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Abstract

In this thesis, I present experiments on making and probing strongly correlated gases

of ultracold atoms in an optical lattice with engineered potentials and dynamics. The

quantum gas microscope first developed in our lab enables single-site resolution imaging

and manipulation of atoms in a two-dimensional lattice, offering an ideal platform for

quantum simulation of condensed matter systems. Here we demonstrate our abilities

to generate optical potential with high precision and high resolution, and engineer

coherent dynamics using photon assisted tunneling. We also create a system of bilayer

quantum gases that brings new imaging capabilities and extends the possible range of

our quantum simulation.

To engineer precise optical potentials, we tackle uncontrolled disorder using in-

coherent light sources and Fourier filtering of lattice beams. We develop a spatially

incoherent light source which suppresses disorder caused by defects and scattering in

the imaging system. Digital micro-mirror devices are used as spatial light modulators

to shape arbitrary potentials with single site resolution.

Next we study photon-assisted tunneling as an example of driven coherent dynamics.

We observe sharp, interaction-shifted photon-assisted tunneling resonances, and resolve

the multi-orbital shifts. Using photon-assisted tunneling, we drive a quantum phase

transition between a paramagnet and an anti-ferromagnet, and observe quench dynamics
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at the critical point.

We prepare tunnel-coupled bilayer systems, and use interaction blockade to engineer

occupation-dependent inter-plane transport. The site resolved imaging of the bilayer

system allows us to circumvent the limitations of parity imaging to directly observe the

Mott insulator “wedding cake” structure and density ordering in the anti-ferromagnetic

state, and to perform spin-resolved readout of a hyperfine mixture.
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Chapter 1

Introduction

Many of the open questions in condensed matter physics today deal with materials

with intriguing properties and hence often potential applications. Some examples

include high-temperature superconductors [1], fractional quantum Hall systems [2], and

low-dimensional magnetic materials [3]. These materials all exhibit strong non-classical

correlations due to the strong interactions between the constituent quantum particles,

e.g. Coulomb interaction between electrons [4].

Various quantum theories have been put forward that are thought to capture the

essential physics of these strongly correlated many-body systems. But despite the simple

forms of the Hamiltonians, the theoretical understanding of these proposed models

are often very limited. They have no analytical solutions and numerical studies of

states with large system size/particle number require formidable resources on classical

computers. The dynamics of these systems are even harder to tackle theoretically and

numerical methods exist for only a selective range of problems.

Consider a collection of spins each of which can take one of two possible states -

spin up or state down. For a classical system, the spin is either up or down. Hence

one bit of information is needed for specifying each spin, and the total amount of
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information resources to fully describe the state of a classical system scales linearly

with the number of particles N . For a quantum system, however, the spins can be in

a quantum superposition of all possible spin configurations, in this case 2N of them,

so the number of parameters needed to specify the quantum state scales exponentially

with system size. This is a direct result of quantum entanglement in strongly correlated

systems, where the states of the constituent particles are highly correlated and can not

be treated independently. Given the same available resource on a classical computer,

calculating the properties of a quantum mechanical problem could take exponentially

longer time than calculating its classical counterpart. Modern computers today allow

physicists to exactly simulate usually only a handful of quantum particles. If Moore’s

law [5] is to be followed, the doubling of classical computer’s computational power every

two years will only allow us to simulate one extra quantum particle in the same time

period.

A solution to this problem is the use of quantum simulators, as first proposed by

Richard Feynman [6]: in order to simulate a hard and less accessible quantum system,

one could use another quantum system that is governed by the same physics (i.e.

mathematically equivalent Hamiltonians) but is designed to be easier to control and

probe. Recent developments in the field of atomic, molecular and optical physics have

made it possible to build quantum simulators in several platforms including cold neutral

atoms [7], trapped ions [8], superconducting circuits [9], or photonic systems [10]. These

quantum simulators would allow us to test existing models and help us understand

strongly correlated material like quantum magnets or high-Tc superconductor. They

also allow us to explore systems with exotic properties in parameter regimes not thought

to be occurring in nature.

Ultracold atom in optical lattices is a powerful platform for quantum simulation

of condensed matter systems [11]. Systems of ultracold atoms cooled into quantum
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regime (e.g. Bose-Einstein condensate, or degenerate fermi gas) can be brought into

the strongly correlated regime by using Feshbach resonances [12] or optical lattices

[13]. Atoms moving in the periodic light potential is analogous to electrons moving

in the periodic potential of the ions in solids. Although fermionic atoms would seem

more natural for simulating electron gases with the proper quantum statistics, bosonic

atoms in lattices are also interesting and can for example represent Cooper pairs in

superconductors.

These systems of ultracold atoms offer several advantages: They are clean, essentially

dissipation free with long coherence times, required for maintaining entanglement and

correlations during the quantum simulation. They offer large tunability over many

parameter: for example the lattice spacing and geometries can be altered by changing

the laser configuration. The lattice spacings of optical lattices are on the order ∼ 1µm,

which is much larger than the lattice spacing in condensed matter systems. This enables

optical manipulation and imaging of the quantum states at each lattice site. The

much lower energy scales in ultracold atom systems also makes it easier to observe the

real-time dynamics of the quantum evolution.

One challenge brought by the small energy scales in lattices (typically in the nano-

Kelvin regime) is the extremely low temperatures required to reach the quantum regime

where the strongly correlated states emerge. Compared to bosons, Pauli exclusion

makes fermions even harder to cool. While systems of ultracold atoms in optical lattices

have been cooled to below the energy scales of the direct tunneling to observe e.g. the

superfluid to Mott insulator quantum phase transition, the progress towards observing

super-exchange based magnetic ordering (e.g. the anti-ferromagnetic ground state of

the Fermi Hubbard model) remains limited and extremely challenging. A lot of cooling

methods are being investigated to reach the required temperatures [14].

Until recently, experiments with ultracold atoms in optical lattices are mostly studied
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using their bulk properties, similar to traditional condensed matter techniques. The

development of “quantum gas microscopes” [15, 16, 17] allowed for the first time the

ability to image and manipulate single atoms in an optical lattice. With such high

resolution imaging, one can probe the local properties of the many body state without

having to resort to ensemble averages and directly access the correlation functions in

the systems of interest [18, 19, 20]. The same imaging system can also be used to

project optical potentials with single site resolution, making it possible to create more

complex Hamiltonians, and to prepare intriguing initial states with high fidelity for

quantum simulation. Such control of individual atoms in a lattice also makes the system

a promising venue for quantum information processing, where the quantum registry

can be initialized with high fidelity using e.g. our low entropy Mott insulators, and the

qubits can be encoded in either the location or the hyperfine spin of the atoms.

In this thesis, we develop techniques and describe experiments that improve and

extend the capabilities of our bosonic quantum gas microscope as a quantum simulator.

They are focused on three different aspects:

(1) Engineer potential landscapes – Precise shaping of the light potential is necessary

for reliable quantum simulation, and the ability to create arbitrary potentials

with single site resolution enables the preparation of novel initial states and local

excitations.

(2) Engineer dynamics – This together with (1) makes it possible to generate a

broader range of interesting Hamiltonians with strongly correlated states.

(3) Improve imaging techniques – To extend the high resolution imaging to more

systems, e.g. more than a single 2D plane, or for multiple spin states.

A quick summary of these experiments are provided as follows, according to the

organization of the rest of the thesis:

4



• Chapter 2 introduces the theory of cold bosons in optical lattices. We summarize

the band structure in a lattice, and the mapping to the Bose Hubbard model. The

superfluid and Mott insulator states are discussed, together with a description of

the mean field phase diagram.

• Chapter 3 gives an overview of the experimental apparatus, the quantum gas

microscope. We summarize the typical experimental sequence, including the

creating of the 87Rb Bose-Einstein condensate, the loading into the 2D plane, the

projection of the lattice and other optical potentials, and the fluorescence imaging

scheme with single site resolution.

• Chapter 4 focuses on the techniques used in our experiments to create clean

potentials and reduce uncontrolled disorder, crucial for any reliable quantum

simulation. We describe the use of temporally incoherent light sources. The

Fourier filtering setup for the 2D lattice is shown. We also show a method to create

spatially incoherent light sources, and experimentally test their performance in

reducing disorder in projected potentials. A few different methods of characterizing

the disorder is discussed.

• Chapter 5 continues with the topic of engineered potentials, and describe the

use of spatial light modulators for projecting arbitrary potential landscapes with

single site resolution. We describe use of digital micro-mirror devices as spatial

light modulators in two different configurations.

• Chapter 6 shows an example of engineering dynamics in our quantum simulator.

We induce photon assisted tunneling in a tilted Mott insulator using lattice

amplitude modulation. The tunneling resonances and the multi-orbital shifts of

these resonances are measured. We show that the induced coherent dynamics

can be used to drive quantum phase transitions between a paramagnet and an
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anti-ferromagnet, and to observe quench dynamics when the system is tuned to

the critical point.

• Chapter 7 describes experiments to manipulate and detect atoms in a bilayer

system. By tunnel couple two adjacent planes, we observe controlled coherent

dynamics of a bilayer quantum gas. We develop methods to image both planes

with single site resolution, which enabled imaging without the parity-projection.

This allows us to obtain the images of the Mott insulator “wedding cake” structure

and observe the formation of doublon-hole pairs across a magnetic quantum phase

transition. We also demonstrate spin-resolved imaging using the bilayer system.

• Chapter 8 gives a summary of the work in this thesis.
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Chapter 2

Theory of ultracold bosons in

optical lattices

2.1 Optical dipole potential and optical lattices

Optical forces play a crucial role in the cooling, trapping and manipulating of neutral

atoms [21]. Atoms can interact with the light field with both conservative and dissipative

forces. The dissipative scattering force results from the absorption of photons that

excites the atom, followed by irreversible spontaneous emission as the atom decays from

the excited state. The atoms gain momentum through the absorption of photons, but

the recoil from spontaneous emission is random in direction and averages to zero net

momentum change. This dissipative force is the basis of most laser cooling techniques,

where near resonant light is used.

On the other hand, the conservative dipole force is created through the interaction

of the light field with the light-induced dipole moment of the atom. This causes a

shift in the energy of the atom called the ac-Stark shift. When the light frequency

is sufficiently far detuned from atomic resonances so that spontaneous emissions are
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negligible, the energy shift acts as a conservative potential that’s proportional to the

light intensity at the position of the atom.

For a two level atom in a monochromatic laser field where the laser detuning is large

and the rotating wave approximation can be used, the conservative dipole potential

and spontaneous scattering rate are given by:

Vdipole(r) ≈ 3πc2

2ω3
0

Γ

∆
I(r) (2.1)

Γsc(r) ≈ 3πc2

2h̄ω3
0

(
Γ

∆

)2

I(r) =
1

h̄

Γ

∆
Vdipole(r) (2.2)

where the atomic transition has a frequency of ω0 with linewidth Γ, and the laser field

has a frequency of ω and intensity I(r). The laser detuning is ∆ = ω − ω0. The dipole

force thus attracts atoms to regions of higher intensities for red-detuned light, and to

regions of lower intensities for blue-detuned light. The heating from scattering in the

dipole potential can be reduced by going to larger laser detunings and increasing laser

intensities to keep the same depth of the potential. By engineering the spacing intensity

profile, we can create almost any potential landscapes for the atoms.

In order to study condensed matter physics problems using ultracold atoms, it’s

natural to place the atoms in a periodic potential much like how electrons in solids

are subject to the periodic potential of the nucleus. Using the optical dipole force,

such optical lattice potentials can be created with standing waves formed by counter-

propagating laser beams [22]. The resulting lattice has a sinusoidal intensity variation

with a period of λ/2 where λ is the wavelength of the light.

Optical lattices in higher dimensions can be created using pairs of laser beams

traveling in different directions. The resulting potential will depend on the geometry of

the beams and also the polarization and relative phase of the lattice beams [23, 24],

and is in general non-separable due to interference between the beams along different
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axes. To make a separable optical lattice, such interference patterns can be avoided for

beams with orthogonal polarizations between the lattice axes. Alternatively, one can

use slightly different laser frequencies between the different lattice directions and the

fast changing relative phase time averages to wash out the interference pattern.

2.2 Non-interacting atoms in optical lattices

For non-interacting atoms in a one-dimensional lattice, the Hamiltonian can be written

as:

H =
p̂2

2m
+ V (x) with V (x) = Vlatt(1− cos2(kx)) (2.3)

where k is the wavevector of the light used to create the lattice and m is the mass of

the atom.

According to Bloch theorem, the eigenfunctions of this periodic system take the

form:

ψ(n)
q (x) = eiqx/h̄ · u(n)

q (x) (2.4)

where u is a function with the same periodicity as the lattice. The wavefunctions are

labeled by the the band index n and the quasi momentum (or crystal momentum) q.

The quasi momentum takes the place of the linear momentum in free space, and is

defined in the Brillouin zone −h̄k ≤ q ≤ h̄k. This reduction of momentum space is

due to the periodicity of the Hamiltonian, and can be understood as the result of the

perfect Bragg reflection of the wavefunctions at the Brillouin zone boundary. As q is

varied, the energy eigenvalues in each band n changes smoothly. In this thesis, we use

the convention that the ground band is label by n = 0.

This band structure E
(n)
q can be obtained by writing the periodic functions V and

9



u in Fourier series:

V (x) =
∑
r

Vre
i2rkx (2.5)

u(n)
q (x) =

∑
s

c(n,q)
s ei2skx (2.6)

For the potential V (x) in Equation 2.3, only two terms of the Fourier sum are nonzero:

V−1 = V1 = −Vlatt/4, ignoring the constant offset. The time independent Schrödinger

equation then reads:

∑
l

Hl,l′ · c(n,q)
l = E(n)

q c
(n,q)
l with Hl,l′ =


(2l + q/h̄k)2Er if |l − l′| = 0

−Vlatt/4 if |l − l′| = 1

0 otherwise

(2.7)

The recoil energy Er = h̄2k2/2m is the energy an atom gains when it absorbs (or emits)

a photon with wavevector k from the lattice light, and it serves as a convenient unit

for the energy scales in the lattice. The secular equation (Eqn. 2.7) can be solved

numerically by truncating the sum over l which corresponds to a truncation at the high

energy.

Band structure and Bloch wavefunctions

The resulting band structure is plotted in Figure 2.1 for various values of the lattice

depth. At zero depth, the band structure is simply the parabolic dispersion of the free

particle folded into the Brillouin zone. As the lattice depth increases, band gaps open

where the bands touch and becomes bigger while the individual bands become flatter.

For deep lattices in the so called tight-binding limit, atoms in the lowest bands see

approximately an array of harmonic potentials at the minima of the lattice and the

10



0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

0.0 1.0-1.00.0 1.0-1.0 0.0 1.0-1.00.0 1.0-1.0 0.0 1.0-1.0

0 4 8 12 16

Figure 2.1: Band structure of a one dimensional sinusoidal lattice for different lattice

depths, plotted in the first Brillouin zone. Calculated through direct diagonalization of

Eqn. 2.7, with l truncated at 6. The constant energy offset in V (x) ignored in Eqn. 2.7

does not effect the dynamics of the system at any given lattice depth, but is added

back in the plots to give the proper absolute energy across the different depths.

lowest bands become flat with a spacing equal to the trap frequency ωlatt given by:

h̄ωlatt
Er

=

√
4 · Vlatt

Er
(2.8)

The Bloch wavefunctions and the corresponding densities for q = 0, h̄k/2 and h̄k are

shown in Figure 2.2. Each Bloch wave can take on an arbitrary additional phase, but

only the wavefunctions at the center (q = 0) and the edge (q = ±h̄k) of the Brillouin

zone can be made to be purely real.

Wannier wavefunctions

The Bloch wavefunctions (Eqn. 2.4) form a set of complete energy eigenstates for the

lattice Hamiltonian (Eqn. 2.3). For any particular band n, they describe atoms with

a defined quasi momentum q that are maximally localized in momentum space but

completely delocalized in position space. An alternative orthonormal basis for the
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Figure 2.2: The ground band Bloch wavefunctions ψ
(0)
q (x) of an 8Er lattice, with

quasi momentum q = 0, h̄k/2 and h̄k. Left: The real part (solid line) and imaginary

part (dotted line) of the Bloch wavefunction; Right: the probability density. The lattice

potential is shown in gray with arbitrary vertical scale.

system is the set of Wannier functions that describe atoms localized in position space

at each lattice site xi. They are a convenient basis for describing lattice systems in the

atomic limit and can be constructed as a superposition of all Bloch wavefunctions in

the Brillouin zone:

ωn(x− xi) = N−1/2
∑
q

e−iqxi/h̄ψ(n)
q (x) (2.9)

Here N is a normalization factor. However this definition is insufficient to construct the

Wannier wavefunctions. Given the set of Bloch wavefunctions obtained via the direct

diagonalization of Equation 2.7 or otherwise, the Bloch function at each q can still take

an arbitrary overall phase. The phases need to be set correctly to produce the proper

Wannier wavefunction that is maximally localized on site i.

For the case of a one-dimensional lattice, we could follow a simple recipe for choosing

the complex phases [25]. Consider the Wannier wavefunction ωn(x− xi) at site i. From

the symmetry of the potential, we know the Wannier functions in even bands (ground
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band n = 0, second excited band n = 2, etc.) are symmetric with respect to x = xi,

while those in odd bands are anti-symmetric. In addition, the Bloch wavefunctions

that make up the Wannier functions in Equation 2.9 also have the same symmetry. To

create a wavefunction maximally localized at xi, we want all the Bloch wavefunctions

on the right hand side of Equation 2.9 to add constructively at x = xi: For even bands,

we pick the phase of the Bloch wavefunctions such that the amplitude of the Bloch

wavefunctions at x − xi is real and positive. For odd bands, the constituent Bloch

wavefunctions always have zero amplitude at x = xi, and we pick the phase such that

the derivative of the Bloch wavefunctions at x = xi is real and positive.

Mathematically, we define the properly phase adjusted Bloch wavefunctions as:

ψ(n)
q (x)→


ψ

(n)
q (x) · Exp

(
−i Arg

[
ψ

(n)
q (xi)

])
n even

ψ
(n)
q (x) · Exp

(
−i Arg

[
dψ

(n)
q (x)/dx

∣∣
x=xi

])
n odd

(2.10)

Then using Equation 2.9 to calculate the proper Wannier functions as the maximally

localized states possible. For even bands, the wavefunction has the highest amplitude

at x = xi; for odd bands, the wavefunction has the sharpest slope. In both cases, far

away from xi, the Bloch wavefunctions have varying phases and amplitude and the sum

destructively interfere to give vanishing amplitude of the Wannier function. It can be

verified that the Wannier functions constructed using the current procedure are purely

real.

Figure 2.3 (a) shows the Wannier functions of the lowest four bands in an 8Er

deep lattice. While the ground state has population mostly confined in the single site

of the potential, the higher bands quickly start to have significant population into

the neighboring sites. In Figure 2.3 (b), the ground state Wannier function for three

different lattice depths are plotted. For increasing lattice depth, the Wannier function

gets narrower with smaller amplitudes that extend into the neighboring sites. In deep
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Figure 2.3: (a) The 4 lowest band Wannier wavefunctions ωn(x) of an 8Er lattice,

showing alternating even and odd parities. (b) The ground band Wannier functions

for lattice depths 2, 5 and 10Er. The wavefunction gets more localized with increasing

lattice depth. The lattice potential is shown in gray with arbitrary vertical scale.

lattices, the Wannier functions get closer to the harmonic oscillator wavefunctions. But

due to the finiteness of the lattice (as opposed to the infinite harmonic potential), there

always exists non-negligible amplitude in the wings of the Wannier functions that are

crucial for an accurate description of the system.

2.3 The Bose Hubbard model

Atom-atom interaction

The unique advantage in experiments with ultracold atoms is the precise control of the

effective atom-atom interaction. Using magnetic Feshbach resonances [12], the sign of

the interaction can be changed between being attractive or repulsive, the interaction

can be effectively turned off or turned to the strongly interacting unitary limit. In

optical lattice experiments, the interaction energy scales are determined by the depth

of the lattice, which can be varied over a few orders of magnitude simply by changing

the laser power used to create the lattices.

The interaction between two atoms in dilute gases can be described as an inter-
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atomic potential V (r), where r is the inter-particle distance. Qualitatively, the potential

is strongly repulsive at short distances (on the order of a few Bohr radii a0) due to the

Coulomb interaction of the atoms’ electron cloud. At long distances, the interaction is

approximately given by the attractive van der Walls force arising from the mutually

induced electric dipole-dipole interaction ∝ −C6/r
6 [26].

At the temperatures of ultracold atom experiments, atoms interact primarily through

elastic scattering. Although the exact shape of the inter-atomic potentials are hard

to determine, such details are not necessary for describing the scattering properties

at low energies because the atoms do not have sufficient kinetic energy to overcome

the centrifugal barrier and only the lowest partial wave scattering process contributes.

Thus for bosons at the low energy limit, only s-wave scattering takes place and the

inter-atomic interaction can be well approximated by a short-range contact interaction

characterized by a single parameter, the s-wave scattering length as. Take the simplest

form of a delta function for the contact potential, we have:

V (r) =
4πh̄2as
m

δ(r) (2.11)

For 87Rb the s-wave scattering lengths in both the F = 1 and F = 2 ground states are

almost identical, at as ≈ 100 a0 ∼ 5 nm [27].

Interacting bosons in optical lattices

We start by writing the Hamiltonian for bosons in a trapping potential V (x), interacting

with the contact interaction in Equation 2.11:

H =

∫
d3x Ψ̂†(x)

(
− h̄2

2m
∇2 + V (x)

)
Ψ̂(x)

+
1

2

4πh̄2as
m

∫
d3x Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) (2.12)
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Here Ψ̂ is the bosonic field operator, and V (x) = Vlatt(x) + Vext(x) contains both

the lattice potential Vlatt and any slowly varying external potential Vext, for example

confinement from a harmonic trap. It is convenient to use the Wannier wavefunctions

as the basis for the Hamiltonian. If the dynamics of the atoms have energy scales

much smaller than the band spacing of the optical lattice, excitations to higher bands

are negligible. This is the case for ultracold atoms cooled to the sub-micro-Kelvin to

nano-Kelvin regime and loaded in conservative lattices with depths in the tens of kHz

range. We can then expand the field operator in terms of the ground band Wannier

functions:

Ψ̂(x) =
∑
i

âi ω0(x− xi) (2.13)

Here âi and â†i are the annihilation and creation operators for a boson on the lattice

site at xi. They follow the bosonic commutation relations [âi,â
†
j] = δij. Equation 2.12

can then be written as:

H = −
∑
i,j

Jij â
†
i âj +

∑
i,j,k,l

Uijkl
2

â†i â
†
j âkâl +

∑
i

(εi − µ)n̂i (2.14)

where the on-site occupation operator is n̂i = â†i âi. The external potential on each site

is εi = Vext(xi) and µ is the chemical potential that can be viewed as the constraint for

total particle number in the grand canonical ensemble description. Jij are the tunneling

matrix elements that describe tunneling between any two sites i and j. Uijkl give the

various interaction induced terms. For example U0000 is the on-site interaction, while

U1010 is the nearest neighbor interaction. From the Wannier functions, we can calculate:

Jij = −
∫
ω∗0(x− xi)

(
− h̄2

2m
∇2 + Vlatt(x)

)
ω0(x− xj) d3x

Uijkl =
4πh̄2as
m

∫
ω∗0(x− xi)ω∗0(x− xj)ω0(x− xk)ω0(x− xl) d3x (2.15)
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The tunneling matrix elements can also be obtained directly from the band structure.

Intuitively, tunneling of the Wannier functions can be seen as a result of the interference

between the constituent Bloch wavefunctions: For example, nearest neighbor tunneling

is to a good approximation the interference between ψ
(0)
q=0 and ψ

(0)
q=h̄k in Figure 2.3(a),

which happens as a rate of (E
(0)
q=h̄k − E

(0)
q=0)/4.

Formally, using Equation 2.9 in the expression of J in Equation 2.15, the mth

neighbor tunneling in the nth band J
(n)
0m is given by the amplitude of the Fourier

transform of the nth band dispersion E
(n)
q that corresponds to a period of 2h̄k/m in

the momentum q space:

J
(n)
0m = −

∑
q

E(n)
q e−iqmπ/h̄k (2.16)

Tight binding approximation

In addition to the single band (i.e. ground band) approximation applied above, we take

the tight-binding approximation valid for deep lattice depths. In this limit, the Wannier

wavefunctions are sufficiently localized so that all higher order tunneling processes

and higher order interaction terms can by ignored. Keeping only the nearest neighbor

tunneling J ≡ J01 and the on-site interaction U ≡ U0000, Equation 2.14 results in the

celebrated Bose Hubbard Hamiltonian:

HBH = −J
∑
〈i,j〉

â†i âj +
∑
i

U

2
n̂i(n̂i − 1) +

∑
i

(εi − µ)n̂i (2.17)

In the tight binding limit, the dependence of J and U on lattice depth Vlatt can be

qualitatively described by approximating the Wannier functions with Gaussian ground

state wavefunction for the Harmonic oscillator. J is closely related to the amplitude in

the tails of the wavefunction, and it drops exponentially with increasing Vlatt. U on the

other hand increases only slightly at higher depths due to the narrower spatial spread

of the wavefunction, with a (Vlatt)
1/4 dependence in each spacing dimension. Hence the
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ratio J/U can be varies over a wide range by tuning the lattice depth.

The values of J and U calculated from the Wannier wavefunctions are plotted in

Figure 2.4, using parameters in our experiment with 87Rb . The recoil energy for the

680 nm spacing two-dimensional square lattice is 2π × 1240 Hz. The interaction U is

calculated for equal lattice depth in both directions in the plane, and an out-of-plane

trap frequency of 6 kHz. The scattering length is determined experimentally. Figure 2.5

shows the ratio between interaction and tunneling.

2.4 The superfluid to Mott-insulator transition

The Bose Hubbard Hamiltonian has two distinct quantum phases, and the quantum

phase transition between the two phases are driven by quantum fluctuations that persist

even at zero temperature. We start by describing the two states in a homogeneous

lattice (εi = 0) before taking into account the effect of external confining potentials.

Small U/J: superfluid phase

In the limiting of weak interactions the kinetic tunneling term dominates. Because of

the positive sign of J , atoms in the ground state prefer to delocalize over the whole

lattice. For vanishing interaction (U/J = 0), all atoms are Bose-condensed in the Bloch

state at q = 0 and the exact ground state wavefunction is:

|ΨSF 〉 =
(
â†k=0

)N
|0〉 ∝

(∑
i

â†i

)N

|0〉 (2.18)

where |0〉 is the vacuum. This superfluid state can be viewed as an array of tiny

Bose-Einstein condensates at all lattice sites, whose phases are locked together over

the whole lattice by the tunneling. The phase φ̂i and atom number n̂i on each lattice

site are conjugate variables. Therefore the well-defined phase of the superfluid state
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Figure 2.4: Tunneling and interaction in the Bose Hubbard model, calculated for our

2D lattice. Qualitatively, the tunneling rate approximately decreases exponentially with

increasing lattice depths; while the interaction has a square root dependence on lattice

depth in the 2D case.
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Figure 2.5: The ratio between interaction and tunneling, from values plotted in

Fig. 2.4.
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implies that the particle number fluctuates on each lattice site, which is apparent from

the right hand side of Equation 2.18. For a given average atom density n̄, the local

atom number distribution P (n) follows a binomial distribution:

P (n) =
1

n!
e−n̄ (n̄)n (2.19)

The superfluid phase is characterized by: (a) Non-zero value of the order parameter

ψ ≡ 〈ai〉, (b) no finite gap between the ground state and the excited states and (c)

finite compressibility κ = ∂n/∂µ – as the chemical potential increases, n̄ also increases

continuously, as seen from Equation 2.19.

Large U/J: Mott insulating phase

When the interaction dominates over the tunneling, the ground state of the system is

an insulating phase. In the limit J → 0, the kinetic term vanished and the remaining

terms in the Hamiltonian (U and µ) are both local on each site and commutes with the

on-site occupation n̂. So for a given chemical potential µ in a homogeneous lattice, the

atom number on each site is fixed and constant over the lattice. The on-site occupancy

is obtained by minimizing the energy on the lattice site as n = dµ/Ue. The Mott

insulator wavefunction with n atoms per site is:

|ΨMI〉 =
∏
i

(
â†i

)n
|0〉 (2.20)

In the Mott insulator, the phase coherence between different lattice sites is lost, and the

order parameter ψ is zero. The elementary excitation in the Mott insulator is hopping

of one atom from one site to its neighbor, at a energy cost of U . Since the atom number

per site n takes a step like function with increasing chemical potential µ, the Mott

insulator is incompressible.

20



-0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Μ�U

0.00 0.05 0.10 0.15 0.20 0.25

0.0

0.5

1.0

1.5

2.0

2.5

3.0

zJ�U

Μ
�U

MI (n = 0)

MI (n = 1)

MI (n = 2)

MI (n = 3)

SF

a b

Figure 2.6: (a) Mean field phase diagram of the Bose-Hubbard model, showing the

Mott insulator lobes surrounded by the superfluid region. The lobes get smaller with

increasing atom number as a result of stronger quantum fluctuations due to Bosonic

enhancement of tunneling. (b) The mean atom number and variance at zJ/U = 0.05,

as the chemical potential is varies, corresponding to the red line in (a). The density

shows the famous wedding cake structure.

Mean-field phase diagram

The phase diagram of the Bose Hubbard model can be understood from a mean field

approach, and the transition between the superfluid and Mott insulator is a second

order transition that can be described by a simple Laudau theory [28].

The µ/U–zJ/U mean field phase diagram is plotted in Figure 2.6(a), showing the

Mott insulator lobes with different occupation numbers and the superfluid region. z is

the coordination number, i.e. the number of nearest neighbors for each lattice site.

We start from a point inside a Mott insulator lobe with n = n0. At constant

chemical potential, slight change in J/U does not affect the state because it takes a

finite energy U in order to change the particle number on any site. As J/U increases,

the energy gap gets smaller while the tunneling gets stronger. Eventually at the phase

boundary, the reduction in energy from the kinetic term overcomes the energy gap from
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interaction, and the Mott insulating state is destroyed. The Mott insulator lobes shrink

with increasing n0 due to stronger quantum fluctuations from bosonic enhancement.

It’s worth noting that in a homogeneous lattice with constant µ (therefore constant

atom number), the Mott insulator can only be reached from the superfluid by reducing

J/U if the total atom number is an integer multiple of the number of sites. Otherwise

there will always be some atoms delocalized on top of a Mott insulator, and the overall

state is a superfluid.

At a fixed value of J/U , if the chemical potential is varied, the many-body state

goes through the Mott lobes with different n, separated by superfluid regions. This is

indicated by the red line in Figure 2.6(a). The mean atom number per site n̄ and the

variance of atom number σn =
√
n̄2 − (n̄)2 along the red line is plotted in Figure 2.6(a).

The curves are calculated with a Gutzwiller variational wavefunction [29] truncated

to only states with n = n0, n0 ± 1, which is a valid approximation for the strongly

interacting limit. Such a spatially varying chemical potential can be realized for atoms

confined in a harmonic trap where the chemical potential increases from the trap

center, leading to the well-celebrated “wedding cake” shell structure which has been

experimentally observed [30, 31].
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Chapter 3

Quantum gas microscope: a recap

Experiments described in this thesis are carried out in our quantum gas microscope,

where an ultracold quantum gas of bosonic Rubidium 87 atoms are loaded into a two

dimensional square optical lattice at the focus of a high resolution imaging system with

single site resolution (Fig. 3.1). In this chapter we give an overview of the apparatus

and describe the experimental procedures for preparation, manipulation and detection

of the ultracold gases. A number of experiments in this thesis are based on extensions

to what is described in this chapter. Further details on the apparatus can be found in

previous theses [32, 33, 34].

3.1 Creating the Bose-Einstein condensate

Each experimental run starts with 87Rb atoms loaded into a magneto-optical trap,

where we gather about 109 atoms at a temperature of ∼ 40µK after cooling in an

optical molasses. The atoms are polarized into the |F = 1,mF = −1〉 state, and

transported magnetically [35] into the ultra-high vacuum science glass cell. The forced

RF evaporation is performed in an oblate QUIC trap [36] to produce a 3D Bose-Einstein
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Figure 3.1: A conceptual illustration of the quantum gas microscope. A 2D quantum

degenerate gas of 87Rb atoms trapped about 10 µm away from the surface of the last

lens of a high numerical aperture imaging system. This last lens consists of the glass

hemisphere optically contacted to a super-polished glass substrate.
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condensate with about 5× 104 atoms.

3.2 Loading the condensate into the two dimen-

sional plane

The high numerical aperture imaging system we use gives us diffraction limited perfor-

mance with a resolution close to the wavelength of the fluorescence light. This implies

also a very short depth of focus for the imaging system and atoms ∼ 1µm away or

more would already be out of focus and contribute only to a washed out background

patch of fluorescence. We thus work primarily with a single 2D layer of atom in our

experiments.

To study physics in 2D systems, the Bose-Einstein condensate needs to be loaded

into a tightly confining 2D planar trap where the motion in the direction perpendicular

to the plane is completely frozen out. Further more, tighter confinement leads to

stronger interactions which is favorable for reaching the strongly correlated regime.

We use a two stage standing wave setup to prepare the single atomic layer. Both

standing waves are created by reflecting blue-detuned far off-resonant laser beams off

of the surface of the super-polished substrate, at shallow angles. The spacings of the

standing waves are determined by the incident angles of the beams.

The condensate is first moved to ∼ 10µm below the surface of the substrate surface

and loaded into the first anti-node of the standing wave with a period of ≈ 9.2µm,

which we call the “big lattice”. The big lattice has an incident angle of ≈ 75◦ from

below, which can be tuned slightly.

Next a second vertical standing wave with a 1.5µm lattice spacing is ramped on

that we call the “axial lattice”. It has an incident angle of 87.6◦. The atoms in the

big lattice will now sit at the sixth anti-node plane of the axial lattice. The big lattice

25



is then turned off, and the 2D physics is carried out in the axial lattice. The depths

of the big and axial lattices are ramped smoothly to make sure that the loading and

transfer are adiabatic and all atoms remain in the ground state in the vertical direction

(also referred to as the axial direction). In addition, the condensate is aligned to the

big lattice plane by varying the vertical position of the magnetic trap minimum with a

small offset field. The big lattice plane and the axial lattice plane are aligned by slightly

varying the spacing of the big lattice and look at the loading efficiency.

By placing the anti-node of the big lattice carefully with respect to the axial anti-

nodes, it is possible to load atoms into a neighboring axial plane or even deliberately

load two adjacent planes simultaneously. This is utilized in Chapter 7 for creating

bilayer quantum gases.

The incident beams for both the big lattice and the axial lattice are elliptically

shaped so that in the plane of the atoms they have relatively circular intensity profiles.

They are far blue-detuned with a wavelength of 755 nm and a spectral width of 3 nm.

The incident beams are s-polarized which ensures proper interference and leads to the

resulting standing waves having an anti-node at the substrate surface.

3.3 High resolution imaging system and lattice pro-

jection

The 2D quantum gas is at the focus of the high resolution imaging system, as illustrated

in Figure 3.2. A long working distance microscope objective with a numerical aperture

of NA = 0.55 sits outside of the vacuum glass cell. A glass hemisphere is inside the glass

cell and is optically contacted to the super-polished substrate under which the atoms

are located. The hemisphere acts as a final lens for the objective. Refraction at the

substrate surface causes a “solid immersion” effect that boosts the effective NA of the
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Figure 3.2: Illustration of lattice projection and imaging in the quantum gas micro-

scope.
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imaging system by a factor of the refractive index of the glass to NA = 0.8, resulting in

a diffraction limited resolution of ≈ 600 nm at the design wavelength of 780 nm.

Instead of using interfering counter-propagating laser beams as in most optical

lattice experiments, the 2D lattice in our apparatus is created by direct projection

of holographic masks onto the atoms through the objective. The lithographically

manufactured holograms act as phase gratings whose geometry determines the structure

of the projected lattice. For the current square lattice we use, two orthogonal 1D

holograms each produces the lattice in one direction. With the projection scheme the

lattice spacing is set by the spacing of the grating on the hologram and is independent

of the wavelength used. This allows us to use broadband light for the physics lattice,

or to significantly change the lattice depth at similar lattice powers by switching the

wavelength between far-detuned and near-resonant. A more detailed description of the

optical lattice setup is found in Section 4.3.

Most of our experiments works with less than a few hundred atoms in regions of

tens of lattice sites across. With the condensate trapped in the axial lattice, a tightly

focused red detuned “dimple” beam is adiabatically turned on at the center cloud

to collect a small number of atoms. The atom number is controlled precisely by the

final depth of the dimple potential. The rest of the atoms are expelled by turning

off the magnetic trap that has been providing the radial confinement. The dimple

potential also has the advantage of selecting only the coldest atoms at the center of the

initial cloud. The atoms in the dimple are then adiabatically released into a harmonic

dipole trap, created by either a red-detuned Gaussian beam or a blue-detuned doughnut

(Laguerre–Gaussian) beam. Both the dimple and dipole potentials are projected through

the objective.

The conservative 2D lattice is then turned on adiabatically. The far detuned lattice

has the same wavelength as the axial lattice at 755 nm with a spectral width of 3 nm,
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and is referred to as the “physics lattice” since the coherent quantum evolution we want

to study happens here. The lattice spacing is a = 680 nm, which gives a recoil energy

of Er = 2π×1240 Hz.

Many of the experiments discussed in this thesis start with Mott insulators in a deep

physics lattice. Starting with atoms in the harmonic trap, the 2D lattice is ramped up

in about 400 ms to 45Er in both directions to drive a transition from the superfluid to

the Mott insulator state. The widths of the Mott insulator shells and the atom number

can be varied by the dimple depth, and frequency of the harmonic trap typically in the

range of 40 – 60 Hz. We can prepare Mott insulator regions of different occupancies

with a high fidelity of > 99% [18].

For imaging the atoms at the end of the experiments, the 2D lattice depth is

increased rapidly to ∼ 5000 Er to project the many-body state onto the space of local

Fock states on each site. This is done by switching the wavelength of the lattice to

∼ 30 GHz blue detuned to the 87Rb D1 line at 795 nm, and this deep lattice is referred

to as the “pinning lattice” in which tunneling is turned off and the atoms are pinned to

each lattice site. An axial pinning lattice derived from the same light source is used to

increase the lattice depth in the axial direction at the same time.

Heating of atoms in lattice potentials occurs when atoms off-resonantly scatter the

lattice photons and either fall back to the ground band (ground-band scattering) or

to an excited band (inter-band scattering) [37, 38]. The former causes decoherence of

the wavefunction, and is suppressed in a blue detuned lattice where atoms sit near the

intensity minima. The inter-band heating rate however is identical in deep lattices of

red or blue detuning [38].

29



3.4 Fluorescence imaging

We collect fluorescence photons from the atoms to form the high resolution images.

While the atoms are being trapped in the deep pinning lattice, we illuminate the cloud

with near-resonant optical molasses beams to perform in lattice sub-Doppler cooling.

The molasses beams are red-detuned 80 MHz to the F = 2 to F ′ = 3 transition of the

D2 line near 780nm. Light on the D2 F = 1 to F ′ = 2 transition is also added for

repumping.

The molasses setup consists of two beams each along one axis of the 2D lattice. The

first one travels along x and illuminates the substrate surface at an angle of 8◦ from

the surface with s-polarization. The reflected beam is retro-reflected with orthogonal

polarization (p-polarized) and travels through the same path, as shown in Figure 3.3.

This creates periodic variations in both the intensity and polarization along x and

along the vertical direction. The polarization gradient leads to Sisyphus cooling in

the lin ⊥ lin configuration [39, 40]. The second molasses beam enters along y in a

similar configuration to provide the polarization gradient and hence cooling along y. The

frequency of the two molasses beams are offset by 7 kHz so that their mutual interference

pattern averages out in time. In addition, the retro-reflector for the x molasses is shaken

normal to the beam at 100 Hz to move its intensity/polarization pattern by more than

one period along x. Both the frequency offset and the spatial shaking help ensure

that all lattice sites in the 2D plane experience a uniform time-averaged cooling and

fluorescence rates.

In Section 7.2.1 we will take another look at the molasses configuration and make

use of their intensity gradient in the axial direction to image two adjacent plane of

atoms.

The photons scattered by the atoms during the polarization cooling is collected by
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Figure 3.3: The geometry of the molasses beam along x-axis of the 2D lattice. The

beam is incident from the right with s-polarization and is reflected at the substrate

surface. The polarization is then rotated by 90◦ with a quarter waveplate and retro-

reflected along the same path. The two counter-propagation beams produce Sisyphus

cooling in the lin ⊥ lin configuration. The retro-reflecting mirror is mounted on a piezo

mount that allows it to be shifted along the beam direction. See also [34].
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the imaging system and recorded on an EMCCD camera (Andor Ixon). During the

typical exposure time of 500 ms, about 2000 photons per atom are collected on the

camera, which is about 10% of all photons scattered. The lattice projection path and

imaging path are combined with a non-polarizing beam splitter above the objective.

For atoms strongly confined to the same site of a deep lattice, illumination of near-

resonant light leads to light-assisted collisions that excite pairs of atoms to molecular

states [41, 42]. For red-detuned light, the pair of atoms are excited to the attractive

molecular potential and accelerated towards smaller inter-atomic distance. In this

process, the atoms can gain enough momentum to escape the lattice, via either a

transition to a more deeply bound molecular state or the radiation of a red-shifted

photon. In our pinning lattice, atom pairs undergo light-assisted collisions and leave the

trap on a time scale of a few hundred µs, long before they can scatter enough photons.

Therefore we are only sensitive to the parity of the on-site occupation number: Sites

originally with even number of atoms will have zero atoms left so they appear dark,

while sites with odd number of atoms will have one atom left and appear bright. Such

“parity imaging” is present in all experiments using fluorescence imaging in a deep lattice

[43, 18, 16].

The obtained fluorescence images are analyzed by fitting the amplitude of the point

spread function on each site. The point spread function of the imaging system and the

lattice structure are separately determined from images with sparsely populated atoms.

The fitted amplitudes have a clear bimodal distribution, which allows us to determine

the presence or absence of an atom on each site with high fidelity.

The experiment is repeated many times to give the average atomic density or

expectation value of any other observables.
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Chapter 4

Reducing uncontrolled disorder

with incoherent light sources

The effectiveness of quantum simulation using ultracold atoms depends critically on

the ability to engineer potential landscapes with high precision.

To study critical phenomena near quantum critical points, for example, the potential

is often required to be homogeneous over a large scale. Otherwise the system will simply

fragment into separated regions that transition independently, which hinders the ability

to create entanglement over large number of sites and thus complex many-body strongly

correlated states.

Experimentally, laser beams with large Gaussian profiles should produce near

homogeneous potentials over the small region near the center. Alternatively the

superposition of beams with different spatial profiles or special purpose spatial light

modulators can be used to give near flat or other forms of smooth optical potentials.

Unfortunately, even though the light potentials we intend to project have well defined

profiles (e.g. a perfectly clean lattice, or a perfect Gaussian potential), aberrations

and scattering from imperfections in the imaging system all contribute to uncontrolled
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corrugations and defects in the potentials the atoms experience. In this chapter, we

seek methods to create smooth precise potentials despite the unavoidable imperfections

of the optical system, and to measure and characterize any remaining disorder. Such

knowledge is crucial for calibrating other parameters of the system, or benchmarking

the quantum simulator’s performance.

Disordered potential is interesting in its own right, leading to e.g. Anderson local-

ization [44] or Bose glass phases [45], and many open questions remain in the interplay

between strong disorder and strong interactions [46]. Once we have the ability to make

very clean potentials, disorder or impurities can be introduced in a controlled way.

For coherent light, disorders appear when the otherwise clean beam interferes with

even trace amount of stray reflection or scattering. As an illustrative example of

the heterodyning effect of interference, we consider an incoming coherent light field

that is scattered by imperfections in the media. For a scattered intensity of one part

in ten thousand Isc = 10−4I0, the scattered field amplitude is Esc = ±10−2E0. The

resulting intensity from the interference of the two is I ∝ |E0 + Esc|2 ≈ I0 (1± 2Esc/E0),

corresponding to a 4% peak to peak variation in light intensity thus in the dipole potential

the atoms see. In contrast, if the scattered field is incoherent with the incoming field, the

two would only add in intensity, leading to a much smaller 0.01% variation. Therefore

we expect the use of incoherent sources to greatly reduce uncontrolled disorder in the

projected optical potentials.

4.1 Disorder in optical lattice potentials

For the lattice potentials, the two primary effects of disorder and inhomogeneities are

variations in the energy offset, and/or variations in the lattice depth on different lattice

sites.

34



Consider the Hubbard model, energy offsets correspond to changes in the local

chemical potential. Variations that are relatively small (≤ min(J, U)) and smooth

(over a few sites or slower) can usually be described by some local field in a similar

fashion to the local density approximation. If the variation in offset are bigger than

the characteristic energy scales (U and J) and have sharp spatial features, it can freeze

dynamics on the affected lattice sites – atoms on these sites are effectively “stuck” due

to the big energy offset and appear as static impurities in the lattice. On the other

hand, disorder in the lattice depth causes variations in J , U , as well as in the offset via

the zero point energy given by h̄ω/2.

As an order of magnitude estimation, let’s take a typical 10Er physics lattice. The

lattice depth in our case is about Vlatt ∼ 4E2 ≈ 10 kHz, the trap frequency ωlatt ≈ 7 kHz.

Tunneling J ≈ 20 Hz and interaction U ≈ 200 Hz. Assuming in a small region of the

lattice there is now one percent variation in the field amplitude of one of two beams

δE = 1%× E, so δI = 2%× I. This leads to changes in:

• Offset – The potential cause by the light intensity near the bottom of the lattice

sites ε ∼ (δE)2 ≈ 0.25 Hz.

• Zero point energy – The local interference contrast (and thus the lattice depth)

is varied by δE/E. The trap frequency varies by δω/ω ∼ (1−
√

1− δE/E) and

the zero point energy changes by ε ≈ 17 Hz.

• J – Scales approximately exponentially with trap frequency, J ∝ exp(−2ωlatt/Er).

So tunneling changes by δJ ≈ 0.06J ≈ 1Hz.

• U – Consider two dimensional case, in which U ∼ ( 4
√
V )2. Thus δU ≈ 1Hz.

Therefore we see for an optical lattice, the primary effect of disorder in the beam profile

is a change in the zero point energy that contributes as a chemical potential term in
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the Hamiltonian. To ensure that this resulting disorder in the local chemical potential

is smaller than the energy scale of the dynamics J (and U), the intensity disorder on

individual beam of the lattice need to be well below the one percent level.

The non-zero offset intensity at the lattice sites for our 2D lattice is further compli-

cated by the chromatic focal shift of our objective, which can cause reduction in the

interference contrast when using the broadband light sources described in Section 4.2.

For an achromatic optical system, the projection method we use for lattice creation

would ensure the spacing and phase of the lattice in the image plane to be constant

regardless of the wavelength. However, if the system has a chromatic focal shift, the

different wavelength components focus at slightly different planes, and the their phases

in the plane of the atoms can vary if the beams are not traveling exactly along the

optical axis. The custom objective we currently use has an effective focal length that

changes by ∼ 1µm per 1 nm change in wavelength. For the 3 nm wide (FWHM) physics

lattice, the interference contrast dropped to 97% if the lattice beams are off center by

2% of the aperture diameter in the Fourier plane, and to 80% contrast if off by 5%.

The chromatic focal shift also leads to a chromatic shift in magnification that causes

lattices at different wavelengths to have slightly different spacings. Its effect on the

contrast and geometry of the 3 nm wide physics lattice is negligible over the size we are

interested in.

There are also other situations where intensity imbalance in lattice beams causes big

energy offsets. Of particular concern in our experiments is the axial lattice (and similarly

the big lattice) that provides the vertical confinement. It is created by reflecting light

off of the uncoated substrate surface at a shallow angle, so the intensity is only partially

reflected. This geometry gives rise to gradients in the axial trapping frequency and

the offset energy. Furthermore, the location where the trap frequency is maximum

(and thus most uniform) does not coincide with where the offset is most uniform.
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So for experiments where a uniform trap frequency is desired (e.g. those involving

coherent excitation to higher bands), the remaining gradient in offset might have to be

compensated by either an additional optical potential or a magnetic field gradient.

4.2 Temporally incoherent light source

To eliminate interference between the lattice light and stray light from reflections at

optical surfaces (for example at the various lens surfaces, or the glass cell), we use

broadband “white” light with a short coherence length on the order of 1µm. The

interference needed to produce the lattice structure is still present, because of the

projection method used in our quantum gas microscope. The in-plane lattice along

each axis is created by illuminating the holographic mask with a single beam, so the

two momentum components of the light that interfere to give the lattice travel through

exact same optical path lengths (OPL). For the vertical lattices which are reflected at

the substrate surface, the OPL difference between the incident and reflected beam is

2d cos θi where d is the distance from the surface and θi is the incident angle. In our

beam setup, this is much smaller than the coherence length of the lattice light.

For the blue-detuned lattice potentials, we use a fiber coupled superluminescent LED

source (Exalos EXS7510). Interference filters cut the bandwidths down to a full width

at half maximum (FWHM) width of ≈ 3 nm centered at 755 nm, corresponding to a

coherence length of ≈ 190µm. It is than passed through multiple stages of amplification

using solid-state waveguide tapered amplifiers (Eagleyard) to produce enough optical

power for the lattices. For the red-detuned dimple beam and confinement beam, we

use broadband light derived from an amplified spontaneous emission (ASE) source

(Superlum S830) that is filtered to a spectral width of ∼ 1 nm centered at 840 nm, and

also amplified by tapered amplifiers.

37



−5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

1

Length (Micron)

755nm ASE source

A
u

to
co

rr
e

la
ti

o
n

 (
In

te
rf

e
re

n
ce

 C
o

n
tr

a
st

)

−500 −250 0 250 500
0

0.2

0.4

0.6

0.8

1
Zoom

Figure 4.1: Coherence length of the blue detuned lattice light: Plotted is the interfer-

ence fringes from a Michelson interferometer. The period of the oscillation λ/4 (too

small to see in the plot) gives the absolute length scale, while the envelop of the fringes

gives the coherence length. Small revivals are seen at an OPL of ∼ 4 mm away.

After the beams are passes through in fibers to the experiment table, interference

filters are again used to clean up the spectra, and block any resonance light. Trace

amounts of resonant light can be generated from the broadband ASE of the tapered

amplifiers or from nonlinear processes in the optical fibers. The blocking of the resonant

light is critical for achieving the long coherent life time of atoms in the conservative lattice.

For the near-resonance pinning lattice, blocking ASE at 780 nm reduces backgrounds

counts during fluorescent imaging.

The measured coherence length of the 755 nm light used for the lattice is shown

in Figure 4.1. The light is interfered with itself in a Michelson interferometer with

moving retroreflectors (Burleigh wavemeter WA-20), and the coherence is obtained from

the interference contrast as a function of the OPL difference. The FWHM coherence

length is about 200 nm, and a OPL of ∼ 1 mm is needed to eliminate interference.

There are small revivals that are about 4 mm away at a contrast ratio of ≈ 10%. This
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corresponds to an intensity of ∼ 10−4, and most likely comes from etaloning effect

during the spectral filtering or amplification stages.

4.3 Spatial filtering in the Fourier plane

Using temporally incoherent sources for the optical potentials, we have eliminated

undesirable interference between light that are separated in time by much more than

the coherence time tcoh ∼ c/lcoh. But components with different spatial frequencies

can still interfere. For the 2D lattice, the two spatial frequency components at ±kL

interfere to give the periodic structure. Any other spatial frequency components will

interfere with these two to produce corrugations and disorder on the lattice. One way

to reduce such disorder is to spatially filter in a Fourier plane to leave only the wanted

spatial frequencies. We do this at the Fourier plane at the back surface of the objective,

right before the beams enter the microscope objective.

In the experiment, the 2D lattice along each axis has an overall Gaussian intensity

profile of waist w ∼ 100µm in the plane of the atoms. The Fourier plane profile are two

Gaussians with waist wFP = λf/πw ∼ 15µm. Imperfections in the optical system that

creates phase and amplitude variations in the Fourier plane: The holographic mask

leaves some intensity in the zeroth order, aberrations in the optical setup distorts the

wavefront and thus the Fourier plane profile, and dust and imperfect lens surfaces could

scatter light into all spatial frequencies.

The 2D lattice setup

The optical setup for projection of the 2D lattices is shown in Figure 4.2. The lattice is

generated by imaging two holographic masks (one for each axis) onto the atoms with

the 400 mm lens and the objective in a 4f configuration. The Fourier plane of the
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imaging system sits at the back surface of the objective. Only the +1 and −1 diffraction

orders from the holograms are collected inside the aperture of the objective, to give

a sinusoidal lattice in the plane of the atoms. The polarization of the lattice beams

are aligned perpendicular to the lattice directions to ensure proper interference at the

atom plane, hence the two axes of the 2D lattice have orthogonal polarizations and they

are combined on a polarizing beam-splitter cube. The 755 nm physics lattice and the

795 nm pinning lattice are combined before the hologram. The paths for fluorescence

imaging and projection of light potentials through the objective are combined with the

lattice projection path with a non-polarizing beam-splitter.

Pinholes for spatial filtering

The detailed setup for Fourier filtering of the 2D lattices is illustrated in Figure 4.3.

Because of the wavelength difference between the physics and pinning lattices, the

spacing between the ±1 orders of the hologram are different in the Fourier plane. The

full Fourier plane aperture of the objective is 18 mm. The ±1 orders are sim 14 mm

apart and in both order the 755 nm lattice and the 795 nm lattice are separated by

roughly 0.7 mm. The 755 nm physics lattice are filtered by pinholes of 150 m diameter.

The pinning lattice is insensitive to disorder as long as there’s enough depth to pin the

atoms during imaging, thus they are passed through pinholes of much larger diameter

at ∼ 600µm. These bigger pinholes allow us to fine tune the relative position between

the pinning lattice and the physics lattice. Both pinholes are machines on a blackened

aluminum sheet. To block any light from the 755 nm lattice that might leak through the

bigger pinhole, a thin dichroic interference filter (Laseroptik) is epoxied on top of the

big pinhole which blocks 755 nm light but transmits at 795 nm. Each pinhole assembly

is mounted on a two-axes stepper motor translational stage, and can be moved in the

Fourier plane.
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Figure 4.2: The 2D lattice setup. Each holographic mask gives lattice structure in one

direction. The lattices of two different wavelengths are combined using a bi-wavelength

wave-plate (WP : λ retardation for 795nm, λ/2 for 755nm). For clarity, the lattice 2D1

is not shown beyond the combining polarization beam splitter cube. A non-polarizing

beam splitter above the objective combines the lattice path (Red) and the imaging

path (Green). The imaging path has a one meter lens that images the atoms onto

an EMCD camera (Andor Ixon) with a magnification of ∼ 80. A compensation plate

(CP) is placed in the Fourier plane of the imaging path to correct for aberrations [32].

The imaging path is also used to project other potentials onto the atoms through the

microscope (Blue). The slightly different angles of the 755nm and 795nm lattice after

the hologram and the spatial filtering setup are omitted here, and detailed in Figure 4.3.

Distances are not drawn to scale.
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Figure 4.3: Illustration of the lattice beams around the Fourier plane, showing the

pinhole assembly and complementary mask for spatial filtering. For clarity only beams

and pinholes for one lattice axis are shown. Also not shown are the translational stages

that move the pinholes in the Fourier plane. Distances, and sizes of the beams and

pinholes are not drawn to scale.

In addition to the pinholes, a complementary mask covers the rest of the Fourier

plane not already covered by the pinhole assemblies. In particular, it blocks the residual

light in the zeroth order of the holograms at the center of the Fourier plane. The mask

is placed above the beam splitter plate to avoid blocking the imaging path.

Alignment

The position of the lattice beams can be monitored directly on the EMCCD camera, by

imaging the small amount of light that is reflected at the substrate surface and comes

out back through the objective. The lattice beams are centered in the Fourier plane,

and the focus of the beams are tweaked to have the tightly focused Fourier plane waists

positioned exactly at the plane of the pinholes. The pinhole assemblies are aligned
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individually by moving the translational stages and optimizing the filtered beam profile

on the camera after having passed the pinhole.

The pinning lattice is aligned to co-propagate with the physics lattice, the dots in

the Fourier plane are symmetric around the dots of the physics lattice. Because of the

chromatic focal shift of the objective, the phases of the pinning lattice and the physics

lattice may not be perfectly identical. When the pinning lattice is ramped on quickly to

freeze hopping of the atoms in the physics lattice, an offset in the phases of the lattices

lead to additional heating and is detrimental to the imaging fidelity.

We fine tune the phasing using Kapitza-Dirac scattering of atoms in a 2D superfluid.

For a certain pulse time, the powers of the 755nm and 795nm lattice are adjusted so

that individually they each imprint the same amount of phase on the atoms. Then

when the pulse time is halved with both lattices on simultaneously, the atoms will only

diffract by the same amount if the two lattices are perfectly in phase hence the depth

doubled. To adjust the relative phase between the two lattices, the pinning lattice is

moved along the lattice direction in the Fourier plane.

It’s worth noting that the chromatic shift of the objective causes the lattice constants

of the physics lattice and pinning lattice to differ by ∼ 1/300. This limits the the

effective field of view of the quantum gas microscope to on the order of ∼ 100 sites,

which is much bigger than the many body systems of interest.

The nearly circular Mott insulator shells after applying the Fourier filtering of the

lattice beams are shown in Figure 4.10.

Limitations of spatial filtering

The spatial filtering scheme is effective in filtering out higher spatial components

generated before the Fourier plane of the objective. But any disorder created after the

pinholes will affect the atoms. The more than 10 surfaces of the custom objective can
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also contribute to minute amount of scattering, and any scattering at the substrate

surface could lead to significant disorder on the atoms due its proximity to the cloud.

The exact shape of the filtered potential is sensitive to tiny variations in the

alignment of the pinholes, making the potentials susceptible to drifts in the pinhole

position. Mechanical vibrations of the pinhole assemblies might also lead to intensity

noise on the filtered potential. It’s also hard to switch to different lattice configurations

where the shape and the locations of the beams in the Fourier plane are different, and

would require new pinhole and mechanical designs.

4.4 Spatially incoherent light source

While spatial filtering works by trying to block any unwanted spatial components that

interfere to give disorder on the beams, we now seek a method that tries to wash out

the interference of these spatial components by making the beam spatially incoherent.

As an example, consider disorder due to scattering from a small circular opaque

scatterer place between the light source and a screen. For a single incident beam, we

would see an Airy pattern on the screen which comes from diffraction at the scatterer.

If the incident beam comes in at a different angle, the Airy pattern gets shifted from

the center of the screen. Now if the scatterer is illuminated by incident beams from a

range of different angles that do not interfere, the Airy disk is effectively shifted around

and gets “washed out” in the image plane, to give a much smoother (less-disordered)

output beam. In the language of Fourier optics, different angles in the image plane

corresponds to different spatial frequency components of the imaging system. Just as a

spread of different temporal frequencies results in temporally incoherent light, a spread

of spatial frequencies leads to spatially incoherent light.

Such a configuration can be realized using an array of parallel beams and a single
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Figure 4.4: Illustration of spatial incoherent light: Each position in the Fourier plane

corresponds to a spatial frequency component, and mapped to an angle in the image

plane. We seek to have a spread of different spatial frequencies and thus a spread of

different angles at which the image plane is simultaneously illuminated.

lens, as illustrated in Figure 4.4. A single lens maps the position in the Fourier plane

onto angles in the image plane, and angles in the Fourier plane onto position in the

image plane. If instead of a single focused beam in the Fourier plane, there are an array

of parallel beams in the Fourier plane. These beams will all intercept in the image plane

at different angles, but form an image identical to that from a single beam, as long as

the different beams are temporally incoherent and do not interfere with each other.

4.4.1 Etalons for generating spatially incoherent source

We use mirror coated etalon plates to create the array of parallel beams in the Fourier

plane, as shown in Figure 4.5(a). This is the same configuration as what is used

for creating a virtually images phased array (VIPA) [47]. The front surface of the

etalon is half AR coated for the entrance beam and half high reflectivity mirror coated,
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the back surface of the etalon is coated with a partially transmitting mirror coating

with a gradient in the transmission. The gradient coating is designed so that most of

the incident power is distributed relatively uniformly across the output beams. The

thickness of the etalon is such that the OPL difference between adjacent beams is

longer than the coherence length of the light used, so that the n different beams remain

incoherent. To create a 2D array of beams, a second etalon can be used. It needs to

be more than n times thicker than the first one so that no two beams in the array

interfere. This also means to keep the spacing of the beams the same in both directions,

the thicker etalon need to be designed for a much smaller incident angle. Figure 4.5(b)

shows an image of the array created in the Fourier plane, showing ∼ 20 × 20 beams

with a spacing of 1 mm. The waist of the beams is ∼ 50µm. The beams have different

sizes in the Fourier plane because of their different OPL traveled inside the etalons, but

they still have the exact same intensity profile in the image plane.

4.4.2 Performance of spatially incoherent light

Qualitative behavior

We can intuitively understand the effectiveness of using spatially incoherent light for

reducing disorder. We try to relay an optical image (e.g. of a smooth light potential)

from one image plane to another using spatially incoherent light, assuming we also have

access to a Fourier plane of the imaging system.

If a point scatterer is localized in the Fourier plane, the spacial profile in the image

plane does not change. This is because a single spatial component cannot create any

structure in the image plane. It can only contribute to a small global offset in the image

plane.

For scatterers situated in between the Fourier plane and the image plane, the
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(a) (b)

Figure 4.5: Generating the spatially incoherent source. (a) Illustration of the etalon

design. An array of parallel beams are created after the etalon. The entrance surface is

anti-reflection/high-reflection coated, while the exit surface is gradient coated to give a

desired intensity profile over the array of beams. For creating a 2D array, two etalons

with very different thickness are used to avoid interference between any two beams. (b)

Image of a 2D array of ∼ 20× 20 dots, with a spacing of 1 mm and waist of ∼ 50µm.

Note that despite the different waist location of all the dots and therefore the different

size in the Fourier plane, all dots will overlap in the image plane with the same beam

size.
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scattering pattern gets averaged by the different beams. We expect this to be more

effective the closer the scatterer is to the Fourier plane. Close to the Fourier plane, the

point scatterer is sampled by only one or a few of the beams, thus the disorder gets

suppressed by the maximal factor of N , N is the total number of independent beams

in the Fourier plane (or different spatial “modes”). As beams travel closer to the image

plane, they come together and gradually start to overlap. Therefore for scatterers closer

to the image plane, the averaging becomes less effective as more beams are affected by

the scatterer.

When the scatterers are exactly in the image plane. Since all beams in the spatially

incoherent setup overlap exactly in the image plane, the intensity disorder from the

scatterer will be images directly onto the atoms and cannot be corrected. One such

example is dust particle on the holographic masks. Since the lattice spacing is the

smallest feature that can be created on the atoms, the scattering from dust particles

on the hologram with sizes smaller than that of the lattice spacing at the hologram

(∼ 30µm) are effectively filtered by the objective aperture. Even for scatters with

comparable sizes to the hologram spacing, the resulting disorder is localized in the

image plane and only effect few isolated sites. Common dust particles that come to

rest on optics and cannot be easily blown away have sizes in the range from sub-micron

to ∼ 10µm and falls into the situation we just described.

Qualitatively, we expect that if the spatially incoherent light source has a larger

spread in the Fourier plane, it would be able to correct for disorder created from a

distance closer to the image plane. At the same time, we will have a smooth potential

in the image plane up to a higher spatial frequency.
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Quantitative test setup

To study the performance of the spatially incoherent light setup, we use the setup

shown in Figure 4.6. A 2 mm asphere is used to create a beam with a waist of 100µm

placed at the Fourier plane where the etalons are. The thin etalon has a thickness

of 1 mm placed at ∼ 45◦ while the thicker etalon has a thickness of 15 mm at ∼ 2◦

in the other direction. An array of 10× 10 dots are retained from the output of the

etalons with a spacing of 1 mm and approximately uniform intensity distribution. The

coherence length of the 3 nm wide 755 nm source ensures that all dots remain incoherent

to each other. A single lens then focus these Fourier plane dots onto a single spot in the

image plane. In order to have a large diameter beam in the image plane to cover the

hologram, the size of the Fourier plane is shrunk by a factor of 10 using a 10:1 telescope

in 4F configuration. From there, a single 100 mm lens is placed 2f away to image the

shrunken Fourier plane onto the Fourier plane of the objective. The hologram is placed

right next to the 100 mm lens. To correct for the wavefront curvature created by the

single lens imaging, a field lens of 200 mm focal length is placed in the Fourier plane of

the objective. This field lens also ensures that the hologram is properly imaged onto

the focal plane of the objective. Another identical objective is used in reverse together

with a one meter lens to image the image plane profile on a CCD beam profiler. The

objectives used in the test setup are achromatic microscope objectives (Edmund Optics,

effective f = 10 mm, NA = 0.6).

We simulate disorder by placing a dusty microscope slide between the hologram (in

the image plane) and the field lens (in the Fourier plane), it’s distance to the hologram

is denoted d.

An aperture is placed after the etalons with a diameter of D, which controls how

many Fourier plane dots (modes) are used. D is varied between 2 mm when only a

single dot is passed, to 12 mm when roughly all dots are passed. This corresponds to a
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Fourier plane spread of ∼ 1.2 mm. The spacing between the ±1 orders of the lattice

is ∼ 7 mm in the Fourier plane for in this setup. This gives a ratio of the Fourier

plane spread of the incoherent source to the Fourier plane separation for the lattice

structure ∆k/klatt of ≈ 1/3. This value is close to what we could use for the actually

lattice generation, since a bigger spread of the incoherent source would not be able to

fit through the Fourier plane of the objective.

Figure 4.7 shows the measured image plane profile over a region equivalent to 50 by

50 lattice sites, for the limiting cases of D = 1 mm and D = 12 mm and various values

of d. All diffraction orders expect the +1 order from the hologram are blocked so that

we can observe the disorder on an individual beam caused primarily by the dust plate.

To quantify the disorder, we take the frequency spectra of the images, and calculate

the radially averaged power spectral density:

S(k) =

∫
|k|≈k |I(k)|2 dk∫

|k|≈k dk
(4.1)

where I(~k) is the two dimensional Fourier transform of the recorded image plane

intensity, and the spatial frequency k is measured in units of the inverse lattice spacing

1/a. The power spectral densities for the images in Figure 4.7 are plotted in Figure 4.8.

For the spatially coherent case (D = 2 mm, a single dot in Fourier plane), the

dust plate creates disorder in the form of Airy disks. For small values of d, the Airy

disks from different dust particles remain separated in space and contain high spatial

frequency and relatively large amplitude intensity ripples. From the noise spectrum,

we can see disorder with characteristic length scales from a few up to tens of lattice

sites. As the dust plate is moved away from the image plane, the Airy disks expand

and interfere where they overlap because of the spatial coherence. As a result of the

expansion, the spatial frequency of the ripples reduces, so does the amplitude. In the

noise spectrum, the spectral power in the higher spatial frequencies are increasingly
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Figure 4.8: The radially averaged power spectral density of the disorder with varying

positions of the dust plate, for both the coherent source (D = 2 mm) and spatially

incoherent source (D = 12 mm). Normalized to power at DC. The dotted curve shows

the lattice frequency at 1/a but its power is not properly normalized. The sharp dips

on the curves are artifacts of the discrete Fourier transform.
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suppressed. Eventually when the dust plate is placed close to the Fourier plane, the

image plane profile is affected only slightly with low spatial frequency variations.

For the spatially incoherent case (D = 12 mm), the situation remains the same for

dust in the vicinity of either the image plane or the Fourier plane. For intermediate

planes, the spatial incoherence washes out the interference between Airy disks from

different dust particles (or equivalently between different spatial components), and

reduces the amplitude of the disorder. This is immediately seen in the noise spectra

when comparing to the spatially coherent case.

In Figure 4.9 we plot the power spectral density for different distance of the dust

plate from the image plane d, and for each d vary the amount of incoherence by changing

D. The suppression of disorder show the same qualitative behavior as the discussion

above. For the most incoherent source (D = 12 mm), we see significantly reduced

disorder for dust particles no closer than 10% of the focal distance from the image plane.

In the spatial frequency ranges corresponding to a few up to 10 lattice sites, we see

residual spectral power of the disorder close to 10−8 level (corresponding to ∼ 0.04%

peak to peak intensity variation). The disorder remains below 10−6 level (∼ 0.4% peak

to peak intensity variation) for ranges up to tens of lattice sites.

From results of the test setup, we believe the spatially incoherent light source could

be used to create the physics lattice and other optical potentials in our experiment

that are essentially disorder free on the scale of the Bose Hubbard dynamics, over fairly

large regions.

4.4.3 Big lattice setup and characterization

We use the spatially incoherent light source for reducing disorder in the big lattice. In

Chapter 7, the big lattice is utilized for the creation of a bilayer system and a smooth

intensity profile in the plane of the atoms ensures homogeneous tunnel coupling between
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the two planes.

The big lattice beam is reflected off of the substrate surface at a shallow incident

angle which determines the spacing of the big lattice and its relative phase with the

axial lattice. Therefore for the big lattice, only a 1D spread of wavevectors along the

direction normal to its plane of incidence can be used for the incoherent light source.

The same would be true if you want to use spatially incoherent light for the axial lattice.

For the big lattice setup, a linear array of 10 dots with relatively uniform intensity

is created in the Fourier plane using the gradient-coated etalon. The beams are then

compressed to an elliptical shape using an anamorphic prism pair. The prism pair

minimizes aberrations (compared to e.g. using a high aspect ratio cylindrical telescope),

which could cause the different Fourier plane dots to not overlap exactly in the image

plane and hence degrade the disorder-correcting performance of the spatially incoherent

setup.

The remaining disorder in the big lattice is characterized by measuring the variation

of the trap frequency over the 2D cloud, described in detail the next section (Fig. 4.11).

We measure a variation in the vertical trap frequency of 1% across a region of about 30

by 30 lattice sites, corresponding to 2% variation in the big lattice depth.

4.5 Characterization of disorder

The homogeneity of the lattice potential and the remaining disorder can be experimen-

tally characterized in several ways.

Mott insulator shell shape

The shape of the Mott insulator shells is a direct indication of the local chemical potential,

which in a harmonic confinement should show perfectly circular shells. Deviations from
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Figure 4.10: Averaged atom-number distribution in Mott insulators with increasing

atom number, showing up to an n = 4 region. Since the imaging is only sensitive to the

parity of the occupation number, we observe alternative bright and dark shells. Spatial

filtering of the lattice beams before the objective reduces disorder, resulting in nearly

circular shells.

round shells indicate disorder in the on-site offset from the 2D lattice or the dipole

beam used to create the harmonic trap. By comparing the shape of the Mott insulator

shell perimeters to the shape of the superfluid in the same harmonic trap, we can isolate

the disorder from the lattice. This allows us to measure offset disorder down to values

on the order of a fraction of U .

The nearly round Mott insulator shells after applying the spatial filtering in the

Fourier plane (Sec. 4.3) are shown in Figure 4.10. The remaining variation in chemical

potential from lattice disorder is on the order of tens of Hz around the shells.
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2D time-of-flight expansion

Another way of measuring corrugations in an optical potential, is by looking at the

trajectory of atoms moving in this potential landscape. For example, we can measure

the atom distribution of a trapped condensate after a time-of-flight in the 2D plane.

Disorders in the potential act like scattering barriers and causes spatial variations in

the atomic density after the time-of-flight expansion. By varying the initial momentum

of the expansion, we probe disorder on the order of the corresponding kinetic energy.

In the limit of k → 0, we are essentially measuring the local density of a condensate

inside the trapping potential and thus the local chemical potential variations.

Modulation spectroscopy

Disorder in the trap frequency at each site can be measured via lattice modulation.

By modulating the amplitude of the lattice at multiples of the trap frequency, atoms

can be coherently excited into higher bands [48]. The tunneling rate in higher bands

are several orders of magnitude bigger than that in the ground band, so the excited

band population can be made to tunnel out of the lattice. By measuring the population

left in the ground band as a function of the modulation frequency, we can accurately

measure the trap frequency at each lattice site.

As an example, the disorder in the big lattice using the spatially incoherent setup is

measured in Figure 4.11. The excitation frequency from the ground band to the 4th

excited band is measured across the 2D plane. The spatial resolution of the quantum

gas microscope allows us to probe the disorder locally, while the modulation offers high

spectral resolution.
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Figure 4.11: Modulation spectra of the big lattice in the axial direction. The big

lattice is amplitude modulated to excite the atoms from the ground band to the 4th

excited band. The excited population are ejected from the lattice and the remaining

ground band population is imaged. The different curves show the averaged fluorescence

signal over region of ∼ 5 by 5 lattice sites each, and cover a total region of about 30

sites across. We observe a shift in the resonance of less than 20 Hz, corresponding to

2% lattice depth variation. The curves are vertically offset for visual clarity.
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Chapter 5

Creating arbitrary potential with

spatial light modulators

The ability to create arbitrary light potential on the smallest scale of a single lattice

site would make it possible to initialize a wide range of initial states for the quantum

simulation. It also enables the creation of localized excitations. The space- and

time-resolved propagation of these excitations contains important information on the

underlying many-body states [49, 50]. Shaped potentials with high spatial resolution

also open the possibility of creating e.g. channels and boundaries for inducing controlled

transport or realizing a single atom transistor [51].

In our complex imaging system, aberrations can distort the wavefront and severely

affect the fidelity of the light potential we try to create. The ability to optically address

single lattice sites relies on the diffraction limited performance of the imaging system.

If aberrations in the projection path can not be corrected, the point spread function of

the imaging system will be smeared out, making it impossible to create potentials with

single site resolution.

Aberration correction and beam shaping can be achieved by using conventional
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phase plates or amplitude masks. For example, we use glass correction plate in the

Fourier plane of the objective to compensate for imaging aberrations arising from

a design change of the imaging system (atoms now sit ∼ 10µm from the substrate

surface, compared to 3µm in the original evanescent wave trap design [52]). As another

example, spiral phase plates can be used to create different types of vortex beams. The

limitation of these phase plates or masks is that they need to be specially designed and

manufactured for each specific situation. This can be difficult when we need to create

and vary arbitrary potentials, and when the aberrations are chromatic and we want to

work with multiple wavelengths simultaneously.

In our experiments, we instead use adaptive optics as spatial light modulators

(SLMs).

5.1 Digital micro-mirror device (DMD) as spatial

light modulator

The spatial light modulators we use are digital micro-mirror devices. They are an array

of tiny mechanical mirrors that can independently be switched to be in one of two

angular positions. When a mirror is in the “ON” position, the incident light is reflected

into the output direction; and in the “OFF” position, the mirror is tilted to reflect the

light away from the output direction. The DLP series from Texas Instruments that

we use have typically 1024×768 micro-mirrors (pixels) with a pitch of 10.8µm, and a

fill factor of > 90%. The two angular positions of the mirrors are symmetric about the

normal to the chip.

The rectangular array of micro-mirrors acts like a 2D diffraction grating. Illuminating

the DMD uniformly from a single incident angle will result in a 2D grid of diffraction

orders that leaves the DMD at angles that satisfy the grating equation. These angles
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are determined by the pitch period of the DMD chip and the wavelength of the light

used. The intensity distribution between the diffraction ordered is determined by the

angle of the mirror at “ON” position, and the shape of the mirror which gives the

overall envelop of the diffraction pattern. In our experiments we fix the incident angle

such that the diffraction order with the highest intensity comes out normal to the DMD

chip. This helps ensure that the plane of the DMD where the light being modulated

is normal to the optical axis of our imaging system. All other diffraction orders are

blocked.

Apart from DMDs, another type of SLMs are available based on liquid crystal

display (LCD) technologies. Using the birefringence of liquid crystal, these SLMs can

be configured to provide amplitude modulation or phase modulation. Liquid crystal

based SLMs need to be driven by AC electric fields at a few kHz, making the modulated

light to “blink” at the same frequency. This however can be a serious drawback for

cold atom experiments where the trap frequency and other relevant energies are on the

same kHz frequency range, and the blinking could lead to heating and decoherence.

Since the light being modulated passes through the liquid crystal material, LCD SLMs

have damage threshold lower then that of DMD SLMs. The optical properties of liquid

crystal are also relatively temperature sensitive.

5.2 DMD in image plane

A first configuration of the DMD is to place it in an image plane of the optical system,

so that it acts as an amplitude mask that is directly projected onto the plane of the

atoms. The limitations to achieving arbitrary potential landscape for the atoms in

this configuration come from the binary-amplitude nature of the DMD and the optical

performance of the imaging system.
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Although each pixel of the DMD can only be in one of the two states, we can achieve

gray scale images by using multiple pixels for each lattice site. If the magnification

is set so that a 10× 10 pixel region on the DMD maps onto a single lattice site, the

intensity the atoms see on that site will be the average over the 100 pixels because the

numerical aperture of the imaging system does not support any feature smaller then a

single site. We can thus achieve gray scale amplitude modulation at the expense of less

effective resolution along each direction. The resolution of current DMD devices allows

us to cover a region of more than 100× 100 lattice sites, while having more than 100

levels of gray scale.

The intensity profile of the incident beam Iinc(x, y) on the DMD can be measured

with a camera in an intermediate image plane. To create a potential with intensity

profile Itarget(x, y), the target intensity reflectance we want to generate on the DMD is:

R(x, y) = Itarget(x, y)/Iinc(x, y) (5.1)

The desired amplitude reflectance, r(x, y) =
√
R(x, y), is then used by the binarization

algorithm to generate the binary DMD pattern. For a given binarization algorithm, the

delivered power as a function of the amplitude reflectance may not follow exactly the

square root form. The exact functional form can be determined experimentally and

used for the pattern generation.

For any given analog amplitude profile we want to create, we must find proper

algorithms that minimizes errors introduced during the binarization of the profile used

for the DMD. For a desired reflectance profile r(x, y) with gray scale values in the range

[0, 1], the most naive approach is to set a fixed binarization threshold at 0.5, so that

all pixels with r > 0.5 are turned on and the rest turned off. It’s easy to see that the

binarized images created using such a fixed threshold (sometimes referred to as average

dithering) exhibit sharp artificial boundaries where r ≈ 0.5. The pixelation of these
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boundaries leads to strong artifacts at isolated spacing frequencies. This is illustrated

in Figure 5.1(b).

Random dither algorithms can be used to eliminate these artifacts (Fig. 5.1(c)).

Instead of a fixed threshold, the threshold is made to vary around 0.5 randomly for

each pixel:

rbin(x, y) =


1, if r(x, y) > 0.5 + frand()

0, otherwise

(5.2)

The random dither function frand is a random number generator with a distribution

centered around zero, and values between ±0.5. It is evaluated independently for each

pixel. The effect of the random threshold is to smear out the artificial boundaries, and

distributes the errors introduced by binarization into all spatial frequencies. One choice

for frand is simply white noise.

In our real imaging system with a finite aperture size, only spatial frequencies inside

of the numerical aperture passes through to reach the atoms. Therefore the atoms do

not see noise created during binarization that have spatial frequencies outside of the

objective Fourier plane. This makes it possible to design error diffusion algorithms [53]

which push the dithering error away from lower spatial frequencies and out into higher

spatial frequencies. The higher spatial frequency noise is then filtered out either by the

finite NA imaging system or by further filtering with an iris in the Fourier plane.

A vast number of error diffusion algorithms are present which are originally developed

for printing and digital image processing, and a common and simple one is the Floyd-

Steinberg algorithm [54] which we use here to illustrate the principles of error diffusion.

Without error diffusion, the binarization (Eqn. 5.2) is applied independently on each

pixel. The dithering error ε(x, y) = rbin(x, y)− r(x, y) is also independent on each pixel

giving rise to the relatively flat noise spectrum. With Floyd-Steinberg, the binarization

is done in a sequential order. For each pixel the error is diffused into its neighboring
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pixels that have not yet been processed to bias the dithering threshold on those pixels

and locally compensate the error in rbin. This is done by distributing ε(x, y) into the

target reflectance of its neighbors according to the distribution:

→ → → → →

→ → ∗ 7
16
· · ·

· · · 3
16

5
16

1
16
· · ·

...


(5.3)

The pixel with the asterisk is the currently binarized pixel at location (x0, y0), and

the ones with the arrows are already processed. The arrows indicate the processing

direction from left to right and from top to bottom. Each time the binarization error

ε(x0, y0) is distributed to the four neighbors with the weights above by adding them

to r(x, y) before those neighboring sites are binarized. Thus if a particular pixel has

been rounded up to 1 during the binarization, it becomes more likely for its neighbors

to be rounded down to 0. Averaged over regions bigger than the size of the kernel

above, the binarization error will now be close to zero. Hence the low spatial frequency

binarization errors are greatly reduced. The removed noise is shifted to higher spatial

frequencies, in the current example into error with period of ∼ 2 pixels due to the

alternating bias. This is illustrated in Figure 5.1(d).

It should be noted that the error diffusion algorithms are usually applied on top

of the random dithering method. Algorithms with more complex kernel distributions

or/and rastering sequences could give better error diffusion performances. It is also

possible to apply the error diffusion algorithm multiple times iteratively to refine the

result.

Another source of imperfection when projecting the target potential onto the atoms

is aberration in the imaging system, which distorts the point spread function to inhibit
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Figure 5.1: Binarization and error diffusion algorithm. (a) Gray scale image of a

periodic intensity pattern we want to project (Top), whose Fourier transform is shown

as two symmetric peaks at frequency of the periodic variation and a DC component

(Middle). The grating created by the pixels of the DMD gives the different diffraction

orders separated by the inverse pixel spacing (Bottom), and only one of them is passed

through the imaging system. (b) Using a deterministic binarization method, artifacts

appear at boundaries between regions of ON and OFF pixels. They are localized in the

Fourier plane and can have any particular spatial frequency. (c) With random dither,

the artifacts are eliminated by distributing the binarization error over the whole Fourier

plane. (d) Applying the the Floyd-Steinberg error diffusion algorithm with random

dither, the binary pattern appears more fine-grained compared to (c), and binarization

errors are pushed to higher spatial frequencies. Note that if the DMD is setup with

a magnification such that the pattern spacing here (∼15 pixel) corresponds to one

lattice site, then the physical aperture of the imaging system has a diameter defined

approximately by the 3 dots, a region inside which binarization error is significantly

suppressed by the error diffusion algorithm.
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the projection of features with close to single site resolution. However for projecting

beams with smooth, slowly varying profiles, distortion from aberrations is usually fairly

small.

In summary DMD, placed in the image plane is best suited for creating relatively

large scale smooth potentials with moderate intensities on the atoms. For creating

small features with size close to a single site, only a few micro-mirrors are used which

makes it extremely power inefficient. The errors from binarization also become more

prominent when trying to generate small or sharp features, or patterns that require a

big dynamic range.

Our setup in the experiment uses a DMD in the image plane with a demagnification

of 15 pixel : 1 lattice site, and red-detuned light of wavelength 840nm with 1nm spectral

width. It has been used for example to correct for long range disorder in the chemical

potential in a Mott insulator [18].

Since the DMD used in this configuration only offers amplitude modulation, it is not

possible to create light potentials with non-trivial phase topologies, e.g. vortex beams.

This is in contrast to the DMD configuration introduced in the next section where an

amplitude grating displayed on the DMD offers both phase and amplitude modulation.

5.3 DMD in Fourier plane

Another configuration for using DMD for spatial light modulation is to place the DMD

in the Fourier plane of the imaging system. The amplitude modulation applied on

the DMD will then be the Fourier transform of the potential we want to apply on the

atoms. By using the DMD as an amplitude grating, it is possible to apply arbitrary

phase modulation in addition to amplitude modulation. This makes it possible to

create any light potentials for the atoms, including those with complex phase structures
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[55]. In addition, the DMD in the Fourier plane can be used to measure the wavefront

distortions in the imaging system and then exactly compensate the aberrations as a

phase modulation in the Fourier plane. We have developed methods to use the atoms

as probes to directly measure and null aberrations. This self-calibration capability

ensures that we can always achieve diffraction limited performance and create arbitrary

potential landscapes with single site resolution. The operational principal of our setup

is similar to the one demonstrated in [56] for micro-trapping with optical tweezers.

A detailed description of our setups can be found in [57]. A one-dimensional

amplitude grating is displayed on the DMD, and the first diffraction order is used as the

output to be projected onto the atoms. The spacing of the amplitude grating determines

the angle at which the first order emerges from the DMD which is in the Fourier plane,

and corresponds to position information in the image plane. The DMD covers the whole

aperture of the Fourier plane, thus includes all spatial frequency components. The

amplitude of each frequency component can be changed by varying the width of the

“ON” fringe in the grating. And the phase of the light at each position in the Fourier

plane can be arbitrarily varied by shifting the phase of the amplitude grating locally.

Examples of light potentials created using this setup are shown in Figure 5.2.

Contrary to the previous configuration with DMDs in the image plane, DMDs in the

Fourier plane are better suited for creating small sharp features on the atoms. Large

spatial scale potentials in the atom plane corresponds to using only a small region of the

Fourier plane, and the DMD could start suffering from binarization errors, resolution

limitations, and power inefficiency. Thus the two configurations complement each other

and it is beneficial to have both available for effective quantum simulations.
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Figure 5.2: Examples of light potentials created with the DMD used as an amplitude

grating in the Fourier plane. (a) Left: a blue detuned vortex beam with three vortices

each with a phase winding of 2π, Right: small 2D condensates loaded into the repulsive

potential and trapped at the center of the vortices, shown as averaged podd where each

pixel corresponds to one lattice site. (b) A single shot image of a line of 10 atoms. A

Hermite-Gauss beam is created with the DMD which traps a single line of atoms in a

Mott insulator, while the rest of the atoms are ejected.
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Chapter 6

Engineering dynamics with photon

assisted tunneling

Portions of this chapter have previously appeared in the following paper:

R. Ma, M. E. Tai, P. Preiss, W. Bakr, J. Simon, and M. Greiner, “Photon-
Assisted Tunneling in a Biased Strongly Correlated Bose Gas,” Phys. Rev.
Lett. 107, 1 (2011).

Advances in low-dissipation condensed matter materials have enabled studies of

coherent dynamics in strongly correlated many-body systems [2]. Among other intriguing

features, such systems may be excited to and studied in metastable states far from

equilibrium. Such excitation takes a variety of forms, but is often realized by photon-

assisted tunneling, where external photons provide the requisite excitation energy to

drive spatial reorganization into long-lived excited states. This has been achieved via

microwaves in coupled quantum dots [58, 59] and Josephson junctions [60], terahertz

radiation in semiconductor superlattices [61], and near-single-cycle pulses in condensed

matter systems [62].
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Ultracold atoms offer a pristine platform for photon-assisted control [63, 64, 65] and

probing [66, 67, 68, 69] of strongly-correlated states and the corresponding ordering.

Here the photons are usually introduced by classical modulation of either the lattice

phase [63, 64, 70] or amplitude [71, 65]. These engineered photons have been used to

generate large-scale, coherent super-Bloch oscillations [65, 63, 64] and further employed

for precision measurement of applied forces [71, 72]. Weak interparticle interactions

have been shown to act as a decoherence channel that damps Bloch (and super-Bloch)

oscillations and may be tuned away with a Feshbach resonance [73, 74]. Modulation

with additional spatial variation provides a promising route to gauge fields [75, 76] and

other exotic topological effects [77].

There is also a growing drive to investigate photon-assisted tunneling in the strongly

interacting regime. Modulation spectroscopy presently provides the best temperature

measurement of fermionic Mott insulators in the approach to quantum magnetism in

the Fermi-Hubbard model[68]. Strong photon dressing may be used to null and even

negate tunneling [78], a technique that has been employed to drive the superfluid-Mott

insulator transition [79] and to simulate classical magnetism [80]. Coherent control of

cotunneling was recently demonstrated by driving an optical double well [81].

6.1 Photon-assisted tunneling in a double-well

We consider photon-assisted tunneling driven by amplitude modulation of the lattice

depth. It’s instructive to begin with bosonic atoms in a biased, tunnel-coupled double

well with time-dependent tunneling rate J(t). The bias between the left and right

wells is E, and the on-site interaction is U . The Hamiltonian for this system using the

bosonic operators is given by:

H = −J(t)(a†lar + a†ral) +
E

2
(a†lal − a

†
rar) +

U

2
(a†2l a

2
l + a†2r a

2
r)
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Figure 6.1: Photon-assisted tunneling. (a) For a single atom in a biased double well,

tunneling is induced by lattice depth modulation at a frequency given by the energy gap

E. (b) When there is one atom in each well, the energy gaps become U +E for the right

atom to tunnel onto the left atom (i) and U −E for tunneling in the other direction (ii).

The effective tunneling under modulation is Bose-enhanced by a factor of
√

2. (c)The

double well physics may be extended to a one-dimensional lattice at unity filling (e.g.

n = 1 Mott insulator). There is then an interaction blockade preventing photon-assisted

tunneling on adjacent sites due to the resulting energy mismatch. Arrows denote

photon-assisted tunneling, with open (closed) circles denoting the initial (final) location

of the atom.

Here a†l (a†r) is the bosonic creation operator for the left (right) well.

In the simple limit of large bias E � |J(t)|, no modulation (J(t) = J), and a

single atom initially localized in the right well, tunneling to the left well is off-resonant.

This off-resonant Rabi oscillation populates the left well with a small probability of

Pl(t) ≈ 4J2/E2.

By modulating the tunneling rate at the bias frequency E, J(t) = J + δJ cosEt,

population is resonantly transferred between the two wells (Fig. 6.1(a) ), resulting in

full-amplitude Josephson-like tunneling oscillations occurring with an effective Rabi-

frequency given by δJ/2. The modulation provides the atom with photons with the
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requisite energy to enable tunneling. The lattice is created by photons with frequency

ωL, and the modulation adds side bands at frequencies ωL ± E. Thus the tunneling

can be viewed as the result of a two photon process where the atom absorbs a photon

from the carrier and emits into one of the sideband, or vice versa.

If instead we begin with two strongly interacting (U � |J(t)|) atoms, one on each

site of the double well, the energy cost to tunnel now becomes U + E (U − E) for

the atom in the right (left) well to tunnel to the left (right) well (Fig. 6.1b. i,ii). By

modulating at these new frequencies, one can induce tunneling in one direction or the

other. Because of the indistinguishability of the atoms, the effective tunneling rate will

be Bose-enhanced to δJ/
√

2.

The double well picture can be directly extended to atoms localized in a one-

dimensional optical lattice (Fig. 6.1(c). As in the double well case, tunneling is strongly

suppressed in a Mott insulator by the repulsive onsite interactions [13]. A constant force

resulting from an energy shift per lattice site of E 6= U produces a tunneling energy gap

that is dependent on the tunneling direction. Modulating the depth of the lattice (and

hence, primarily, the tunneling rate) at a frequency equal to the energy gap enables the

atoms to tunnel resonantly onto their neighbors. After such a photon-assisted tunneling

event, two adjacent lattice sites each initially containing n atoms become a site with

(n+ 1) atoms and a site with (n− 1) atoms.

6.2 Modulation spectroscopy in a tilted lattice

We start with two-dimensional Mott insulators. At an initial depth of 45Er in both

lattice directions, tunneling between sites is negligible on the time scale of the following

experiment.

A magnetic field gradient applied along the x direction produces a lattice tilt of
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Figure 6.2: Modulation spectroscopy. (a) Schematic of the observed tunneling

processes. (b) The occupation probability podd versus the modulation frequency. podd

drops at each of the tunneling resonances, as many doublon-hole pairs are produced.

Each resonance is labeled in accordance with the corresponding process described in

(a). The modulation of the 9Er x-lattice by ±15% corresponds to a Bose-enhanced

photon-assisted tunneling rate of 2π × 8 Hz. podd is averaged over a region of 25 lattice

sites for 8 realizations. The solid curve is a four-Lorentzian fit to the E ± U , 2E ± U
features. In this letter, all errors in podd reflect 1σ statistical uncertainties in the region

averages.
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48 Hz/Site per Gauss/cm for our Mott insulator, prepared in the |F = 1,mf = −1〉

state. The harmonic confining potential is compensated to minimize inhomogeneities in

the tilt [82]. While applying a tilt of E = 2π × 915(10) Hz per lattice site, the lattice

along x is adiabatically ramped down to 9(1)Er, converting the system into uncoupled

1D chains with tunneling rate J = 2π × 30(7) Hz and measured onsite interaction

U = 2π × 317(10) Hz. Modulation of the x-lattice depth produces photon-assisted

tunneling, which in a Mott insulator changes the parity of the onsite occupation as

measured by our fluorescent imaging with single-site resolution. The experiment is

repeated under the same conditions in order to compute the probability podd of odd

occupation on each lattice site.

Figure 6.2 shows podd versus modulation frequency in an n = 1 Mott shell when

the x-lattice is modulated by ±15% for 500 ms, sufficient time for damping of the

many-body oscillations. The principal features are peaks at E ±U which correspond to

the creation of nearest neighbor doublon-hole pairs, and 2E ± U which correspond to a

second-order process creating next-nearest neighbor doublon-hole pairs. The dependence

of the resonance locations on the tilt E has been separately verified. We are also able to

identify narrow resonances consistent with higher-order processes at E ± U/2 and 3U ,

which require two assisted tunneling events as illustrated in Figure 6.2. The principal

peaks have typical widths of ∼60 Hz, set by residual lattice disorder.
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6.3 Occupation-sensitive photon-assisted tunneling

6.3.1 Interaction induced multi-orbital effects in optical lat-

tices

The Bose-Hubbard Hamiltonian (Eqn. 2.17) is derived under two approximations: The

tight-binding approximation assumes deep lattices where the Wannier wavefunctions

are sufficiently localized so that we can keep only the onsite interaction and nearest-

neighbor tunneling terms. For the single band approximation, the interacting many-body

wavefunction is constructed from only the ground band single particle wavefunctions.

In the single band (or single orbital) model the on-site interaction term is:

USO(n) =
U

2
n(n− 1) (6.1)

If we do not ignore the other bands of the optical lattice, atom-atom interactions

can induce virtual excitations from the ground band to higher bands. Such small

admixtures of higher bands modify the shape of the ground state wavefunction and lead

to renormalized values of the tunneling and interaction. This multi-orbital shift [83, 84]

makes the interaction strength dependent on the atom number, and we can write the

interaction energy on a site with n atoms in terms of effective multibody interactions

Un:

UMO(n) =
U2

2!
n(n− 1) +

U3

3!
n(n− 1)(n− 2)

+
U4

4!
n(n− 1)(n− 2)(n− 3) + . . . (6.2)

The interaction strength is the overlap integral between the density of the two atomic

wavefunctions. So intuitively for repulsive interaction, as more atoms are added onto a

lattice site, they repel each other which makes the overall wavefunction less localized
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and results in a reduced pairwise interaction. This implies that U3 will have an opposite

sign as U2. Note that these are effective multibody interactions, originating from only

the two particle s-wave contact interaction due to the multi-orbital effects.

6.3.2 Calculating multi-orbital shifts

Variational method

A first estimation of the the multi-body interactions Un can be obtained by a variational

calculation. Assuming Gaussian wavefunctions for the n atoms localized on the same

site, the interaction energy can be estimated by minimizing the ground state energy

over the width of the Gaussian.

Perturbation theory

The multi-orbital shifts can also be calculated using perturbation theory. In [84], the

effective three-body interactions U3 is calculated as a summation over contributions from

virtual excitations to higher bands. For higher occupancies or higher order multi-orbital

effects, the number and complexity of the virtual processes increase drastically, making

this approach difficult.

Lowest dressed band picture

To systematically calculate and include multi-orbital processes, one can define an

effective lowest-band representation where the localized lowest energy states are dressed

with contributions from higher bands [85, 86]. The full Hamiltonian for interacting

bosons in a lattice can be written as the ground band Hamiltonian (Eqn. 2.14) with an

additional summation over all vibrational bands. For example, the interaction term
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will read:

Hint =
1

2

∑
αi,αj ,αk,αl

∑
i,j,k,l

U
αi,αj ,αk,αl

i,j,k,l â†i,αi
â†j,αj

âk,αk
âl,αl

(6.3)

where αi is the band index and

U
αi,αj ,αk,αl

i,j,k,l =
4πh̄2as
m

∫
ω∗αi

(x− xi)ω∗αj
(x− xj)ωαk

(x− xk)ωαl
(x− xl) d3x (6.4)

Following the procedure described in [86], the goal is to find an effective lowest band

basis for the interacting many-body system so that the interacting induced energy shifts

and higher order processes can be expressed in the resulting effective single band model.

A complete eigenbasis for the single particle problem is the basis of Wannier functions

on each site i. For the non-interacting many-body system, we can choose the eigenbasis

to be local Fock states in all bands on each site:

{|ni,α=0, ni,α=1, ni,α=2, · · · 〉}

With interactions, these states still form a complete basis, and on each lattice site we

can diagonalize the many-body interacting Hamiltonian projected onto the local Fock

space. The eigenstates then form a eigenbasis for localized states with contributions

from all higher bands: {∣∣ψ(n)
m

〉
i

}
where n is the local particle number, and m is the new state index. The low-energy

space of the system is then formed by all local ground states (m = 0) with different

particle number on each site i:

{∣∣∣ψ(n=0)
m=0

〉
i
,
∣∣∣ψ(n=1)

m=0

〉
i
,
∣∣∣ψ(n=2)

m=0

〉
i
, · · ·

}
The effective lowest band for the system consists of all product states over the low

energy space on each lattice site, and any many-body operators can be expressed in the
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new dressed basis. The multi-orbital interaction energy Umo(n) we are interested in, is

then simply the expectation value of the on-site interaction operator (corresponding to

i = j = k = l in Equation 6.3) for the dressed ground state ψ
(n)
m=0.

This lowest-dressed band approach allows the systematic inclusion of all higher

order interaction induced effects. For example, the next order contributions from

Equation 6.3 are nearest neighbor terms: the nearest neighbor interaction containing

terms of the form â†i,α1
â†j,α2

âi,α3 âj,α4 , pair tunneling of the form â†i,α1
â†i,α2

âj,α3 âj,α4 , and

the density-induced single particle tunneling of the form â†i,α1
â†i,α2

âi,α3 âj,α4 . Here i and

j are two neighboring sites.

6.3.3 Measuring multi-orbital shifts with photon-assisted tun-

neling

The multi-orbital shifts have been observed by using quantum phase revival spectroscopy

[83]. Here we take advantage of the high spectral and spatial resolution of our modulation

spectroscopy, to direct measure the multi-orbital shifts and demonstrate occupation-

sensitive photon-assisted tunneling.

For the Mott insulator shell with n atoms per site, the photon-assisted tunneling

resonance at U − E corresponds to the conversion of n atoms on each of two adjacent

sites to (n− 1) and (n + 1). Thus, using the expression for multi-orbital interaction

(Eqn. 6.2), the energy cost of this process is

δUMO = UMO(n+ 1) + UMO(n− 1)− 2UMO(n)− E

The photon-assisted tunneling resonances of the n = 2 and n = 3 shells are therefore

shifted by δn=2
MO = U3 and δn=3

MO = 2U3 +U4 relative to that of the n = 1 resonance. Using

the multiband perturbation calculation [84] we predict U3 = 2π ×−23(1) Hz, while a
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Figure 6.3: Number-sensitive photon-assisted tunneling using multiorbital shifts. (a)

Modulation spectra of the U − E resonant peaks in n = 1, 2, 3 Mott insulator shells.

Fitted to Gaussian profiles (solid curves), the peaks are located at 306(2) Hz, 280(3) Hz,

and 260(3) Hz respectively (dashed lines). (b) In situ images of the n = 1, 2, 3 Mott

shells (i− iii) without modulation, with the 49-site region studied in (a) enclosed by

the red solid line.
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variational calculation (over Gaussian wavepacket r.m.s. size) yields U4 = 2π × 6(1)

Hz for our experimental parameters. The errorbars arising from uncertainty in the

measured U2 = 429(15) Hz (in an 18Er x-lattice).

Figure 6.3 shows a shell-resolved measurement of the tunneling resonance frequency

for tilt E = 2π × 120(15) Hz. We observe shifts of −26(5) Hz and −46(5) Hz for the

n = 2 and n = 3 shells relative to the n = 1 shell. The theory, discussed above, predicts

−23(1) Hz and −40.3(1) Hz, respectively. The imperfect agreement for the n = 3

shell likely arises from higher-order effects such as superexchange interactions between

adjacent lattice sites, which are not included in the aforementioned model and become

increasingly important for larger occupations.

We have shown that we can drive photon-assisted tunneling in regions with different

occupancy at different frequencies. For example, the n = 3 resonance and the n = 1

resonance are sufficiently separated in frequency that tunneling can be enabled for only

one of them, or be tuned independently by applying a bichromatic modulation. Such

occupancy-sensitive tunneling could be used to engineer exotic phases in a wide range

of extended Hubbard models.

6.4 Quantum magnetism with photon-assisted tun-

neling

In a recent experiment in our quantum gas microscope, we have realized simulation of a

one dimensional quantum Ising model using tilted one dimensional Mott insulators [82].

The effective magnetic model is obtained by mapping the many-body system’s charge

degree of freedom (i.e. atomic density distribution) to spins in a spin-1/2 chain with

anti-ferromagnetic Ising interaction [87]. Here we show that photon assisted tunneling

can be used to drive such a quantum phase transition and study the dynamics of
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many-body states near the quantum critical point.

6.4.1 Anti-ferromagnetic Ising model in 1D optical lattices

In this section, we give a brief summary of the mapping from Bose-Hubbard dynamics

to the spin Hamiltonian and describe the experimental observables.

The system we consider is a one-dimensional n = 1 Mott insulators in the deep

Mott regime (U � J), as illustrated in Figure 6.4. When a small uniform tilt of E per

site is applied along the 1D lattice, tunneling between lattice sites is suppressed by the

energy gap in the Mott insulator of ∼ U . If the tilt is increased, eventually at E ≈ U

each atom in the Mott insulator can move resonantly onto its neighbor and tunneling

dynamics is restored. However, if one atoms has tunneled from its original location in

the Mott insulator, its neighboring atoms can no longer tunnel because of the energy

gap of ∼ U created by the tunneled atom. This constraint is the origin of the spin

interaction in the effective magnetic model. At tilts of E > U , it become energetically

favorable for the atoms to tunnel onto its downhill neighbor, but the constraint that no

two neighboring atoms can tunnel simultaneously let to a density wave ordering of the

atoms.

Mapping to spin model

Sachdev et al. formulated the effective spin chain by associating a spin-1/2 to each link

connecting two neighboring sites. An atom not tunneled on the link is defined as spin

up along z-axis of the Bloch sphere (Sz = +1/2); and an atom tunneled corresponds

to spin down (Sz = −1/2). An atom in the superposition of left and right on the

link would correspond to a spin pointing in the x− y plane of the Bloch sphere. The

tunneling constraint now forbids neighboring down spins. We identify the Mott state as

the paramagnetic state while the density ordered state as the anti-ferromagnetic state.
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Figure 6.4: The Mott insulator in tilted 1D lattice and the mapping to a spin model.

(a) As the lattice is being tilted, the atoms remain in the state with one atom per site

as long as the tilt per lattice E is smaller than the energy gap to tunnel which is the

interaction U . (b) At the critical tilt E ≈ U , atoms can tunnel onto the neighboring

site downhill, which the constraint that no two neighboring atoms can tunnel at the

same time. (c) For large tilt, it’s energetically favorable for all atoms to tunnel, but

the constraint limits only every other atom to tunnel. (d) The spin model is derived

by associating a spin-1/2 to each link between two sites. The constraint on tunneling

forbids neighboring down spins, and leads to an effective spin-spin interaction. In

the spin model, the Mott state is identified as the paramagnetic phase (PM) and the

staggered state at large tilt is the anti-ferromagnetic phase (AF). Bottom: Experimental

signature of the phase transition: With parity detection of our microscope, the PM

phase is all bright whereas the AF phase is all dark. Figure adopted from [32].
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The physics in the constrained subspace is formally mapped to a 1D anti-ferromagnetic

Ising Hamiltonian with effective longitudinal and transverse magnetic fields:

H = J
∑
i

(
SizS

i+1
z − hzSiz − hxSix

)
(6.5)

The effective magnetic fields are given by:

hz = 1−∆/J , and hx = 2
√

2J/J (6.6)

Here Siz and Six are spin-1/2 operators for the ith spin. The term SizS
i+1
z represents

the anti-ferromagnetic interaction with strength J . In the real system, the strength

of J is the strength of the constraint and is on the order of the interaction U . The

longitudinal magnetic fields orients the direction of the spins and is determined by the

energy difference between spin up and spin down. Thus it is related to the energy cost

for an atom to tunnel ∆ = E − U . The transverse field causes the spins to flip and is

therefore directly related to the atomic tunneling rate J .

The Ising Hamiltonian (Eqn. 6.5) exhibits a second order quantum phase transition

between a paramagnetic and an anti-ferromagnetic ground state, for finite values of hx.

The transition is driven by quantum fluctuations caused by the non-commuting terms

of the Hamiltonian hz and hx. The part of the phase diagram we are probing with the

current experiments is the multi-critical region near hz ∼ 1 and finite hx � 1 [82]. We

drive the transition between the paramagnetic and anti-ferromagnetic ground states by

adiabatically sweeping the longitudinal field hz.
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Spin observables

The average magnetization of the spin chain is given as the chain averaged expectation

value of the spin along the longitudinal field:

¯〈Sz〉 =
1

N

∑
i

〈
Siz
〉

(6.7)

Sz is mapped to the atom position, so this quantity can be extracted from the fluorescent

images of the tilted Mott insulator. Since the microscope is only sensitive to the parity

of the on-site occupation, the paramagnetic chain |1111 · · · 〉 will appear bright, whereas

a perfect anti-ferromagnetic chain |0202 · · · 〉 will appear completely dark. It can be

shown that podd is related to Sz through the relation ¯〈Sz〉 = podd/2.

Another observable is the Neel order parameter for the transition that measures the

long range anti-ferromagnetic ordering:

O =

〈(
1

2

∑
i

(−1)iSiz

)2〉
(6.8)

The order parameter is zero in the paramagnetic state and becomes non-zero in the

anti-ferromagnetic state. Direct measurement of the order parameter requires knowledge

of the exact atom number on each site, without the limitations of parity detection. In

Section 7.4.1 we demonstrate a method of imaging beyond the parity limit, using a

coupled bilayer system. Another approach to obtain the full number statistics is to load

only a single line of atoms in each experimental run, using for example the line trap

created with the DMD as described in Section 5.3. Before imaging, a short expansion

along the direction perpendicular to the chain reduces the atom density to well below

one atom per site so that there is a vanishing probability of sites with more than one

atom. The recorded atom distribution is then summed along the expansion direction

to recover the number distribution on the chain. The expansion is performed in the
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conservative physics lattice, with the depth along the chain held high to prevent any

tunneling along that direction.

In our previous experiment, density noise correlation measurements was used to

obtain information of the order parameter [82].

6.4.2 Quantum magnetism with photon assisted tunneling

To drive the transition between the two magnetic ground states, we adiabatically change

the longitudinal field. In previous experiments, this is realized by change the lattice

tilt. Near the transition the tilt E compensates for the energy gap U .

With photon assisted tunneling, the photons created by modulation provides the

energy to compensate for the interaction gap, and takes the role of the tilt. For a

fixed initial tilt E, the critical modulation frequency happens at the U − E resonance.

At this modulation, frequency while the modulated tunneling is initially resonant at

every site, once an atom has tunneled both of its neighbors are blocked by the resulting

energy gap. Using modulation enables us to rapidly control the longitudinal field hz by

varying the modulation frequency ωmod.

We drive the quantum phase transition by performing a Landau-Zener sweep of the

modulation frequency across the |U −E| resonance of the n = 1 shell, and subsequently

back, adiabatically creating and destroying doublon-hole pairs. Figure 6.5 shows such

a sweep, demonstrating a quantum phase transition between paramagnetic (podd = 1)

and anti-ferromagnetic (podd = 0) many-body ground states. The ∼ 80% conversion

into doublon-hole pairs is limited by atom loss (due to the long 1 second sweep), noise

on the lattice tilt, and residual lattice disorder. The transition once again demonstrates

the coherence and reversibility of the modulation-driven tunneling.

The rapid tunability of the lattice modulation enables us to perform a nearly instan-

taneous quench of the magnetic model to the vicinity of the critical point ωmod = E−U .
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Figure 6.5: Quantum magnetism by lattice modulation. For an n = 1 Mott shell

tilted by E = 2π × 710(25) Hz, the modulation frequency is chirped linearly from

150 Hz to 450 Hz and back in a total of 1 second, thus tuning through the |U − E|
resonance to produce doublon-hole pairs and then back to restore the double-hole pairs

to singly-occupied sites (illustrated above). The magnetic model [82] maps this to a

quantum phase transition from the paramagnet to an anti-ferromagnet and back. The

lattice depths are 18Er and 45Er in the x- and y- directions, respectively, corresponding

to an onsite interaction energy of U = 2π×416(15) Hz. The x-lattice depth is modulated

by ±70%, producing a Bose-enhanced photon assisted tunneling rate of 2π × 7.4 Hz.
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Figure 6.6: Dynamics of a many-body quench in the magnetic model, from the

paramagnetic ground state to the quantum critical point. It is produced by driving

at ωmod = E − U , for E = 2π × 890(10) Hz and U = 2π × 317(10) Hz, for a reduced

x-lattice depth of 9Er. The photon-assisted tunneling rate (with ±17% lattice depth

modulation) is 2π × 8.1 Hz.
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The subsequent dynamics are shown in Figure 6.6, where the average magnetization

of the spin chain exhibits oscillations which are damped by the many-body collective

effects [88, 89]. While the fast oscillation corresponds to the spin flipping rates in the

magnetic model, the damping rate at the critical point is determined by the effective

system size. Comparing to results in [89], our data is consistent with chain lengths of

∼ 15. The quench dynamics could also be slightly modified by residual lattice disorder.

6.5 Outlook

Using photon-assisted tunneling to induce dynamics offers substantial flexibility, because

the phase, amplitude, and frequency of the tunneling may be arbitrarily controlled by

changing the modulation parameters. The high resolution afforded by our quantum

gas microscope also enables locally controlled photon-assisted tunneling, where the

modulation is provided by a beam focused on particular sites.

We have realized occupation-sensitive control of tunneling by making use of effective

multi-body interactions from multi-orbital effects. This has immediate applications in

the generation of low-dimensional anyons which are particles with fractional statistics.

In the proposal by Keilmann et al. [90], anyons are created by bosons in a 1D lattice

with photon-assisted tunneling, and could lead to interesting phases and a statistically

induced phase transition. In this scheme the statistics of the anyons can be arbitrarily

tuned from bosons to fermions with the phase of the external modulation. With our

quantum gas microscope, we could be able to create an anyon locally and measure its

statistics by interfering with an undressed boson in time-of-flight expansions.

Naturally, photon assisted tunneling can be used to realize a variety of extended

Hubbard models. For example, dominant coherent three-body interactions can be

achieved, by effectively turning off the two-body interaction via lattice modulation
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and leaving the multi-orbital U3 as the leading order process [91]. On the other

hand, tunable second-neighbor couplings could be engineered through multi-chromatic

modulation schemes, and the dynamics of such systems could be driven and studied by

time-dependent tuning of the modulation parameters.

Another important application of photon-assisted tunneling is in creating artificial

gauge fields for ultracold atoms. Many of the most fascinating effects in solid state

materials appear in strong magnetic fields, including the fractional quantum Hall effect

[2]. Neutral atom however do not feel the Lorentz force in a magnetic field, and to

simulate an effective magnetic field one could use the Coriolis force in rotation systems

[92], or near-resonant Raman coupling between hyperfine states [93]. For a 2D lattice

gas in a homogeneous magnetic field pointing perpendicular to the plane, the atoms (or

electrons) pick up the Aharonov-Bohm phase when they move around a closed plaquette.

This phase can be reproduced (and hence an artificial magnetic field created) if the

tunneling matrix element in the lattice has a spatially varying phase [94, 76]. Following

the proposal by Kolovsky [75], photon-assisted tunneling has been used to produce a

homogeneous artificial magnetic field in 2D lattices [95, 96]. Very recently, the Meissner

effect for bosons has been observed in a ladder system under uniform artificial magnetic

field [97].
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Chapter 7

Bilayer quantum gases under the

microscope

Dimensionality plays an crucial role in the dynamics of interacting many body systems.

In solid state systems, exceptional material properties can arise from reduced and mixed

dimensionality. Some prominent examples include bilayer graphene [98, 99], electron-

hole bilayer systems[100] and high-Tc superconductors, in which superconductivity is

thought to arise from electron pairing in quasi-two-dimensional systems[101].

To date, quantum gas microscope experiments with single site resolution have been

constrained to strictly two-dimensional systems [18, 16], with atoms residing in the focal

plane of the imaging setup. Here, we present a scheme for high-fidelity fluorescence

imaging of a bilayer system with single-site resolution. Using the combination of our

axial lattice and big lattice as an optical superlattice in the out-of-plane direction, we

realize a resonant system of two planes with full control over the inter-plane energy

offset and tunnel coupling.

We make use of different fluorescence levels of atoms in different planes to achieve a

sequential readout of the system. This also allows us to extend our imaging capabilities
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for a 2D gas: we use interaction blockade to engineer transport to the second plane, to

circumvent of the limitations of parity detection to resolve lattice occupation numbers

of n = 0 to n = 3 in one plane. We also apply a magnetic field gradient to obtain

spin-dependent transport between the planes and demonstrate spin-resolved readout.

7.1 Preparation of a resonant bilayer system

In our experiments, the quantum gases are compressed in the direction of gravity (the

z-direction) in two-dimensional layers at the focus of our imaging system. After the

two stage standing wave loading sequence (Sec. 3.2), the confinement in the axial

(z-) direction is provided by the axial lattice with a spacing of d = 1.5µm and a

corresponding recoil energy of Er = 2π×250 Hz. To bring two planes of the axial lattice

into resonance, we turn back on the big lattice with a spacing of 9.2µm, which now

serves as a 6× superlattice. The phasing between the axial lattice and the big lattice

can be tuned by changing big lattice’s angle of incidence. In combination with the

constant gradient of g = 2π × 3.2 kHz per axial well from gravity, we obtain a resonant

double-well system in the z-direction (Fig. 7.1). The residual offset ∆ between the two

axial planes of interest can be tuned by varying the depth of the big lattice, while the

inter-plane tunnel-coupling J is controlled by the depth of the axial lattice. All other

axial planes are sufficiently offset in energy that they remain entirely unpopulated.

7.2 Imaging two planes

The primary challenges in imaging a bilayer system are the need to distinguish between

the signals from each plane and the small depth of focus typical for microscopy. We

obtain separate high-resolution images of the two planes by making use of two technical
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Figure 7.1: Preparation of a bilayer system. The degenerate gas of 87Rb resides in

two planes of the axial lattice. In combination with gravity, the axial lattice (spacing

1.5 µm) and the big lattice which acts like a 6× superlattice (spacing 9.2 µm) result

in a double-well geometry with independently tunable tunnel-coupling J and offset ∆.

With the 2D lattice projected onto the xy-plane, we realize a bilayer Bose-Hubbard

system.
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modifications: First, we shift the focus of our microscope between the two planes of

interest by inserting a glass plate in the imaging path during the readout sequence.

Second, we independently tune the fluorescence rates of atoms in the two planes of

interest in real time, allowing us to image each plane independently.

7.2.1 The molasses configuration revisited

As described in Section 3.4 the molasses beams used for cooling in the pinning lattice

are red-detuned to the D2 transition and aligned in the lin ⊥ lin configuration along

each 2D axis.

In this configuration, the molasses polarization oscillates in space between σ+ and

σ− and the resulting light shifts form a state dependent lattice for the atoms in the

two magnetic sublevels mF = +1/2 and mF = −1/2. As the atoms move in this state

dependent potential, they are preferentially pumped from the state with higher energy

to the state with lower energy and dissipate kinetic energy in the process. If no other

light potentials are present, the equilibrium temperature for Sisyphus cooling in the

lin ⊥ lin configuration is on the order of the ground state light shift which scales as

I/|δmol| [39]. δmol is the molasses detuning. The scattering rate, which determines the

fluorescence counts we can collect, scales as I/δ2
mol.

In the presence of strong confinement by the deep pinning lattice, the atoms can

only move in small regions near the lattice sites. The pinning lattice is linearly polarized

everywhere and state independent. Sisyphus cooling is still possible in the combined

potential, where the cooling efficiency depends on the relative phase between the

pinning lattice and the molasses lattice [102]. Cooling is efficient when the pinning

lattice sites coincide with where the molasses potentials for mF = ±1/2 cross, so that

atoms can be pumped and cooled continuously. In our experiment, the retro-reflector is

shaken to ensure all lattice sites experience uniform cooling. Since the tightly confined
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atoms can only move up and down the molasses potentials over a small distance, each

optical pumping process takes away less kinetic energy, comparing to the case without

additional lattice where the atoms can move over a whole period of the molasses beam.

Hence a higher molasses intensity might be needed to achieve efficient in-lattice cooling.

In our geometry (Fig. 3.3), the molasses beams are reflected at the uncoated substrate

surface with a shallow angle and form standing wave patterns in the axial direction

with a period of ≈ 2.8µm.

Due to the different Fresnel coefficients, the standing wave formed by the s-polarized

beam has an intensity minimum at the surface while that of the retro-reflected counter-

propagating p-polarized beam has an intensity maximum at the surface. All four beams

also have different intensities. This results in a particular intensity pattern for the

molasses along the vertical direction, as shown in Figure 7.2 for one of the two axes of

the molasses. The total intensity exhibit periodic variations in the vertical direction, so

different axial plane could see different intensities and hence different fluorescence rates.

We can tune the relative phase of the axial lattice and the molasses intensity pattern

in the axial direction by changing the molasses incident angle, therefore changing the

ratio of fluorescence rates in two adjacent axial planes.

In terms of cooling efficiency, we have now in general a lin ⊥ lin configuration

with imbalanced amplitudes of the two counter-propagating beams. A polarization

gradients still exist, but instead of alternating between the two circular polarizations,

the polarization will be elliptical with a changing ellipticity along the molasses axis.

The difference in light shifts between the two mF states gets smaller as the amplitude

imbalance increases, and eventually the polarization gradient vanishes if one of the

beams has vanishing amplitude and Sisyphus cooling stops (while scattering continues

due to intensity from the remaining beam).

We have so far focused on the molasses beam along x-direction. The second beam
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Figure 7.2: The intensity of the molasses beam in Figure 3.3 as a function of the

distance to the surface, where the incident angle is set to 82◦. The two polarizations

each creats a standing wave but with opposite phase and different amplitude due to

the Fresnel coefficients at the uncoated surface. Also shown is the total intensity which

is directly related to the fluorescence rate. Sisyphus cooling is more efficient at places

where the intensity of the two polarizations are similar. Solid vertical lines: Case where

two adjacent axial planes separated by 1.5µm sits in similar molasses environment, and

Dashed vertical lines: where the two planes have different fluorescence rates. In the

experiment the atoms are about 10µm away from the surface and the phase between

the axial lattice and the molasses standing wave can be varied by changing the incident

angle of the molasses beam.
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Figure 7.3: Measured fluorescence rates for atoms in two adjacent axial planes as the

angle of the molasses beam is varied, showing our ability to tune the relative brightness

of the two plane. Angles with large ratios in fluorescence rate, also corresponds to

configurations with less efficient cooling due to the reduced polarization gradient from

the imbalanced beams, and we observe decreased imaging lifetimes in the pinning

lattice.

along y interferes with the first beam to create a polarization gradient and hence cooling

along y. This, as well as the angle between each pair of incident and retro-reflected

beam, all alters the final polarization configuration in the 2D plane of the atoms. But we

expect polarization gradient cooling to work under a variety of different configurations

albeit maybe with varying efficiencies [40]. In the vertical direction, we expect the

discussion above and in Figure 3.3 to describe the proper qualitative behavior. This

is verified in Figure 7.3, where the molasses beam’s incident angle is varied (at fixed

molasses power) to change the ratio between the fluorescence rates in two adjacent

axial planes.

With any particular molasses configuration, the general experimental observation

is that cooling and imaging works well for some intermediate molasses intensity. For
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lower intensities the low fluorescence counts leads to higher noise and reduced fitting

fidelity. For higher intensities, the initial fluorescence rate is high but the atoms have

higher temperatures in the pinning lattice that leads to thermal hopping. This causes

changes in the projected atom number distribution and atom loss due to light assisted

pair collisions.

7.2.2 Imaging procedure and image analysis

The detailed procedure for imaging two planes is as follows: At the end of each

experimental run, the atoms in both planes are localized in the deep pinning lattice,

and cooled by the D2 molasses during the fluorescence imaging. The angle of incidence

of the molasses beam is changed with a galvanometer, and we can tune the ratio of

fluorescence rates in planes I and II between 1: 1 and 1: 3 in real time. At the beginning

of the readout process, we image both planes at a fluorescence ratio 1 : 2 for 500 ms:

Atoms in plane II (high fluorescence rate), at the focus of the imaging system, are

imaged primarily, while atoms in the out-of-focus plane I contribute a weak background.

Next, we increase the fluorescence ratio to 1 : 3 and apply a higher molasses power for

300 ms. Atoms in plane II are now heated rather than cooled by the high molasses

intensity and are ejected from the pinning lattice, while atoms in plane I continue to be

trapped. Simultaneously, we remove a 26 mm thick glass plate from the imaging path,

shifting the focus of the imaging system to plane I. At this point, plane II has been

cleared of atoms and we take a second exposure of atoms in plane I for 500 ms at an

intermediate molasses power.

The atom positions in both planes can be obtained after post-processing: We first

determine the positions of atoms in the second image, which contains only atoms in plane

I. From the extracted distribution in plane I, we reconstruct the background contributed

by these atoms to the first image. This background contribution is subtracted from
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the first image to allowing us to determine the atom positions in plane II. For the

fitting in both plane and the reconstruction of the background, we use separate lattice

geometries and point spread functions for the atoms when focused on each plane, and

also when atoms in plane I are out of focus. They are measured using images with

sparsely distributed atoms. Figure 7.4 illustrates the image processing procedure.

To demonstrate our ability to image a bilayer system, we prepare decoupled two-

dimensional Mott insulators of varying atom numbers in both planes. In experiments

with a single plane, the big lattice is aligned so that its minimum is exactly aligned

to a minimum of the axial lattice, by tuning the incident angle of the big lattice with

respect to the substrate surface. Here we change the angle so that the big lattice

minimum sits in between two adjacent minima of the axial lattice. Therefore when

ramping up the axial lattice, the cloud is split and loaded into into exactly two adjacent

axial planes. We control the ratio of the number of atoms in each plane by tuning the

phase between the big lattice and the axial lattice via slight variations of the incident

angle with a galvo. The 2D lattice has identical properties in both planes, and we

drive the superfluid-insulator transition in the two decoupled planes simultaneously.

Figure 7.4 shows one such image of Mott insulators in both planes of the axial lattice,

demonstrating our ability to controllably load and image two planes of the axial lattice.

The fidelity of the readout process is primarily limited by our ability to hold atoms

in plane I while imaging and ejecting atoms in plane II. For optimized parameters, the

lifetime of atoms in plane I during the first exposure and ejection process is 27(2) s,

resulting in a combined atom loss of 3.0% in plane I prior to imaging. The efficiency

of the ejection of atoms from plane II is 99(1)%, leading to an occasional unwanted

background from atoms in plane II in the second image. In combination, these effects

lead to an imaging fidelity of 95% in plane I and 99% in plane II.
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Figure 7.4: Imaging a bilayer degenerate gas. For each experimental run, two

exposures are taken. After obtaining the atom distribution in plane I form image #

2, the background contributed to image # 1 can be calculated and subtracted. The

resulting image yields the atom distribution in plane II. The procedure is illustrated

here for decoupled Mott insulators in both planes, with up to n = 2 atoms per site.

Red frames denote sketches of the fitted atom locations.
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7.3 Coherent dynamics between resonant axial planes

We characterize the bilayer system by studying the double-well dynamics in the axial

lattice direction. The experiments begin with a single-layered Mott insulator in plane I

in a deep two-dimensional optical lattice, initially decoupled from plane II. Tunneling

in the plane of the Mott insulator is negligible on time scales of our experiment and we

concentrate on dynamics in the z-direction.

To enable tunneling between axial lattice planes, we first set the depth of the big

lattice to bring planes I and II close to resonance. The axial lattice depth is then reduced

from the initial 250Er to 16Er (J ≈ 2π × 37 Hz). After a hold time of τhold = 8 ms,

the axial lattice is ramped back to its original depth and we image both axial planes.

Figure 7.5 (a) shows podd, the probability of odd occupancy in plane I, as a function

of detuning ∆. The resonances near ∆ = 0 correspond to atoms tunneling within

the ground band from plane I to plane II. The resonances near ∆ ≈ −2π × 1.7 kHz

correspond to atoms tunneling from the ground band in plane I to the first excited

band in plane II. For both processes, the on-site interaction shift of U ≈ 2π × 300 Hz

between singly and doubly occupied sites is well-resolved. Second-order tunneling is

expected to occur on a much slower timescale of 2J2/U ≈ 2π × 9 Hz and cannot be

detected due to our parity-projecting readout [103]. The horizontal scale is calibrated

by measuring the offset ∆ at various big lattice depths using modulation spectroscopy

obtained by photon-assisted tunneling [104].

We observe coherent oscillations between axial planes by fixing the energy offset ∆

at the respective resonances for singly and doubly occupied sites and varying the time

τhold for which tunneling between the two planes can occur. Figure 7.5 (b) shows Rabi

oscillations between the ground band of the two axial planes with respective frequencies

of 114(3) Hz and 270(5) Hz. The single-particle dynamics are in good agreement with
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Figure 7.5: Inter-plane tunneling dynamics. (a) Spectrum for inter-plane tunneling.

Sites with single (n = 1, orange) and double (n = 2, blue) occupancy are initially

prepared in plane I. After inter-plane tunneling for τhold = 8 ms at an axial lattice depth

of 16Er (J ≈ 2π × 37 Hz), the probability to detect a single atom (podd) in plane I

is measured as a function of the offset ∆. Resonances correspond to tunneling into

plane II, as indicated by sketches. The interaction shift between n = 1 and n = 2 is

clearly resolved (U ≈ 2π × 300 Hz). Solid lines are Lorentzian fits to the data. (b)

Rabi oscillations for n = 1 and n = 2 at their respective ground band resonant offsets

(∆ = 0 and ∆ = 2π × 300 Hz). Here, the axial lattice depth is reduced to 14.5 Er,

giving J ≈ 2π × 55 Hz.
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a numerical diagonalization, while the rate of oscillations on doubly occupied sites is

enhanced by more than a factor
√

2 expected from bosonic enhancement. This effect is

due to a reduction of the effective barrier height when a tilt ∆ ∼ U is applied.

7.4 Bilayer system as imaging tools

7.4.1 Beyond parity imaging

Our technique of resonant transfer to a second axial plane can be used to circumvent

the limitations imposed by parity imaging in optical lattice microscope experiments.

We start by preparing a single-layered Mott insulator with singly and doubly occupied

sites in plane I. With the axial tunnel coupling enabled (J ≈ 2π × 48 Hz), we sweep

the offset from ∆ = 2.1U to ∆ = 0 in 75 ms, across the tunneling resonance for doubly

occupied sites. Atoms on singly occupied sites distribute over planes I and II with

roughly equal probabilities. On doubly occupied sites, a single atom transitions at

an offset corresponding to the on-site interaction U. The transfer of a second atom

is suppressed by a collisional interaction blockade, leaving one atom in plane I and

one atom in plane II [105]. At the end of the sweep we image both planes and obtain

the distribution of holes, single atoms and doublons in the initial Mott insulator by

adding the atom distributions from both planes. The reconstructed “wedding cake”

structure of a Mott insulator is shown in Figure 7.6, for the first time combining

single-site resolution [18, 16] and atom-number sensitive detection [106, 30]. Within the

n = 2 shell the average detected atom number is 1.86, limited by the 97(1)% fidelity of

separating a doublon into two planes and the slightly reduced imaging fidelity for the

bilayer readout.

Next we employ our imaging technique to detect many-body ordering across a

magnetic quantum phase transition in 1D tilted Mottt insulators as described in
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Figure 7.6: Single-shot image of the “wedding cake” structure of a two-shell Mott

insulator, demonstrating the ability to image doublons using the bilayer system. After

preparing a many-body state in plane I, occupation-sensitive transport of atoms to

plane II allows the detection of occupancies from n = 0 to n = 2.

Section 6.4. Using a magnetic field gradient along the chains, we drive the transition from

the paramagnetic state (unity filling) to the anti-ferromagnetic (density-wave ordered)

state. We image the atom distribution at various points along the transition, carrying

out the beyond-parity readout scheme as described above. The formation of doublon-

hole pairs and anti-ferromagnetic ordering is visible in single-shot reconstructions of

the atom distribution as shown in Figure 7.7. In contrast to the previous global

detection of anti-ferromagnetic order noise correlation measurements [82], the ability to

resolve individual doublon-hole pairs enables the direct measurement of the Neel order

parameter, and detailed studies of phenomena such as domain formation, frustration

and the dynamics of spin excitations in the underlying model.

A further generalization of our readout scheme allows the unambiguous detection of

atom numbers n = 0 to n = 3. Using each side of the double-well as a “bit” that is

either bright (odd occupancy) or dark (even occupancy) after parity projection, four
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Figure 7.7: Direct imaging of many-body ordering using the bilayer scheme. One-

dimensional phase transition from a paramagnetic phase to an anti-ferromagnetic phase.

From top to bottom, an increasing tilt is applied horizontally along three decoupled

chains of length eight, tuning the system from unity filling (top) via the formation of

doublon-hole pairs (middle) to a density-wave ordered state.
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different number states can be encoded. Figure 7.8 (a) illustrates the mapping for this

“binary readout”. After preparing a three-shell Mott insulator in plane I, we ramp the

offset ∆ through the resonances for n = 2 and n = 3 atoms per site, avoiding the n = 1

resonance at ∆ = 0. Figure 7.8 (b) shows podd after the ramp vs. radial distance for

both planes. All plateaus of constant atom number from n = 3 at the center of the

cloud to n = 1 on the outside edge can be identified.

The fidelity of the atom-number sensitive readout is limited by the small energy scales

for dynamics in the z-direction. The relatively small interaction (U ≈ 2π × 300 Hz)

and the large spacing of the axial lattice (1.5 µm) lead to slow dynamics and relatively

high sensitivity to lattice disorder. By using a Feshbach resonance and a smaller axial

lattice spacing, the robustness of the mapping process onto axial planes could be further

improved for similar experiments.

7.4.2 Spin-resolved imaging

Instead of using a bilayer system to read out the site occupancies in one of the planes,

we can make use of the double-well system to achieve spin-sensitive readout of a 2D

gas of two-species mixture. The scheme is illustrated in Figure 7.9: A mixture of two

appropriately chosen hyperfine states is initially confined to a two-dimensional system in

plane I. To map out the distribution of both spin states in plane I, we enable transport

between the two planes, after motion within the planes has been frozen out by a deep

lattice. A magnetic field gradient in the z-direction causes atoms in one hyperfine state

to transfer to plane II, while atoms in the second hyperfine state experience a force in

the opposite direction and remain in plane I. The hyperfine spin degree of freedom is

thus mapped to the two planes of the axial lattice, and both spin states can be imaged

simultaneously.

We demonstrate spin-resolved readout for the two hyperfine states |1,−1〉 (labelled
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Figure 7.8: Binary readout scheme. (a) Occupations n = 1 to n = 3 in plane I are

mapped to different distributions in plane I and II by transfer in the axial direction

and parity projection. (b) Averaged podd in plane I (blue) and plane II (green) after

preparing a three-shell Mott insulator in plane I and mapping the occupation onto axial

planes. Mott-insulating regions from n = 3 at the trap center to n = 1 near the trap

perimeter are resolved. The solid lines are fits with (concatenated) error functions.
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Figure 7.9: Spin-resolved readout. (a) Procedure for mapping the hyperfine spin

onto different axial planes: After reducing the tunnel barrier in a double-well with an

arbitrary spin in plane I to zero, a B-field gradient separates the |↑〉 and |↓〉 components

into different axial planes. The two hyperfine states will appear in different planes in

imaging. (b) A resonant microwave pulse is applied to a n = 1 Mott insulator in state

|↑〉 in plane I. The sinusoidal variation in hyperfine spin is mapped onto occupation in

plane I (blue) and plane II (green). Solid lines are fits with sine functions.
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|↑〉) and |2,−2〉 (|↓〉), for which gFmF = +1
2

and gFmF = −1, respectively. Initially,

we prepare a n = 1 Mott insulator of atoms in |↑〉 in plane I, and transfer atoms to the

|↓〉 state using a resonant microwave pulse in a bias field of 1.5 Gauss. After reducing

the axial lattice depth to zero, we ramp up a magnetic field gradient of 30 Gauss/cm in

the z-direction in 70 ms. While ramping the axial lattice back to its maximal depth,

the magnetic field gradient causes atoms in state |↓〉 to transfer to plane II, while

atoms in state |↑〉 remain in plane I. Figure 7.9 shows the population of both planes

after mapping versus microwave pulse duration. The sinusoidal variation in anti-phase

demonstrates the mapping of spin to plane degree of freedom. Taking into account

imperfections in the preparation and imaging of the initial Mott insulator, the offset

and amplitude of the fit yield a fidelity of 93(1)% for the microwave spin-flip (limited

by magnetic field fluctuations) and a 98(1)% fidelity for the correct sorting of hyperfine

spin into different axial lattice planes.

Unlike other experiments, in which only one of two spin states could be imaged in

situ, our technique gives access to the full spin distribution in an interacting many-body

system. This scheme will enable further studies of two-component systems, such as

impurity dynamics [107] and collective excitations [50].

7.5 Outlook

Extensions using D1 molasses

Direct extensions to our bilayer imaging scheme could enable site-resolved detection

in more than two planes. In particular, one could use additional molasses beams on

the D1 line to cool all planes of atoms, and use the D2 molasses only for imaging each

plane sequentially. The fluorescence filter in front of the camera blocks any molasses

or scattered light on the D1 line. The two molasses can be alternatingly turned on
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at frequencies on order of 1 kHz, and the duty cycle can be adjusted so that the D1

molasses provides sufficient cooling to compensate any possible heating during the

D2 molasses imaging. In this configuration the intensity of the D2 molasses and the

fluorescence rates can be varied over a much bigger range to achieve the best signal

to noise ratio for resolving multiple planes. For imaging two adjacent planes, the dual

molasses scheme would allow us to choose the D2 molasses angles and therefore the

fluorescence ratios more easily without having to sacrifice imaging lifetime and fidelity.

One could even envision future quantum gas microscopes where full tomography of

atom number distrubution in a 3D lattice can be measured, using the sequential readout

and an optical conveyer belt [108].

We have experimentally verified effective in-lattice cooling using molasses 20 MHz

blue-detuned to the D1 F = 2 to F ′ = 2 transition, in the same configuration as our

D2 molasses. The blue molasses also provides Sisyphus cooling, in this case of F = F ′

by preferentially pumping between the internal dark and bright states [109]. The D1

molasses provides similar imaging lifetimes for a single plane compared to our regular

D2 molasses, which is limited by atom loss from background gas collisions.

It should be noted that light assisted collisions also take place in blue-detuned

molasses, where the atoms are excited to the repulsive molecular state instead of the

attractive one in the case of red-detuned light [42]. The energy released in such a

blue-photon assisted collision is about h̄|δmol|, well enough to eject the atom pair from

the pinning lattice.

Spin-dependent physics

Making use of the magnetic field gradient in the z-direction, we have demonstrated

spin-dependent transport and spin- and site-resolved readout of a two-species mixture.
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This approach can for example facilitate the observation of anti-ferromagnetic ordering

in the Fermi-Hubbard model in a fermionic quantum gas microscope [17] or spin-

dependent phenomena such as spin-charge separation [50]. Following Kleine et al. [50],

the latter case can be realized in strongly interacting 1D spinor gases with spin dependent

interactions. In such systems where collective effects caused by interactions dominate, a

single particle excitation fractionalizes into two separate collective excitations, a charge

and a spin excitation. This separation could be observed as a difference in the velocities

of the two types of excitations, by watching the time evolution of a single particle

excitation.

Here we propose a method to produce tunable spin-dependent interaction, which

could lead to experimental realization of systems with observable spin-charge separation.

For 87Rb the two hyperfine spin states |1,−1〉 and |2,−2〉 have almost identical scattering

lengths. In a tightly confined 2D system, applying an axial magnetic field gradient

pulls the two spin states slightly apart in the axial direction. The reduced wavefunction

overlap leads to an reduced inter-species interaction U12 compare to the intra-species

interaction U . For typical value of confinement in our big lattice and over the range

of realistic field gradients, the ratio U12/U is plotted in Figure 7.10. At the proposed

interaction strengths (U/J ∼ 3) in [50], we have reasonably fast energy scales for

tunneling dynamics, with J ∼ 2π×60 Hz and the exchange tunneling ∼ J2/U ∼ 2π×20

Hz.

The preparation of initial states in such a spin-mixture can be realized using state

dependent optical traps [110, 111], projected using the spatial light modulators discussed

in Chapter 5. In particular, a tightly focused beam on a single site can be used to

create the single particle excitation.
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Figure 7.10: Left: Spin dependent interaction strength as a function of applied

magnetic field gradient. Atoms in two different hyperfine spin states experience opposite

magnetic forces and are pulled apart, leading to a reduced wavefunction overlap and

therefore reduced inter-species interaction strength. Calculated for 2kHz out of plane

confinement in the big lattice. Right: The values of tunneling and intra-species

interaction for the same parameters, in 1D tubes created with 45Er transverse lattice

depth.
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Other applications

Our techniques for the preparation and readout of resonant bilayer systems open

numerous other possibilities for study of low-dimensional phenomena.

Interfering two planar superfluids should enable in situ observation of phase evolution

in two dimensions and the dynamics of the Kosterlitz-Thouless phase transition [112]:

By interfering the two planes, the creation and annihilation of thermally activated

vortex-antivortex pairs, as well as the evolution of correlation functions can be directly

imaged.

Many-body entanglement can be measured in a system of two copies of a planar

system [113] and in combination with dipolar interactions [114, 115], bilayer lattice

systems should exhibit supersolid phases [116] and interlayer superfluidity [117].

Our technique could also be used to reduce the entropy in two-dimensional Mott

insulators. The superfluid phase with its large number fluctuations can store more

entropy than the Mott insulator phase where defects are much less mobile. By having

the Mott insulator in contact with a superfluid region during the transition, entropy

could flow out of the Mott insulator into the superfluid [118]. Alternatively, lower

entropy Mott insulators might be created by filling empty sites (defects) with atoms by

merging with a reservoir plane [119].
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Chapter 8

Conclusion

In this thesis, we have presented techniques and experiments to extend the toolbox

in our quantum gas microscope for the generation and probing of strongly correlated

many-body quantum states. These are important steps towards a reliable and versatile

quantum simulator using ultracold atoms in optical lattices.

The problem of uncontrolled disorder in the lattice potential maybe somewhat

specific to our system due to the projection scheme we employ for creating the optical

potentials. But the spatially incoherent light sources we developed are general methods

for countering the effects of imperfections in optical systems. The use of spatial light

modulators allows us to achieve arbitrary wavefront shaping. The ability to use the

atoms as direct probe of the aberration before actively correcting for it makes it possible

to always achieve diffraction limited performance.

Starting with a clean potential, we can introduce disorder into the system by

projecting disordered potential using the spatial light modulator. The high resolution

would allow us to create disorder with spatial frequencies corresponding to the lattice

spacing. The ability to tailor the disorder to having any spatial frequency spectra makes

systematic comparison to theory a lot easier.
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We have shown the use of photon assisted tunneling to probe and drive coherent

dynamics in a many-body system. Creation of artificial gauge field using photon-assisted

tunneling [95, 96] could bring the atoms into the high effective magnetic field limit to

explore quantum Hall physics [94].

The photon assisted tunneling can be used together with the projected potential to

create localize excitations in the many body system. For example amplitude modulation

applied to only a single site in our 1D tilted Mott insulators would create elementary

excitations in the magnetic model. In the paramagnetic state, such defects come as a

single flipped spin which can hop around along the chain via a second order process.

For the anti-ferromagnetic state, flipping one spin creates a domain wall which can

break up into two domain boundaries each of which can move around and delocalize in

the chain [120].

The creating and site-resolved imaging of tunnel coupled bilayer quantum gases open

possibilities to study mixed dimensional systems, and bring new imaging capabilities for

probing strongly-correlated states. By circumvent the limitations of parity imaging and

obtain full number statistic, important information could be learnt about the growth of

entanglement during the dynamical evolution of strongly correlated states in 1D.

Apart from these, the increasing level of control of the individual atoms in an

optical lattice could lead to scalable quantum computers [121]. Gate operations between

atoms on different sites could be realized using collisional phase shifts from the on-site

interaction using axillary atoms, or via long range interactions such as those of atoms

excited to Rydberg states.

115



References

[1] P. A. Lee and X.-G. Wen, “Doping a Mott insulator: Physics of high-temperature
superconductivity,” Rev. Mod. Phys. 78, 17 (2006).

[2] H. Stormer, D. Tsui, and A. Gossard, “The fractional quantum Hall effect,” Rev.
Mod. Phys. 71, S298 (1999).

[3] A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer, 1994).

[4] V. Anisimov and Y. Izyumov, Electronic Structure of Strongly Correlated Materials
(Springer, 2010).

[5] G. E. Moore et al., “Cramming more components onto integrated circuits,” Proc.
IEEE 86, 82 (1998).

[6] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21,
467 (1982).

[7] I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultracold
quantum gases,” Nature Phys. 8, 267 (2012).

[8] R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nature Phys.
8, 277 (2012).
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phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.,”
Nature 415, 39 (2002).

116



[14] D. C. McKay and B. DeMarco, “Cooling in strongly correlated optical lattices:
prospects and challenges,” Rep. Prog. Phys. 74, 054401 (2011).

[15] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner, “A quantum
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