 

significant and must be taken into account for proper analysis of 
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electromigration-induced failure in solder bumps.  Comparisons with experiments 

demonstrate general agreement with the theory.  To further augment the content of 

this theory, we need more experimental data on electromigration failure in Pb-free 

solders.  Specifically, it would be useful to have a systematic study measuring critical 

current density for various solder sizes and operating temperatures.  
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Chapter 3 

Fracture of Electrodes Caused by Fast Charging 

 

3.1 Introduction 

Batteries are key in the commercialization of clean and secure energy.[1],[48]  

Essential roles of batteries include leveling loads on power grids and storing energy 

from renewable sources. Furthermore, batteries are ubiquitous in all forms of 

electronics and transportation. For applications sensitive to weight and size, such as 

portable electronics and electric cars, the technology of choice is lithium-ion 

batteries.[49]  

A lithium-ion battery contains an electrolyte and two electrodes.  Each 

electrode is an atomic framework that hosts mobile lithium.  During charging or 

discharging of the battery, lithium ions are extracted from one electrode, migrate 

through the electrolyte, and are then inserted into the other electrode.  Meanwhile 

electrons flow from one electrode to the other through an external metallic wire.  

Extraction or insertion of lithium induces stresses in the electrodes that may cause 

fracture[50] or morphological change.[16]  The loss of structural integrity may reduce 

electric conductance, causing the capacity of the battery to fade.   

Lithiation-induced damage is a bottleneck in developing batteries of high 

energy density.  For example, the ability of silicon to absorb a large amount of 

lithium has motivated intense research,[51] but such absorption causes volumetric 



 41 

swelling of ~400%, leading to fracture.  The mechanical failure has so far prevented 

silicon from serving as a viable electrode. Fracture has also been observed in 

commercial electrodes that undergo small deformation, such as LiCoO2, LiMn2O4 and 

LiFePO4.[52]-[55]  

Lithiation-induced deformation and stress have been studied in recent years.  

For example, Christensen and Newman calculated swelling and stress,[56], [57] Sastry 

and co-workers simulated the stress generation during lithiation under galvanostatic 

control,[58] and Cheng and co-workers calculated the strain energy under both 

potentiostatic and galvanostatic operations in spherical particles.[59],[60] 

Lithiation-induced stress in silicon has been calculated.[61], [62] Several recent papers 

have studied lithiation-induced fracture by applying fracture mechanics.[11], [66],[69]   

While a conceptual framework to analyze lithiation-induced deformation, 

stress and fracture is emerging, limited work has been published that predicts 

fracture of practical systems by using actual material data.  This chapter attempts to 

predict fracture in a widely used material for cathode, LiCoO2. A commercial 

electrode often takes the form of active particles embedded in a binding matrix 

(Figure 3.1).  The distribution of lithium in the particle is inhomogeneous.  The 

gradient of this inhomogeneity is large if the battery is charged at a rate faster than 

lithium can homogenize in the particle by diffusion.  We calculate the distributions 

of lithium and stress in a LiCoO2 particle, and then calculate the energy release rates 

for the particle containing preexisting cracks.  These calculations predict the critical 

rate of charging and size of the particle, below which fracture is averted. 
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Figure 3.1. A schematic of the microstructure of the cathode.  The cathode is composed of 

active particles, a matrix, and pores containing the electrolyte. 

 

3.2 Theory and scaling 

In a battery, the electrolyte conducts lithium ions but not electrons. When the 

battery discharges, the difference in the chemical potential of lithium in the two 

electrodes drives the ions to diffuse out of the anode, through the electrolyte, and into 

the cathode.  To keep the electrodes electrically neutral, electrons flow from the 

anode to the cathode through the external metallic wire.  Both the ionic and the 

electronic processes are reversed when the battery is charged by an external power 

source. As illustrated in Figure 3.1, an electrode in commercial Li-ion batteries is 

usually a composite, consisting of active particles, a matrix composed of polymer 

binders and additives, and pores filled with the electrolyte.[55]  Migration of lithium 

in the electrolyte is fast, so that diffusion of lithium in the active particles limits the 

rate of charging and discharging. Because of the porosity of the composite and the 

compliance of the binder, stress in an active particle is often due primarily to the 

mismatch created by an inhomogeneous distribution of lithium within the particle.  

The degree of the inhomogeneity depends on the competition between the 
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rate of discharging and the rate of diffusion. Denote   as the time to discharge the 

battery, D  a representative value of diffusivity of lithium in the particle, and L  the 

characteristic size of the particle. These quantities form a dimensionless group: 

 
L

D



  (3.1) 

The parameter   measures the relative rate of discharging and diffusion.  If 

  is large, the battery is discharged at a rate faster than lithium can homogenize in 

the particle by diffusion.  Consequently, lithium is crowded in the outer shell of the 

particle, causing a large stress in the particle (Figure 3.2a).  By contrast, if   is 

small, the battery is discharged at a rate slow enough for lithium in the particle to 

maintain nearly a homogeneous distribution.  Consequently, lithiation causes the 

particle to swell or contract, but the particle is nearly unstressed (Figure 3.2b). 

 

Figure 3.2. (a) When the rate of discharging is high, the distribution of lithium in the active 

particle is inhomogeneous, which causes a field of stress in the particle.  (b) When the rate of 

discharging is low, the distribution of lithium in the particle is nearly homogenous, and the 

magnitude of the stress in the particle is negligible. The arrows indicate the direction of 

lithium insertion. 

 

 Crack-like flaws are assumed to preexist in the active particles.[55] We ask if 

the lithiation-induced stress will cause any of the flaws to grow. The elastic energy in 

(a)

(b)
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the particle reduces when a crack advances. The reduction of the elastic energy in the 

particle associated with the crack advancing a unit area defines the energy release 

rate, G . Dimensional considerations dictate that the energy release rate should take 

the form 

 2

mG ZE L , (3.2) 

where E  is Young’s modulus of the particle, L  a characteristic size of the particle, 

and m  a characteristic mismatch strain, defined as 

 1 0

0

m

l l

l



  (3.3) 

Here, 0l  and 1l  are the lattice parameters in the initial state and in the fully 

lithiated state, respectively. At a given time, the distribution of the stress in the 

particle is determined by solving the diffusion equation, and the dimensionless 

coefficient Z  is determined by solving the elastic boundary-value problem.  Once 

the geometry of the particle and the location of the crack are given, Z  can only vary 

with the length of the crack, the dimensionless parameter  , and time.  We note 

this functional dependence in a normalized form: 

 , ,
a t

Z f
L




 
  

 
, (3.4) 

where a  denotes the length of the crack.  At a fixed value of   and a fixed time, if 

the crack is very short, the elastic energy in the particle does not change appreciably 

when the crack grows, and the energy release rate is small. Likewise, when the crack 

is very long, the elastic energy is nearly fully relaxed because the crack introduces 

larger constraint-free area, and the energy release rate is also small. In between these 
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two limits, the energy release rate reaches the maximum value maxG  for a crack of a 

certain length.  Let 

 

be the fracture energy of the particle.  No preexisting flaws 

will advance if the maximum energy release rate is below the fracture energy of the 

particle 

 
max

G   . (3.5) 

To ensure no preexisting flaws will advance, maxG   indicates the energy 

release rate maximized for all configurations of the flaws and for all time.  This 

approach has been used to analyze many systems, such as polycrystals,[70] 

composites,[71] and thin films.[72]  

The comparison between the energy release rate and the fracture energy 

defines another dimensionless parameter 

 
2

mE L
 


. (3.6) 

When   is small, the elastic energy is insufficient to cause fracture. Therefore, a 

particle with small stiffness, small size, and large fracture energy is more resistant to 

fracture. This statement is consistent with recent experimental observation that the 

electrochemical cycling behavior is significantly improved if the size of active 

particles is small.[73], [74]  

 The dimensionless groups   and   characterize the fracture behavior of 

the active particles. In the case of a highly inhomogeneous distribution of Li ions, to 

prevent fracture it is necessary to decrease the particle size, decrease the rate of 

discharging, and/or enhance the fracture energy. This concept is sketched 

schematically in Figure 3.3 in terms of   and  . The red line delineates an upper 
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boundary to the safe regime in which no fracture occurs. 

 

Figure 3.3.  Criteria to avoid fracture of an electrode particle in terms of the non-dimensional 

quantities Λ and χ. 

 

The concentration of lithium in the particle is a time-dependent field 

governed by the diffusion equation: 

  
c

D c c
t


   

, (3.7) 

where c  denotes the normalized lithium concentration in the host–the actual 

lithium concentration divided by the concentration of lithium in the fully lithiated 

state, LiCoO2.  In practical applications, the size of a LiCoO2 electrode particle is on 

the order of microns or smaller. At such a small scale, the particle is often a single 

crystal or at most consists of a few grains.[13] Thus, the electrode is assumed to be a 

single crystal with a 2D geometry. Lithium ions only diffuse along the x axis. The 

model is shown in Figure 3.4c, in which L  characterizes the particle size. 

The stress field is calculated by solving an elastic boundary-value problem. 

Since elastic deformation is much faster than atomic diffusion, mechanical 

equilibrium is established during lithiation. Therefore, the governing equations are 

L

Dτ
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taken from the theory of linear elasticity.  As the particle is embedded in a porous 

and compliant matrix, traction-free boundary conditions are prescribed. 

 

 
Figure 3.4. (a) The layered structure of LiCoO2. (b) Variation of lattice parameter along the 

z-axis with normalized lithium concentration (Reproduced from reference [75]). The lattice 

parameter along the x-axis is nearly a constant. (c) 1D diffusion model used in the numerical 

simulations. Lithium diffusion is along the x-axis, towards the center of the particle. (d) The 

lithium diffusivity as a function of the normalized lithium concentration (Reproduced from 

reference [76]). 

 

3.3 Numerical results for LiCoO2 

Following the above theory, we perform calculations for a LiCoO2 particle. As 

illustrated in Figure 3.4a, LiCoO2 has a layered crystalline structure, where oxygen 

ions form close-packed planes in an ABCABC sequence, and cobalt and lithium ions 
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occupy alternating layers of octahedral sites between the oxygen layers. The oxygen 

ions cause repulsion between the neighboring layers. These oxygen layers are 

attracted to the lithium ions inserted between them.  Thus, during discharge the 

insertion of the lithium ions decreases the repulsion between the CoO2 sheets and 

leads to a contraction.[75] The lattice parameter along the direction normal to the 

CoO2 sheets is shown as a function of lithium concentration in Figure 3.4b.  The 

insertion of lithium also causes strains in the other directions of the crystal but these 

strains are much smaller[75] and are hence neglected in the numerical simulations. 

In practice, the working regime for lithium cobalt oxide is in the range of 

0.5  c  1. Experiments show that the diffusivity D  decreases one order of 

magnitude when the normalized lithium concentration increases from 0.5 to 1.[76]  

Here, we reproduce the experimental diffusivity dependence on lithium 

concentration in Figure 3.4d. In the simulation we have allowed the diffusivity to vary 

with concentration, a dependence that is usually neglected in other works.  

 The initial and boundary conditions are given by 

 

 

0;                   =0.5

0; 0          0

; 0         constant

t c

c
x t

x

x L t D c c




  



    

 (3.8) 

The constant in Equation (3.8) is given by the discharge current density under 

galvanostatic (constant current) operation. Thus, in the simulation the discharge rate 

is controlled by changing the flux constant. Discharge is completed once the 

normalized concentration of lithium at the outside surface reaches a value of unity. 

The concentration profile of lithium inside the particle is obtained by solving the 
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diffusion equation in COMSOL Multiphysics.  

Figure 3.5a and Figure 3.5b show the distributions of Li at several times, at 

discharge rates of 0.5C and 2C respectively. Here the discharge rates are reported in 

the C-rate convention given by /C  , where the value of   is calculated as the 

theoretical capacity (~140 mAh/g) divided by the discharge current.  It is evident 

from the figures that, in both cases, the lithium concentration gradient increases with 

discharge time. This behavior is a direct consequence of the decrease in effective 

diffusivity with increasing lithium concentration (Figure 3.4d). As the discharge rate 

increases from 0.5C to of 2C, the lithium distribution inside the host particle becomes 

less homogeneous, in agreement with the schematics in Figure 3.2.  

This inhomogeneous distribution of lithium results in a large deformation 

mismatch. The strain along z direction (Figure 3.4a) in the host particle is given by  

 
  0

0

l c l

l



  (3.9) 

where  l c  is the lattice parameter at a given lithium concentration, 0l  is the 

lattice parameter at the initial normalized Li concentration c = 0.5. Here we use the 

experimental values for the LiCoO2 lattice parameter as a function of concentration to 

calculate the strain.[75] The inhomogeneous distribution of lithium leads to a 

non-uniform strain field inside the particle and thus a stress field in the particle. 
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Figure 3.5. Lithium distribution with time for a LiCoO2 particle at (a) discharge rate of 0.5C, 

(b) discharge rate of 2C. Here / 0x L   represents the center of the particle, and / 1x L   

represents the outside surface.  

The stress field is calculated by solving the elastic boundary value problem 

with the finite element software ABAQUS. An orthotropic material model is 

employed with stiffness coefficients taken from atomistic simulations.[77] The input 

strain field is simulated by imposing a thermal strain, equal to the concentration 

induced mismatch strain; the stress field is obtained as the output. In this 
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configuration, the stress component zz  is the tensile stress responsible for the 

crack propagation. Figure 3.6a and Figure 3.6b plot the internal mismatch strains 

and the normalized stress distributions as a function of the dimensionless distance at 

discharge rates of 0.5C and 2C, respectively. We represent E  as 22 375GPaC   

used for the normalization. It can be seen that the outer shell (near / 1x L ) of the 

particle is under tension, while the core (near / 0x L ) is under compression during 

lithium insertion. The tensile stress in the outer shell may drive a preexisting crack to 

grow. The driving force is much larger for the faster discharge of rate 2C because of 

the highly inhomogeneous distribution of lithium.  
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Figure 3.6. (a) Mismatch strain profile. (b) Normalized stress distribution at various discharge 

rates when the normalized lithium concentration at the outer surface reaches unity. The 

center of the particle is under compression, and the outside surface is under tension. 

 

To calculate the energy release rate, a crack of length a  is assumed to 

preexist inside the particle.  In the simulation, we fix the particle size and the 

location of the preexisting crack, and we vary the preexisting crack length and 

discharge rate.  In each case, we use the stress distribution at the end of discharge.  

The J-integral is used to calculate the energy release rate. Figure 3.7 gives the 

0.0 0.2 0.4 0.6 0.8 1.0
-0.1

0.0

0.1

0.2

0.3

0.4

x/L

 0.5C

 2C

0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

S
tr

a
in

 (
%

)

x/L

 0.5C

 2C

zz

m

σ

Eε

(b)

(a)

2L

× ×
×

×

×

×

×
×

×

×



 53 

normalized energy release rate dependence on the crack length to the particle size 

ratio, for discharge rates of 2C, 4C and 6C. The energy release rates are maximized at 

normalized lengths of 0.11, 0.09 and 0.07, respectively. 

Figure 3.7. Energy release rate as a function of crack size at various discharge rates. 

 

 As pointed out in Section 3.2, no pre-existing crack can advance if the 

maximum energy release rate is smaller than the fracture energy. This condition 

defines a critical particle size 
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 , (3.10) 

where Z  is found from Figure 3.7. When the particle is smaller than the critical 

value, no preexisting crack in the particle can advance. The critical particle size as a 

function of discharge rate is illustrated in Figure 3.8. Here we have used an 

approximate value of the fracture energy of 1 J/m2 for LiCoO2. From the figure, 

decreasing the electrode particle size can effectively prevent fracture during fast 

charging. 
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Figure 3.8. Critical LiCoO2 particle size to avoid crack propagation as a function of discharge 

rate. 

 

 Experimental observations of cracked LiCoO2 particles in the literature are 

limited. Crack damage is reported for an average particle size of 300 – 500 nm after 

50 cycles.[13] The model presented here shows that fracture can be prevented by 

decreasing the electrode particle size and/or discharge rate. To further test the 

accuracy of the model, more data for fracture of particles of different sizes and for a 

range of discharge rates are needed. Finally, it should be noted we used stiffness 

coefficients derived from atomistic simulations and estimated fracture energy to 

calculate the critical particle size. These values may vary with lithium 

concentration,[78] and should be ascertained by further experiments. 

 

3.4 Summary 
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affect fracture of electrodes in lithium-ion batteries. We characterize the discharge 

rate relative to diffusion rate by a dimensionless parameter  .  We characterize the 

magnitude of the elastic energy relative to the fracture energy by a dimensionless 

parameter  . A “fracture map,” demonstrating criteria for fracture, can be 

constructed in terms of the non-dimensional parameters   and  . To illustrate the 

theory, a numerical example of a LiCoO2 particle is presented. We calculate the 

distribution of lithium and stress at different discharge rates.  We also calculate the 

energy release rates for preexisting flaws of different sizes. When the maximum 

energy release rate is smaller than the fracture energy, no pre-existing cracks can 

advance. This approach enables us to calculate the critical particle size and discharge 

rate necessary to avoid fracture. 
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Chapter 4 

Inelastic Hosts as High-Capacity Electrodes 

 

4.1 Introduction 

 Lithiation-induced deformation and fracture is a bottleneck in developing 

lithium-ion batteries of high capacity.  For example, of all known materials for 

anodes, silicon offers the highest theoretical specific capacity—each Si atom can host 

up to 4.4 Li atoms.  By comparison, in commercial anodes of graphite, every six 

carbon atoms can host up to one Li atom.  Still, silicon is not used in anodes in 

commercial Li-ion batteries, mainly because after a small number of cycles the 

capacity fades, often attributed to lithiation-induced deformation and fracture.[17]  

Recent experiments, however, have shown that the capacity can be 

maintained over many cycles for silicon anodes of small feature sizes, such as 

nanowires,[79] thin films,[80] and porous structures.[81]  When silicon is fully lithiated, 

the volume of the material swells by ~300%.  For anodes of small feature sizes, 

evidence has accumulated that this lithiation-induced strain can be accommodated 

by inelastic deformation.  For instance, cyclic lithiation causes silicon thin films and 

silicon nanowires to develop undulations. [79],[80]  Furthermore, the stress in a silicon 

thin film bonded on a wafer has been measured during charge and discharge, 

showing that the film deforms plastically upon reaching a yield strength.[82]  

 Existing models of lithiation-induced deformation and fracture have assumed 

that the electrodes are elastic.[11], [56], [61]-[68] Here we model inelastic electrodes by 
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considering diffusion, elastic-plastic deformation, and fracture.  The model shows 

that fracture is averted for a small and soft host of lithium—an inelastic host of a 

small feature size and low yield strength. 

 

4.2 Elastic versus inelastic hosts of lithium 

 We classify hosts of Li into two types: elastic and inelastic.  For an elastic 

host, the host atoms recover their configurations after cycles of charge and discharge 

(Figure 4.1a).  For example, for an electrode of a layered structure, within each layer 

the host atoms form strong bonds, while neighboring layers are held together by 

relatively weak bonds.  Li diffuses in the plane between the layers, leaving the strong 

bonds within each layer intact.  Elastic hosts are used in commercial Li-ion batteries 

for both cathodes (e.g., LiCoO2) and anodes (e.g., graphite).  By contrast, an inelastic 

host does not fully recover its structure after cycles of charge and discharge (Figure 

4.1b). For example, when an electrode is an amorphous solid, such as amorphous 

silicon, the host atoms may change neighbors after a cycle of charge and discharge. 
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Figure 4.1.  (a) For an elastic host of lithium, the host atoms recover their configurations 

after a cycle of lithiation.  (b) For an inelastic host of lithium, the host atoms may change 

neighbors after a cycle of lithiation.  Squares represent host atoms, and circles represent 

lithium atoms.  

 

 Whether lithiation-induced strain will cause an electrode to fracture depends 

on the feature size of the electrode.[50]  The energy release rate, G , for a crack in a 

body of a small feature size takes the form EhZG /2 , where h is the feature size, 

E is Young’s modulus,   is a representative stress in the body, and Z is a 

dimensionless number of order unity.[72]  Fracture is averted if G is below the 

fracture energy of the material,  .  Consequently, fracture is averted if the feature 

size is below the critical value 
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2c

E
h

Z


  (4.1) 

Representative values for silicon are 210 J/m  and 80 GPaE  .[83]   

 If silicon were an elastic host, the linear lithiation-induced strain of 

100%   would cause stress on the order  E~ .  Equation (4.1) would predict a 

subatomic critical size to avoid fracture.  This prediction disagrees with the 

experimental observations—silicon anodes of feature sizes around 100 nm do survive 

many cycles of charge and discharge without fracture.[80]   

By contrast, for an inelastic host, lithiation-induced strain can be 

accommodated by inelastic deformation.  In this case, the generated stress will scale 

with the yield strength of the material.  For a thin film of silicon bonded on a thick 

substrate, the measured yield strength is 1.75 GPaY  .[82] For a channel crack in 

the film, Z = 2 is a typical value.[72]  Using these values, Equation (4.1) predicts a 

critical thickness of 130 nm.  This prediction agrees well with available experimental 

observations:  a 250 nm silicon thin film fractured after a few cycles,[84] while a 50 

nm silicon film survived without fracture after 1000 cycles.[80]  In general, for an 

inelastic electrode of a large capacity, fracture is averted if the feature size is small 

and the yield strength is low.  One extreme is a liquid electrode, which 

accommodates the absorption-induced strain by flow, and can potentially provide 

ultra-high capacity.[85]-[87]  

 During charge and discharge, the stress in an electrode is a time-dependent 

field.  Furthermore, the magnitude of the stress may exceed the yield strength at 

places under triaxial constraint.  To explore these effects, we describe an inelastic 
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host of lithium by adapting an elastic and perfectly plastic model.[88]  The increment 

of the strain is defined by   2/,, ijjiij dudud  , where idu  is the increment of the 

displacement.  The stress ij  satisfies the equilibrium equation, 0, jij .  The 

increment of the strain is taken to be the sum of three contributions: 

 E P L

ij ij ij ij
d d d d      , (4.2) 

where E

ij  is the elastic strain, P

ij  the plastic strain, and L

ij  the lithiation-induced 

strain.  The elastic strain obeys Hooke’s law: 

  
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   
 
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 

, (4.3) 

where   is Poisson’s ratio.  1ij  
when ji  , and 0ij otherwise.  The 

increment of the plastic strain is taken to obey the J2-flow rule: 
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, (4.4) 

where 3/ijkkijijs  

 

is the deviatoric stress and 2/3 ijije ss

 

the equivalent 

stress.  Within the perfectly plastic model,   at each increment is a positive scalar 

to be determined by the boundary-value problem.  In general, the yield strength Y

 

can be a function of the concentration of lithium. The lithiation-induced strain is 

proportional to the concentration of lithium: 

 
3

L

ij ij

c
d d


 

 
  

 
, (4.5) 

where   is a constant analogous to the coefficient of thermal expansion, and c  

denotes the normalized lithium concentration in the host–the lithium concentration 

divided by the concentration of lithium in the fully lithiated state. 
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 The concentration of Li in an electrode is a time-dependent field, taken to be 

governed by the diffusion equation, cDtc 2/  .  For simplicity, in this chapter, 

we assume that the diffusivity D is a constant independent of the concentration and 

stress, and that diffusion is driven solely by the gradient of concentration.   

As an illustration of the model, consider a thin film of amorphous silicon 

bonded on a substrate.  Let h

 

be the thickness of the film, and 

 

the time used to 

complete charge or discharge. We consider the limit Dh  , where the film is so 

thin that the concentration of Li is homogeneous throughout the thickness of the film 

during electrochemical cycling.  The stresses in the film are given by 

,    0xx yy zz      , where x and y represent the in-plane directions, and z  

represents the out-of-plane direction.  The magnitude of the stress   is 

homogenous in the film, but varies during the progression of lithiation.  The 

increment of the elastic strain is   Eddd e

yy

e

xx /1   .  The in-plane 

deformation of the thin film is constrained by the substrate, namely, 0 yyxx dd  .  

In the elastic stage, the increment of the plastic strain vanishes, so that  

 
 3 1

d E

dc v

 
 


. (4.6) 

Figure 4.2 shows the stress evolution as a function of lithium concentration, 

c . When lithium is first inserted, the film initially deforms elastically, and develops a 

compressive stress, with the slope given by Equation (4.6). When the magnitude of 

compressive stress reaches the yield strength, Y , the film deforms plastically. For 

simplicity, in this chapter, the yield strength is taken to be a constant, independent of 

the concentration of lithium.  Upon delithiation, the film initially unloads elastically, 
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develops a tensile stress, and then deforms plastically in tension.  The fully lithiated 

state causes a volume expansion about 300%,6 so that 3 .  Using representative 

values for silicon of 80 GPaE   and 0.22v  ,[83] Equation (4.6) predicts a slope 

/ 103GPad dc    , which may be compared to the measured value 75 GPa  given 

in Reference [82]. 

Figure 4.2. Evolution of stress in a thin film of an inelastic host during cyclic lithiation and 

delithiation. 

 

 

4.3 Lithiation-induced stresses in a silicon particle 

In a thin film, stresses can be induced by the constraint imposed by the 

substrate.  By contrast, a particle, a nanowire, or a porous structure is almost 

unconstrained by other materials, and the stress is mainly induced by the 

inhomogeneous distribution of lithium.[12]  Consequently, the stress is small when 

the feature size and charge rate are small.  

To explore the effect of inelastic deformation, we study the evolution of the 

stress field in a spherical particle of silicon. We use the “Thermal-Structural 

Interaction” module in COMSOL to solve the coupled diffusion and elastic-plastic 
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problem.  The lithiation-induced strain is simulated by imposing a thermal strain.  

Initially, the particle is taken as pure silicon, and is charged and discharged at a 

constant current.  The dimensionless charge and discharge rate is set to be 

0.206/ max DCain , where a is the radius of the particle, ni  is the current density for 

charge and discharge, and maxC  is the theoretical capacity of fully lithiated silicon.  

This dimensionless rate corresponds to 20.176A/mni   for representative values 

1 ma   , -16 21 10  m /sD   [89] and   9 3

max
8.52 10  Coulomb/mC .[90]  At this rate, 

silicon would be lithiated to its full theoretical capacity in about 4.5 hours.   

Figure 4.3a shows the distribution of lithium at several times during lithiation, 

and Figures 4.3b-d show the corresponding distributions of the equivalent, radial, 

and hoop stresses.  The equivalent stress is bounded by the limits Ye  0 .   

The traction-free boundary-condition requires the radial stress at the surface of the 

particle to vanish at all times.  As more lithium is inserted, the particle expands 

more near the surface than it does near its center, resulting in tensile radial stresses.  

The hoop stress is compressive near the surface and tensile near the center.  For the 

spherical particle, the yield condition takes the form Yrr   .  Due to the 

triaxial constraint at the center of the particle, the radial stress and hoop stress can 

exceed the yield strength.  Additional calculations (not shown here) indicate that 

faster charging rates result in even larger values of the radial and hoop stresses. 

These large tensile stresses may cause fracture.  Also, large values of hydrostatic 

stress may cause an inelastic material to grow cavities,[88] although we are unaware of 

any experimental observation of lithiation-induced cavitation.  



 64 

 

Figure 4.3. Time evolution of (a) concentration of lithium, (b) equivalent stress, (c) radial 

stress, and (d) hoop stress in a spherical particle of silicon during lithiation.  Time evolution 

of (e) concentration of lithium, (f) equivalent stress, (g) radial stress, and (h) hoop stress 

during delithiation. 
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The lithium concentration at the surface reaches a value of unity at time 

6.1/ 2 aDt .  At this point, we reverse the electric current and start delithiation. 

Figure 4.3e shows the distribution of lithium at several times during delithiation, and 

Figs. 4.3f-h show the corresponding distributions of the equivalent, radial, and hoop 

stresses.  As lithium is extracted, the radial stress evolves from tension to 

compression.  Also, the hoop stress at the surface becomes tensile with magnitude 

Y .  This tensile stress may result in the propagation of surface flaws.  Similar to a 

thin film, the sphere can avert fracture if the radius is small and the yield strength is 

low. 

 

4.4 Summary 

We have modeled diffusion and elastic-plastic deformation in an inelastic host 

of lithium.  The model allows us to simulate the distribution of lithium and stress in 

the host electrode during charge and discharge.  For an electrode of a small feature 

size and low yield strength, inelastic deformation helps prevent fracture. 
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Chapter 5 

Fracture and Debonding in Coated Hollow Electrodes 

 

5.1 Introduction 

Silicon can host a large amount of lithium, making it one of the most 

promising materials to replace the conventional carbon-based anodes. However, the 

commercialization of silicon anodes has been limited by mechanical failure and 

chemical degradation.[93]
  Mechanical failure results from the dramatic swelling and 

stress generated during cyclic lithiation and delithiation. The stress may cause 

fracture of the conductive matrix and active particles, leading to the loss of the 

conduction path for electrons, as shown in Figure 5.1a. As a result, rapid capacity 

fading of silicon often occurs in the first few cycles.[50]  Chemical degradation is 

attributed mainly to the formation of solid electrolyte interphase (SEI) resulting from 

the reactions between the electrode and the electrolyte.[93]  The formation of the SEI 

consumes active materials and results in irreversible capacity loss in the first cycle, as 

shown in Figure 5.1b.  Furthermore, the repeated swelling and de-swelling can cause 

continual shedding and re-forming of the SEI during cycling, resulting in a persistent 

decrease in the long-term coulombic efficiency.[10]  
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Figure 5.1. (a) For a silicon particle without a stiff shell, the stress induced by lithiation and 

delithiation may cause fracture of the active particle or debonding between the active particle 

and the matrix, leading to the loss of the conduction path for electrons. (b) Also for a silicon 

particle without a stiff shell, the deformation associated with lithiation and delithiation may 

cause the shedding and re-forming of the solid-electrolyte interphase (SEI), consuming active 

materials. (c) For a hollow silicon particle with a stiff shell, the deformation of silicon is 

accommodated by inward swelling, so that electric contact is maintained, and the shedding of 

SEI avoided. 

 

Recent experiments show that mechanical failure can be mitigated by using 

nanostructured silicon anodes, such as nanowires,[79] thin films,[94]-[96] hollow 

nanoparticles,[97] and nanoporous structures.[81] These structures alleviate the stress 
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by managing the deformation through shape optimization and geometric restrictions.  

Furthermore, intense efforts are being dedicated to stabilizing the SEI layer during 

lithiation cycles. Current methods include coating a thin artificial SEI layer on the 

surface of silicon[98]-[104] and using additives in the electrolyte to avoid the continual 

consumption of active materials.[105]-[109]  

A recent design of electrodes involves hollow core-shell nanostructures, which 

can enhance the mechanical and chemical stability of silicon anodes simultaneously, 

as shown in Figure 5.1c.  Such structures enable silicon electrodes to sustain over six 

thousand cycles with high coulombic efficiency.[110]  In a hollow core-shell 

nanostructure, the shell separates the electrolyte and the electrode (core), and forces 

the core to swell into the hollow space in the interior of the structure.  Because the 

shell restricts outward swelling of the core, the continual SEI shedding and 

re-forming is suppressed, and the electric contact between the electrode and the 

matrix is maintained. Similar designs based on encapsulating silicon nanoparticles 

within hollow carbon shells show promise for high-capacity electrodes with long cycle 

life of hundreds of cycles. [111]-[113] 

 Constrained lithiation and delithiation, however, induce stress in the hollow 

core-shell structures.  During lithiation, Figure 5.2a, the core is under compressive 

stresses, and the shell is under tensile hoop stress.  Such tensile stress can initiate 

fracture in the shell. During delithiation, Figure 5.2b, the radial stress can be tensile 

in both the core and the shell. Such stress may cause interfacial debonding.  
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Figure 5.2.  Two potential modes of failure in a hollow silicon particle coated with a stiff shell.  

(a) The lithiation of the silicon particle induces tensile hoop stress in the shell, which may 

cause the shell to fracture. (b) The delithiation of the silicon particle induces tensile radial 

stress, which may cause debonding between the core and the shell. 

 

To facilitate lithium diffusion and reduce overall weight, the ideal shell should be thin. 

However, an extremely thin shell is unable to constrain the outward expansion of the 

core.  The insertion reaction causes large deformation in the core, but the magnitude 

of the stress is kept manageable by plastic flow.  In this chapter, we calculate the 

stress field resulting from the concurrent insertion reaction and plastic flow in hollow 

spherical nanoparticles and nanowires of silicon coated with stiff shells.  We identify 

conditions to avoid fracture and debonding in terms of the radius of the core, the 

thickness of the shell, and the state of charge.  We further identify the driving forces 

for the lithiation reaction and discuss the effect of the stress field on the 

electrochemical reaction. 
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5.2 Stresses in a coated hollow spherical particle of silicon 

In a hollow core-shell structure, the stiff shell forces the core to swell into the 

inner hollow space (Figure 5.3).  Before absorbing any lithium, the inner radius of 

the hollow particle is A, and the outer radius is B.  The particle is coated by a stiff 

shell of outer radius C.  We consider the case where the rate of lithiation is slow 

relative to diffusion of lithium through the core, so that lithium atoms have enough 

time to homogenize in the core. For efficiency, to completely fill the hollow space 

upon full lithiation, the structure should satisfy the geometric relation: 

 

1/3

1A

B





 
  
 

, (5.1) 

where   is the volumetric swelling ratio /f iV V  , with fV  representing the 

fully lithiated volume of the core and iV  the initial volume of the lithium-free state 

of the core.  Lithiation of silicon causes a volumetric swelling 4  , so that 

 
1/3

/ 3/4A B  .[17] 

 

Figure 5.3. (a) In the reference state, a hollow particle of an electrode is stress-free and 

lithium-free. (b) In the current state, the particle is partially lithiated.  The deformation of 

the core is accommodated by the inner hollow space. Outward deformation is restricted by the 

shell. 
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 We take the stress-free and lithium-free state as the reference state, Figure 

5.3a. At time t, the hollow particle absorbs some lithium, retaining its spherical 

symmetry. We assume that the outward expansion of the core is completely 

constrained by the stiff shell. Note that the elastic deformation of the shell, typically 

less than 1%, is much less than the lithiation-induced strain in the silicon core.  With 

this assumption, lithiation changes only the inner radius a , and we neglect any 

deformation of the shell, Figure 5.3b.  We represent a material element in the 

reference state by its distance R from the center of the particle. At time t, the material 

element moves to a place a distance r from the center.  The function r(R, t) specifies 

the kinematics of the deformation. Each material element in the hollow core is 

subject to a state of triaxial stresses,  , ,
r  

   , where
r

 is the radial stress and 


  

is the hoop stress.  The stresses are inhomogeneous, represented by functions 

 ,
r

r t  and  ,r t


 .  The balance of forces acting on a material element requires 

that 

 
     , , ,

2 0
r r

r t r t r t

r r


   

 


. (5.2) 

 We adopt the commonly used idealization that plastic deformation is 

unaffected when a hydrostatic stress is superimposed. Furthermore, the yield 

strength of the lithiated silicon, 
Y

 , is taken to be constant and independent of the 

amount of deformation and the concentration of lithium. Because the elastic strain is 

negligible compared to the lithiation-induced strain, the elasticity of the hollow core 

is neglected. During lithiation, a material element of silicon is under compression in 

the hoop direction and is in the state r Y
    . Setting r Y

     in Equation 
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(5.2) and integrating over r with the traction-free boundary condition,  ,  0
r

a t  , 

the radial stress in the hollow core is given by 

 2 log ,        r Y

r
a r B

a
      (5.3) 

The hoop stress in the hollow core is determined by 
r Y

    , giving 

 2log 1 ,        
Y

r
a r B

a


 
 

     
 

. (5.4) 

 The stress fields in the elastic shell take the familiar solutions of Lamé 

problems,[114] with the radial stress  

 
3 3

3 3 3
2 log 1 ,      

r Y

B B C
B r C

a C B r
 

   
       

   
, (5.5) 

and the hoop stress 

 
3 3

3 3 3
2 log 1 ,       

2
Y

B B C
B r C

a C B r


 
   

      
   

. (5.6) 

 During delithiation, a material element of the hollow core is under tension in 

the hoop direction, and is in the state 
r Y

     . Setting
r Y

      in Eq. (5.2) 

we obtain the radial stress in the hollow core by integrating over r,  

 2 log ,      r Y

r
a r B

a
    , (5.7) 

and the hoop stress, 

 2log 1 ,       
Y

r
a r B

a


 
 

    
 

. (5.8) 

A comparison of the stress fields indicates a jump in both the radial and hoop stresses 

from lithiation to delithiation as is shown in Figure 5.4. These jumps are caused due 

to our neglecting the elastic strain. Should we include the elastic strain, the stresses 

would make this transition from compressive to tensile yielding after the removal of a 
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very small amount of lithium.  

 

Figure 5.4. Evolution of the radial stress at the interface between the particle and the shell 

during lithiation and delithiation. 

 

 Mechanical failure is mainly due to the stress at the interface between the 

core and shell.  Figure 5.4 shows the evolution of the radial stress at the interface of 

the hollow core during lithiation and delithiation.  The stress is plotted as a function 

of the state of charge (SOC) ― 0 represents the lithium-free state, and 1 represents 

the fully lithiated state. Given the geometric condition in Eq. (5.1), the state of charge 

is calculated by using the inner radius a  at a given state, 

 
3 3

3

A a
SOC

A


 . (5.9) 

As expected, the hollow core is under compression in the radial direction 

during lithiation.  The compressive stress increases logarithmically with the state of 

lithiation, Eq.(5.3).  Because of the triaxial state of stress, the magnitudes of the 

components of the stress readily exceed the yield strength of lithiated silicon.[115] Such 

large compressive stresses in the core can cause a large tensile hoop stress in the 
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outer shell, which may lead to fracture of the shell. During delithiation, the core-shell 

interface is under tensile stress in both the radial and hoop directions. The 

magnitudes of the stress components are maximized at the beginning of the 

delithiation, and gradually decrease with the state of delithiation. The tensile stress in 

the radial direction may initiate interfacial debonding, resulting in a loss of electrical 

contact between the core and the shell. 

 

5.3 Fracture and debonding analysis 

We now analyze fracture of the coating using an approach similar to that 

described in several recent papers.[11]-[12]  We focus on fracture of the coating caused 

by the tensile hoop stress during lithiation. Linear elastic fracture mechanics is 

adopted. The reduction in the elastic energy associated with a crack advancing a unit 

area defines the energy release rate, f
G . Dimensional analysis dictates that the 

energy release rate should take the form 

  
2

f

s

G Z C B
E



  , (5.10) 

where s
E  is Young’s modulus of the shell, Z  is a dimensionless parameter to be 

determined by solving the elastic boundary-value problem, 


  is the stress in the 

hoop direction given by Equation (5.6), and C B  is the thickness of the surface 

coating.  In the case of a channel crack in the thin shell, 2Z   is a typical value.[72] 

Inserting this value of Z and Equation (5.6) into Equation (5.10) gives an analytical 

solution for the energy release rate: 
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  
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8
log 1
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f

s

B B C
G C B

E a C B B

     
      

     
, (5.11) 

where we have approximated r B  since B C B .  In this limit, Equation (5.11) 

can be further approximated as 

 

22 2

2 logY
f

s

B B
G

E a C B

  
  

 
. (5.12) 

The energy release rate is proportional to the square of the yield strength of lithiated 

silicon, the compliance of the surface coating, the ratio of the sizes of core and shell, 

and the size of the core. Therefore, to minimize the energy release rate, it is desired to 

have a small and soft hollow core and a thick and stiff surface shell.  However, the 

shell also needs to be thin to minimize weight and to allow for fast diffusion of 

lithium through its thickness. 

 We take the same approach for the analysis of interfacial debonding. Here 

we consider that the energy release rate of debonding is mainly attributed to mode I 

fracture caused by the tensile radial stress. We assume a pre-existing crack of a size 

comparable to the thickness of the shell, C B . As such, the energy release rate may 

be reduced to a simple form,  

  
2

r
d

e

G C B
E


  . (5.13) 

The value of the numerical pre-factor in (5.13) is approximate, which changes 

somewhat with the elastic mismatch between the shell and the core and with the 

relative length of the crack to the thickness of the shell.  Accurate values of the factor 

can be calculated by solving the boundary-value problem using the finite-element 

method.[91]  In this work, however, a particular value is used to illustrate the main 
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ideas and the scaling relations.   The radial stress during delithiation is given by 

Equation (5. 7), and thus 

  
22

4 logY
d

e

B
G C B

E a




 
  

 
. (5.14) 

Here 
e

E  is the effective modulus that accounts for the effects of inhomogeneous 

properties of the core and shell. A typical relation is represented by 

 
1 1 1

/2
e c sE E E

 
  
 

. (5.15) 

where 
c

E  is the modulus of the core, and 
s

E  is the modulus of the shell.[72]  

Comparing Equations (5.12) and (5.14), we can see some interesting differences.  

Namely, the energy release rate for interfacial debonding scales directly with the shell 

thickness while the energy release rate for fracture of the shell scales inversely with 

the shell thickness.  Furthermore, the energy release rate for debonding scales much 

more slowly with the core radius, B , than does the energy release rate for fracture of 

the shell.  

Let f
  be the fracture energy of the shell, and 

d
  the interfacial energy 

between the core and the shell. No preexisting flaws will advance if the maximum 

energy release rate is less than the fracture energy. Therefore, f f
G    defines the 

critical condition for initiation of fracture of the shell, and d d
G    defines the 

critical condition for initiation of interfacial debonding. 

Recent experiments indicate that a thin layer of Al2O3 deposited on silicon 

anodes by atomic layer deposition provides excellent improvement of the cycling 

stability of silicon anodes.[100], [102]  Here we take the example of a hollow spherical 
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particle of silicon coated with a thin shell of Al2O3 to illustrate the above analysis. 

Representative values of lithiated silicon and Al2O3 are taken, 1 GPa
Y

  [82] and 

12 GPa
c

E   for lithiated silicon,[116], [117] 300 GPa
s

E  , 240 J/m
f

  ,[118] and 

21 J/m
d

  .  We first construct a phase diagram to show the effects of the thickness 

of the shell and the state of charge, Figure 5.5a. We take a typical value of the silicon 

core size, 200 nmB   and 3/ 3/4A B  . The thickness of Al2O3, C B , is varied. 

The state of charge is calculated from Equation (5.9). The solid black line represents 

the critical conditions for fracture of the shell, corresponding to the condition 

f f
G   , and the red dashed line represents the critical conditions of interfacial 

debonding, corresponding to the condition 
d d

G   . These two lines delineate an 

upper boundary to the safe regime in which no fracture of the surface coating or 

interfacial debonding would occur. Figure 5.5b further shows a phase diagram to 

demonstrate the effects of core size and state of charge. In this case, the thickness of 

the Al2O3 shell is fixed, 5 nmC B  , and the core size B  is varied while 

maintaining the geometric relation 3/ 3/4A B  . Given the analytical solutions of 

Equations (5.11) and (5.14), phase diagrams for other experimental conditions can be 

readily constructed.  
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Figure 5.5.  Conditions for fracture and debonding of a spherical hollow particle plotted in 

the plane of (a) the thickness of the shell and the state of charge, and (b) the radius of the 

particle and the state of charge. 

 

5.4 Analysis of coated hollow silicon nanowires 

 One dimensional nanowires and nanotubes are emerging designs that can 

mitigate the mechanical failure of silicon electrodes. In particular, Y. Cui and 

co-workers illustrate that coated hollow nanowires enable silicon anodes to sustain 

over six thousands cycles with high coulombic efficiencies.[110]  Such excellent 

performance would ultimately meet the requirement of commercializing silicon into 
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electric vehicles. In this section, we analyze fracture and debonding of a hollow 

nanowire. The cross-section is as shown in Figure 5.3. For complete utilization of the 

available hollow volume upon full lithiation, we must satisfy the geometric relation: 

 

1/2

1A

B





 
  
 

, (5.16) 

where for silicon 4   and  
1/2

/ 3/4A B  .  

Similar to the case of spherical particles, lithiation of silicon causes a tensile 

hoop stress in the shell, which may fracture the coating material.  Furthermore, a 

large tensile radial stress is developed at the beginning of delithiation, which may 

initiate interfacial debonding. We derive the stress field in the Appendix A. Since the 

deformation of the core along the axial direction is constrained by the shell, lithiated 

silicon is assumed to deform under plane-strain conditions.  The analytical solution 

of fracture energy release rate of the shell during lithiation is given by 

  
2 222 2 2

2 2 2

8
log 1

3
Y

f

s

B B C
G C B

E a C B B

     
      

     
. (5.17) 

In the case of C B , Equation (5. 17) can be further approximated as 

 

22 28
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3
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f

s

B B
G

E a C B

  
  
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. (5.18) 

And the interfacial fracture energy during delithiation is given by 

  
224

log
3

Y
d

e

B
G C B

E a

  
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 
. (5.19) 

Comparing the fracture energies in the spherical particle and the nanowire, 

we find that the energy release rate for fracture of the shell is a factor of 4/3 larger for 

the nanowire than for the sphere.  In contrast, the energy release rate for interfacial 
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debonding is 3 times larger in the sphere than in the nanowire. 

We now consider the practical example of a hollow silicon nanowire coated 

with a thin layer of Al2O3. A phase diagram showing the effects of the thickness of the 

shell and the state of charge is given in Figure 5.6a.  

 
Figure 5.6. Conditions of fracture and debonding for a hollow nanowire plotted in the plane of 

(a) the thickness of the shell and the state of charge, and (b) the radius of the particle and the 

state of charge. 

In the nanowires, the state of charge is calculated by 

 
2 2

2

A a
SOC

A


 . (5.20) 

The silicon core size is taken as 200 nmB   and  
1/2

/ 3/4A B  . The thickness of 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

100

200

300

400

500

State of charge

C
o

re
 s

iz
e

,  
 B

 (
n

m
)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

5

10

15

20

25

30

S
h

el
l 

th
ic

k
n

es
s,

   
C

-B
 (

n
m

)

State of charge

Safe regime

(a)

(b)

Safe regime

 F
r
a

c
tu

r
e

 

D
e
b

o
n

d
in

g

 

F
ractu

re
 

D
e

b
o

n
d

in
g



 81 

Al2O3, C B , is varied. The solid black line corresponds to the critical conditions for 

fracture of the shell, given by 
f f

G   , and the red dashed line corresponds to the 

critical conditions for interfacial debonding, given by 
d d

G   . Figure 5.6b shows a 

phase diagram demonstrating the effects of the core size and state of charge. In this 

case, the thickness of the Al2O3 shell is taken as 5 nmC B  , and the core size B  

is varied while maintaining the geometric relation / 3/4A B  . More accurate 

measurements of 
d

  are needed to produce a more accurate plot. In the case where 

the interfacial fracture energy 
d

  is less than the value we have used here, the red 

dashed lines in Figures 5.5 and 5.6 would shift to a lower state of charge limit. 

 

5.5 Stress effect on the lithiation reaction  

 We now identify the driving forces for the lithiation reaction of silicon, namely, 

the change of free energy associated with the reaction. Let 
r

G  be the free energy of 

the lithiation reaction of silicon when both the stress and the applied voltage vanish. 

Assume the silicon anode is connected to a cathode by a conducting wire through a 

voltage source. Associated with converting one Li atom and Si into lithiated silicon, 

one electron passes through the external wire, so that the voltage source does work 

e , where   is the voltage, and e  the elementary charge (a positive quantity). 

The driving force is further modified when the effects of stress are included. During 

lithiation of the coated hollow silicon particle, Li atoms migrate into Si by overcoming 

an energy barrier induced by the compressive stress in the core. Thus, when one Li 

atom is incorporated into lithiated silicon, the stress does work m
 , where m

  is 
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the mean stress in the core, and   is the change in volume caused by insertion of 

one Li atom. Here we assume an isotropic swelling of Si caused by Li insertion such 

that only the contribution from the mean stress is included. We also consider small 

elastic deformation of lithiated silicon such that stress terms of higher orders can be 

neglected.[119] Combining the above contributions, we find that, when the reaction 

advances, the net change in the free energy is 

 
r m

G G e      . (5.21) 

We have neglected the dissipation at the electrolyte/electrode interfaces, as well as 

inside the electrodes and electrolytes.  In our sign convention, a negative G  

drives lithiation, and a more negative value represents a larger driving force. The free 

energy of reaction rG  takes a negative value.  The sign of e  depends on the 

polarity.  We consider   being positive in the direction that drives lithiation.  As 

expected, a compressive mean stress in silicon retards lithiation.  

 For both the spherical silicon particles and nanowires, the analytical solutions 

of the stress fields are given in the prior sections.  Inserting the stresses into 

Equation (5.21), we can quantify the effect of stress on the lithiation reaction. We 

note that the compressive stress is maximized at the core-shell interface. Thus, the 

retarding effect of stress on the lithiation reaction is most significant at this interface. 

The contribution due to the stresses at the interface is plotted in Figure 5.7. In 

making this plot, we have adopted the value 29 31.36 10 m  .[92] 
 As expected, the 

magnitude of the contribution from the stress increases with the state of charge.  

Recall that the free energy of formation of lithiated silicon is small; for example, 
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  0.18 eVrG  for amorphous Li2.1Si.[120]  Consequently, the reaction can readily 

generate a large enough stress to counteract the electrochemical driving force, 

stalling the surface reaction prior to complete lithiation. In fact, a lower lithiation 

capacity due to an incomplete surface reaction has been observed in recent 

experiments.[121]  

 

Figure 5.7.  The effect of the stress on the driving force for the lithiation reaction is plotted as 

a function of the state of charge. 

 

5.6 Summary 

We present an analysis of fracture and debonding failure in coated hollow 

spherical particles and nanowires of silicon anodes. A phase diagram describing the 

critical structural parameters and operating conditions is constructed, outlining how 

to avoid fracture of the coating and debonding between the coating and the active 

material. We further explore the effect of the stress field on the lithiation reaction of 

silicon. The large compressive stress at the core-shell interface may counteract the 

electrochemical driving force, leading to a low lithiation capacity.  The present 
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results and associated analysis provide insightful guidelines for a viable design of 

coated hollow nanostructures. 
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Chapter 6 

Concurrent Reaction and Plasticity during the Intiial 

Lithiation of Crystalline Silicon Electrodes 

 

6.1 Introduction 

 Nanostructured electrodes of silicon are often fabricated with crystalline 

silicon.  In an electrochemical cell, crystalline Si and Li react at room temperature, 

forming an amorphous phase of lithiated silicon (Figure 6.1).[79],[120],[122],[137]  The 

reaction front is atomically sharp—the phase boundary between the crystalline silicon 

and the lithiated silicon has a thickness of ~1 nm.[124]  Evidence has accumulated 

recently that, in the nanostructured electrodes, the velocity of the reaction front is not 

limited by the diffusion of lithium through the amorphous phase, but by the reaction 

of Li and Si at the front.  For example, it has been observed that under a constant 

voltage the displacement of the reaction front is linear in time.[125]  This observation 

indicates that the rate of lithiation is limited by short-range processes at the reaction 

front, such as breaking and forming atomic bonds.   

 That the reaction is the rate-limiting step is perhaps most dramatically 

demonstrated by lithiated silicon of anisotropic morphologies.  Recent experiments 

have shown that lithiated silicon grows preferentially in a direction perpendicular to 

the (110) planes of crystalline silicon.[125]-[127]  It has been suggested that the 

anisotropic morphologies are due to the difference in diffusivities along various 

crystalline orientations of silicon.  However, it is well established that the tensor of 
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diffusivity of a species in a cubic crystal is isotropic.[128]   We propose that the 

observed anisotropic morphologies are due to the variation in the short-range atomic 

processes at the reaction fronts in different crystallographic orientations. 

 

Figure 6.1.  Schematic of an electrochemical test cell composed of a lithium metal anode and 

a crystalline silicon cathode. Crystalline silicon and lithium react at room temperature, 

forming an amorphous phase of lithiated silicon.  The reaction front—the boundary between 

the crystalline silicon and the lithiated silicon—is atomically sharp. 

 

 We further note that, to accommodate the large volumetric expansion 

associated with the phase transition, the lithiated silicon must deform plastically.  It 

is instructive to compare a flat reaction front with a curved one. When the reaction 

front is flat (Figure 6.2a), the large volumetric expansion associated with the reaction 

is accommodated by elongating the lithiated silicon in the direction normal to the 

reaction front, while maintaining the geometric compatibility between the two phases 

in the directions tangential to the reaction front.  As the reaction front advances, 

freshly lithiated silicon is added at the front, and previously lithiated silicon recedes 

by rigid-body translation, with no deformation. The biaxial stresses in the lithiated 

silicon remain at the compressive yield strength.  When the reaction front is flat, 
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reaction and plasticity are concurrent and co-locate—right at the reaction front.  

Indeed, the two processes may not be differentiated without ambiguity.    

 

   

Figure 6.2. The lithiation of silicon causes a large volumetric expansion, which is 

accommodated by plastic deformation.  (a) In a thin film with no curvature, as the reaction 

front advances, freshly lithiated silicon is added at the front, and previously lithiated silicon 

recedes by rigid-body translation, with no deformation. The biaxial stresses in the lithiated 

silicon remain at the compressive yield strength.  (b) At a curved reaction front, an element 

of newly lithiated silicon undergoes compressive plastic deformation in the directions tangent 

to the reaction front.  As the reaction front advances, the element is pushed away from the 

front, unloads elastically, and then undergoes tensile plastic deformation in the directions 

tangential to the reaction front.  The external surface of the lithiated silicon is subject to 

tensile hoop stress, possibly leading to fracture. 

 

 When the reaction front is curved, the crystalline silicon and the lithiated 

silicon form a core-shell structure (Figure 6.2b).  As the reaction front advances, 

freshly lithiated silicon is added at the front, previously lithiated silicon recedes, and 

the shell enlarges.  An element of lithiated silicon at the curved front initially 

undergoes compressive plastic deformation in the hoop directions.  Upon 

subsequent lithiation of the core, the element is pushed away from the front, unloads 

elastically, and then deforms plastically in tension in the hoop directions.  This 

process results in tensile hoop stress at the surface of the particle, possibly causing 

fracture.  When the reaction front is curved, reaction and plasticity are concurrent, 

 

Si

x
Li Si

θ
σ

θ
σ

r
σ

x
Li Si

Si

Yσ

(a) (b)

Yσ



 88 

but can occur at different places.  There is no ambiguity in differentiating processes 

at the reaction front and plastic deformation inside the lithiated silicon.  

 We present a model of concurrent reaction and plasticity.  Existing analyses 

of lithiation-induced deformation and fracture have assumed diffusion-limited 

lithiation.[91],[115],[129]-[136]  In this chapter, motivated by experimental observations, we 

assume that the velocity of the reaction front is limited by the rate of the reaction of 

lithium and silicon at the front, rather than by the diffusion of lithium through the 

amorphous phase.  We identify the driving force for the movement of the phase 

boundary, and accommodate the reaction-induced volumetric expansion by plastic 

deformation of lithiated silicon.  The model is illustrated by an analytical solution of 

the co-evolving reaction and plasticity in a spherical particle.  We show that 

lithiation may induce high enough stress to stall the reaction, and that fracture is 

averted if the particle is small and the yield strength of lithiated silicon is low.   

 

6.2 A model of concurrent reaction and plasticity 

 Figure 6.1 illustrates an electrochemical cell, in which crystalline silicon and 

lithium react and form an amorphous phase of lithiated silicon: 

 
1 1

Li Si Li Six
x x

   (6.1) 

The two electrodes are connected through a conducting wire and an electrolyte.  The 

conducting wire may be connected to an external voltage source.  At the interface 

between the lithium electrode and the electrolyte, lithium atoms dissociate into 

lithium ions and electrons.  Lithium ions pass through the electrolyte, and electrons 
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pass through the conducting wire.  Since lithiated silicon is an electron conductor,[137] 

lithium ions and electrons recombine into lithium atoms upon reaching the silicon 

electrode.  Lithium atoms then diffuse through the lithiated silicon, and react with 

the crystalline silicon—at the reaction front—to form fresh lithiated silicon. The 

reaction causes the lithiated silicon to grow at the expense of the crystalline silicon 

and metallic lithium. 

 Migration of lithium ions in the electrolyte is relatively fast, so that the 

diffusion of lithium through the lithiated silicon and the reaction between lithium 

and silicon at the front may limit the velocity of the reaction front. Let D be the 

diffusivity of lithium in the lithiated silicon, V  the velocity of the reaction front, and 

L the thickness of the lithiated silicon.  These quantities form a dimensionless 

group: 

 
D

VL
  . (6.2) 

The parameter χ  characterizes the relative rate of diffusion and reaction. If χ  is 

large, the diffusion of lithium is fast, and lithiation is limited by the reaction. A 

representative value of diffusivity of lithium at room temperature in lithiated silicon 

is /sm1 0 216D .[89]  A reported velocity of the reaction front of the lithiation of a 

(100)-Si wafer is m /s1 02.1 11V .[124]
  We note that the reaction velocity may be 

dependent on the crystallographic directions.[125], [127] A systematic experimental study 

of such dependence will be discussed in Chapter 7.  For rates of diffusion and 

reaction to be comparable, 1  , and the thickness of the lithiated silicon is 

calculated to be mL 8 .  In typical nanostructured electrodes of silicon, the 
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feature size is less than a few hundreds of nanometers.[125]-[127] Thus, for electrodes at 

such size scales, the velocity of the reaction front is limited by the reaction of silicon 

and lithium at the front, rather than by the diffusion of lithium through the 

amorphous phase. 

 We next identify the driving force for the reaction, namely, the change in the 

free energy associated with the reaction that converts one lithium atom and 1/x 

silicon atoms into lithiated silicon.  Let rG  be the free energy of reaction (6.1) 

when both the stress and the applied voltage vanish.  When the conducting wire is 

connected through a voltage source, associated with converting one lithium atom into 

lithiated silicon, one electron passes through the conducting wire, so that the external 

voltage source does work e , where   is the voltage, and e  is the elementary 

charge (a positive quantity).  The driving force is further modified when the two 

phases, the crystalline silicon and the lithiated silicon, are stressed.  (The metallic 

lithium electrode is taken to be stress-free.)   Associated with converting one 

lithium atom into lithiated silicon, the crystalline silicon phase loses x/1  number of 

silicon atoms, and the stress in silicon does work xm /SiSi  , where Si

m  is the 

mean stress in the silicon at the reaction front, and Si  is the volume per Si atom.  

The amorphous phase gains x/1  silicon atoms and one lithium atom, so that the 

stress in the amorphous phase does work xm /SiLiSiLi xx   , where SiLix

m   is the mean 

stress in the amorphous phase at the reaction front, and SiLix   is the volume per 

unit of SiLix .   

 Combining the above contributions, we find that, when the reaction advances 
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by converting one lithium atom and 1/x silicon atoms into lithiated silicon, the net 

change in the free energy is 

  Li Si Li SiSi Si x x
1

r m mG G e
x
         . (6.3) 

We have neglected the dissipation at electrolyte/electrode interfaces, as well as inside 

the electrodes and electrolytes.  In our sign convention, a negative G  drives 

lithiation, and a more negative value represents a larger driving force. The free 

energy of reaction rG  takes a negative value.  In Figure 6.1, we have drawn the 

polarity of the voltage source in the direction that drives lithiation.  As expected, a 

compressive mean stress in the crystalline silicon promotes lithiation, whereas a 

compressive mean stress in the lithiated silicon retards lithiation.   

 This net change in the free energy is the driving force for the movement of the 

reaction front.  The velocity of the reaction front will increase as the magnitude of 

the driving force increases.  The reaction is taken to be thermally-activated, 

described by the familiar kinetic model:[138]  

 
0

exp exp 1
Q G

V V
kT kT

    
       

    
, (6.4) 

where kT is the temperature in the unit of energy, Q is the activation energy, and 0V  

is a parameter analogous to the exchange current density in a redox process.  The 

velocity of the reaction is taken to be positive when the crystalline silicon is consumed 

and the lithiated silicon grows.  When 0G  , the electrochemical cell is in 

equilibrium, and the reaction halts, 0V .  When 0G , the reaction front 

advances in the direction that consumes crystalline silicon, 0V .  When 0G  , 

it may seem that the reverse reaction would take place—the lithiated phase would be 
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consumed, silicon re-deposited at the reaction front, and lithium redeposited as 

lithium metal.  The reaction front would move in the direction opposite as that 

during lithiation.  However, experiments have suggested that during delithiation 

( 0G  ), the phase boundary remains stationary as lithium is removed from the 

amorphous layer.[124]  Thus, the forward and backward reactions seem to involve 

distinct kinetic processes.  Such complication should be considered in describing an 

accurate kinetic model. Nevertheless, in the case of kTG  , as is common in 

these systems at room temperature, the forward reaction is more prominent than the 

backward one.  Thus, the kinetics model of Equation (6.4), based on transition state 

theory, is still approximately valid.  In the following sections, we calculate the stress 

field and simulate the morphology of lithiated silicon with a prescribed velocity field. 

The considerations in Equations (6.3) and (6.4) may aid the planning of future 

experiments. 

 Associated with the reaction (6.1), the volume of the silicon electrode expands 

by the ratio   

 
Li Six

Si






. (6.5) 

The lithiation-induced expansion is too large to be accommodated by elastic 

deformation; rather, the large lithiated-induced expansion is accommodated by 

plastic deformation of the lithiated silicon.[91], [115]  The concurrent reaction and 

plasticity evolve a field of stress in both crystalline and lithiated silicon.  The 

reaction front is atomically sharp, the amorphous phase attains the fully lithiated 

state, and the crystalline silicon core remains free of lithium. The crystalline silicon is 
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modeled as an elastic material, and the lithiated silicon is modeled as an 

elastic-plastic material.  The elastic-plastic model can be found in the classic text of 

Hill.[88]  

  The models of reaction kinetics and elastic-plastic deformation, in 

combination, co-evolve the reaction front and elastic-plastic field.  At a given time, 

the location of the reaction front and the elastic-plastic field are known.  For a small 

increment in time, advance the reaction front by an amount following the kinetic 

model, and then accommodate the reaction-induced volumetric expansion by 

updating the elastic-plastic field.  Repeat the procedure to trace the co-evolution 

incrementally in time.   

 

6.3 Lithiation of a spherical particle of crystalline silicon 

 To illustrate the salient features of the model, we derive an analytical solution 

for a spherical particle.  A particle of pristine crystalline silicon, radius B, is taken to 

be the reference configuration (Figure 6.3a).  The velocity of the reaction front is 

taken to be the same everywhere on the front, so that the front remains to be a 

spherical surface as it advances, and the spherical symmetry is retained.  The 

magnitude of the velocity, however, may change as the reaction progresses.  At time 

t, Figure 6.3b, the particle becomes a core-shell structure, with the radius of the 

crystalline core being A , and the outer radius of the amorphous shell being  tb .  

The function  tA  specifies the extent of reaction, and the velocity of the reaction 

front is   dttdAV / .  In the reference configuration, an element of crystalline 
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silicon is identified by the radius R.  At time t, this element is lithiated and moves to 

a place of radius r. The function  tRr ,  specifies the field of deformation.  In 

representing a field, we may choose either R or r as an independent variable. One 

variable can be changed to the other by using the function  tRr , . We will indicate 

our choice in each field explicitly when the distinction is important. 

 

 

Figure 6.3. Lithiation of a spherical particle of crystalline silicon. (a) The pristine crystalline 

silicon, radius B, is taken as the reference configuration, in which a spherical surface is 

marked by the radius A, and an element of silicon by the radius R. (b) At time t, silicon in the 

shell outside the radius A is lithiated, and the element R moves to a new position of radius r. 

 

 Elastic strain is much smaller than the volumetric strain associated with the 

phase transition.  To focus on the main ideas, we neglect elastic strains of both 

phases, and model the crystalline silicon as a rigid material, and the lithiated silicon 

as a rigid-plastic material. Consequently, the expansion of the particle is entirely due 

to lithiation.  Consider the shell of the lithiated silicon between the radii A and r.  

This shell is lithiated from a shell of the pristine crystalline silicon between the radii 

A and R.  The ratio of the volume of the lithiated shell over the volume of the 

crystalline shell is  , so that 
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  3 3 3 3r A R A   . (6.6) 

This equation gives the function  tRr ,  once the function  tA  is given.  That is, 

 tA  fully specifies the kinematics of the spherical particle.  In particular, the outer 

radius of the lithiated silicon is obtained by setting R = B in (6.6):   

  
1/3

3 3 3b A B A   
 

. (6.7) 

The radial and hoop stretches can be calculated from 

 
   , ,

,     
r

r R t r R t

R R


 


 


. (6.8) 

 The crystalline core is in a state of homogeneous hydrostatic compression.  

The stress field in the amorphous shell, however, is inhomogeneous.  Each material 

element in the shell is subject to a state of triaxial stresses.  Let 
r

  be the radial 

stress, and 


  the hoop stress (Figure 6.4a).  We adopt a commonly used 

idealization that plastic deformation is unaffected when a hydrostatic stress is 

superposed.  Superposing a hydrostatic stress of magnitude 
r

 , we observe that the 

state of plastic deformation of the element subject to the triaxial stresses is the same 

as the state of the plastic deformation of the element subject to equal biaxial stresses, 

r
  .   

 Figure 6.4b sketches the stress-stretch relation in terms of the stress r
   

and the strain θλlog .  For simplicity, the yield strength of the lithiated phase, 
Y

 , 

is taken to be constant, independent of the amount of deformation and the 

concentration of lithium. An element of newly lithiated silicon is compressed in the 

hoop directions, and is in the state Yr   .  Subsequently, this material 

element is pushed outward by even newer lithiated silicon, and undergoes elastic 
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unloading.  Because the elastic strain is negligible compared to lithiation-induced 

strain, the elastic unloading is represented by the vertical line in Figure 6.4b.  After 

elastic unloading, an element plastically deforms under Yr   . 

 
Figure 6.4. (a) The state of plastic deformation of an element subject to the triaxial stresses 

 , ,r      is the same as that of an element subject to equal-biaxial stresses   r . (b) 

The stress-strain relation in terms of the stress   r  and the strain log  .  When 

Yr   , the plastic deformation is tensile in the hoop direction.  When 

Yr   , the plastic deformation is compressive in the hoop direction.  The elastic 

strain is negligible compared to lithiated strain, so that elastic part of the stress-strain relation 

is represented by a vertical line. 

 

 

 The balance of forces acting on a material element requires that 
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. (6.9) 

Setting Yr    in (6.9) and integrating over r with the traction-free boundary 
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condition,   0, tbr , we obtain the radial stress in the shell: 

  2 log / ,
r Y

b r A r b     . (6.10) 

The hoop stress inside the shell, away from the reaction front, is determined from 

Yr   , giving 

  2 log / ,
Y Y

b r A r b


      . (6.11) 

As discussed above in connection with Figure 6.2, in the shell at the reaction front, 

the element of the freshly lithiated silicon undergoes plastic deformation, which 

elongates the element in the radial direction.  The hoop stress in the element of 

freshly lithiated silicon is determined from Yr   , giving 

  2 log / ,
Y Y

b A r A


      . (6.12) 

A comparison of (6.11) and (6.12) indicates a jump in the hoop stress by magnitude 

Y2 .  This jump is caused by our neglecting the elastic strain.  Should we include 

elastic strain, the hoop stress would make a transition from (6.12) to (6.11) within a 

very thin shell.   

 As mentioned above, the core is in a state of homogeneous and hydrostatic 

compression.  In order to balance forces, the radial stress is continuous across the 

reaction front.  Setting Ar   in (6.10), we obtain the stress field in the crystalline 

core: 

  2 log / ,
r Y

b A r A


      . (6.13) 

 For illustration, Figure 6.5 plots the stress field when the reaction front is at 

/ 0.4A b  .  As expected, the core is in a homogeneous state of hydrostatic 

compression, but the stress field in the shell is triaxial and inhomogeneous.  The 
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radial stress in the shell is compressive, with   0, tbr  prescribed as the boundary 

condition.  Because of the triaxial state of stress, the magnitude of the stress 

component readily exceeds the yield strength.  The hoop stress is tensile at the 

external surface of the particle,   Ytb  , , and gradually becomes compressive 

inside the shell.  Near the reaction front, the hoop stress jumps by amplitude Y2 , 

as previously discussed. 

 

Figure 6.5. Stress field in a spherical particle when the reaction front is at / 0.4A b . (a) 

radial stress, (b) hoop stress. 

 

 For the spherical particle, the field of stress and the field of deformation are 

fully determined once the radius of the core A is specified.  We now examine how 

the stress affects the movement of the reaction front.  The mean stress in the 

crystalline silicon is  AbYm /log2Si   .  At the reaction front, the mean stress in 

the lithiated silicon is   3/2/log2SiLix
YYm Ab   .  Inserting these expressions 

into (6.3), we obtain the driving force for the movement of the reaction front:  

  
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 
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   
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  
. (6.14) 

The contribution due to the stresses is plotted in Figure 6.6, where the horizontal axis 
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is the normalized radius of the crystalline core bA/ .  In making this plot, we have 

adopted the following values: 4 ,[17] 7 5.3x ,[124] GPa1Y ,[117] and 

329Si m1 00.2  .[92]  As expected, the contribution due to the stresses is positive 

and retards lithiation.  The magnitude of the contribution increases as the 

crystalline core shrinks.  Recall that the free energy of formation of lithiated silicon 

is small; for example, eV1 8.0 rG for amorphous Li2.1Si.[120]  Consequently, the 

reaction can readily generate large enough stress to completely counteract the 

electrochemical driving force, stalling the reaction.  We note that the free energy of 

reaction, rGΔ , differs for amorphous Li-Si phases with various Li concentrations; the 

experimental data on such functional dependence is unavailable to date. 

 
Figure 6.6.  The contribution of the stress to the driving force of lithiation is plotted as a 

function of the normalized radius of the core. 

 

 The curvature of the electrode plays a key role in this contribution of the 

stress to the free energy.  To illustrate this point, consider a flat crystalline silicon 

electrode.  In the initial stages of lithiation, the amorphous phase exists as a thin 
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film on a crystalline silicon substrate.  As previously mentioned, the biaxial stress in 

the freshly lithiated silicon is at the compressive yield strength.  The stress in the 

crystalline silicon is zero.  Using the same representative values as for the spherical 

particle, the contribution from the stress to the free energy in (6.3) is 0.089eV .  As 

with the spherical particle, in a thin film, the stresses retard lithiation.  However, the 

value of this contribution is small compared to the values found for the spherical 

particle (Figure 6.6) and does not vary with the extent of lithiation.  Hence, we 

predict that the curvature can greatly influence the rate of lithiation of crystalline 

silicon. 

 

6.4 Reaction-induced fracture 

 We now analyze reaction-induced fracture using an approach similar to that 

described in several recent papers.[11], [12], [91]   We focus on fracture caused by the 

tensile hoop stress during the lithiation of a spherical particle of crystalline silicon.  

A circumferential crack, depth d, is assumed to preexist in the particle, as illustrated 

in Figure 6.7.  We ask if the lithiation-induced stress will cause the crack to grow. 

The propagation of the crack, should it occur, is assumed to be a much faster process 

than the plastic flow.  Consequently, in analyzing fracture, we assume that no 

further plastic deformation occurs during the propagation of the crack, and we adopt 

linear elastic fracture mechanics.  The reduction in the elastic energy associated 

with the crack advancing a unit area defines the energy release rate, G.  Dimensional 

analysis dictates that the energy release rate should take the form 
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2

YG Z b
E


 , (6.15) 

where E is Young’s modulus, and Z is a dimensionless number to be determined by 

solving the elastic boundary-value problem.  At a given time, once the location and 

the depth of the crack are given, Z is uniquely determined.  For the lithiation of a 

spherical particle, the energy release reaches the maximum value when the particle is 

fully lithiated, and the length of the crack equals the size of the regime where the 

hoop stress is tensile, /   0.395d b . Therefore, the calculation gives a conservative 

critical particle size to avoid fracture. We use the commercial finite-element software 

ABAQUS to calculate the energy release rate. In the simulation, we input the stress 

distribution at the fully lithiated state, and the J-integral is used to calculate the 

energy release rate. Our calculation gives Z = 0.91.  

 

Figure 6.7. A pre-existing circumferential crack in a spherical particle of electrode. 

 Let   be the fracture energy of the particle. No pre-existing flaws will 

advance if the maximum energy release rate is less than the fracture energy.  Thus, 

(6.15) defines a critical particle size:  
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2cr
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b

Z


 . (6.16) 

When the size of the particle is below this critical value, fracture is averted.  As a 

result, fracture is averted if the particle is small and the yield strength is low.  Taking 

representative values, 210 J/m  ,[91] 35 GPaE  , and 1 GPa
Y

  ,[82] we find that 

the critical radius for fully lithiated silicon is  380 nm
cr

b .  The corresponding 

critical radius of the pristine crystalline silicon is thus 239 nm
cr

B . 

 

6.5 Summary 

 Crystalline silicon and lithium react to form lithiated silicon.  The reaction 

front is located at the atomically sharp phase boundary between the crystalline silicon 

and lithiated silicon.  The reaction generates a large volumetric expansion, which is 

accommodated by plastic deformation in the lithiated silicon.  This chapter 

describes a model that co-evolves the reaction front and plastic deformation.  The 

velocity of the reaction front is related to the change in the free energy through a 

kinetic model, while the stress field is evolved according to the elastic-plastic theory.  

The model is illustrated with the lithiation of a spherical particle of crystalline silicon. 

We show that fracture is averted when the particle is small and the yield strength of 

lithiated silicon is low. It is hoped that model will aid in the planning of future 

experiments and atomistic simulations.  
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Chapter 7 

Kinetics of the Initial Lithiation of Crystalline Silicon 

Electrodes 

 

7.1 Introduction 

 As mentioned in Chapter 6, numerous nanostructured electrodes have been 

fabricated from crystalline silicon.  During the initial lithiation process, crystalline 

silicon and lithium react at room temperature, forming an amorphous phase of 

lithiated silicon.[79],[122],[124]-[127],[137],[139]-[142] First-principles calculations have revealed 

many atomic details of this phase transformation.[137],[139]  Likewise, various 

experimental techniques have provided insight into this amorphization 

process.[122],[140]-[142]  For example, Chon, et al. have demonstrated that the phase 

boundary between {100} crystalline silicon and amorphous lithiated silicon is 

atomically sharp.[124]  Additionally, Liu, et al. have observed that under a constant 

potential the motion of the phase boundary between crystalline silicon and 

amorphous lithiated silicon is linear in time along the [112] direction.[125]  This latter 

experiment indicates that the rate of lithiation is not limited by diffusion through the 

lithiated phase but instead by short-range atomic processes at the phase boundary.  

These processes include breaking Si-Si bonds and forming Li-Si bonds.  Further 

evidence of this phenomenon was provided by the observation of lithiated silicon of 

anisotropic morphologies, which suggest that the reaction at the phase boundary is 

fastest in the <110> direction of crystalline silicon.[125]-[127]  In Chapter 6, we 
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proposed that the observed anisotropic morphologies are due to the variation in the 

short-range atomic processes at the reaction fronts in different crystallographic 

orientations.[143]  A similar theoretical analysis was proposed by Yang et al.[144]  In 

general, any of a number of kinetic processes may be rate-limiting or multiple kinetic 

processes can significantly contribute to the overall kinetics of lithiation. Moreover, 

experimental measurements of varying phase boundary velocities for different 

crystallographic orientations are lacking. 

 To provide insight into the pertinent kinetic processes, in this chapter, we 

present an experimental study quantifying the kinetics of the initial lithiation of 

crystalline silicon.  Crystalline silicon wafers of {100}, {110}, and {111} orientations 

were lithiated at various currents, and the response of the potential was measured.  

To interpret these data, we have constructed a kinetic model that considers three 

kinetic processes in series:  the redox reaction at the electrolyte/lithiated silicon 

interface, the diffusion of lithium through the lithiated phase, and the chemical 

reaction at the lithiated silicon/crystalline silicon interface.  Using this model and 

experimental data, we can determine which kinetic processes are the most important.  

In particular, from our experiments, we can quantify the rates of reactions at the 

interfaces as a function of crystal orientation.  Additionally, we can provide a lower 

bound on the diffusivity of lithium through the lithiated silicon phase.  Using the 

measured reaction rates, we have implemented a model of concurrent reaction and 

plasticity into the finite element software ABAQUS.  This simulation accurately 

predicts anisotropic morphological evolution and anisotropic fracture during initial 
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lithiation of crystalline silicon nanopillars of various axial orientations. 

 

7.2 Experimental procedure 

Silicon wafers of three orientations – {100}, {110}, and {111} – were used as 

the working electrodes.  The wafers were all doped with phosphorous and had 

similar and low resistivity  5 10 cm  .  Due to the low resistivity, the maximum 

Ohmic drop in potential through the thickness of the wafer was calculated to be less 

than 50 μV  for the current densities used in these experiments.  The {100} and 

{110} wafers were 500 m  thick, and the {111} wafer was 250 m  thick.  The 

wafers were cut into 6cm × 1cm  sections. 

The samples were cleaned with acetone and isopropanol.  Next, they were 

placed into a sputter deposition system (AJA Int. ATC 1800).  All sputtering targets 

used had a 50.8 mm  diameter, and depositions were performed at room 

temperature  o22 C .  First, the samples were plasma-cleaned in Ar at 20 mTorr 

and 24 W (RF) for 5 minutes.  Then, a 50 nm thick layer of Ti was deposited – 3 

mTorr of Ar at 100 W (DC) for 5 minutes, followed by a 250 nm layer of Cu – 5 mTorr 

of Ar at 200 W (DC) for 12.5 minutes.  These layers serve as the current collector.  

On top of these layers, 500 nm of Si3N4 was deposited using plasma-enhanced 

chemical vapor deposition (Nexx Cirrus 150 PECVD) to prevent electrochemical 

reaction of Li with the Cu and Ti layers.  During PECVD, a small region of the Cu 

layer was masked to allow for electrical contact with the electrode. It was observed in 

control experiments that no significant electrochemical signal was produced for an 
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electrode coated with 500 nm of Si3N4; thus, the nitride served its purpose as a 

passivating layer.   

Electrochemical cells were assembled in a glove box (Vacuum Atmospheres 

HE-43) in an ultra-high purity Ar atmosphere with less than 0.1 ppm moisture 

content.  The Si wafer was incorporated as the working electrode into a homemade 

three-electrode electrochemical cell with lithium foil used as the counter and 

reference electrodes. 1 M LiPF6 in 1:1 (vol%) ethylene carbonate (EC) : diethyl 

carbonate (DEC) was used as the electrolyte (Novolyte Technologies).  The cells 

were hermetically sealed inside the glove box using paraffin wax and tested using a 

VersaSTAT 3 potentiostat (Princeton Applied Research) outside of the glove box.  

The wafers were initially lithiated at a constant current density of 212.5 A /cm  for 

five hours followed by four other current densities:  26.25 A /cm , 225 A /cm , 

250 A /cm , and 2100 A /cm  applied in random order for one hour each with a 30 

minute open-circuit segment between each imposed current density.  To observe 

time-dependent effects in the experiments, all five current densities were then 

applied again (also in random order) for 30 minutes each.  Finally, an open-circuit 

segment was applied for 30 minutes.  For each sample, the two values of the 

measured potential corresponding to each current density were observed to be quite 

similar (usually within 1 mV), demonstrating that the results are quite reproducible.  

In other words, it does not seem that a time-dependent process such as continuous 

growth of the solid electrolyte interphase affects the measured potentials in a 

time-dependent manner.  It is possible that the effect of the SEI is minimized 
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because most of the growth may occur during the initial five-hour current segment.  

Still, it is important to note that the SEI will form during this experiment.  This 

growth process may be different from cell to cell and may be one source of variation 

in the measured potentials from sample to sample.  Additionally, it has been shown 

that below a potential of about 50 mV vs. Li/Li+, amorphous 
ηLi Si transforms to 

crystalline 
3.75Li Si .[145]  Thus, in an attempt to avoid this amorphous to crystalline 

phase transformation, the applied currents were selected such that the potential is 

maintained above 50 mV vs. Li/Li+. 

 To image the phase boundary, the samples were removed from the cell in the 

glove box, rinsed in DEC, dried, and broken into fragments.  These fragments were 

sealed in a container in the glove box and immediately transferred to the SEM 

chamber.  It was estimated that they were exposed to air for less than two minutes 

during the transfer process.   

 

7.3 Experimental results 

 Figure 7.1 shows a typical response of the potential to a series of applied 

currents for a {110} Si wafer.  When a certain constant level of current density is 

applied for some duration of time, the measured potential of Si vs. Li/Li+ reaches a 

particular value very quickly and remains at this value for the remainder of the time.  

The measured potential provides information about the concentration of lithium in 

the electrode at the interface with the electrolyte.  For two-phase coexistence, 

lithium insertion is accommodated by the growth of the lithium-rich phase at the 
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expense of the lithium-poor phase.  As a result, the concentration in the electrode at 

the interface with the electrolyte is fixed, rendering the potential constant in time for 

a constant current density. These two-phase plateaus are evident for all three tested 

orientations (Figure 7.1, B.1, B.2), suggesting the coexistence of crystalline silicon 

 c-Si and amorphous lithiated silicon  ηa-Li Si  for all three orientations.  This 

result agrees in part with a previous work, in which the boundary separating these 

two phases has been found to be atomically sharp for a {100} wafer.[124]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1.  Typical sequence of applied current density, i , and measured response of the 

potential vs. Li/Li+,  , for a {110} Si wafer. 
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Figure 7.2 shows the measured plateau potentials as a function of the applied 

current density for all of the samples.  The solid symbols represent the mean of 

three samples for the given crystallographic orientation, and the error bars represent 

1  standard deviation from the mean.  The variation from sample to sample is 

quite small, demonstrating the reproducibility of the experiment.   
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Figure 7.2.  Measured potential vs. Li/Li+,  , as a function of applied current density, i  

for all three orientations.  The solid symbols represent the mean of the tested samples, and 

the error bars represent 1  standard deviation from the mean.  The dashed lines represent 

fits from the kinetic model. 

 

Although Si transforms to numerous Li-Si crystalline phases at elevated 

temperatures,[90] it has been shown that electrochemical lithiation of Si at room 

temperature results in a metastable amorphous 
ηLi Si  phase, where 3.5  .[145]  It 

is likely that this phase exists over a finite range of lithium concentrations depending 

on the applied potential.  However, assuming a composition of 3.5Li Si  and 
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accounting for the corresponding volume expansion 
3.5Li Si Si/ 3.21    ,[146] we 

have calculated the expected thickness for the current history corresponding to these 

experiments.  These predicted thicknesses were then compared to the measured 

thicknesses using the SEM, and the values were in good agreement.  Evidently, the 

velocity of the phase boundary is directly correlated with the applied current density.  

Hence, in our experiments one can think of the current density, e.g. the horizontal 

axis in Figure 7.2, as the velocity of the moving phase boundary.  Thus, Figure 7.2 

shows that the {110} Si wafers are the “fastest” for a given potential.  For instance, at 

120 mV vs. Li/Li+, the interpolated average current densities for the {110}, {100}, and 

{111} Si wafers are 247.1 μA/cm , 
27.4 μA/cm , and 27.7 μA/cm , respectively.  Such 

discrepancy in the velocities has important ramifications for lithiation of crystalline 

silicon structures with various crystal facets exposed.  For instance, these 

measurements of varying phase boundary velocities can accurately account for 

anisotropic morphologies and fracture patterns developed in crystalline silicon 

nanopillars of various axial orientations, as will be discussed in Section 7.6.   

 

7.4 A kinetic model of coupled redox reaction, diffusion, and 

chemical reaction 

 Figure 7.3 illustrates an electrochemical cell, in which crystalline silicon and 

metallic lithium react and form an amorphous phase of lithiated silicon: 

   Li Si Li Si  


   .  (7.1) 

The two electrodes are connected through a conducting wire and an electrolyte.  The  



 111 

 

Figure 7.3.  In an electrochemical cell, crystalline silicon and lithium react at room 

temperature, forming an amorphous phase of lithiated silicon.  The concentrations C1 and C2 

represent the concentration of lithium in the lithiated silicon phase at the given interfaces.  

The dashed line represents the variation of the concentration of lithium as a function of 

position in the Si electrode.  The position in the lithiated phase
 
is denoted by y and the total 

thickness of the layer by y0.  The Ji denote the fluxes of lithium at various positions:  J1 at 

the interface between the electrolyte and the lithiated silicon phase, J2 in the lithiated silicon 

phase, J3 at the phase boundary between lithiated silicon and crystalline silicon. 

 

conducting wire may be connected to an external voltage source.  At the interface 

between the metallic lithium electrode and the electrolyte, lithium atoms dissociate 

into lithium ions and electrons.  Lithium ions pass through the electrolyte while 

electrons pass through the conducting wire.  Upon reaching the silicon electrode, 

lithium ions and electrons recombine into lithium atoms.  We expect that this latter 

process occurs at the interface between the electrolyte and the ηa-Li Si , as the silicon 

samples have fairly large electric conductivity (Section 7.2) and lithiated silicon has 

even larger conductivity because of its metallic-like properties.[137],[146]  Lithium 

atoms then diffuse through the lithiated silicon and react with the crystalline 
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silicon—at the reaction front—to form fresh lithiated silicon, 
ηa-Li Si . This process at 

the c-Si /
ηa-Li Si  interface involves breaking of silicon-silicon bonds and formation 

of lithium-silicon bonds.  Overall, this lithiation process causes lithiated silicon to 

grow at the expense of the crystalline silicon and metallic lithium. 

 We now propose a model to quantify the relationship between the measured 

potential and the applied current density, accounting for the motion of the phase 

boundary.  To do so, we adopt a modified version of the Deal-Grove model for 

thermal oxidation of c-Si.[147]  In the model, the concentration of lithium in the 

lithiated phase is a function of position, y  (Figure 7.3).  We take the reference state 

as that of amorphous lithiated silicon of a given composition—
ηLi Si —in metastable 

“equilibrium” with crystalline silicon.  In the current state, the composition becomes 

η+Li Si
, where   is a function of position y  in the silicon electrode. 

 Lithiation is driven by the externally applied voltage or current density, and 

involves three kinetic processes:  the redox reaction at the electrolyte/
ηa-Li Si  

interface, the diffusion of lithium through the 
ηa-Li Si  phase, and the reaction at the 

ηa-Li Si /c-Si interface.  The three kinetic processes are concomitant and are in series:  

any of these processes may be rate-limiting or they may occur at comparable rates 

such that multiple processes govern the lithiation process.   

 Associated with the redox reaction, +Li Lie  , we take the flux through the 

electrolyte/ ηa-Li Si  interface, 1J , as given by the Butler-Volmer equation: 

  
 0

1

1
exp expcurr curr

eq eq

Fi F
J

q RT RT

   
                  

, (7.2) 

where 0i  
is the exchange current density, q  is the elementary charge,   is the 
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charge transfer coefficient, F  is Faraday’s constant, R  is the ideal gas constant, T  

is the temperature,   is the potential of the electrode (i.e., the measured voltage), 

and curr

eq
 

is the equilibrium potential in the current state, corresponding to the 

lithium concentration in the electrode near the electrolyte/
ηa-Li Si  interface.  

Henceforth, we will use 1/2   for simplicity. 

 In the lithiated phase,    is the number of lithium atoms hosted by each 

silicon atom.  We regard   as a constant and   as a small deviation,   .  As 

a result, the diffusion of lithium atoms in the lithiated silicon phase is driven by the 

position-dependence of the composition,  y .  Let C  be the concentration of 

lithium in the lithiated phase (i.e., the amount of lithium per unit volume of the 

lithiated phase).  The concentration of lithium in this phase relates to the 

composition by  
ηLi Si/C     , where 

ηLi Si  is the atomic volume of the lithiated 

phase.  We take the flux, 2J , to be driven by the gradient in the concentration of 

lithium through the thickness of the lithiated silicon: 

  2

C
J D

y


 


, (7.3) 

where D  is the diffusivity of lithium in the lithiated silicon.  Because   , D  is 

taken to be a constant, independent of the concentration.  In the steady state, the 

flux is independent of the position, and the concentration varies linearly in the 

position, so that  2 1 2 0/J D C C y  , where 1C  is the concentration of lithium in 

the lithiated silicon at the interface between the electrolyte and the lithiated silicon, 

2C  is the concentration of lithium in the lithiated silicon at the interface between the 

lithiated silicon and crystalline silicon phases, and 0y  is the thickness of the 
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lithiated silicon. 

 At the interface between the lithiated silicon and the crystalline silicon phases, 

a chemical reaction occurs, as given by Equation (7.1).  The reaction is driven by the 

excess lithium 2  in the lithiated silicon at this interface.  The rate of reaction 

controls the flux of lithium across the interface, and we take the corresponding 

lithium flux to be given by the first-order relation: 

  
η

2
3

Li Si

J k





, (7.4) 

where k  is the rate of the reaction. 

 Using the Nernst equation, we can relate the equilibrium potential curr
eq

 
to 

the excess lithium 1  in the lithiated silicon at the interface with the electrolyte: 

  
 

1

1

curr ref

eq eq

RT

F



 

 
    

  

, (7.5) 

where ref

eq  is the equilibrium potential of 
ηa-Li Si  in the reference state  0  . 

 With Equations (7.2) – (7.5), we can derive a relation between the applied 

current density, i , and the measured potential,  , in the steady state.  For the full 

derivation of this relation, please see Appendix B.2.  The result of this derivation is: 

  
 

ηLi Si 0

0

1
2sinh 1

2 1

ref

eq

kyi F RT
i

i RT F q D k 

     
                

.

 

(7.6) 

 It is important to note that there are three intrinsic time scales in this model:  

η0 0 Li Si/qy i  , 2

0 /y D , and 0 /y k , associated with the electrolyte/electrode surface 

reaction, the diffusion through the ηa-Li Si  layer, and the reaction at the 

ηa-Li Si /c-Si interface.  There is also a time scale 
η0 Li Si/qy i   associated with the 

applied current density.  These four time scales form three dimensionless groups:  
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η0 Li Si /i kq , 0 /ky D , and 0/i i .  The parameter 0 /ky D  characterizes the relative 

rates of reaction at the 
ηa-Li Si /c-Si interface and diffusion through the 

ηa-Li Si  

phase.  If 0 / 1ky D  , the reaction at the 
ηa-Li Si /c-Si interface is fast, and 

Equation (7.6) becomes: 

  
 

ηLi Si 0

0

2sinh
2 1

ref

eq

yi F RT
i

i RT F q D 

    
       
      

. (7.7)

 

During a segment where the current density is prescribed as a constant, the thickness 

of the lithiated layer, 0y , increases with time.  As a result, the potential,  , 

decreases with time.  Such behavior is indeed observed in numerous electrochemical 

experiments, including the lithiation of amorphous sputtered silicon, and is 

indicative of a diffusion-limited process. 

 In contrast, if 0 / 1ky D  , the diffusion of lithium through the lithiated 

phase is fast, and Equation (7.6) becomes: 

  
 

ηLi Si

0

1
2sinh

2 1

ref

eq

i F RT
i

i RT F q k 

    
       
      

. (7.8) 

Here, we take the reaction-rate, k , along a given crystal direction as a constant.  In 

this limit, during a segment where the current density is prescribed as a constant, the 

potential,  , is likewise a constant.  This observation is consistent with the 

previous discussion concerning our observed plateaus in potential, i.e. this 

reaction-limited situation corresponds to a moving phase boundary.   

 Another possible limit of Equation (7.6) occurs when the applied current 

density is very small such that 
 

ηLi Si 0 1
1 1

1

ky
i

q D k 

  
  

  
, giving 
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   
0

2sinh
2

ref

eq

i F

i RT

 
   

 
, (7.9) 

which recovers the Butler-Volmer equation.  It should be noted that the relative 

rates of diffusion and reaction at the
 ηa-Li Si /c-Si interface are irrelevant in this limit.  

Instead, both of these rates must be fast compared to the applied rate of insertion.
 

 

Once again, during a segment where the current density is prescribed as a constant, 

the potential,  , is likewise a constant.  This limit is
 

known in literature as a 

process limited by the rate of the “surface reaction”.[148]  

 Figure 7.4 demonstrates the effects of varying the intrinsic dimensionless 

parameters 0 /ky D and 
η0 Li Si /i kq  for a fixed value 0/ 1i i  .  To produce this 

figure, we have solved Equation (7.6) for the potential,  , for given values of the 

dimensionless constants.  The various curves represent different values of the 

dimensionless constant
η0 Li Si /i kq .  During an electrochemical experiment at a 

constant current density, the thickness of the lithiated layer, 0y , will increase in time.  

Thus, the horizontal axis is representative of time during such an experiment.  The 

transition from a reaction-controlled to a diffusion-controlled process can clearly be 

seen as 0 /ky D  increases.  Also, larger values of 
η0 Li Si /i kq  indicate a slower 

rate of reaction at the interface between the lithiated silicon and the crystalline silicon, 

which results in larger values of overpotential, ref

eq . 
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Figure 7.4.  Potential predicted from kinetic model as a function of the dimensionless 

constant 0 /ky D .  The various curves represent different values of the dimensionless 

constant 
η0 Li Si /i kq .  In this simulation, 0/ 1i i  . 

 

 We should also remark that within this model it is impossible to separate the 

contributions of the reactions at each interface from a single experiment.  This is 

evident if we take the further limit of Equation (7.6) for which 0i i : 

  
 

ηLi Si

0

1 1

1

ref

eq

RT
i

F q k i 

 
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  

. (7.10) 

From Equation (7.10), it is clear that if one reaction is much faster than the other, the 

measured relation between i  and   gives information on the slower process.  If 

both contributions in brackets are comparable, a single measurement relating i  and 

  does not give distinct information on both 0i  and k .  It may be possible, 

however, to quantify the individual contributions of the reactions at these interfaces 

from a set of multiple experiments in which one of these parameters is constant (or 

does not exist).  For instance, one could measure the velocity of the phase boundary 
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in lithium-silicon diffusion couples for silicon wafers of various orientations.  This 

experiment would give information on the parameter k , as the parameter 0i  

associated with the redox reaction is unimportant.   In another experiment, 

amorphous silicon samples could be examined.  In these amorphous silicon samples, 

the electrode is a single phase with a continuous variation in the lithium 

concentration during lithiation.  Hence, only diffusion and the redox reaction at the 

electrolyte/electrode contribute to the kinetics of the insertion process.  Thus, 

experiments could be performed to carefully characterize  0i C  near the 

compositions of interest.  Furthermore, a set of multiple experiments in which 0i  is 

a constant but k  varies would give information on both parameters.  We believe 

this latter situation applies to our experiments, as k  depends on the 

crystallographic orientation, while 0i  is the same during each experiment.   

 

7.5 Comparison of kinetic model to experimental results 

 We now apply the kinetic model to our experimental data.  Upon close 

examination of all of our data, we have found that the majority of the non-zero 

constant current segments produce extremely flat profiles in potential with time (see 

for instance, Figure 7.1).  The only exception to flat potential profiles occurred in 

some of the {100} and {111} samples during the largest current density used, 

2100 A /cm .  In these anomalous segments, the potential increased with time 

(Figure B.1, B.2).  As mentioned in the previous section, if the lithiation process 

were controlled by diffusion through the lithiated silicon phase, the potential would 
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decrease with time.  Thus, we do not believe that the lithiation process is controlled 

by diffusion during these segments.  We are uncertain about the precise origin of 

these upward sloping potentials, although they may correspond to some lithium from 

ηa-Li Si  being consumed by the formation of solid electrolyte interphase (SEI). 

 The data in Figure 7.2 and other experiments also suggest anisotropy in 

lithiation of crystalline silicon.[125]-[127]   Recalling that the lithiated phase is 

amorphous, it is difficult to imagine a source of anisotropy if the kinetics of the 

lithiation process were dominated by the reduction reaction at the 

electrolyte/
ηa-Li Si  interface.  One may argue that the redox reaction depends on 

the nature of the SEI that forms between the electrolyte and the specific electrode, 

potentially leading to anisotropy.  However, it seems improbable that the structure 

and composition of this SEI are strongly affected by the crystal orientation of the 

silicon, as the lithiated silicon side of this interface becomes amorphous during the 

early stages of the lithiation process.  In contrast, anisotropy seems natural if the 

reaction at the 
ηa-Li Si /c-Si interface contributes to the overall kinetics of the 

lithiation process.  For this reaction to advance, cooperative rearrangement of atoms 

must occur, involving breaking and re-forming bonds.  Surfaces of silicon in various 

crystallographic orientations have drastically different atomic structures, which can 

readily result in different rates of reaction on these different surfaces.  For instance, 

such anisotropy has been observed in the rate of thermal oxidation of silicon of 

various crystal orientations.[149],[150]  Thus, we believe that the reaction at the 

ηa-Li Si /c-Si interface must contribute to the observed relationship between current 



 120 

density and potential as shown in Figure 7.2. 

 As previously mentioned, it is impossible to separate the contributions of the 

reactions at each interface from a single experiment.  However, we believe that 0i  

is independent of crystal orientation, while k  is a function of crystal orientation.  

Since we have experiments for various crystal orientations of the silicon, we can fit 

both 0i  and k .  To do so, we have written in a program in Matlab to solve 

Equation (7.8) for a given k  and 0i  to produce a relationship between the applied 

current densities and predicted potentials.  We have then performed a least-squares 

fit between the measured and predicted potentials to find the appropriate values of 

k  for each orientation and 0i .  The parameters used in this simulation are given in 

Table 7.1.  The value used for   is a representative value found in other 

experiments under similar conditions.[145]  Although this number may not be 

entirely accurate for our experiments, changing the value of   will only scale the 

predicted value of k  by some constant numerical factor and will not affect the 

relative values of k  for the various orientations.  Also, the equilibrium potentials 

used in the simulation are the instantaneous values measured during the open circuit 

voltage segments in our experiments.  It is important to note that the equilibrium 

potential associated with the {110} Si is approximately 20 mV  larger than the other 

two orientations. 

 The results of this fit are shown in Table 7.1.  Using these values, the 

predicted relationships between potential and current density are shown as dashed 

lines in Figure 7.2.  The predictions from the fit agree well with the data.  Both the 
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calculated reaction rate at the 
ηa-Li Si /c-Si interface and the measured equilibrium 

potential are largest for {110} Si.  Each of these characteristics contributes to the 

phase boundary moving “fastest” in the <110> direction for a given potential. 

 

Parameter Value 

T  20 C  

  3.5 [145] 

3.5Li Si  -29 36.91×10 m [146] 

:  110ref

eq    149.2±2.33 mV  

:  111ref

eq    129.4 2.41 mV  

:  100ref

eq    128.3±3.05 mV  

ηLi Si / Si    3.21 [146] 

Y  1 GPa [82] 

SiE  160GPa [154] 

ηLi SiE
 12 GPa [116] 

ηSi Li Si   0.22 [154] 

0 *i  20.45 A/m  

:  110 *k    
-101.63×10  m/s  

:  111 *k    
-117.05×10  m/s  

:  100 *k    
-112.54×10  m/s  

 

Table 7.1.  Parameters used in simulations and calculated results.  Results calculated from a 

fit of the model to the experimental data are denoted by * . 
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 In the model, we have assumed a metastable equilibrium state, 
3.5Li Si , as 

motivated by the observations of Li, et al.[145]  For small deviations from this 

composition, we can treat the quantities  , D , 0i , and k  as constants, 

independent of the concentration of lithium in the lithiated silicon phase.  As a 

particular example, with the assumption that the lithiated phase is 
3.5Li Si , we would 

expect the measured equilibrium potentials during open-circuit segments to be 

independent of the crystal orientation of the silicon.  It was found, however, that the 

equilibrium potential for {110} Si was about 20 mV  larger than for the other two 

orientations.  It is possible that this discrepancy is due to a slightly different 

composition existing in the amorphous phase during the experiments on {110} Si.  

For instance, if the rate of the reaction at the 
ηa-Li Si /c-Si interface for {110} Si is 

fast compared to the insertion rate (i.e. applied current density), then the 

concentration of lithium in the lithiated phase may be slightly smaller than that of the 

{100} and {111} orientations.  This effect would result in a larger measured 

equilibrium potential, ref

eq , for {110} Si compared to the other orientations, which 

is consistent with the experiments.  Such dependence of the composition of the 

metastable phase on the orientation of the crystalline phase is not considered in our 

model; ref
eq  is simply taken as an input parameter measured from our 

experiments.  This interplay may be important for the lithiation process, however, as 

it further amplifies the anisotropy along different crystal directions.  Thus, once 

functions such as  C ,  D C ,  0i C , etc. are more carefully characterized, they 

can be incorporated into the kinetic model to make it more complete.  Still, we 
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believe that the important physics associated with the initial lithiation of crystalline 

silicon have been captured in our kinetic model.    

 The model also provides some information of the value of the diffusivity of 

lithium in amorphous silicon.  As discussed previously, it is evident from the flat 

potential profiles that diffusion through the lithiated phase is not the rate-limiting 

step.  Using the values from the fit for 0i  and k , however, we can substitute 

various values of D  into Equation (7.6) and evaluate the effect on the potential 

profiles.  The results are shown in Figure 7.5, where it is evident that the potential 

profiles would look drastically different if the diffusivity were as slow as 

17 22 10  m /s .  In comparison to the reaction-limited case, the measured potentials 

would be much smaller and would create profiles decreasing with time.  Moreover, 

these slopes would increase in absolute value with current density, as given by 

Equation (7.6).  If we applied our kinetic model to a system that is rate-limited by 

diffusion through the electrode, we could fit Equation (7.6) to the data to measure the 

value of diffusivity but as previously discussed, the overall kinetic process does not 

seem to be limited by diffusion through the amorphous layer during the initial 

lithiation of crystalline silicon.  Still, the results in Figure 7.5 can be used to estimate 

a lower bound on the diffusivity.  Bearing in mind that the actual data are similar to 

the solid gray line in Figure 7.5, a reasonable estimate of the lower bound for the 

diffusivity of lithium in 
3.5a-Li Si  is 16 22 10  m /sD   .  In comparison to values in 

the literature, Ding, et al. found a value of  16 21 10  m /s  for nano-crystalline silicon 

particles using the galvanostatic intermittent titration technique (GITT), cyclic 
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voltammetry (CV), and electrochemical impedance spectroscopy (EIS) at room 

temperature.[89]  Similarly, Xie, et al. found a value of 17 16 23 10 3 10  m /s     for 

sputtered amorphous silicon films using EIS at 20 C .[151] 
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Figure 7.5.  Predicted response in potential vs. Li/Li+, pred , for a {110} Si wafer with initial 

lithiated thickness of 1 m
 

subject to the current loading shown in Figure 7.1.  The various 

curves represent different hypothetical values of the diffusivity of lithium through the 

lithiated silicon phase. 

 

As a final comment, we have seen no evidence of diffusion-limited kinetics 

despite having lithiated samples to thicknesses on the order of microns.  In contrast, 

typical nanostructured electrodes of silicon have feature sizes less than a few hundred 

nanometers.[80],[79],[97],[152],[153]   Thus, under normal operating conditions, lithiation 

of crystalline silicon will be limited by the reaction of silicon and lithium at the 

reaction front, rather than by the diffusion of lithium through the amorphous phase.   
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7.6 Finite element modeling of the initial lithiation of crystalline 

silicon 

 We now use the measured velocities of the reaction fronts to quantify recent 

experimental observations.  This analysis is performed under the framework of a 

previously developed model of concurrent reaction and plasticity (Chapter 6).  The 

concurrent reaction and plasticity are simulated using the finite element program 

ABAQUS.  Within the context of the program, the lithiation-induced volumetric 

expansion is simulated as thermal expansion, while deformation in the lithiated 

silicon is modeled by the elastic-plastic theory (J2 plasticity).[88]  The crystalline 

silicon is modeled as an elastic material.  To simulate the movements of the reaction 

fronts, we prescribe a moving temperature field.  To avoid computational singularity, 

the temperature front, which simulates the reaction front, is located within a thin 

shell, whose size is much smaller than the feature size of the nanopillar but is 

sufficiently larger than the mesh size. Such regularization is used to afford a 

compromise between computational cost and accuracy. 

 To illustrate this model in combination with our experimental data, we 

simulate the morphological evolution and stress development during the lithiation of 

crystalline silicon nanopillars of various axial orientations.[126]  The black lines in the 

second column of Figure 7.6 show the crystal orientations of the sidewalls of these 

silicon nanopillars.  The velocities of the fronts depend on the crystallographic 

orientation, with values given by our experiments at 120 mV (so-called “partial 

lithiation” by Lee, et al.[126]).  In particular, at this potential, the relative velocities  
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Figure 7.6.  Comparison between experiments and finite element simulation of lithiation of 

crystalline silicon nanopillars of various axial orientations:  (a) <100>, (b) <110>, and (c) 

<111>.  The first column shows the experimentally observed morphology after lithiation from 

Lee et al.[126]  The red arrows indicate the fracture sites observed most frequently in 

experiments.[155]  The second column shows simulated morphology at a certain stage of 

lithiation.  The fully lithiated phase is given in red while the crystalline silicon phase is 

shown in blue.  The black outline shows the initial shape in the simulation and the 

corresponding orientations of the crystal facets.  The third column shows the maximum in 

plane stress at the same stage of lithiation.  The pink regions have stresses exceeding the 

yield strength.  The legend shows the stress in units of GPa . 
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were found to be 110 100 1116.4 6.1V V V
     

  .  It is important to note that within this 

model, the absolute velocities of the reaction fronts are not important in developing 

the stress and deformation fields; only the relative velocities matter.    In this 

simulation, we have used the following parameters: 
 ηLi Si Si/ 3.21    ,[146] 

1GPaY  ,[82] Si 160GPaE  ,[154] 
ηLi Si 12GPaE  ,[116] 

ηSi Li Si 0.22   .[154]  It should 

be noted that the modulus and Poisson’s ratio of the crystalline Si phase are taken as 

independent of orientation.  This approximation is made for simplicity of 

implementation into the ABAQUS model.  The modulus used for the crystalline 

phase is that of polycrystalline silicon, which is a representative modulus of the core 

in an average sense.  The pillars are modeled using plane-strain conditions, as 

motivated by experimental observations of a lack of growth in the axial direction.[126]  

Figure 7.6 shows the stress and morphology of the nanopillars after partial lithiation 

simulated using the procedure described above. The simulated anisotropic patterns 

agree extremely well with the experimental observations.[126]  

 Recently, it has been observed that under certain conditions these nanopillars 

will fracture anisotropically.[155]  Moreover, Lee, et al. surmised that this anisotropic 

fracture results from stress concentrations due to the anisotropic expansion of the 

nanopillars.[155]  Here, we quantify this idea using ABAQUS and our experimentally 

measured reaction front velocities.  In Figure 7.6, we observe that for the <100> and 

<111> nanopillars the maximum principal tensile stress occurs at the locations 

midway between neighboring {110} planes.  These locations are consistent with the 

fracture locations most frequently observed in the work of Lee et al.[155]  
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Furthermore, we observe that the maximum tensile stress can exceed the yield 

strength due to the triaxiality of the state of stress at these locations.  In the 

simulation of the <111> nanopillar, the state of stress was found to be approximately 

axisymmetric, implying that there should be little anisotropy in the locations of 

fracture.  In the work of Lee, et al. fracture was indeed observed at arbitrary 

locations albeit with a slightly higher incidence at locations between the {110} 

planes.[155]  Thus, our simulations agree quite well with their experiments. 

 

7.7 Summary 

 In this chapter, we have performed electrochemical experiments on {100}, 

{110}, and {111} crystalline silicon wafers.  These experiments indicate the existence 

of a moving phase boundary for all three orientations, indicating that short-range 

processes at the 
ηa-Li Si /c-Si interface significantly contribute to the kinetics of the 

lithiation process.  The velocity of this phase boundary was found to be faster for 

{110} silicon than for the other orientations.  Using the measured velocities, we have 

implemented a model of concurrent reaction and plasticity into ABAQUS.  This 

simulation accurately accounts for anisotropic morphologies and fracture patterns 

developed in crystalline silicon nanopillars of various axial orientations.  

Furthermore, we have presented a kinetic model accounting for the redox reaction at 

the electrolyte/ ηa-Li Si
 

interface, diffusion through the ηa-Li Si , and the chemical 

reaction at the ηa-Li Si /crystalline silicon interface.  From this model, we have 

quantified the rates of reactions at the interfaces and have provided a lower bound for 
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the diffusivity through the lithiated silicon phase.  We believe that this model 

accounts for the pertinent physics in electrodes that undergo two-phase coexistence 

and will have further value beyond the silicon system.  Thus, we hope this model will 

provide guidance for the design of future experiments and atomistic simulations.  
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Chapter 8 

Measurements of the Fracture Energy of Lithiated 

Silicon Electrodes 

 

8.1 Introduction 

 A number of recent experimental studies have measured mechanical 

properties of silicon electrodes. For instance, Sethuraman et al. used the substrate 

curvature method to measure the stress in thin-film silicon electrodes as a function of 

lithium concentration. They found that lithiated silicon flows plastically at a stress of 

~1.7 GPa for Li0.3Si, with this stress decreasing to ~1 GPa for Li2Si.[82] Soni et al. and 

Zhao et al. performed similar measurements and have found comparable results.[146], 

[156] Hertzberg et al. used nanoindentation methods to measure the hardness and 

elastic modulus of lithiated nano-crystalline thin-film silicon electrodes as a function 

of lithium concentration. They found that the hardness decreases from 5 to 1.5 GPa 

and the elastic modulus decreases from 92 to 12 GPa in transitioning from the pure 

nano-crystalline silicon phase to the fully lithiated phase (Li15Si4).[116] Sethuraman et 

al. measured the biaxial elastic modulus of thin-film silicon electrodes as a function 

of lithium concentration using the substrate curvature method, finding a biaxial 

modulus of 70 GPa for Li0.32Si and 35 GPa for Li3Si.[117] Kushima et al. measured the 

tensile strength of single-crystal silicon nanowires, finding a strength of 3.6 GPa for 

unlithiated silicon nanowires and a strength of 0.72 GPa for lithiated silicon 

nanowires (Li15Si4).[157] In addition to these experimental studies, a number of 
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theoretical works, including those of Chapters 4-6 in this thesis, have examined the 

fracture of silicon electrodes.[50],[68],[91],[94],[143],[158]-[160] An important parameter in these 

analyses is the fracture energy of the lithiated phase. Thus far, in these theoretical 

works, the values of the fracture energy are merely educated guesses since no 

quantitative measurements have been performed. Moreover, a single number is 

usually assigned, despite the possibility of the fracture energy varying with lithium 

concentration. 

 In this chapter, we devise a method to measure the fracture energy of lithiated 

silicon thin-film electrodes. To achieve this goal, we have constructed an 

electrochemical cell with an array of parallel electrodes allowing us to 

lithiate/delithiate the electrodes to different states of charge, while performing in-situ 

stress measurements. The electrodes were then examined by microscopy both to 

observe the morphological development of the cracks and to construct a bound on the 

critical state of charge corresponding to the formation of cracks. By determining this 

critical state of charge and knowing the corresponding state of stress, we quantify the 

fracture energy through an analysis from fracture mechanics. From the same set of 

experiments, we can obtain an additional measurement of the fracture energy at a 

second state of charge – at small concentrations of lithium – by determining the 

maximum value of the substrate curvature during delithiation. 

 

8.2 Experimental technique to measure the fracture energy of 

lithium-ion battery electrodes 
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 Silicon electrodes typically have features on the order of 100 nanometers and 

include nanowires,[79],[161] nano-porous structures,[152] nano-particles,[97],[110] and 

thin-films.[80],[94]-[96],[156]  Of these options, quantitative electrochemical 

characterization of individual nanowires and nanoparticles proves prohibitively 

difficult. Thus, in this study, thin films were selected as the working electrodes. Glass 

substrates with a thickness of 1 mm were cleaned with acetone and isopropanol and 

placed into a sputter deposition system (AJA Int. ATC 1800) with a base pressure of 

-8<10 Torr . All sputtering targets had a 50.8mm  diameter and depositions were 

performed at room temperature  22 C . First, the samples were plasma-cleaned in 

Ar at 20 mTorr and an RF power of 24 W for 5 minutes. Next, 15 nm of Ti was 

sputtered onto the substrates using a pressure of 3 mTorr of Ar and a DC power of 

100 W for 5 minutes. A 300 nm layer of Cu was then deposited on the Ti underlayer 

using a pressure of 5 mTorr of Ar and a DC power of 100 W for 15 minutes. The Cu 

film serves as current collector, while the Ti underlayer is used to improve the 

adhesion between the Cu film and the glass substrate. Finally, a 300 nm Si film was 

deposited on the Cu current collector using a pressure of 5 mTorr of Ar and a DC 

power of 100 W for 78 minutes. The working area of each silicon electrode was 8 mm 

by 20 mm. After deposition, x-ray diffraction was used to verify the amorphous 

structure of the sputtered Si thin-films.  

 Electrochemical experiments were conducted in a custom-fabricated hermetic 

Teflon electrochemical cell with a glass window (Figure 8.1). The cell employs a Li 

reference electrode, seven Si working electrodes, and seven Li counter electrodes. In 
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essence, it is a three-electrode configuration but with multiple working and counter 

electrodes operating in parallel. A schematic of the cell is shown in Figure 8.1; only 

three working and reference electrodes are shown for simplicity whereas seven of 

each are actually used in the experiments. This arrangement resulted in a total 

resistance from the galvanostat to the electrodes (including contact resistance with 

the electrode) of less than 2 Ω  for each connection, which resulted in a voltage drop 

of less than 400 μV  in these experiments. The cell was assembled in a glovebox 

maintained at <0.1 ppm  moisture and used a 1M solution of LiPF6 in 1:1:1 (weight %) 

ethylene carbonate: diethyl carbonate : dimethyl carbonate as the electrolyte. 

Electrochemical measurements were performed with a VersaSTAT 3 galvanostat 

from Princeton Applied Research. The seven silicon electrodes were lithiated 

simultaneously at a constant current density of 215 μA/cm (a C/16 rate assuming a 

capacity of 3579 mAh/g ) to a cutoff potential of 0.01 V . Although not pursued in 

this study, this cutoff potential in principle can be varied to examine properties as a 

function of lithium concentration. The relatively slow rate of lithiation was selected to 

allow enough time for diffusive equilibrium through the films.[78],[156]  The electrodes 

were then delithiated at the same current density  215 μA/cm . At various stages of 

delithiation (as marked by red arrows in Figure 8.2), the electrodes were 

disconnected one by one from the cell such that they were only partially delithiated. 

Delithiation then resumed with a new current such that the current density remained 

constant during the entire delithiation sequence. One electrode in each test was fully 

delithiated to a cutoff potential of 2V.   
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 For the electrode that was fully delithiated, the stress in the film was 

measured by monitoring the substrate curvature in situ during lithiation/delithiation. 

The average stress in the film was deduced from the curvature of the substrate using 

Stoney's equation[162],[163]: 
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where σ  is the average stress in the film, sE  is the elastic modulus of the substrate, 

sh  is the thickness of the substrate, 
fh  is the thickness of the film, sν  is Poisson’s 

ratio of the substrate, and ΔK  is the change in curvature of the substrate that 

results from the stress in the film. rσ  denotes the initial residual stress in the film, 

i.e., the stress that developed during sputter deposition. This stress was determined 

by measuring the curvature of the substrate before and after silicon deposition. It is 

important to note that knowledge of the properties of the film other than the 

thickness is not required to evaluate the stress using Stoney's equation. In the 

calculations, values of sE =77 GPa  and 0.22sν   were used for the glass substrates.   

 We should also note that SEI growth during the initial lithiation may 

contribute to the measured stress.  To address this point, we have performed 

additional experiments (not included here) on electrodes with identical surface areas 

but with different initial film thicknesses of 100 nm and 300 nm.  Due to the smaller 

film thickness, the SEI will have a larger relative contribution to the measured 

stresses in the 100 nm film.  However, the stresses (not accounting for SEI 

formation) that we measure in the two experiments are almost identical.  Hence, it 

appears that the stresses we measure in our experiments are primarily due to those 
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that develop in the silicon film, and we have thus neglected any contribution of the 

SEI to the measured stress. 

 The volume of the film, 
fV , is taken to be linear in the state of charge, 

   0 1f fV V βs  , (8.2) 

where 0

fV  is the initial volume of the film, β  is related to the atomic volumes  Ω  

by  Li3.75Si Si SiΩ Ω /Ωβ   , and s  is the state of charge of the silicon electrode, with 

a value of 0 representing pure silicon and a value of 1 representing the fully lithiated 

state (assumed to be 
3.75Li Si  with a capacity of 3579 mAh/g).[164]  According to 

Obrovac et al., Si will undergo a 280% increase in volume upon reaching the fully 

lithiated state of Li3.75Si, i.e., 2.8β  .[164]  Using atomic force microscopy, He et al. 

and Beaulieu et al. measured similar values in patterned amorphous silicon 

films.[165],[166] Moreover, both groups found that the volume increased linearly with 

lithium concentration.[165],[166]  For a thin-film geometry, lithium insertion is 

accommodated entirely by growth in the thickness direction due to the constraint in 

the in-plane directions placed by the relatively thick substrate. Thus, the thickness of 

the film, 
fh , takes the same form as in Equation (8.2): 

   0 1f fh h βs  , (8.3) 

where 0

fh  is the initial thickness of the film.  The initial thicknesses of the Si 

electrodes were measured by profilometry and were approximately 300 nm 

 15nm  for all of the sputtered films.  

 The curvature of the substrate was monitored with a multi-beam optical 

sensor (MOS) from k-Space Associates (Figure 8.1). The MOS employs an array of 
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parallel laser beams to measure the curvature of the substrate. The array of laser 

beams allows simultaneous illumination and detection, which in turn greatly reduces 

noise in the measurements caused by fluid motion in the electrochemical cell or by 

ambient vibrations. The cell is also placed on an anti-vibration table during testing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1. A schematic representation of the custom-made electrochemical cell with in-situ 

multi-beam optical sensor.  Only three working electrodes and counter electrodes are drawn; 

there are seven working electrodes and counter electrodes in the actual cell.  The stress is 

measured in one of the working electrodes, as depicted by the right-most green line, which 

shows the electrode after bending due to lithium insertion. 

 

The change in the curvature of the substrate (see Figure 8.1) is calculated from the 

geometric relation 
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where d  is the distance between two adjacent laser spots measured on the CCD 

camera, 0d  is the initial distance between the laser spots, α  is the angle of 

reflection of the laser beams, L  is the distance between the electrochemical cell and 

the CCD camera, and an  and en  are the indices of refraction of air and the 

electrolyte, respectively. Since the laser passes through air, the electrolyte, and an 

optical window, refraction of the laser beams at these corresponding interfaces must 

be taken into account, which is the source of the quantity /a en n . In the calculation 

of the stress, we took 1.42en   for the electrolyte[167] and 1an   for air. Neglecting 

refraction of the laser beams would result in a substantial error in the curvature 

measurement of approximately 40%. 

 The biaxial elastic modulus of the lithiated silicon is determined by measuring 

the stresses during the initial stage of delithiation. In this stage, the in-plane strain 

associated with lithium extraction from the electrode is accommodated entirely by 

elastic deformation. At a particular state of charge, s , the volume of the electrode is 

given by Equation (8.2). At a state of charge, Δs s , where Δs  is sufficiently small 

to ensure elastic deformation of the film, the volume of the film is 

 0 1 Δf fV V β s s     , and thus the volumetric strain is 

       Δ / Δ / 1f fV s s V s V s β s βs      . Hence, in going from a state of charge, s , 

to a state of charge, Δs s , the increment in the linear strain induced by lithiation, 

Δ lε , is 



 138 

  
1 Δ

Δ
3 1

l β s
ε

βs



. (8.5) 

Due to the constraint placed by the substrate, the total in-plane strain vanishes and 

the lithiation strain necessarily results in an elastic strain Δ Δe lε ε  , which in turn 

results in a stress given by Hooke’s law.  For a thin film, the stress state is equal 

biaxial and the increment in the stress Δσ  is 
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where 
fν  is Poisson’s ratio of the film and 

fE  is the elastic modulus of the film.  

Thus, 
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Using Equation (8.7), one can calculate the biaxial modulus of the film,  / 1f fE ν , 

by measuring the state of charge and stress during the elastic stage of delithiation. 

 To image the electrodes, they were removed from the cell in the glovebox, 

rinsed in dimethyl carbonate, and dried. Next, they were immersed in mineral oil and 

covered with a glass slide to prevent any exposure of lithiated silicon to air. The 

samples were then removed from the glovebox and examined using an optical 

microscope. This technique allowed us both to construct a bound on when cracks 

initially form and to examine the evolution of the crack morphology with further 

delithiation. The same goal could be achieved by direct monitoring of the surface of a 

single electrode during delithiation, but simultaneous integration of optical 

microscopy and stress measurements with the electrochemical cell is not 

straightforward. For observation in the scanning electron microscope (SEM), the 
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samples were sealed in an airtight container in the glovebox and immediately 

transferred to the SEM chamber. It was estimated that the samples were exposed to 

air for less than two minutes during transfer to the SEM. 

 

8.3 Fracture energy of lithiated silicon electrodes 

 Figure 8.2 shows a typical response of the potential and stress measured 

during lithiation/delithiation. During delithiation, the electrodes are removed one by 

one at the points represented by red arrows in Figure 8.2. In Figure 8.2a, we can see 

that the voltage gradually decreases with the state of charge.  This voltage profile can 

be contrasted with the extremely flat voltage profiles observed during the initial 

lithiation of crystalline silicon wafers (e.g. Figure 7.1).[124],[168]  Such flat profiles 

indicate a two-phase reaction in crystalline silicon, while the sloping profiles 

observed here indicate a single-phase reaction.  Recently, McDowell et al. and Wang 

et al. have performed in-situ transmission electron microscopy (TEM) observations 

during the initial lithiation of individual amorphous silicon nanoparticles.[169],[170]  

Both groups have identified a phase front separating amorphous silicon from 

amorphous lithiated silicon, i.e., the initial lithiation of amorphous silicon occurred 

by a two-phase mechanism in their experiments.[169],[170]  We propose that the 

lithiation rate is the critical difference between our experiments and those performed 

on the individual amorphous nanoparticles.  In the latter, full lithiation occurs in 

approximately 100 seconds, whereas in our work, full lithiation occurs over 16 hours.  

The relatively slow rates used in our experiments apparently engender lithiation 
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through a single-phase reaction mechanism. 

 

 

 

Figure 8.2. Representative responses in (a) potential vs. Li/Li+ and (b) stress as a function of 

lithium concentration from a galvanostatic test of a set of seven 300 nm a-Si thin films.  

During delithiation, the electrodes are disconnected at various concentrations of lithium, as 

indicated by the red arrows.  The inset in (a) shows a zoomed-in view near one of these 

points.  The letters near some of the arrows correspond to the images labeled in Figure 8.3.  

The green triangle in (b) indicates the location of the maximum tensile stress. 

 

(a) 

(b) 



 141 

 A typical sequence of the measured stress is shown in Figure 8.2b. The film 

initially is under residual tension ( 70MPa  in this case), which results from the 

sputtering process. The stress becomes more and more compressive as lithium is 

inserted into the electrode until it begins to flow plastically at a stress of -1.2 GPa  

and a concentration of 
0.4Li Si . Upon further lithiation, the film continues to flow 

plastically with a continuous small reduction in the stress, reaching a value of 

-450 MPa  at the fully lithiated concentration of 
3.75Li Si . We note that these values 

compare quite well to the hardness values reported by Hertzberg, et al. In particular, 

using the relation /3Yσ H , where H  is the indentation hardness, Hertzberg, et 

al. found values of 1.1 GPaYσ  for 0.6Li Si and 550 MPaYσ  for 
3.75Li Si .[116] 

During delithiation, the stress becomes more and more tensile until it begins to flow 

in tension at a stress of 500 MPa  and a concentration of 
3.4Li Si . Additional 

delithiation results in further plastic flow with a continuous increase in stress, 

reaching a maximum value of 1.12 GPa  at a lithium concentration of 
0.33Li Si . After 

this point, the measured value of the stress decreases with further delithiation. 

 We should also point out that in Figure 8.2, the horizontal axes are 

constructed by integrating the current during the experiment to get the total charge.  

However, the amount of charge does not necessarily represent the concentration of 

lithium in silicon, as SEI formation may consume some lithium.  Recently, 

Nadimpalli, et al. quantified the capacity loss due to SEI formation.[18]  In their 

experiments, they used the same electrodes, the same electrolyte, and very similar 

electrochemical loading conditions as in our experiments.  They have found that the 
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charge lost per surface had an upper bound of 20.023 mAh/cm .[18]  This loss 

corresponds to a capacity of 329 mAh/g  in our experiments, which is less than 10% 

of the total capacity  3579 mAh/g .  Thus, there may be a systematic error of at most 

10% in the values of the lithium concentration reported in Figure 8.2. 

  

 

Figure 8.3:  Optical micrographs of the electrodes tested in Figure 8.2.  The labels (a)-(d) 

correspond to the point at which the electrode was disconnected from the cell, as indicated in 

Figure 8.2. 

 

 Figure 8.3 shows optical micrographs of the electrodes at various extents of 

delithiation. The images in this figure were taken at locations near scratches in the 

film introduced by a diamond scribe.  The labels (a) – (d) in Figure 8.3 correspond 

(a) 

200 μm 

(b) 

200 μm 

(c) 

200 μm 

(d) 

20 μm 
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to the labeled red arrows shown in Figure 8.2, indicating the extent to which each of 

the electrodes was delithiated. The electrode in Figure 8.3a shows no evidence of 

fracture, whereas the electrode in Figure 8.3b does. From this observation, we can 

quantify a bound on the fracture energy by calculating the range of energy release 

rates between these two lithium concentrations (i.e., between the points labeled (a) 

and (b) in Figure 8.2b). Upon further delithiation, more cracks are formed, and the 

electrode develops a distribution of crack widths as illustrated in Figures 8.3d and 

8.4a. The very wide cracks (Figure 8.4b) are formed during the earlier stages of 

delithiation (such as those seen in Figure 8.3b) and widen with subsequent 

delithiation. This process is most likely caused by an interfacial sliding mechanism as 

discussed in a number of previous works.[94],[96],[159]  The narrower cracks (the 

majority of the cracks as seen in Figures 8.3d & 8.4a) are formed between the points 

indicated by arrows (c) and (d) in Figure 8.2, which allows us to calculate a value of 

the fracture energy at low concentrations of lithium (discussion to follow). 

 

 

 

  

 

 

Figure 8.4. SEM images near a FIB cross-section of a 300 nm a-Si electrode after one cycle at 

(a) 10,000x magnification (b) 50,000x magnification. 

 

1 μm 

(b) (a) 

2 μm 
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 To calculate these energy release rates, one has to be particularly careful due 

to the flow of the lithiated silicon during the experiments and the possibility of sliding 

at the interface between the lithiated silicon and copper. If the initial flaw size is 

small compared to the thickness of the film, the energy release rate, G , takes the 

form: 

  
2

f

σ a
G Z

E
 , (8.8) 

where Z  is a non-dimensional parameter and a  is the length of the initial flaw. 

For instance, for a crack of length 2a  in an infinite body, Z π .[114]  For a 

thin-film geometry, Nakamura and Kamath investigated the energy release rate as a 

function, /a h :  the ratio of crack length to film thickness.[171] For / 1a h  , the 

analysis given by Equation (8.8) is appropriate. For / 1a h  , Nakamura and Kamath 

show that the energy release rate becomes independent of the flaw size such that a 

steady-state analysis performed by Beuth is appropriate.[171]  Beuth’s analysis is for a 

steady-state channeling crack in an elastic thin film bonded to an elastic substrate.[172] 

The energy release rate is given by  

   
2

,
f

f

σ h
G g α β

E
 , (8.9) 

where  2/ 1f f fE E ν   is the plane-strain modulus of the film, and  ,g α β  is a 

function of the Dundurs parameters, α  and β , which are defined by 
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, (8.10) 

where the  2/ 1i i iE E ν   represent the respective plane-strain moduli, and the 

 / 2 1i i iμ E ν     represent the respective shear moduli.[172]  
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 The analysis by Beuth does not take into account the effects of interfacial 

sliding, a phenomenon suggested to occur at the lithiated silicon/copper interface in 

a number of studies.[94],[96],[159] By allowing for interfacial sliding and using a shear lag 

approximation, Hu and Evans found that the energy release rate in the steady state 

takes the form 

   
2

0

Σ
3

f

f

σ hσ
G F

τ E

 
  
 

, (8.11) 

where 0  is the interfacial sliding strength, Σ /f sE E , and  F   is a function of 

the elastic mismatch between the film and the substrate, which is analogous to the 

function  ,g    given in Equation (8.9). 

 To determine the form of the energy release rate applicable to our 

experiments, we must first consider the initial flaw size in our experiments. 

Unfortunately, we do not know the characteristic flaw size created during sputter 

deposition, and hence it is not possible to use Equation (8.8) directly. To circumvent 

this issue, each of the thin-film silicon electrodes was scratched with a diamond 

scribe to introduce imperfections with sizes on the order of the film thickness so that 

the analysis by Beuth is appropriate.[171] By comparison, the steady state implied in 

Equation (8.11) is reached only when the crack length approaches the characteristic 

size of the sliding zone, 
0/pl h  . Using a representative value of 0 40 MPaτ  [159], 

10pl μm  in our experiments. Thus, the energy release rate does not approach the 

expression given in Equation (8.11) until the crack length is much larger than the 

initial flaw size. Also, the first term in brackets in Equation (8.11) represents the 

contribution of interfacial sliding. Thus, interfacial sliding only increases the crack 
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driving force as compared to the analysis of Beuth[172], i.e., the more “difficult” step in 

the crack propagation process in our experiments is that associated with Equation 

(8.9). 

 Using the appropriate expression for the energy release rate (Equation 8.9), 

we can calculate a bound on the fracture energy of heavily lithiated silicon. Fracture 

initiates when the energy release rate reaches the fracture energy of the material, 

ΓG  , which is bounded by the points corresponding to Figures 8.3a and 8.3b. For 

the fracture energy measurements at these large concentrations of lithium, we have 

used the values of 
fE  measured from initial delithiation (Table 8.1), where a value 

of 0.26fν   has been assumed.[78] The value of the function  ,g α β  was 

determined by interpolating the values reported by Beuth,[172] and was approximately 

1.5 in all experiments. The results from four separate experiments are shown in Table 

8.1. The quantity x in the table represents the range of lithium concentrations over 

which fracture initially occurred in each test. The mean and standard deviation were 

found to be 32.9 9.7 GPafE    for the modulus, and 2Γ 5.4 2.2J/m   to 

2Γ 6.9 1.9 J/m   for the lower and upper bounds on the fracture energy. 

Test # x in LixSi E (GPa) Γ (J/m2) 

1 3.0 - 3.2 46.1 7.6 – 9.4 

2 2.8 - 3.0 23.0 2.4 – 5.6 

3 2.4 – 2.6 29.4 6.5 – 7.5 

4 2.4 - 2.7 33.0 5.0 – 5.2 

 

Table 8.1. Results of four experiments to determine the fracture energy of lithiated silicon at 

large concentrations of lithium.  The second column represents the range in concentration 

over which fracture first occurred.  The third column is the elastic modulus calculated from 

initial delithiation of the electrodes.  The final column is the calculated range of fracture 

energies corresponding to the concentration range in the second column. 
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 We have also monitored the morphological development of the cracks in the 

electrodes (Figure 8.3). Cracks initially form with spacings that are much larger than 

the thickness of the film (Figures 8.3b, 8.3c). At later stages of delithiation, many 

more cracks are formed, and the crack spacing approaches the thickness of the film 

(Figures 8.3d, 8.4). Beuth[172] calculated the change in curvature of the substrate, δK , 

due to cracks with a characteristic spacing, p , and found 

  
 

 
2

2

12 1
,

s f

s s

ν σh
δK g α β

E h p


  . (8.12) 

Dividing Equation (8.12) by the curvature calculated from Stoney’s Equation 

(assuming zero curvature for zero stress) gives the relative contribution of the cracks 

to the curvature: 

   2 ,
fhδK

g α β
K p

  . (8.13) 

From Equation (8.13) it is evident that cracks tend to decrease the curvature (we have 

taken a positive sign as indicating the curvature created by tension in the film).  Also, 

the contribution from the cracks is insignificant until the crack spacing approaches a 

few times the thickness of the film.  We note that the analysis presented in 

Equations (8.12-8.13) does not include the effects of sliding.  However, such effects 

will not be significant until the crack spacing approaches the length of the sliding 

zone, 0/pl σh τ , which is approximately 10μm  for our experiments.[159]  The 

crack spacings shown in Figure 8.3c are on the order of hundreds of microns, much 

larger than the representative length of the sliding zone.  Thus, we believe that 

cracks such as those in Figure 8.3c still do not significantly affect the curvature of the 
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substrate.  Instead, only the cracks formed at the latest stages of delithiation 

(Figures 8.3d, 8.4), with spacings on the order of 1-2 μm , affect the stress measured 

from the substrate curvature technique. As a result, one can identify the lithium 

concentration at which extensive additional cracking occurs by locating the point at 

which the apparent tensile stress starts to decrease, i.e., the concentration marked by 

the green arrow in Figure 8.2b. From this point, we gain an additional measurement 

of the fracture energy of lithiated silicon at small concentrations of lithium from the 

same test. The results of these measurements are shown in Table 8.2 for the same 

four tests that were listed in Table 8.1. In these calculations, the values for the elastic 

moduli are taken from Reference [117] since we did not measure the moduli at these 

concentrations in our experiments.[117] The quantity x in xLi Si  in Table 8.2 

represents the lithium concentration corresponding to the maximum curvature. 

Using this technique, the mean value of the fracture energy at this lower 

concentration of lithium is 2Γ 8.5 4.3 J/m  . 

 

Test # x in LixSi E (GPa) Γ (J/m2) 

1 0.33 50 14.9 

2 0.73 30 6.6 

3 0.86 34 7.0 

4 1.01 36 5.4 

 

Table 8.2. Results of four experiments to determine the fracture energy of lithiated silicon at 

small concentrations of lithium.  The second column lists the lithium concentrations 

corresponding to the maximum tensile stress (green arrow in Figure 8.2b).  The third 

column is the elastic modulus taken from Reference [117].  The final column contains the 

fracture energies calculated corresponding to maximum tensile stress. 
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Figure 8.5. Responses in stress as a function of lithium concentration from galvanostatic tests 

of individual 325 nm silicon electrodes. The electrodes corresponding to each test are 

delithiated to different extents to determine the fracture energy. 

 

 In addition to these experiments, we performed a few tests on individual silicon 

electrodes in a standard three-electrode arrangement. The results of three such tests 

are shown in Figure 8.5. These tests were performed at the same conditions as 

previously discussed. In particular, the electrodes were lithiated galvanostatically at a 

current density of 215 μA/cm  to a cutoff potential of 0.01 V. The three tests vary in 

the extent to which they are allowed to delithiate. In the first test, the electrode is 

delithiated for three hours, and no fracture is observed (similar to Figure 8.3a). In the 

second test, the electrode is delithiated for six hours, and some fracture is seen 

(similar to Figure 8.3b). In the third test, the electrode is fully delithiated to a cutoff 

potential of 2 V, and extensive fracture is seen (similar to Figure 8.3d). Following the 

previously discussed procedure, we can quantify the fracture energy. This set of 

experiments yields a bound on the fracture energy of 2Γ 7.5 8.7J/m   in the 

concentration range of 
1.6 2.3Li Si-Li Si

 
and a fracture energy of 2Γ 14.7 J/m  for 
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0.6Li Si . Although on the higher end of the spectrum, these values fall within the 

range of values shown in Tables 8.1 and 8.2 for the experiments performed on 

multiple electrodes. 

 It is important to note that Equation (8.9) invokes an analysis from elasticity, 

while Figure 8.2b suggests that lithiated silicon is capable of plastic flow. The 

applicability of linear elastic fracture mechanics to lithiated silicon is an open 

question. According to the theory established for metals, linear elastic fracture 

mechanics is applicable when the plastic zone at the front of the crack is much 

smaller than the feature size of the specimen.[173]  The plastic zone size is estimated 

by[173] 
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Using the average values measured from these experiments, we calculate plastic zone 

sizes of 10nmpr   for ~Li2.8Si and 40nmpr   for ~Li0.7Si. The thicknesses at these 

concentrations are 900 nm  and 450 nm , respectively. Thus, the plastic zone size is 

significantly smaller than the thickness of the film.  It is also interesting to note that 

the cracks in lithiated silicon show features typical of brittle fracture (Figures 8.3 and 

8.4). In particular, Figure 8.4 shows that the faces of the cracks are quite flat and 

perpendicular to the substrate. These images of brittle fracture may be contrasted 

with those of a ductile copper film on a polymer substrate.[174],[175] In the latter case, 

large plastic deformation (e.g., local thinning of the film) is visible in the copper film, 

which resists the formation of brittle cracks. To reconcile the experimental 

observations of plastic flow during lithiation and brittleness during fracture in 
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lithiated silicon, we surmise that once the cracks begin propagating, they move fast 

relative to the mechanisms associated with plastic deformation in this system. That is, 

lithiated silicon is essentially elastic during the fracture process. Under this scenario, 

the analysis from linear fracture mechanics associated with Equation (8.9) is valid. 

 It is also interesting to compare the values measured in this study to those 

found in literature for pure silicon. For instance, Ballarini et al. found the critical 

stress intensity factor for amorphous silicon to be ICK =1MPa m .[176] This value was 

calculated assuming a value E = 160GPa  in their finite element simulations.[176] 

Using this value for the modulus gives a fracture energy of 2 2Γ / 6.3 J/m
IC

K E   for 

amorphous silicon.  Likewise, values for fracture energy of single-crystal silicon are 

in the range of 23 9 J/m [177] and comparable values can be found for bulk 

polycrystalline silicon.[178] Remarkably, the values for the fracture energy of pure 

silicon are quite comparable to the measured values for lithiated silicon at both small 

and large concentrations of lithium. Atomistic simulations have suggested that 

lithium insertion into silicon results in continuous breaking and re-forming of Si-Si 

bonds, resulting in a decrease in strength and an increase in ductility.[92] As a result, 

one might expect that lithium insertion into silicon may drastically alter the fracture 

energy. The current experimental study suggests, however, that the fracture energy of 

lithiated silicon is not very different from pure silicon and does not vary substantially 

with lithium concentration. This finding is consistent with the SEM observations, 

which show characteristics of brittle fracture. If the fractured surfaces in lithiated 

silicon had shown features typical of ductile fracture, we would expect the fracture 
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energy to be much larger than that of pure silicon. It appears that lithiated silicon has 

a peculiar ability to both flow plastically and fracture in a brittle manner. The 

mechanism causing this unique combination of properties warrants future 

investigation.  

 

8.4 Summary 

 We have devised a novel method to electrochemically cycle multiple thin-film 

electrodes in parallel, while simultaneously measuring the film stress. We also 

monitored the morphological development of cracks by optical microscopy, which 

shows that cracks initially form and widen upon further delithiation, likely by a 

sliding mechanism as suggested in literature. This procedure allowed us to quantify 

the fracture energy of lithiated silicon. The fracture energy was determined to be 

2Γ 8.5 4.3 J/m   at small concentrations of lithium (~Li0.7Si) and to have bounds of 

2Γ 5.4 2.2 J/m   and 2Γ 6.9 1.9 J/m  at large concentrations of lithium (~Li2.8Si). 

These numbers are essential for mechanical models and can enable practical design 

of silicon electrodes that avoid mechanical degradation. The fracture energy does not 

vary significantly with lithium concentration and is not very different from pure 

silicon.  We hope this work will provide guidance for practical design of silicon 

electrodes as well as motivate future modeling of lithiated silicon’s unique ability to 

flow plastically, but fracture in a brittle manner. 
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Chapter 9 

Variation of Stress with Charging Rate due to 

Strain-Rate Sensitivity of Silicon Electrodes 

 

9.1 Introduction   

 A number of questions remain in regards to the nature of plasticity in LixSi.  

For instance, in Chapter 8, we measured the fracture energy of lithiated silicon thin 

films, finding that lithiated silicon demonstrates a peculiar ability to both flow 

plastically and fracture in a brittle manner.[15]  However, we did not speculate as to 

the physics governing this curious combination of properties.  Also, Brassart and 

Suo have suggested that inelasticity in high-capacity lithium-ion batteries may occur 

by two processes: flow and reaction.[185]  The authors define “flow” as a process 

driven by deviatoric stress that preserves lithium concentration and volume, similar 

to plastic flow in a metal.  By comparison, the authors define “reaction” as lithium 

insertion/removal: a process that changes the composition and volume of the 

electrode.[185]  One result of their theory is that lithium insertion (or removal) may 

enable flow at a lower stress than that needed for flow under pure mechanical loading.  

The applicability of this “reactive flow” theory to a-LixSi remains an open question.   

A study from first-principles calculations found the lithiation reaction to markedly 

reduce the flow stress of lithiated silicon,[146] while a molecular dynamics study found 

no such effects.[182]  There are no experimental studies aimed at directly 

investigating these effects. 
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 The purpose of this chapter is to provide experimental insight into the nature 

of plasticity in a-LixSi. To do so, we vary the charging rate in amorphous silicon 

thin-film electrodes, while simultaneously measuring stresses. The magnitude of the 

flow stress increases monotonically with the charging rate, indicating that 

rate-sensitive plasticity occurs at room temperature and at charging rates typical of 

lithium-ion batteries. These data fit well to a power law relationship between the 

plastic strain rate and the stress. Additionally, our results indicate no evidence of the 

“reactive-flow” effect in a-LixSi, as has been suggested in literature.[146],[185]  They do, 

however, provide insight into the unusual ability of a-LixSi to flow plastically, while 

fracturing in a brittle manner. 

 

9.2 Experimental procedure and results 

 Cover glass substrates with a thickness of 175 μm were cleaned with acetone 

and isopropanol and placed into a sputter deposition system (AJA Int. ATC 1800) 

with a base pressure of <10-8 Torr. All sputtering targets have a 50.8 mm diameter, 

and depositions were performed at room temperature (22°C). The samples were 

plasma-cleaned in Ar at 20 mTorr and an RF power of 24 W for 5 minutes. Next, 15 

nm of Ti was sputtered onto the substrates using a pressure of 3 mTorr of Ar and a 

DC power of 100 W for 5 minutes. A 300 nm layer of Cu was then deposited on the Ti 

underlayer using a pressure of 5 mTorr of Ar and a DC power of 100 W for 15 minutes. 

The Cu film serves as current collector, while the Ti underlayer is used to improve the 

adhesion between the Cu film and the glass substrate. Finally, a 100 nm Si film was 
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deposited on the Cu current collector using a pressure of 5 mTorr of Ar and a DC 

power of 100 W for 27 minutes. The thickness of the film was verified using 

profilometry, and was found to be 100 10 nm . The working area of each silicon 

electrode is 8 mm by 30 mm. We have previously performed x-ray diffraction 

experiments to confirm that the silicon films are amorphous under these sputtering 

conditions.[146] 

 Electrochemical experiments were conducted in a custom-fabricated hermetic 

Teflon electrochemical cell with a glass window. The cell was assembled in a 

three-electrode configuration in an argon-filled glovebox, which was maintained at < 

1 ppm moisture. The sputtered silicon film was used as the working electrode, and Li 

foil was used as the reference electrode and the counter electrode. A 1M solution of 

LiPF6 in 4:3:3 (vol %) ethylene carbonate : dimethyl carbonate : diethyl carbonate 

with a vinylene carbonate additive was used as the electrolyte (MTI Corporation). 

Electrochemical measurements were performed with a VersaSTAT 3 galvanostat 

from Princeton Applied Research. During the first cycle, the cell was tested 

galvanostatically at a current density of 23.6 μA/cm2 (a C/8 rate assuming a capacity 

of 3579 mAh/g[164]) between 0.8 and 0.05 V vs. Li/Li+. The lower cutoff potential of 

50 mV vs Li/Li+ was employed to prevent crystallization of the a-LixSi electrodes.[122]  

Relatively thin films (100 nm) and an upper cutoff potential of 0.8 V vs Li/Li+ were 

employed to prevent fracture during delithiation. During the second cycle, the cell 

was lithiated at a C/8 rate for one hour, followed by a number of segments with 

different charging rates. The duration of these segments was fixed such that the total 
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capacity during each segment was 50 mAh/g (1.4% of the total capacity of 3579 

mAh/g). The relatively slow charging rates used in these experiments were selected to 

allow enough time for diffusive equilibrium through the films.[78],[156],[168]  We use the 

data measured during the second cycle to minimize effects of SEI growth.[156]  

Stresses were measured during electrochemical cycling using the substrate curvature 

method, as described in detail in Section 8.2. 
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Figure 9.1. Results of electrochemical cycling of a 100 nm Si thin-film electrode.  (a) 

Measured potential as a function of lithium concentration. (b) A zoomed-in view that focuses 

on the second lithiation.  The vertical dashed line indicates the point at which the set of 

charging rates is repeated. 
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 Figure 9.1 shows a typical sequence of the applied charging rate and the 

response in the measured voltage. During the second lithiation, an increase in the 

charging rate results in a decrease in the voltage, as is normally observed in LixSi 

electrodes. We should note that the horizontal axis in the figure is constructed by 

integrating the current during the experiment to get the total charge. The amount of 

charge does not necessarily represent the concentration of lithium in silicon, as SEI 

formation may consume lithium during the first cycle.   However, the main focus of 

this chapter is related to the stress measurements as a function of charging rate (as 

shown in Figure 9.2).  The stress data collected in these experiments were obtained 

during the second cycle.  Using the second cycle minimizes the influence of the SEI 

on our data, as the majority of the SEI is formed during the initial lithiation.[156]  

 Figure 9.2 shows the stress measured in the film subject to the 

electrochemical cycling shown in Figure 9.1. Figure 9.2b is a zoomed-in view that 

focuses on the second lithiation. The legend shows the charging rate during each 

segment as expressed in the C-rate convention. In this convention, the denominator 

indicates the number of hours to theoretically fully lithiate the electrode. Figure 2b 

thus demonstrates that increasing the rate of lithiation, e.g., from C/128 to C/8, 

results in a quick and sustained increase in the magnitude of the stress (the stress 

becomes more compressive). Likewise, when the charging rate increases, but by a 

smaller amount, e.g., from C/16 to C/8, the stress increases in magnitude, but not as 

much as compared to, e.g., C/128 to C/8. In other words, the change in stress 

increases monotonically with charging rate – faster charging results in larger stress. 
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We believe that these observations are indicative of a material rate-effect, i.e., plastic 

deformation of a-LixSi is rate sensitive, even at room temperature. 
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Figure 9.2. (a) Stress measured in the 100 nm thin-film Si electrode subject to the 

electrochemical cycling conditions shown in Figure 9.1.  (b) A zoomed-in view that focuses 

on the second cycle.  The vertical dashed line indicates the point at which the set of charging 

rates is repeated.  A change in the charging rate results in a significant change in the stress. 
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9.3 A model of concurrent lithiation and rate-sensitive plasticity 

 We will now outline a simple mechanical model, with the goal of extracting 

creep material parameters from our experiments.  The model extends our previously 

developed models to account for rate-sensitive plasticity,[15],[91],[115] and is similar to 

that of Bucci et al.[190]  Following these models,[15],[91],[115],[190] we take the deformation 

to consist of contributions from elasticity, plasticity, and lithiation-induced swelling.  

The total true strain, ijε , can be written as 

  
L E P

ij ij ij ijε ε ε ε   , (9.1) 

where 
L

ijε  represents the true lithiation-induced strain, 
E

ijε  represents the true 

elastic strain, and 
P

ijε  represents the true plastic strain.  For a thin film on a thick 

substrate, the state of stress is equi-biaxial, 11 22σ σ σ  , with all other components 

vanishing.  Due to the constraint of the substrate, the total in-plane components 

vanish, 11 22 0ε ε ε   .  Equation (9.1) becomes: 

  0L E Pε ε ε   , (9.2) 

where the ε  represent the in-plane components of the true strains. 

 Following our previous work,[15] and validated by experiments,[15],[164]-[166] we 

take the volume of the film, fV , to be linear in the state of charge: 

   0 1f fV V βs  , (9.3) 

where 
0

fV  is the initial volume of the film, β  is related to the atomic volumes  Ω  

by  3.75Ω Ω /ΩLi Si Si Siβ   , and s  is the state of charge, with a value of 0 

representing pure silicon and a value of 1 representing the fully lithiated state 

(assumed to be a-Li3.75Si with a capacity of 3579 mAh/g).[164]  
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 Due to the amorphous nature of LixSi, the lithiation-induced deformation is 

assumed to be isotropic, such that the stretch ratios are equal, 1 2 3

L L L Lλ λ λ λ   .  As 

in Chapter 8, we take  
1/3

1Lλ βs  .  By definition, the in-plane component of the 

true lithiation-induced strain is  lnL Lε λ , such that  

   
1

ln 1
3

Lε βs  . (9.4) 

The elastic strains are given by Hooke’s law: 

  
1 fE

f

ν
ε σ

E


 , (9.5) 

where fv  is Poisson’s ratio of the film, fE  is the elastic modulus of the film, and 

σ  is the in-plane component of the true (Cauchy) stress in the film.   

 The in-plane component of the true plastic strain will be left in a generalized 

form, 

   lnP Pε λ . (9.6) 

Combining Equations (9.2) and (9.4 – 9.6), and taking a time-derivative, we get 

  
 

11

3 1

P
f

P

f

νdλ d β ds
σ

dt dt E βs dtλ

 
   

  

. (9.7) 

In our experiments, the charging rate, ds/dt, is prescribed, and the stress is measured 

as a function of time.  Thus, with knowledge of the material properties of the film 

( f , f
E , and  ), the plastic strain rate in our experiments, 





1 P

P

d

dt
, can be 

calculated as a function of time.   
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Figure 9.3. Components of the strain rate in the 100 nm thin-film Si electrode subject to the 

electrochemical cycling conditions shown in Figure 9.1. The thick blue line indicates the 

prescribed lithiation-induced strain rate,        / 3 1 /L s ds dt . The thin purple line 

indicates the elastic component of the strain rate,      1 / /E
f fE d dt . The thin orange 

line represents the plastic component of the strain rate,     1/ /P P Pd dt , as calculated 

from Equation (9.7). 

 

 Figure 9.3 shows the experimental values of the terms in Equation (9.7) 

subject to the electrochemical cycling conditions of Figure 9.1.  The elastic 

component of the strain rate is calculated using a representative value of the biaxial 

modulus of   / 1   45 GPa
f f

E , as reported in by Sethuraman et al.[117]   In their 

study, they found this quantity to vary only slightly with lithium concentration over 

the range of concentrations examined in our studies; thus, in constructing Figure 9.3, 

we take the biaxial modulus as a constant.  The lithiation-induced strain rate is 

calculated using the prescribed charging rate,  /ds dt , and a value of  2.8 , as 
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previously discussed.  The plastic component of the strain rate is then computed 

using Equation (9.7).  As can be seen from Figure 9.3, during the majority of our 

experiments, the elastic component of the strain rate is small compared to the 

lithiation-induced strain rate, thereby eliminating the need to know the value of the 

biaxial modulus to calculate the plastic strain rate. In this limit, Equation (9.7) 

becomes 

  
 

1

3 1

P

P

dλ β ds

dt βs dtλ
 


. (9.8) 

Equation (9.8) has a straightforward physical interpretation:  the plastic strain rate 

in the experiments is directly prescribed by the charging rate. By increasing the 

charging rate, we correspondingly impose an increased rate of plastic strain.  

 Combining our stress measurements with Equation (9.8), we can obtain a 

relationship between the rate of plastic strain and the stress in the a-LixSi, thereby 

extracting material parameters. In particular, we fit to our data to a typical 

viscoplastic power-law:[191],[192] 

  
1

m
P

Y

P

Y

σ σdλ
A

dt σλ

 
   

 
, (9.9) 

where A , m , and Yσ  are fitting parameters.  In this equation, Yσ  can be 

interpreted as the yield stress of the material at a vanishing plastic strain rate.  

Equation (9.9) is only applicable when the stress exceeds 
Y

.  In the equation,   

represents the magnitude of the measured stress (a positive quantity), and the 

leading negative sign is a result of the compressive stress state during lithiation.  

One complicating factor in our experiments is that the yield stress varies with the 
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state of charge, as can be seen in the first cycle in Figure 9.2. To mitigate this 

complication, we have performed the strain-rate experiment over a concentration 

range in which the yield stress changes slowly with lithium concentration (Figure 

9.2).   

 Upon changing the charging rate from the nominal rate of C/8 to a different 

rate (e.g., C/16), the stress quickly progresses toward a new value (Figure 9.2b).  To 

use these data, we rewrite Equation (9.9) in a convenient form: 

  
   

 
/8 /8

/8 /8

1
m

P
C C Y

P

C C Y

σ σ σ σdλ
A

dtλ σ σ σ

   
  

   

, (9.10) 

where /8Cσ  represents the stress at the nominal charging rate of C/8, and all of the 

stresses represent the magnitude of the measured stresses (positive quantities).  We 

assume that the quantity  /8C Yσ σ  is a constant, independent of the lithium 

concentration over the range of concentrations considered in the experiments.  After 

each change in the charging rate, we measure the quantity  /8C Yσ σ .  We also 

measure the quantity  /8C  immediately before (or after) each change in the 

charging rate.  During the experiment, the charging rate, and hence the plastic 

strain rate (Equation 9.8) is prescribed as a function of time.  Thus, we obtain a set 

of data to which we can fit Equation (9.10) using the quantities A, m, and   
/8C Y

 

as fitting parameters. 
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Figure 9.4. Plastic strain rate (in units of 1/s) versus the change in measured stress relative to 

the C/8 rate (in units of MPa).  The solid red circles represent the experimental data and the 

open black circles represent the phenomenological model in Equation (9.10). 

 

 Figure 9.4 shows the best fit of Equation (9.10) to the data from the 

experiment corresponding to Figure 9.2.  As is evident from Figure 9.4, the 

power-law form represents the data well.  The results of the best fits for three such 

experiments are shown in Table 9.1.  The exponent m, has values in the range of 

2.58 - 4.07.  For large values of m, the stress level is insensitive to the applied strain 

rate and is instead limited by the yield strength, 
Y

.  In our experiments, the 

measured values of m demonstrate a moderate level of strain-rate sensitivity. 

A (1/s) m σC/8 - σY (MPa) R2 

0.00175 4.07 130 0.947 

0.00230 2.94 94.1 0.937 

0.00168 2.58 82.9 0.892 

 

Table 9.1. Results of the fit of the experimental data to Equation (9.10) for three separate 

experiments. 
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 As a final note, this experimental technique could be used to measure 

rate-sensitive material properties as a function of lithium concentration by repeating 

the outlined procedure at various states of charge.  In our experiments, we subject 

the film to the same set of (nominal) charging rates twice (Figure 9.2b).  There is 

little variation in the extracted material parameters from each set of charging rates.  

It is of course possible that these properties could vary with the state of charge if we 

were to study a larger range of lithium concentrations; such work was not pursued in 

this chapter. 

 

9.4 Discussion 

 Our results indicate that a-LixSi electrodes are rate sensitive at room 

temperature and that the rate effect is important at charging rates typically used in 

lithium-ion batteries.  These observations have significant ramifications for the 

rate-capabilities of silicon anodes.  In particular, due to the strain-rate sensitivity, 

faster charging will result in larger stresses, which may result in fracture of the 

electrode. 

 We should mention that a recent work by Boles et al. has investigated creep 

deformation in lithiated silicon.[193]  In their work, constant-force creep tests were 

conducted on fully lithiated c-Li15Si4 nanowires.  Their investigation was primarily 

performed at stress levels below the apparent yield stress of the material.  

Interestingly, at these low stress levels, the authors found a linear relationship 

between the strain rate and the stress, suggesting Newtonian viscous flow of 
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c-Li15Si4.[193]  The nanowires tested by Boles et al. are polycrystalline; thus, the grain 

boundaries may allow diffusional transport as well as creep deformation.[193]  

Moreover, their testing of the crystalline phase allows for the possibility of creep 

deformation via dislocation motion.  In this chapter, we focus on quantifying the 

relationship between the charging rate and the resulting stresses during 

electrochemical cycling of a-LixSi.  We use charging rates typical of lithium-ion 

batteries and examine a range of lithium concentrations.  We also limit the depth of 

discharge in this study to investigate amorphous electrodes, which are typically used 

in practice due to their improved cycling performance.[122]  Since the material is 

amorphous, there are no dislocations.  Even so, we observe a significant rate effect.  

Due to the large strains associated with lithiation/delithiation, stresses in LixSi 

electrodes readily reach the yield stress during cycling.  At these large stresses, 

different from Boles et al., we observe a non-linear relationship between the stress 

and the strain rate.  Our results can answer a number of open questions in literature, 

as will now be discussed. 

 Our observations of rate-sensitive plasticity in a-LixSi shed light on recent 

theories and experiments.  For instance, Soni et al. found fracture only at large 

charging rates  /2C  in 150 nm silicon thin films.[188]  The authors attributed this 

observation to diffusion limitations through the thickness of the film.[188]  It is also 

possible that their observations are due to effects of rate-sensitive plasticity: for the 

range of charging rates used in our experiments (C/128 to C/2), the stresses varied by 

over 100 MPa.  These variations in stress will significantly alter the driving force for 
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fracture, as the energy release rate scales with the square of the stress. Thus, 

substantially larger crack-driving forces develop at larger charging rates, potentially 

leading to fracture. 

 As another example, Brassart and Suo have suggested that inelasticity in 

batteries may occur by two processes: flow and reaction.[185]  “Flow” changes the 

shape of the electrode while preserving volume and lithium concentration, and is 

driven by the deviatoric stress — a process similar to plastic flow in a metal.  By 

contrast, “reaction” (i.e., lithium insertion/removal) changes both volume and 

lithium concentration.[185]  These two processes, flow and reaction, are intimately 

coupled as they both involve the same physical processes: breaking and forming 

atomic bonds.  As a result of this chemo-mechanical coupling, larger overpotentials 

(i.e., larger chemical driving forces) can result in flow at a smaller stress.[185]  In our 

experiments, larger charging rates result in larger overpotentials.  Thus, in the 

absence of any other rate effects, Brassart and Suo would predict a decrease in the 

magnitude of the flow stress with increasing charging rate.  In contrast, we see the 

exact opposite trend in our experiments – larger charging rates result in an increase 

in the magnitude of the flow stress.  Therefore, as previously discussed, we believe 

that our results are indicative of a material rate effect:  a-LixSi is strain-rate sensitive.  

Larger charging rates result in larger strain rates in the material, which in turn 

generate larger stresses.  We should note, however, that our experiments do not 

entirely preclude the existence of the so-called “reactive flow” effects discussed by 

Brassart and Suo.  It is possible that these effects do indeed exist, but that they are 
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too small relative to the strain-rate dependence of the material to be observed in our 

experiments. 

 As another example, in Chapter 8, we have suggested that a-LixSi 

demonstrates a peculiar ability to both flow plastically and fracture in a brittle 

manner.[15]  We did not speculate as to the physics governing this curious 

combination of properties.  However, when a crack propagates in a-LixSi, it moves 

relatively fast, resulting in large strain-rates near the crack tip.  In this chapter, we 

provide evidence for rate-sensitivity of a-LixSi: plastic flow at larger strain-rates 

requires larger stresses.  Consequently the strains associated with fracture are 

mostly elastic, and the material fails in a brittle fashion, in agreement with 

fractographic observations and justifying the use of linear elastic fracture mechanics 

as employed in Chapter 8. 

 The discussion in this chapter underscores the importance of determining the 

exact microscopic picture governing plastic flow in a-LixSi.  Some potential 

mechanisms have been investigated through computational atomistic simulations.  

For instance, Zhao, et al. found that continuous bond breaking and re-forming 

assisted by Li insertion can accommodate large plastic deformation.[139]  In another 

study, Zhao, et al. found bond switching to occur at loosely packed free-volume 

regions, leading to localized plastic deformation.[189]  Such deformation is 

reminiscent of that found in metallic glasses.  It has been established that an applied 

stress can cause local atomic rearrangement in metallic glasses, resulting in 

macroscopic deformation.  In particular, a flow equation is usually implemented 
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from transition-state theory, in which the strain-rate scales with the stress as 

   sinh /2kT , where   is the activation volume, k  is the Boltzmann 

constant, and T  is the temperature.[194]-[196]  Over a particular range of stress, this  

scaling is quite similar to that of Equation 9.9, which was found to describe our data 

well (Table 9.1).  Although this similarity does not definitively point to a particular 

microscopic mechanism, it suggests that deformation of a-LixSi shares some of the 

same features as metallic glasses. In another atomistic study, Huang and Zhu 

attributed plastic deformation during lithiation of silicon to a decrease in strong 

covalent Si-Si bonds and an increase in weak Li-Li bonds.[183]  The high mobility of 

Li atoms facilitates effective bond switching to accommodate mechanical 

deformation.[183]  Thus, it further appears that bond breaking and re-forming, as 

well as the mobility of lithium are important for plastic deformation of a-LixSi.  

These processes take time and thus engender rate-dependent plasticity.  

Unfortunately, due to computational limitations of atomistic simulations, the time 

scales associated with these processes are not well understood.  This chapter 

emphasizes the importance of gaining a better understanding the dynamics of plastic 

flow in a-LixSi, and thus warrants future theoretical and computational studies.  

 

9.5 Summary 

 We have measured stresses in silicon thin films as a function of the charging 

rate.  Increasing the rate of lithiation resulted in a corresponding increase in the 

flow stress.  Our results indicate that rate-sensitive plasticity occurs in a-LixSi at 
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room temperature and at charging rates typically used in lithium-ion batteries.  To 

extract material parameters, we have developed a model of concurrent lithiation and 

rate-sensitive plasticity.  The data are well described by a power-law relationship 

between the strain-rate and the stress, with a value of the stress exponent, m, in the 

range of 2.58 – 4.07, indicating a moderate level of strain-rate sensitivity.  These 

results provide insight into the unusual ability of a-LixSi to flow plastically but 

fracture in a brittle manner.  Moreover, the results have direct ramifications 

concerning the rate-capabilities of silicon anodes.  In particular, faster charging 

rates result in larger stresses, which can lead to fracture of the electrode.  We hope 

that this work will provide guidance for the design of future theoretical models that 

account for material rate effects.  Likewise, we hope that this work will inspire 

future computational studies aimed at understanding the dynamics of plastic flow in 

a-LixSi. 
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Chapter 10 

Summary 

 

 This thesis has explored mechanical behavior of microelectronic devices and 

lithium-ion batteries.  Continuum models were constructed and experiments were 

performed to investigate these systems.  An emphasis was placed on the intimate 

coupling between mechanics and other fields, such as chemical reactions, electric 

fields, mass transport, and electrochemistry.  Considerations from large 

deformation, plasticity, creep, kinetics, and fracture mechanics proved necessary for 

the analysis. 

 First, we examined electromigration-induced void formation in solder bumps 

in integrated circuits.  Due to their relatively low melting points, solders creep 

significantly during operation.  To account for this phenomenon, we have 

constructed a theory that couples electromigration and creep.  From the theory, an 

intrinsic length emerged, which characterizes the relative rates of creep and diffusion.  

When diffusion is slow relative to creep, we found the stress to be relatively small and 

localized to the boundary of the solder.  This theory can predict the critical current 

density below which voids do not form.  Different from metallic interconnects, the 

critical current density is found to be independent of the solder size and decrease 

exponentially with increasing temperature.  Our numerical predictions agree well 

with experimental observations in practical solder systems.  Thus, our theory can 
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provide practical guidelines by predicting the conditions necessary to avoid 

electromigration-induced damage in solders. 

 We then turned our attention to lithium-ion batteries, examining the 

interplay between mass transport, deformation, stress, and fracture.  We first 

modeled fracture of elastic electrodes by combining ideas from diffusion kinetics and 

fracture mechanics.  This theory allowed us to construct “fracture maps” capable of 

predicting conditions to avoid fracture in terms of material properties, particle size, 

and charging rate.  We performed a numerical example that predicts conditions to 

prevent fracture of a LiCoO2 particle.  Next, we examined mechanics of 

high-capacity lithium-ion batteries, which demonstrate inelastic deformation.  To 

do so, we have constructed a continuum model that accounts for diffusion and 

elastic-plastic deformation.  This model allowed us to calculate both the distribution 

of lithium and the stress in the host electrode during electrochemical cycling.  The 

model suggests that fracture of high-capacity electrodes can be prevented in small 

and soft electrode materials that are cycled slowly.  Using ideas from this theory, we 

investigated a promising design for high-capacity lithium-ion batteries:  hollow, 

coated nano-structures.  In these structures, we analyzed conditions to prevent 

fracture of the active materials and debonding between the active and inactive 

materials. 

 We also looked at crystalline silicon electrodes, which were found to 

accommodate lithiation by a two-phase reaction mechanism.  To this point, we have 

constructed a continuum model of concurrent reaction-controlled kinetics and 
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plasticity.  In silicon particles, the model predicted hoop tension in the lithiated 

phase during lithiation, different from models that incorporate diffusion-controlled 

kinetics.  This prediction agrees with experimental observations of fracture during 

lithiation of crystalline silicon particles.  Also, we found that the stresses generated 

substantially contribute to the driving force for lithiation.  Under certain conditions, 

we predicted that these stresses will completely shut off the lithiation; this prediction 

was later confirmed by experiments.  To quantify the kinetics of the lithiation 

process, we performed electrochemical experiments on {100}, {110}, and {111} 

crystalline silicon wafers.  In relation to these experiments, we have presented a 

kinetic model coupling redox reactions, diffusion, and chemical reactions.  The 

experiments indicated the existence of a moving phase boundary for all three 

orientations, indicating that short-range processes at the 
ηa-Li Si /c-Si interface 

significantly contribute to the kinetics of the lithiation process.  The velocity of this 

phase boundary was found to be faster for {110} silicon than for the other 

orientations.  Using the measured velocities, we have implemented the model of 

concurrent reaction and plasticity into ABAQUS.  The simulations accurately 

accounted for anisotropic morphologies and fracture patterns developed in 

crystalline silicon nanopillars of various axial orientations.  

 One important parameter in the continuum theories is the fracture energy.  

In many lithium-ion battery systems, the fracture energy is unknown, and may vary 

with lithium concentration.  Thus, we have developed an experimental technique to 

measure the fracture energy of high-capacity lithium-ion battery electrodes.  We 
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used this technique to measure the fracture energy of lithiated silicon electrodes as a 

function of lithium concentration.  To do so, we electrochemically cycled multiple 

thin-film electrodes in parallel, while simultaneously measuring the stress in the film.  

Subsequently, we monitored the morphological development of cracks by optical 

microscopy.  The fracture energy was determined to be similar to that of pure silicon 

and to be essentially independent of the lithium concentration.  These findings 

demonstrated that lithiated silicon has a peculiar ability to flow plastically but 

fracture in a brittle manner.  To investigate this interesting combination of 

properties, we measured stresses in silicon thin films as a function of charging rate.  

Increasing the rate of lithiation resulted in a corresponding increase in the flow 

stress, indicating rate-sensitive plasticity, at room temperature and at charging rates 

typical of lithium-ion batteries.  The rate-sensitive material parameters were 

quantified, providing insight into this unusual ability of lithiated silicon to flow 

plastically but fracture in a brittle manner.  These results have direct ramifications 

concerning the rate-capabilities of silicon anodes.  In particular, faster charging 

rates result in larger stresses, which can lead to fracture of the electrode.   
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Appendix 

 

Appendix A:  Stresses in coated and hollow silicon nanowires 

(Chapter 5) 

 Here, we derive the stress field in a hollow silicon nanowire coated with a stiff 

shell. The geometry of the cross section is shown in Figure 5.3. We represent a 

material element in the reference configuration, Figure 5.3a, by its distance R from 

the center of the nanowire. At time t, it moves to a place at a distance r from the 

center, Figure 5.3b. The function r(R, t) specifies the deformation kinematics of the 

silicon nanowire. Due to the constraint imposed by the shell, lithiated silicon is 

assumed to deform under the plane-strain conditions. To focus on the main ideas, we 

neglect the elasticity of both the core and the shell; we model the lithiated silicon as a 

rigid-plastic material. Consequently, the expansion of lithiated silicon is entirely due 

to lithiation. Consider an annulus of the lithiated silicon between the radii B and r. 

This annulus is lithiated from the annulus of pristine silicon between the radii B and 

R. We assume that the rate of lithiation is slow relative to diffusion of Li in the core, 

so that Li atoms have enough time to homogenize in the core.  That is, the ratio of 

the volume of the lithiated silicon over the volume of pristine silicon  , is taken to be 

homogeneous and evolves in time. Upon full lithiation,   reaches 4   for silicon. 

Thus, 

  2 2 2 2B r B R   . (A1) 

This equation gives the function r(R, t) once the function ( )t  is given. That is, 
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( )t  fully specifies the kinematics of the silicon nanowire,  

  2 2 2r B B R   . (A2) 

 The stretches can be calculated as 

 ,      = ,     1
r z

r R r

R r R



  


  


. (A3) 

We decompose the stretches by writing 

 1/3 1/3 1/3,     ,      p p p

r r z z 
           , (A4) 

where   represents the volume change due to the insertion of Li, and the plastic 

stretch p  represents the shape change during lithiation. The volume change has 

been assumed to be isotropic for amorphous silicon. We can calculate the strain 

components from the stretches,  

 
z

log ,    =log ,     =log
r r z 
      . (A5) 

 The incremental plastic deformation is given by 
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. (A6) 

The equivalent plastic strain is 
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2 1 1
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p p p

eq ij ij
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   . (A7) 

We adopt the flow rule 

 
2

3

pY
ij ijp

eq

s





 , (A8) 

where ij
s  is the deviatoric stress, defined as 

1

3
ij ij ii ij

s     , and 
Y

  the yield 

strength of lithiated silicon.  Therefore, 
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and 

 
4 4
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/ 3
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s s
r B
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
. (A10) 

 Consider the force balance of a material element in lithiated silicon 

 


 


0r θr
σ σσ

r r
; (A11) 

the radial stress can be obtained by integrating Equation (A11), giving  
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r B B
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where D is the integration constant. With the traction-free boundary condition, 

 ,  0
r

a t  ,  
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. (A13) 

The stresses along hoop and axial directions are obtained from Equations (A10) and 

(A9), 
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. (A14) 

Therefore the radial stress at the interface r B  is given by, 



 203 

 
  2

4 4 2

2 33
2log log

3 3 3
r Y

Ba

B a B B
 

 
   
  
 

. (A15) 

 In the fully lithiated state of a hollow silicon nanowire, a B . The radial 

stress at the interface can then be approximated by a Taylor expansion, which gives 
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The stress field in the elastic shell can be solved using the familiar solution of Lamé 

problem,[114] giving, 
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Similar to the analysis of a sphere, the energy release rate in the coating shell 

takes the following solution: 
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2 222 2 2
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. (A18) 

 During delithiation, the tensile radial stress in silicon at the interface becomes 
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Thus, using Equation (5.14), the energy release rate for interfacial debonding takes 

the solution 
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Appendix B:  Supporting Information for Chapter 7 

 

B.1 Electrochemical Measurements on {100} and {111} Si wafers 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1.  Typical sequence of applied current density, i , and measured response of the 

potential vs. Li/Li+,  , for a {100} Si wafer. 
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Figure B.2.  Typical sequence of applied current density, i , and measured response of the 

potential vs. Li/Li+,  , for a {111} Si wafer. 
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B.2 Derivation of kinetic model 

 The redox reaction at the electrolyte/
ηa-Li Si  interface is given by 

  +Li Lie  . (B1) 

Associated with this redox reaction, we take the current density through the 

electrolyte/
ηa-Li Si  interface as given by the Butler-Volmer equation: 

  
 

0

1
exp expcurr curr

eq eq

FF
i i

RT RT

   
                  

, (B2) 

where i  is the current density, 0i  
is the exchange current density,   is the charge 

transfer coefficient, F  is Faraday’s constant, R  is the ideal gas constant, T  is the 

temperature,   is the potential of the electrode (i.e., the measured voltage), and 

curr

eq
 

is the equilibrium potential in the current state, corresponding to the lithium 

concentration in the electrode near the electrolyte/
ηa-Li Si  interface.  Here, we have 

neglected mass transport through the electrolyte, i.e., we do not consider the 

concentration polarization.  For comparison to our experiments, we believe this 

assumption should be valid because of the relatively small currents in our tests.  

Additionally, in general the exchange current density can be a function of the lithium 

concentration in the electrode near the electrolyte/ ηa-Li Si  interface.  However, in 

this model, we will examine small changes in concentration from a metastable phase, 

ηa-Li Si , and hence 0i  will be taken as a constant.  Also, since the redox reaction 

involves one electron per lithium atom, the flux is given by /J i q , where q  is the 

elementary charge.   Taking 1/2   for simplicity, we get 

   0
1 2 sinh - -

2

curr

eq

i F
J

q RT

 
   

 
. (B3) 
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 In the lithiated phase,    is the number of lithium atoms hosted by each 

silicon atom.  We regard   as a constant and   as a small deviation,   .  As 

a result, the diffusion of lithium atoms in the lithiated silicon phase is driven by the 

position-dependence of the composition,  y , where y  is the position as shown in 

Figure 7.3.  Let C  be the concentration of lithium in the lithiated phase (i.e., the 

amount of lithium per unit volume of the lithiated phase).  The concentration of 

lithium in this phase relates to the composition by  
ηLi Si/C     , where 

ηLi Si  is 

the atomic volume of the lithiated phase.  We take the flux, 2J , to be driven by the 

gradient in the concentration of lithium through the thickness of the lithiated silicon:   

  2

C
J D

y


 


, (B4) 

where D  is the diffusivity of lithium in the lithiated silicon.  Because   , D  

is taken to be a constant, independent of the concentration.  In general, the flux of 

lithium is driven by the gradient in chemical potential.  In writing Equation (B4), we 

have taken the concentration gradient as the sole driving force, i.e., we have neglected 

any other driving forces such as those due to stress gradients.  This assumption 

should be valid for a planar geometry for which the stress is constant through the 

thickness of the lithiated silicon.[143]  In support of this hypothesis, Chon, et al. 

experimentally observed a constant stress, independent of time, during the lithiation 

process for {100} Si wafers.[124]  

 In the steady state, the flux is independent of position, and the concentration 

is linear in the position, so that 
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  1 2
2

0

C C
J D

y


 , (B5) 

where 1C  is the concentration of lithium in the lithiated silicon at the interface 

between the electrolyte and the lithiated silicon, 2C  is the concentration of lithium 

in the lithiated silicon at the interface between the lithiated silicon and crystalline 

silicon phases, and 0y  is the thickness of the lithiated silicon. 

 At the interface between the lithiated silicon and the crystalline silicon phases, 

a chemical reaction occurs: 

  
 Li Si Li Si  


   . (B6)   

The reaction is driven by the excess lithium 2  in the lithiated silicon at this 

interface.  The rate of reaction controls the flux of lithium across the interface.  For 

simplicity, we take the flux corresponding to this reaction to be given by the 

first-order relation: 

  
η

2
3

Li Si

J k





, (B7) 

where k  is the rate of the reaction.  In general, the flux, 
3J , may have a nonlinear 

dependence on 2 .  However, Equation (B7) should be valid to first order for 

  .  Additionally, we propose that k  is a function of the crystallographic 

orientation, as is consistent with the experiments in this paper.  

 In the steady state, all of the fluxes are equal:  1 2 3J J J  .  In a unit time, 

dt , the number of atoms that react to form new lithiated silicon is 3J A dt  , where 

A  is the cross-sectional area of the planar interface.  During this time, dt , the 

reaction increases the volume of the ηa-Li Si  layer by 3 Li Si /J A dt


   .  As a 
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result, the thickness of the lithiated silicon phase increases by 
η0 3 Li Si /dy J dt     

so that the instantaneous velocity of phase boundary is given by 

  ηLi Si0
3

dy
J

dt 


 , (B8) 

We will take the quantity 
ηLi Si /  as a constant, which is valid for small changes in 

composition,   .  In fact, more generally, this quantity has been found to be 

constant for large values of   .[146] 

 Since 
1 3J J  in the steady state, the velocity of the phase boundary is given 

by: 

   ηLi Si0 02 sinh - -
2

curr

eq

dy i F

dt q RT

  
   

 
. (B9) 

 From the Nernst equation, the equilibrium potential, 
eq , is given by 

   1lneq

RT
x

F
   , (B10) 

where the reference electrode is taken to be that of pure metallic Li.  The parameter 

  is the activity coefficient, which in general can be a function of the concentration, 

and 1x  denotes the mole fraction of lithium atoms in ηa-Li Si  at the interface with 

the electrolyte.  If the composition of the amorphous lithiated region at the interface 

with the electrolyte is given by 
1η+δLi Si , the mole fraction is 

  1
1

1

#Liatoms

#Li atoms + #Si atoms 1
x

 

 


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 
. (B11) 

 Let  ref

eq
 denote the equilibrium potential in the reference state, 

corresponding to ηa-Li Si .  Noting that  curr ref curr ref

eq eq eq eq     , and 

combining with Equation (B10): 
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. (B12) 

Expanding this equation for 1   to first order gives: 

  
 

1

1

curr ref

eq eq

RT

F



 

 
    

  

. (B13)   

Since  
ηLi Si/C      and 

2 3J J  in the steady-state: 

  0
1 21

ky

D
 

 
  
 

. (B14) 

Combining Equations (B7)-(B9), (B13) and (B14) we obtain: 

 
 

ηLi Si0 0 0 01 1
2 sinh 1

2 1

ref

eq

dy i ky dyF RT

dt q RT F D k dt 

      
                

. (B15) 

This is an implicit equation for the instantaneous velocity of the phase boundary, 

0 /dy dt , as a function of measured potential,  .  Recalling that /J i q , we get an 

implicit relationship between the applied current density and the measured potential:  

  
 

ηLi Si 0

0

1
2sinh 1

2 1

ref

eq

kyi F RT
i

i RT F q D k 

     
                

. (B16) 
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