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ABSTRACT 

 

Synthetic biology aims to engineer biological systems to meet new challenges and teach us more about 

natural biological systems. These pursuits range from the building of relatively simple transcriptional 

circuits, to engineering the metabolism of an organism, to reconstructing entire genomes. While we are 

still emerging from the foundational stages of this new field, we are already using engineered cells to 

discover underlying biological mechanisms, develop new therapeutics, and produce natural products. In 

this dissertation, we discuss the application of synthetic biology principles to the development of 

memory and pulse-detecting genetic circuits. In Chapter 2, we use novel transcriptional positive-

feedback based memory devices integrated in human cells to study heterogeneous responses to cellular 

stresses. We built doxycycline, hypoxia, and DNA damage sensing versions of the device, demonstrating 

its modularity. In Chapter 3, we discuss further applications of the memory device in the study of long-

term responses to hypoxia, gamma radiation, and inflammation. Finally, in Chapter 4 we describe work 

leading to the future construction of a pulse-detecting genetic circuit integrated in the E. coli genome. 

The work presented here illustrates the general applicability of synthetic biology in the study of 

biological phenomena and brings us one step closer to achieving a more exquisite understanding and 

control of natural systems. 



	   iv 

Acknowledgements 

It is hard to believe I have finally reached the point where I am about to defend my dissertation, and I 

would never have made it this far without the support of so many people. I knew that choosing to come 

to Boston for graduate school would provide me with amazing scientific opportunities but I could never 

have predicted I would meet so many awesome people. I have to thank Pamela Silver for accepting me 

into her lab and supporting me through my time at Harvard. She has inspired me to reach higher and 

never underestimate what I can do. She put together an environment that really pushed me to learn to be 

self-reliant while still recognizing when I needed to reach out to others for help.  

Aside from scientific development, the Silver lab is where I formed some of the most lasting 

friendships of my graduate career. The bobcats, Devin Burrill, Patrick Boyle, Christina Agapakis, 

Qingqing Wang, Jake Wintermute, Bill Senapedis, Karmella Haynes, Danny Ducat, and I were always 

ready to keep things fun and keep each other from letting the tough parts of science get us down. While 

all these people have moved on, I was not left alone in the lab. Steph Hays, Tyler Ford, Cameron 

Myhrvold, Gairik Sachdeva, Jordan Kerns, Jonathan Kotula, and Mike Certo and the rest of the Silver lab 

now put up with the occasional rants of this old graduate student. I owe so much of what I accomplished 

to my fellow BBS student, Silver lab member, collaborator and friend Devin Burrill. She took me in 

during recruitment weekend, introduced me to my future graduate lab, and let me team up with her to 

work on what became Chapter 2 of my thesis. Without her, I have no idea where I would have ended up 

in Harvard, but I find it difficult to imagine it would be better than the zany, creative atmosphere of the 

Silver lab.  



	   v 

 I would also like to thank my dissertation advisory committee: Keith Joung, Galit Lahav, Peter 

Sorger, and Bill Kaelin. Throughout the years I spent here, they provided guidance, advice, and input on 

the various projects I explored. They made sure I stayed on track and got to where I am today. I would 

also like to thank my defense committee for agreeing to be there for this final step: Stirling Churchman, 

Ron Weiss, Ahmad Khalil, and Keith Joung. 

My family have supported me long before I got to Harvard and I’m sure they will support me 

long after. Even though my parents, Bonnie and Brian, and brother, Geoffrey, are far away, they kept me 

grounded. When things got too stressful, they provided an escape from the academic science bubble and 

reminded me that everything would work out just fine. Even though I’ve moved around a lot over the 

years, I know my home is always with them in Montreal. Thanks to my parents for getting me 

subscriptions to all the kid’s science magazines when I was growing up, and not getting too annoyed 

when I used all your spices for “chemistry” experiments. Thanks to my brother for putting up with me, 

letting me watch you play video games, and making sure I didn’t turn into too big of a nerd.  

Last, but certainly not least, I want to thank Mark Logan for being there for me through the last 

stages of my degree. Everyday I think about how lucky I am to have met you and I’m glad I didn’t have to 

do this without you.  

 

  



	   vi 

Table of Contents 
 

Chapter 1: Introduction 1 
Introduction to synthetic circuits 2 
In vitro memory circuits 4 
Writing synthetic memory into DNA 5 
Transmitting memory through transcriptional networks 7 
Memory after transcription 9 
Pulse detection and generation 10 
Learning through building 11 
The future of engineered cellular memory 13 
Conclusions 14 
References 15 

 

Chapter 2: Synthetic memory circuits for tracking human cell fate 20 
Abstract 21 
Introduction 22 
Results 27 
Discussion 44 
Conclusions 48 
Materials and Methods 49 
Acknowledgements and attributions 55 
References 56 

 

Chapter 3: Studying memory of cellular stresses in human cells 59 
Abstract 60 
Studying the long-term effects of transient hypoxic exposure in human cells  

Introduction 61 
Results and discussion 63 
Conclusions 67 

Developing a γ-radiation sensing memory device in human cells  
Introduction 68 
Results and discussion 69 
Conclusions 74 

Development of an inflammation responsive memory device  
Introduction 75 
Results and discussion 76 
Conclusions 79 

Materials and Methods 80 
Acknowledgements and attributions 84 
References 84 



	   vii 

Chapter 4: Building a pulse-detecting genetic circuit 88 
Abstract 89 
Introduction 90 
Results and discussion 95 
Conclusions 108 
Materials and Methods 109 
Acknowledgements and attributions 111 
References 111 

 

Chapter 5: Conclusion 114 
Where are we now? 115 
What stands in our way? 116 
Where do we go from here? 118 
References 118 

	  
 

Appendix A: Supplementary information for Chapter 2 121 
 

Appendix B: Supplementary information for Chapter 3 130 
 

Appendix C: Supplementary information for Chapter 4 132 
 

Appendix D: Burrill DR1, Inniss MC1, Boyle PM, Silver PA. 2012. Genes Dev 135 
 

Appendix E: Boyle PM2, Burrill DR2, Inniss MC2, Agapakis CM2, et al. 2012. J Biol Eng 148 
 

Appendix F: Inniss MC, Silver PA. 2013. Curr Biol 157 
 

 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Equal contribution 
2 Equal contribution	  



	   viii 

List of Figures 

Chapter 1: Introduction  
1.1. Cellular memory circuits can be built in many ways. 3 
1.2. Engineered cellular memory circuits can be used to study biology and may be used 
to diagnosis and treat disease, as well as solve unmet industrial needs. 12 

 

Chapter 2: Synthetic memory circuits for tracking human cell fate  
2.1. Design and testing of trigger and loop genes. 24 
2.2. MD10/TetOx2 transmits memory of dox exposure. 31 
2.3. Further characterization of MD10/TetOx2. 32 
2.4. MD15/HRE device identifies a subpopulation with unique memory of low O2 

exposure 35 
2.5. MD12/p53R2-RE device identifies a subpopulation with unique memory of DNA 
damage 40 
2.6. MD12/p53R2-RE device identifies a subpopulation with a unique transcriptional 
profile 44 

 

Chapter 3: Studying memory of cellular stresses in human cells  
3.1. Hypoxic exposure causes upregulation of hypoxia responsive genes. 64 
3.2. DNA damage cell line responds and remembers γ-radiation exposure. 71 
3.3. Synthetic and natural p53 responsive promoters are activated by γ-radiation. 73 
3.4. Synthetic NF-κB responsive promoter responds to inflammatory stimulus. 78 

 

Chapter 4: Building a pulse-detecting genetic circuit  
4.1. A pulse detecting genetic circuit responds to the falling edge of a pulse of stimulus. 91 
4.2. Components of the lambda phage switch can be used to build a pulse detecting 
genetic circuit. 93 
4.3. A fluorescent reporter system for lambda cI activity. 96 
4.4. Structural model of lambda cI and cIDN heterodimer bound to DNA. 100 
4.5. cIDN inhibits cI activity in a dose dependent manner. 102 
4.6. The natural lambda switch can function as a pulse detector. 106 

	  

  



	   ix 

List of Tables 

Chapter 3: Studying memory of cellular stresses in human cells  
3.1. Synthetic NF-κB responsive promoter elements. 77 

 

Chapter 4: Building a pulse-detecting genetic circuit  
4.1. List of strains used in this study. 99 
4.2. List of cIDN mutants. 101 

 

  



	   x 

Attributions 

 

All work described in this thesis was performed by myself with the following exceptions:  

 

The experiments in Chapter 2 were designed and carried out equally with Devin R. Burrill, and Patrick 

M. Boyle and Pamela A. Silver provided guidance and took part in the writing of the manuscript. 

Microarray experiments presented in Chapters 2 and 3 were performed by the Dana Farber Microarray 

Core Facility.  

 

Design of the experiments in Chapter 3 was done by myself. Assembly of constructs described in 

Chapters 3 was performed by Caroline Kim and Nicolas Hafner under my supervision. Exposure of 

DNA damage memory device to γ-radiation was performed by myself and qRT-PCR was performed by 

Caroline Kim. Testing of the inflammation memory device was performed by Nicolas Hafner. 

 

Experiments described in Chapter 4 were designed by Jeffrey Way and myself. Assembly of constructs 

was performed by Leigh Matano, Caroline Kim, and Lauren Kennedy, under my supervision. Inducible 

wild-type cI and lambda memory strains described in Chapter 4 were produced by S. Jordan Kerns and 

Jonathan Kotula.   



	   xi 

Copyright Information 
 
The following works are reproduced as allowed by the Creative Commons Attribution and the Creative 
Commons Attribution-Non Commercial 4.0 International licenses: 
 

Boyle PM1, Burrill DR1, Inniss MC1, Agapakis CM1, Deardon A2, Dewerd JG2, Gedeon MA2, 
Quinn JY2, Paull ML2, Raman AM2, Theilmann MR2, Wang, L2, Winn, JC2, Medvedik O, 
Schellenberg K, Haynes KA, Viel A, Brenner TJ, Church GM, Shah JV, & Silver PA. 2012. A 
BioBrick compatible strategy for genetic modification of plants. J Biol Eng 6:8. 
 
 

The following work is reproduced with permission from Cold Spring Harbor Laboratory Press: 
 
Burrill DR1, Inniss MC1, Boyle PM, Silver PA. 2012. Synthetic memory circuits for tracking 
human cell fate. Genes Dev 26:1486–1497. 
 

 
 
The following work is reproduced with permission from the Elsevier: 
 

Inniss MC, Silver PA. 2013. Building synthetic memory. Curr Biol 23:R812–6. 
 
 
 
 
 
 
 
 
 
 
  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Equal contribution 
2 Equal contribution 



Chapter 1 

 

 

 

 

 

Introduction  



	   2 

Introduction to synthetic circuits1 

Synthetic biology encompasses a vast range of pursuits including building novel transcriptional 

circuits(Gardner, Cantor, and Collins 2000; Ajo-Franklin et al. 2007), engineering metabolism on a 

large-scale(Wang et al. 2009), and creating a minimal cell(Gardner, Cantor, and Collins 2000; Forster 

and Church 2006; Ajo-Franklin et al. 2007). Early projects were mostly limited to building small genetic 

circuits consisting of only a few parts(Gardner, Cantor, and Collins 2000; Basu et al. 2005; Ajo-Franklin 

et al. 2007; Wang et al. 2009), however current work has extended our range to large multi-gene 

devices(Xie et al. 2011) and even entire chromosomes and genomes(Gibson et al. 2010; Annaluru et al. 

2014) The history of the field of synthetic biology has been described in great detail 

elsewhere(Cameron, Bashor, and Collins 2014; Way et al. 2014). 

 While some of the first synthetic circuits were built from a small number of parts, they exhibited 

complex behavior including oscillations and pattern formation(Basu et al. 2005). Cellular memory 

circuits were also among these early synthetic devices(Gardner, Cantor, and Collins 2000). Cellular 

memory refers to the cell’s ability to convert a transient signal or stimulus into a sustained response. 

Biological phenomena that rely on natural memory circuits include the lambda phage switch, cellular 

differentiation, and cell division(Ptashne 2004; Burrill and Silver 2010).  Synthetic memory circuits can 

either require active cellular processes to maintain their state (volatile memory) or not (non-volatile 

memory). Volatile memory circuits include transcription-based devices, while non-volatile memory 

circuits can be based on recombination. An important feature of volatile memory circuits is they are 

bistable – they tend to exist in one of two states and stochastic switching between the stable states 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Portions of this Chapter are reproduced with permission of the Elsevier from the following published work: 
Inniss MC, Silver PA. 2013. Building synthetic memory. Curr Biol 23:R812–6. 
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should be rare(Ferrell 2002). Additionally, the change in state of both volatile and non-volatile memory 

circuits can be reversible or irreversible (Figure 1.1A). 

 

 

Figure 1.1. Cellular memory circuits can be built in many ways. (A) The change in state of synthetic 

memory circuits can be either reversible or irreversible. (B) In vitro memory circuits rely on 

hybridization of nucleic acids. Interlocking negative and positive feedback loops form the bistable core 

(in box) of such devices. Once activated, each positive feedback loop produces an oligonucleotide that 

promotes its own production as well as an inhibitory oligonucleotide to the opposing positive feedback 

loop.  (C-F) In vivo memory circuits are built using diverse strategies. (C) Recombination-based 

memory circuits can be based on excision or inversion of DNA sequences. (D) Both positive and double 

negative transcriptional feedback loops can be used to engineer cellular memory. Novel memory circuits 

based on (E) protein phosphorylation and (F) RNA editing have also been proposed. 

 

  Synthetic memory circuits can be engineered using a variety of biological mechanisms including 

nucleic acid hybridization, DNA recombination, chromatin modification, transcription, and post-
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transcriptional phenomena. Here we will explore the current state of engineered memory circuits and 

their applications. We will then discuss the future of these devices in medicine and industry. 

 

In vitro memory circuits 

Synthetic genetic circuits can be constructed in vitro. These circuits consist solely of DNA, capable of 

performing calculations or logic functions via hybridization(Qian, Winfree, and Bruck 2011), or more 

complex mixtures of DNA and purified enzymes that can carry out transcription and translation(Kim, 

White, and Winfree 2006; Padirac, Fujii, and Rondelez 2012). The advantage of building synthetic 

circuits in vitro is the high level of control over the environment in which the device will function 

(Hockenberry and Jewett 2012). This control results in increased predictability and allows careful 

unpacking and analysis of the specific interactions between circuit components. This detailed 

understanding should allow better predictions and interpretations of device behavior when it is 

introduced into the more complex worlds of the cell and multicellular organisms.  

 In particular, there have been several recent examples of in vitro toggle switches and memory 

devices based on hybridization of oligonucleotides.  One such circuit was built by engineering two 

mutually repressive DNA-hybridization based transcriptional switches(Kim, White, and Winfree 2006). 

The circuit consists of DNA oligonucleotides, and two enzymes: T7 RNA polymerase and RNase H. 

The presence of activating single stranded (ss) DNA, complementary to each switch, allows T7 RNA 

polymerase to transcribe inhibitory RNAs to the opposing switches while RNase H degrades the 

inhibitory RNAs. By careful balancing of production and degradation rates, bistable behavior is 

observed: depending on the initial amounts of the opposing activating ssDNAs production of one 

inhibitory RNA will completely suppress production of the other. Importantly, these results agree very 
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closely with model predictions. While this system is bistable, it is not switchable; the circuit output 

depends entirely on the initial state of the system(Kim, White, and Winfree 2006).  

While reversibility is not necessary for a synthetic memory device, it may prove a useful feature. 

Recently, an in vitro switchable memory circuit was engineered consisting of DNA oligonucleotides, 

DNA polymerase, an endonuclease, and an exonuclease(Padirac, Fujii, and Rondelez 2012). The 

bistable core of the circuit consists of four templates: two positive feedback loops, and two mutually 

repressive feedback loops. There are two additional templates that produce two activating 

oligonucleotides in response to external signals. In this case, these signals are the addition of additional 

complementary oligonucleotides. Each of the newly produced oligonucleotides interacts with the 

templates in the bistable core to promote their own production and repress production of the other. 

Thus, by adding the appropriate external stimulus, the circuit can be switched from one state to the 

other (Figure 1.1B). 

 While, in principle, these in vitro memory circuits could be modified to function in cells, these 

strategies for engineering bistability remain unexplored in vivo. However, these studies have produced 

extremely detailed mechanistic understanding that will benefit future efforts to transfer these devices 

into the cellular environment.  

 

Writing cellular memory into DNA 

Heritable memory encoded at the DNA level has been used in biological studies for many years(Stern 

and Fraser 2001). Developmental biologists use recombinase systems such as Cre:loxP to permanently 

mark cells of a given lineage, and to knock-out genes in specific cell types or at desired times(Nagy 2000; 

Srinivas et al. 2001). To accomplish this, transgenic animals are created carrying circuits in which a 
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reporter gene is interrupted by a transcriptional terminator flanked by loxP sites(Srinivas et al. 2001), or 

by replacing a gene of interest with a loxP flanked version(Nagy 2000). Cre recombinase expression is 

then put under the control of a tissue-specific or inducible promoter. Differentiation into a specific tissue 

or addition of an exogenous inducer results in expression of recombinase, which excises the DNA 

between the loxP sites creating either a functional reporter gene or knocking-out the gene of interest 

respectively. As a recombination event results in a change at the DNA sequence level, the change is 

irreversible and transmits memory of the stimulus heritably and permanently(Figure 1.1C).  

 By using invertases instead of standard recombinases, more complex multi-state memory 

circuits can be designed(Ham et al. 2008; Bonnet, Subsoontorn, and Endy 2012; Siuti, Yazbek, and T.K. 

Lu 2013)(Figure 1.1C) . For instance, a double inversion recombination switch was built in E. coli by 

constructing a plasmid with two overlapping inversion modules(Ham et al. 2008). A separate plasmid 

carried the two inducible invertase genes. The state of this device can be probed by using a carefully 

chosen set of primers. The presence or absence of certain amplicons not only indicates whether each 

inducer has been added, but also the order in which they were introduced. More recently, memory 

circuits have been integrated with logic gates by flanking combinations of terminators, promoters, or 

reporter genes by two different pairs of recombinase target sites(Bonnet et al. 2013; Siuti, Yazbek, and 

T.K. Lu 2013). Depending on the arrangement of these elements, all input logic gates (AND, OR, NOR, 

AND NAND) can be created. Additionally, multiple inversion-based memory circuits can be linked to 

build a genetic counter capable of indicating the number of pulses of inducer experienced by the 

cell(Friedland et al. 2009). As with the systems used in lineage tracing experiments(Nagy 2000; Srinivas 

et al. 2001), activation of these devices is irreversible. 
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 Recently a rewritable recombination based memory device was demonstrated in E. coli.  This 

recombinase addressable data (RAD) module consists of a promoter flanked by phage attachment sites, 

attB and attP, situated between two fluorescent protein genes(Bonnet, Subsoontorn, and Endy 2012). 

The device is “set” by expression of an integrase (Int), flipping the promoter and converting attB and 

attP sites to attL and attR sites, and reset by coexpression of Int and an excisionase (Xis), restoring the 

attB and attP sites. Depending on the orientation of the promoter, one of the two fluorescent proteins is 

produced. The state of the device is stable over many generations and can be switched back and forth 

reliably many times. A reversible memory circuit enables the design of a combinatorial genetic 

counter(Subsoontorn and Endy 2012). In contrast to a counter built from irreversible memory circuits – 

using N modules for N counts – a combinatorial counter with N modules can count to 2N(Subsoontorn 

and Endy 2012).  

 

Transmitting memory through transcriptional networks 

The vast majority of synthetic genetic circuits implemented in vivo rely on the successful engineering of 

transcriptional regulation. One of the best-understood transcriptional regulation systems, lambda phage, 

is an example of a natural memory circuit(Ptashne 2004). As such, several synthetic memory circuits are 

transcription-based(Gardner, Cantor, and Collins 2000; Kramer et al. 2004; Ajo-Franklin et al. 2007; 

Lou et al. 2010; Burrill and Silver 2011; Burrill et al. 2012). There are two main gene network topologies 

that can demonstrate sustained memory behavior; double negative feedback loops, and a positive 

feedback loop(Ferrell 2002)(Figure 1.1D). Both of these strategies have been explored in different 

contexts and each has advantages and disadvantages. While the former is a much simpler circuit with 



	   8 

fewer components to engineer, the latter, by virtue of its increased complexity, provides more options 

for modification and tuning. 

 An early example of a synthetic genetic circuit was an engineered toggle switch in E. 

coli(Gardner, Cantor, and Collins 2000). Inspired by the natural lambda phage immunity 

region(Ptashne 2004), which has previously been shown to function in a novel context(Toman et al. 

1985) and more recently used to build an antibiotic detecting memory device in gut bacteria(Kotula et 

al. 2014), a double-negative feedback circuit was constructed consisting of two repressors driven by 

constitutive promoters. Each repressor can repress synthesis of the other, therefore, when one repressor 

is expressed, the other is repressed, thus creating two stable states. Importantly, it is possible to 

selectively inactivate each repressor by the addition of a specific small molecule, permitting the device to 

switch states. Careful tuning of promoter strength based on the choice of repressor created toggle 

switches that demonstrated bistability and long-term memory. Later, similar synthetic switches were 

shown to function in mammalian cells demonstrating the modularity of the design(Kramer et al. 2004; 

Deans, Cantor, and Collins 2007). Recently, a toggle switch was combined with genetic logic circuits to 

create a switch that can be switched on and off by repeated addition of a single trigger molecule(Lou et 

al. 2010).  

 While several autoregulatory circuits were built having some degree of bistability(Becskei, 

Séraphin, and Serrano 2001; Isaacs et al. 2003; Kramer and Fussenegger 2005), the first positive 

feedback loop that predictably and reliably transmitted memory for many cell divisions was built in 

Saccharomyces cerevisiae(Ajo-Franklin et al. 2007). To create this device, the activities of several 

transcription factors under the control of a galactose inducible promoter were characterized and a 

computational model of the circuit was used to predict which of these would form a functional memory 
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circuit. Indeed, the model correctly predicted which of the transcription factors would succeed and 

which would fail. This memory device was later shown to be modular; when the galactose inducible 

promoter was replaced with the promoter for a DNA repair response gene, the circuit maintained its 

activity albeit while responding to DNA damage instead of galactose(Burrill and Silver 2011). This 

reengineered circuit was able to identify a subpopulation of cells that maintained a differential response 

to DNA damage for many generations post-exposure. As with the toggle switch, the modularity of the 

positive feedback based memory device extends to its transferability to a different organism. A similar 

device designed to either respond to doxycycline, ultraviolet radiation, or hypoxia was built in human 

cells and was successfully used to isolate a subpopulation of cells that responded differentially to these 

stimuli(Burrill et al. 2012). 

 

Memory after transcription  

While cellular memory circuits have been engineered that operate at the DNA sequence level as well as 

through regulation of transcription, post-transcriptional processes have yet to be explored. Natural 

systems exhibit bistability and even memory dependent on processes such as 

phosphorylation(Gunawardena 2005) and post-transcriptional modification of RNA(Salz and Erickson 

2010). Recent efforts to model these systems open the possibility of harnessing them in engineered 

circuits.  

The phosphorylation state of proteins with multiple phosphorylation sites has been shown to be 

switch-like or bistable(Gunawardena 2005).  For example, multi-site phosphorylation is thought to 

contribute to the bistability of the MAP kinase cascade(Hadač, Schreiber, and Přibyl 2013). Other 

models predict that scaffolding is also a significant contributor to bistable phosphorylation 
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cascades(Chan et al. 2012). Now, synthetic phosphorylation based circuits can be built to test these 

predictions, adding protein phosphorylation to the selection of tools available for engineering cellular 

memory(Figure 1.1E). This will allow synthetic biologists to build novel circuits that can respond on 

much quicker timescales than transcriptional or recombination based circuits.  

As another point of post-transcriptional regulation, translation level and thus protein level, can 

be controlled through RNA modifications. Recently, construction of a positive feedback loop dependent 

on control of mRNA polyadenylation has been proposed(Aslam and Shouval 2012)(Figure 1.1F). 

Transcripts with more polyadenylation are more likely to be translated compared to those 

without(Gallie 1991; Wilusz, Wormington, and Peltz 2001). By encoding expression of a 

polyadenylating enzyme on a transcript carrying its cognate polyadenylation signal, a positive feedback 

loop can be created(Aslam and Shouval 2012). This circuit has the potential to be bistable, making it a 

candidate for becoming the basis of a cellular memory device. These diverse methods of creating cellular 

memory will provide a powerful toolkit for building future synthetic circuits. 

 

Pulse detection and generation 

While numerous strategies for building a memory device have been discussed, these circuits are 

triggered whether or not the stimulus has ended. This ability to distinguish between subsequent events is 

necessary for one of the more complex applications of memory devices: counting(Bonnet, Subsoontorn, 

and Endy 2012; Subsoontorn and Endy 2012). In order to avoid advancing a counter prematurely, the 

synthetic circuit must be able to distinguish between a pulse of stimulus and a sustained stimulus (a 

single long pulse). Pulse detecting circuits are usually triggered by either the rising or falling edge 

(beginning or ending) of a pulse of stimulus. A rising edge detector can also be characterized as a pulse 
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generator as it produces a burst of output in response to inducer regardless of continued induction. This 

temporal behavior can be achieved through an incoherent feedforward loop; one component of a 

cascade represses an earlier component(Kaplan et al. 2008). Many natural examples exist(Kuttykrishnan 

et al. 2010; Nir Yosef 2011) and, indeed, examples of this type of circuit have been engineered(Basu et 

al. 2004). However, a falling edge detector has yet to be built. 

 

Learning through building 

Synthetic biologists have envisioned what may be possible once we can reliably and predictably 

reengineer biology. While building novel genetic circuits both in vitro and in vivo has been a pursuit of 

synthetic biologists for several years, most of these have yet to find utility in real world applications. 

Nevertheless, these early efforts have proven useful both as research tools and in gaining a better 

understanding of natural biological mechanisms(Figure 1.2A). Synthetic memory circuits have been 

used to explore what is needed to engineer bistability. In particular, transcription-based circuits have 

been extensively modeled(Rodrigo and Jaramillo 2007; Ghim and Almaas 2009; Widder, Macía, and 

Solé 2009; Rodrigo et al. 2010) and many examples have been built in diverse contexts(Gardner, 

Cantor, and Collins 2000; Kramer et al. 2004; Ajo-Franklin et al. 2007; Lou et al. 2010; Burrill and Silver 

2011; Burrill et al. 2012). The knowledge gained through these pursuits will allow synthetic biologists to 

better understand natural and novel transcriptional networks. In addition, memory circuits have been 

used to study biological questions that would be otherwise intractable. As described earlier, 

recombination based memory circuits have been used extensively to trace developmental lineages of 

cells (Stern and Fraser 2001). These circuits also allow conditional gene knock-outs, making it possible 
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to study the effects of gene loss in certain cell types and at specific times during development(Nagy 

2000). 

 

 

Figure 1.2. Engineered cellular memory circuits can be used to study biology and may be used to 

diagnosis and treat disease, as well as solve unmet industrial needs. (A) Memory circuits can be used to 

study heterogeneously responding cell populations. (B) When a cell changes from a healthy to a disease 

state, memory circuits can detect and report this change or treat the underlying condition. (C) Memory 

circuits will allow long-term expression by transient addition of inducer. 

 

 Synthetic memory circuits based on transcriptional positive feedback loops have been used to 

study the long-term effects of transient stimuli in S. cerevisiae and human cells(Burrill and Silver 2011; 

Burrill et al. 2012). S. cerevisiae carrying the DNA damage responsive memory circuit were exposed to 

genotoxic doses of EMS or hydroxyurea. Due to the nature of the bistable circuit, cells only switch to the 

memory state if they respond above a certain threshold allowing isolation of a more strongly responsive 

subpopulation. This subpopulation was shown to have a higher rate of mitochondrial activity and iron 
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uptake and this phenotype persisted for many generations post-exposure(Burrill and Silver 2011). 

Similarly, a DNA damage responsive memory device in human cells was also used to isolate a 

subpopulation of strongly responding cells. Gene expression in these memory cells differed from the 

non-memory population for many days post-exposure to UV radiation(Burrill et al. 2012). Thus, using 

synthetic memory circuits, we can mark and influence biologically relevant subpopulations of cells.  

 

The future of engineered cellular memory 

While synthetic memory devices have been useful in learning more about biology and the function of 

genetic networks, we expect that in the future, these circuits will find new applications in fields such as 

medicine or industrial biotechnology(Figure 1.2B-C). Other types of synthetic circuits and engineered 

cells are already being explored as potential next-generation therapies in the treatment of diseases such 

as diabetes, metabolic syndrome, and cancer(Burrill, Boyle, and Silver 2011; Ruder, T. Lu, and Collins 

2011; Weber and Fussenegger 2011; Ye et al. 2013). The ability to induce a sustained response to a 

transient stimulus will enable new forms of treatment and diagnosis as well as meet unsolved industrial 

challenges(Ruder, T. Lu, and Collins 2011). 

Current medical treatment relies on diagnosis of a disease before an appropriate treatment can 

be administered and, often, a patient will have to take repeated doses of a drug over the course of 

treatment(Folcher and Fussenegger 2012; Wieland and Fussenegger 2012). A synthetic memory circuit 

could be engineered to detect a biological signal of disease and start producing either an easily detectable 

reporter or a therapeutic(Figure 1.2B). Transcriptional positive feedback loops have already been shown 

to be modular and thus can be coupled to different biological signaling pathways to detect transient 

changes in the biology of the cell(Burrill and Silver 2011). Alternatively the device can be engineered to 
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respond to an extracellular stimulus, such as radiation or hypoxia. These devices will allow a physician to 

know whether a certain stimulus or condition has occurred even if it is no longer present. While the 

output of the memory device can be a reporter that can easily be detected such as a fluorophore, beta-

galactosidase, or secreted alkaline phosphatase, in the future, the output of these devices may be a 

therapeutic(Ausländer and Fussenegger 2012). This will automate both the detection and treatment of 

disease, decreasing the time between the start of the condition and the first dose of therapy(Figure 

1.2B). 

Cellular memory devices will also be useful in an industrial setting. One barrier to cost-effective 

production of chemical products is the cost of constantly inducing the culture(Siuti, Yazbek, and T.K. 

Lu 2013). A synthetic memory device would convert transient induction of a large culture into 

permanent expression of the exogenous biosynthetic pathways of interest, significantly reducing the cost 

of production(Siuti, Yazbek, and T.K. Lu 2013)(Figure 1.2C). In addition, one can imagine designing a 

synthetic memory circuit to be activated at a certain cell density or other internal condition eliminating 

the need for an external inducer.  

 

Conclusions 

Engineering synthetic memory circuits has already taught us about designing bistability and building 

genetic circuits both in vitro and in vivo, and helped answer diverse biological questions. However, there 

remain unmet needs that will enable new applications. Namely, more diverse and well characterized 

parts – e.g. transcription factors, recombinases, and inducible promoters – as well as more predictive 

models describing the interactions of these parts. As we apply this deepened understanding and 

incorporate new tools such as phosphorylation and RNA modification, more complex systems will be 
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designed and implemented making these devices an important part of next generation medical 

treatments and bioindustry. 

In this dissertation, we will discuss the use of synthetic biology approaches for tracking cell fate 

and detecting pulsed stimuli. In Chapter 2, the engineering of transcriptional memory devices that can 

sense and respond to doxycycline, hypoxia, and DNA damage is described. We show that using a 

positive feedback loop, we can create a device capable of transmitting memory of exposure to a given 

stimulus through cell division. Additionally, this device can be used to segment a heterogeneously 

responding population of cells and allows isolation of a differentially responding subpopulation. In 

Chapter 3, we explore further applications of the memory device described earlier. These include further 

study of a long-term response to transient hypoxia, memory of exposure to γ-radiation, and 

development of an inflammation-responsive memory device. Finally, in Chapter 4, the design of a pulse-

detecting genetic circuit and characterization of its components is discussed. Such a circuit would allow 

the assembly of far more complex circuits such as an event counter.  

I have also included reprints of the papers I wrote as a graduate student as Appendices. 

Appendix D is a research paper describing the development of the mammalian transcriptional memory 

devices. Appendix E is the publication coming from the Harvard 2010 iGEM team introducing plants as 

a chassis for synthetic biology in the iGEM competition. Lastly, Appendix F is a review of the current 

state of building synthetic memory circuits.  
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Abstract1 

A variety of biological phenomena, from disease progression to stem cell differentiation, are typified by a 

prolonged cellular response to a transient environmental cue. While biologically relevant, heterogeneity 

in these long-term responses is difficult to assess at the population level, necessitating the development 

of biological tools to track cell fate within subpopulations. Here we present a novel synthetic biology 

approach for identifying and tracking mammalian cell subpopulations. We constructed three 

genomically-integrated circuits that employ bistable auto-regulatory transcriptional feedback to retain 

memory of exposure to brief stimuli. These ‘memory devices’ are used to isolate and track the progeny of 

cells that responded differentially to doxycycline, DNA damaging agents, or hypoxia.  Following ultra-

violet radiation or hypoxic exposure, strongly responding cells activate the memory device and exhibit 

changes in gene expression, growth rates, and viability for multiple generations after the initial stimulus. 

Taken together, these results indicate that a heritable memory of DNA damage and hypoxia exists in 

subpopulations that differ in long-term cell behavior. 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Portions of this chapter were reproduced with permission from Cold Spring Harbor Laboratory Press: 
Burrill DR, Inniss MC, Boyle PM, Silver PA. 2012. Synthetic memory circuits for tracking human cell fate. Genes Dev 
26:1486–1497. 
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Introduction 

Biological heterogeneity exists in most cell populations; even isogenic populations exhibit some natural 

cell-to-cell variability in parameters including gene expression and cell morphology (Bishop et al. 2006). 

Heterogeneity can result from factors such as noise in gene expression and signal transduction, 

epigenetic modifications, and cell age (Avery 2006; Bishop et al. 2006). A consequence of this diversity 

is that not all cells within a population will respond identically to a given stimulus. Biological systems can 

take advantage of such heterogeneity to produce specific cell types (e.g. differentiation) or optimize 

fitness in fluctuating environments (e.g. immunity) (Acar, Mettetal, and van Oudenaarden 2008). 

Conversely, heterogeneity can leave some cell subpopulations more sensitive to drug treatment (e.g. 

chemotherapy) or disease states (e.g. metastasis) (Murray-Zmijewski, Slee, and X. Lu 2008). Distinct 

cell fates can be heritably-encoded using multiple gene-regulatory strategies, including epigenetic marks, 

stable cytoplasmic factors, and transcriptional auto-regulatory circuits (Burrill and Silver 2011). Thus, 

biological diversity can produce cell subpopulations harboring different memories of an experienced 

stimulus. 

 By the very nature of its heterogeneity, memory of a biological decision is difficult to study. 

Population-scale data can obscure subpopulations (Bishop et al. 2006), and single-cell level experiments 

remain expensive, technically difficult, and hard to scale (Spiller et al. 2010). Studies of biological 

memory require a technique for tracking a cellular decision through cell division. Recombinase systems 

are commonly used to confer memory by leaving a permanent genomic mark, however, DNA 

rearrangement and recombinase expression can have off-target effects that negatively affect genomic 

fidelity (Forni et al. 2006). Furthermore, tunable, reversible DNA recombinase-based memory has only 

recently been demonstrated in bacteria (Bonnet 2012) and has yet to be developed in eukaryotic cells. 
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 One solution is the application of synthetic, transcriptional auto-regulatory circuits to track 

heritable, differential responses to a stimulus. In this circuit design, a stimulus induces transcription of a 

trigger gene expressing a transactivator, which binds the promoter of a second gene. The second gene 

produces more of the same transactivator, initiating a positive feedback loop, or memory (Figure 2.1A). 

Memory is self-sustainable when the input exceeds the circuit’s bistable threshold for feedback, allowing 

the circuit to switch to an alternative state that is transmitted through cell division. Examples of this in 

nature include the cell cycle and cell differentiation (Burrill and Silver 2010), and synthetic versions 

have been built in bacteria, yeast, and mammalian cells (for review, Haynes and Silver 2009; Burrill and 

Silver 2010). In recent work, we constructed a memory circuit in yeast that detects DNA repair, allowing 

for isolation of cells that initiated a repair response above the circuit’s bistable threshold (Burrill and 

Silver 2011). Strongly responsive cells exhibited a heritable damage response that was distinct from less 

responsive cells for many generations.  

Here we report the construction and implementation of synthetic memory circuits in human 

cells to track differential cellular decisions following a global stimulus. Activation of the device was 

linked to endogenous hypoxia and DNA damage response pathways, as these stressors elicit 

heterogeneous responses at the single-cell level (Bristow and Hill 2008; Murray-Zmijewski, Slee, and X. 

Lu 2008). A synthetic memory device that responds to low oxygen (O2) concentrations could help to 

study the sustained effects of hypoxic exposure during tumor formation. Hypoxia stabilizes the HIF-1 

transcription factor, which can activate or silence target genes, as well as increase genomic instability by 

mediating the bypass of DNA repair checkpoints (Chen et al. 2006; Bristow and Hill 2008; Denko 2008; 

Lee et al. 2009; Y. Lu et al. 2011). Tumors can harbor cell subpopulations that have been exposed to 

acute or chronic hypoxia and subsequently reoxygenated, and these tumors are associated with a more  
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Figure 2.1. Design and testing of trigger and loop genes. 
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Figure 2.1 (continued). Design and testing of trigger and loop genes. (A) Schematic of dox trigger, 

reporter, and loop genes. (B) Synthetic ZFs (BCR-ABL #1 & 2, HIV #1 & 2, erbB2 #1) were tested as 

transactivators via co-transfection with corresponding reporters. BCR-ABL #1 was also tested on a single 

plasmid with its corresponding reporter gene. (C) BCR-ABL #1 trigger and loop were tested via co-

transfection on separate plasmids. (D) BCR-ABL #1 trigger was adapted to be sensitive to DNA damage 

or hypoxia. (E) HRE and p53R2-RE triggers were tested via co-transfection with loop. (B, C, E) FACS 

determined % cells positive for trigger RFP and reporter or loop YFP. Values represent mean ± SE, n = 3. 
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aggressive disease(Bristow and Hill 2008). A memory device activated by HIF-1 could potentially 

detect, isolate, and track these subpopulations within the heterogeneous tumor microenvironment to 

determine their specific contributions toward tumor development and metastasis. 

 Like hypoxia, DNA damage also produces a complex array of biological responses at the single 

cell level. Linking a memory circuit to native DNA damage pathways could help identify how DNA 

damage responses are transmitted to subsequent generations and impact long-term cell behavior. The 

variable activation of the tumor suppressor p53 largely determines a single cell’s response to DNA 

damage (Murray-Zmijewski, Slee, and X. Lu 2008). A memory device triggered at the level of a p53-

induced repair factor, such as the ribonucleotide reductase p53R2, would facilitate the isolation and 

tracking of progeny whose ancestors underwent a repair response strong enough to activate the memory 

loop, versus those that did not (Tanaka et al. 2000). This could reveal how a cell’s specific history of 

DNA damage translates into long-term biological consequences.  

 Collectively, our work illustrates a novel, synthetic biology approach for studying cell 

heterogeneity and fate. The described genomically-integrated devices facilitate the investigation of 

biological questions that require long-term cell division and stable inheritance of a genetic circuit. The 

modularity of our system is demonstrated by the construction of memory circuits that respond to 

diverse and relevant stimuli. Our studies reveal the existence of a heritable biological memory of DNA 

damage and hypoxia, providing unique insight into protracted responses to transient stimuli.  
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Results 

Characterizing memory circuit components via transient transfection 

To engineer a memory device, we first designed a set of fluorescently-labeled synthetic transcriptional 

activators (triggers) and their corresponding reporter genes (Figure 2.1A,). Each trigger gene consisted 

of a synthetic zinc finger (ZF) DNA-binding domain (Hurt et al. 2003), one copy of the red fluorescent 

protein (RFP) mCherry (Shaner et al. 2004), the VP64 activation domain (Beerli et al. 1998), and a 

nuclear localization sequence (NLS) (Kalderon et al. 1984), all under the control of a doxycycline 

(dox)-inducible CMV-TetOx2 promoter with a human kozak sequence. ZFs were mammalian codon-

optimized versions of those previously engineered by Hurt, et al, to bind specifically to target DNA 

sequences in a BCR-ABL translocation (BCR-ABL #1, #2), the erbB2 gene (erbB2 #1), or the HIV 

promoter (HIV #1, #2) (Hurt et al. 2003). Each reporter gene had six tandem copies of DNA-binding 

sites for a given ZF upstream of a minimal promoter (composed of a TATA sequence and human kozak 

sequence), and its protein-coding region encoded two copies of the yellow fluorescent protein (YFP) 

variant Venus (Shaner, Steinbach, and Tsien 2005) tagged with an NLS (Figure 2.1A). In the presence 

of dox, trigger genes were expected to express RFP and a functional transactivator that should bind to its 

corresponding reporter binding sites, producing a YFP signal.  

 To evaluate functionality of our constructs in human cell culture, triggers and reporters were 

built on separate plasmids and transiently co-transfected in a U2OS cell line that expresses the Tet 

repressor (Table A.1). Following the addition of dox, trigger RFP and reporter YFP co-expression was 

monitored by fluorescence-activated cell sorting (FACS) (Figure 2.1B). All triggers activated 

transcription of their target reporters by at least 2-fold. HIV #2 reporter exhibited the most leaky 

expression, with over 10.0% of cells expressing YFP in the absence of dox. Trigger/reporter pairs were 
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specific and orthogonal to one another, as minimal YFP expression was observed when reporters alone 

(Figure A.1A) or mismatched trigger/reporter combinations (Figure A.1B) were transfected. Thus, all 

triggers were capable of producing a functional transcriptional circuit. 

 This set of synthetic transactivators provided the components to construct auto-regulatory 

loops intended to confer memory of a stimulus to a single cell and its progeny. In our proposed device, 

an input causes synthesis of an RFP-labeled transactivator, which activates expression of a 2xYFP-

labeled transactivator (Figure 2.1A). This protein binds to its own promoter and, given certain 

parameters, continues to self-activate in the absence of stimulus, resulting in sustained YFP expression. 

For simplicity, all memory devices were built with the BCR-ABL #1 domain, although the above 

transient experiments suggested that all tested ZFs would provide similar results. 

 Since tracking long-term memory requires a stably-integrated device, a trigger-reporter circuit 

was assembled on a single plasmid and tested by transient transfection for circuit activation to determine 

whether the circuit could be integrated in one step. On a single plasmid, the dox memory device 

demonstrated constitutive reporter YFP expression in the absence of dox, likely due to cis-activation 

caused by enhancer elements in the trigger’s CMV-TetOx2 promoter (Boshart et al. 1985) (Figure 

2.1B). However, the dox device demonstrated inducible expression of the loop gene when the trigger 

and loop were co-transfected on separate plasmids (Figure 2.1C).  

We next aimed to construct memory circuits capable of recording exposure to dox, hypoxia, or 

DNA damage. The hypoxia-inducible promoter we used was based on one previously engineered by 

Shibata, et al, and is composed of five copies of HIF-1 binding sites, known as hypoxia-responsive 

elements (HREs), ligated to a minimal human CMV promoter (Shibata, Giaccia, and Brown 2000). 

This promoter is activated when a cell triggers the HIF-1 pathway in response to hypoxia (Figure 2.1D). 
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A DNA damage-inducible promoter (p53R2-RE) was generated by linking four copies of the p53 

binding site in p53R2 (Ohno et al. 2008) to a minimal human CMV promoter (Shibata, Giaccia, and 

Brown 2000). This promoter is activated when a cell executes a p53R2-mediated repair response 

(Figure 2.1D).  

Unlike the dox device, the HRE and p53R2-RE triggers do not contain strong enhancer 

elements and can be assembled as a single construct with the loop gene. When the hypoxia and DNA 

damage devices were transfected as a single plasmid and exposed to the hypoxia mimic cobalt chloride or 

the DNA damaging-agent neocarzinostatin (NCS), respectively, RFP and YFP were co-expressed in a 

significant percentage of cells above basal levels (Figure 2.1E). These observations were similar whether 

or not the circuits were built on one plasmid (Figure A.1C). Thus, we determined that while a dox 

memory stable cell line would require two integrations, only one was necessary to produce DNA damage 

and hypoxia memory cell lines. To test the capacity of the loop element to retain memory of dox, 

hypoxia, or DNA damage exposure, we proceeded to genomically integrate the circuits. 

 

 

An integrated dox memory device 

The dox trigger and loop were randomly integrated as separate genes to create the cell line 

MD10/TetOx2 (Table A.2). Dox exposure resulted in trigger RFP and loop YFP expression in 99.8% 

and 42.7% of cells, respectively, as determined by FACS (Figure 2.2A) and fluorescence microscopy 

(Figure 2.2B). Upon the removal of dox, trigger RFP turned off in most cells within 1 d, while loop YFP 

achieved a bimodal distribution, such that two distinct memory and non-memory subpopulations co-

existed (Figure A.2). YFP expression persisted in a large percentage of cells for at least 3 d (~ 4 
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generations), suggesting heritable memory loop activity (Figure 2.2B). These traits were not specific to 

MD10/TetOx2, as multiple alternative clones were analyzed and demonstrated similar behavior (Figure 

A.3).  

Sustainable memory behavior within a subpopulation of dividing cells was further revealed in 

time-lapse fluorescence microscopy of cells recovering from dox exposure (Figure 2.2C, File A.1). 

Distribution of YFP intensity in the memory subpopulation was constant over time, suggesting 

persistent protein production (Figure 2.3A). Furthermore, spontaneous loop activation in the absence 

of dox was not observed when MD10/TetOx2 was cultured for 9 d (~ 10 generations), indicating that 

any loop activity was due solely to dox exposure (Figure 2.3B). To rule out a difference in RFP and YFP 

protein degradation rates as causal of the observed memory behavior, cells were exposed to dox to 

activate fluorophore expression, and cycloheximide was then added to inhibit protein biosynthesis. RFP 

and YFP degradation rates were determined to be approximately equivalent: 10.6 versus 11.5 arbitrary 

intensity units/h, respectively (Figure A.4). Thus, loop YFP protein persisted by positive feedback and 

not by protein stability. We concluded that MD10/TetOx2 was capable of recording dox exposure and 

transmitting memory of this response to progeny. 
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Figure 2.2. MD10/TetOx2 transmits memory of dox exposure. Memory behavior was analyzed by (A) 

FACS and (B) fluorescence microscopy. FACS determined % cells positive for trigger RFP and loop 

YFP. Values represent mean ± SE, n = 3. (C) Fluorescence microscopy montage of MD10/TetOx2 

post-dox exposure. Phase, RFP and YFP channels were overlaid.  Arrows: dividing memory cells. 

Asterisks: cells where the circuit does not remain active after division. 
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Figure 2.3.  Further characterization of MD10/TetOx2. (A) FACS plots of YFP intensity of memory 

loop cells only, versus event rate over time. (B) Unexposed cells were tracked via FACS to determine 

rate of spontaneous loop activation. (C) Memory and non-memory cells were sorted 2 d post-dox 

exposure and tracked by FACS to determine % cells positive for loop YFP. (D) Sorted memory and non-

memory cells were re-induced 3 d post-sort with dox, and FACS determined % cells positive for loop 

YFP. (E) Cells were exposed to dox, TSA, or TSA+dox to identify epigenetic silencing of the device. 

FACS determined % cells positive for trigger RFP and loop YFP. (A-E) Values represent mean ± SE, n = 

3. 
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the percentage that maintained loop expression decreased over time (Figure 2.3C).  Sorted memory 

cells were re-exposed 3 d post-sort to dox, at which time about 20.2% were still expressing the loop, but 

only 83.3% reactivated the loop (Figure 2.3D). Furthermore, sorted non-memory cells largely failed to 

re-induce the loop (Figure 2.3D). These observations suggested that epigenetic silencing might play a 

role in permanently deactivating the memory loop. To test this theory, trichostatin A (TSA) – a histone 

deacetylase inhibitor – was applied to unsorted MD10/TetOx2 cells before dox exposure to reverse 

gene silencing. While the number of cells expressing the trigger did not change, 12.5% more cells 

activated the memory loop if first exposed to TSA (Figure 2.3E), indicating that decreased loop activity 

over time could be due to epigenetic silencing. This may also explain why only 42.7% of cells initially 

activated the loop. Every selected MD10/TetOx2 clone exhibited this behavior, suggesting that the loop 

became silenced during the selection process. Despite this effect, however, this cell line exhibits 

persistent inducible memory loop expression in a significant percentage of cells, allowing for tracking of 

the cellular response to dox through cell division.  

 

An integrated hypoxia memory device 

To track memory of hypoxia through cell division, the stable cell line MD15/HRE was constructed via 

random genomic integration of the HRE trigger and loop as a single plasmid. While CoCl2 induced a 

hypoxic response in transient experiments, it was not appropriate for long-term cell tracking due to its 

deleterious effect on cell viability and possible non-specific activity as a hypoxia mimic. Alternatively, an 

anaerobic chamber caused less cell death and created an anoxic environment in which MD15/HRE 

could be easily characterized since the HRE promoter is maximally active under anoxic conditions 

(Shibata, Giaccia, and Brown 2000). As fluorophores require O2 to fold properly, any trigger or loop 
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protein produced during anoxia was not fluorescent, necessitating a recovery period before analysis. 

After 1 d of anoxic exposure and 1 d of recovery, the trigger was expressed in 21.5% of cells at a low 

intensity, since the anoxic response had likely subsided by that time, and the loop was activated in 10.8% 

of cells, as determined by FACS (Figure 2.4A) and fluorescence microscopy (Figure 2.4B). Loop-

expressing cells were expected to have activated the trigger’s anoxia-inducible promoter above the 

bistable threshold required for loop expression. A scatter plot of single cell RFP versus YFP intensities 

post-dox exposure shows that higher RFP expression corresponds to higher YFP expression, as 

measured by FACS (Figure A.5A). Thus, loop expression results from stronger trigger activation in 

response to anoxia. 

During the first 2 d post-exposure, we observed a decrease in the memory subpopulation as a 

fraction of the total population (Figure 2.4A). We hypothesized that memory cells, having activated a 

stronger response to anoxia, were likely more susceptible to growth defects and being diluted out of the 

population. This made it difficult to observe, by FACS, whether memory of anoxia indeed persisted 

through cell division within a subpopulation of cells (Figure A.6). By microscopy, however, we 

determined that memory was maintained in small clonal populations. When memory cells were isolated 

from their non-memory counterparts via cell sorting and observed by fluorescence microscopy, a 

significant proportion of sorted memory cells expressed the loop for at least 6 d (~ 5 generations) post-

sort and grew in clusters, indicating active maintenance of memory through cell division (Figure 2.4B). 

To determine the contribution of epigenetic silencing to the decrease in memory population, 

sorted non-memory cells were re-induced 6 d post-sort. Only 3.3% and 2.5% of sorted non-memory cells 

reactivated the trigger and loop, respectively (Figure 2.4C). In addition, when TSA was applied to 

unsorted MD15/HRE cells prior to anoxic exposure, 8.8% and 13.5% more cells activated the trigger  



	   35 

 

 

 

Figure 2.4. MD15/HRE device identifies a subpopulation with unique memory of low O2 exposure.  
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Figure 2.4 (continued). MD15/HRE device identifies a subpopulation with unique memory of low O2 

exposure. (A) Cells were exposed to anoxia, and tracked by FACS for 2 d. (B) Cells were exposed to 

anoxia and recovered for 1d. Memory cells (YFP+) were sorted and followed by microscopy for 6 d. (C) 

Cells were exposed to anoxia and recovered for 1d. Non-memory cells were sorted and re-exposed to 

anoxia 6 d post-sort. (D) Cells were exposed to dox, TSA, or TSA+anoxia to identify epigenetic 

silencing of the device. (E) Cells were exposed to hypoxia and tracked by FACS for 2 d. (A,C,D,E). 

FACS determined % cells positive for trigger RFP and loop YFP. Values represent mean ± SE, n = 3 (F) 

Cells were exposed to hypoxia and recovered for 1 d. MD10/TetOx2 was exposed to dox and recovered 

for 1 d. Cell death was measured in memory versus non-memory cells by FACS. Values represent mean 

± SE, n = 3. (G) MD15/HRE and U2OS cells were exposed to hypoxia, and HIF target gene expression 

was measured. Values represent mean fold expression change over unexposed cells ± SE, n = 3. (H) 

Cells were exposed to hypoxia and recovered for 1 d. Memory and non-memory cells were sorted, and 

HIF target gene expression was measured in each subpopulation. Values represent mean fold expression 

change in memory versus non-memory cells ± SE, n = 2. 
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and loop, respectively (Figure 2.4D), indicating that epigenetic silencing was occurring in this cell line. 

We also noted that the slower growth of memory cells contributed to a decrease in the percentage of 

loop-expressing cells. When equal numbers of sorted memory and non-memory cells were plated 1 d 

post-exposure, memory cells exhibited a growth defect, reaching confluency 1 d later than non-memory 

cells (Figure A.7A). This phenotype was not caused by synthetic gene expression, as no growth 

difference was observed between sorted MD10/TetOx2 memory and non-memory cells (Figure A.7B). 

In sum, epigenetic silencing and slow growth likely caused the observed decline in memory cells when 

memory and non-memory cells were co-cultured. 

 To interrogate the biological relevance of the subpopulations captured by the circuit, hypoxia 

(0.1% O2) was next used to activate the MD15/HRE device. While the trigger’s HRE promoter is 

known to be less active under increasing O2 conditions, hypoxia is commonly used to mimic a tumor 

microenvironment and plays a significant biological role in disease and development (Bristow and Hill 

2008). As expected, hypoxia activated the device in fewer cells (13.6% trigger RFP positive and 5.1% 

loop YFP positive) than anoxia, presumably due to the higher O2 concentration (Figure 2.4E, A.5B). 

However, in cells that were activated, similar memory behavior was observed as under anoxic 

conditions: unsorted memory cells were quickly diluted out (Figure 2.4E, A.6), while sorted memory 

cells grew in clonal populations for at least 8 d (~ 7 generations) (Figure A.8).  A viability assay using the 

dead cell stain Sytox Blue (Invitrogen) revealed that memory cells remained less viable than non-

memory cells 1 d post-hypoxic exposure: (15.9% death versus 1.68% death, respectively), as compared 

to MD10/TetOx2 memory and non-memory cells (Figure 2.4F). This difference in viability contributed 

not only to dilution of the memory population over time, but was also indicative of memory and non-

memory subpopulations having distinct biological responses to hypoxia. 
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 To investigate these responses, we first established that endogenous pathways responsive to low 

O2 concentrations were similarly functional in MD15/HRE and its background strain. Both cell lines 

were exposed to hypoxia, and HIF target gene expression was measured by real-time PCR (Figure 2.4G) 

(Ke and Costa 2006). Since gene activation patterns were similar in both cell lines, we concluded that 

MD15/HRE responded to hypoxia with normal gene regulation. While this experiment examined 

hypoxic responses of the population as a whole, we next assessed whether expression of target genes was 

specifically up-regulated in memory cells, as compared to non-memory cells. Since memory cells had 

surpassed the circuit’s bistable threshold for loop expression, they were expected to have responded 

more strongly to hypoxia. Memory and non-memory cells were sorted 1 d post-hypoxic exposure, and 

HIF target gene expression was compared by real-time PCR (Figure 2.4H). Indeed, we found that a 

subset of HIF target genes were up-regulated in memory cells. Some target genes were not up-regulated, 

which was likely due to the fact that exposed cells needed to recover for 1 d for fluorophores to develop, 

to allow for FACS analysis, during which time the initial transcriptional response to hypoxia subsided. 

Nevertheless, these results demonstrate that the synthetic circuit integrated in the cell line MD15/HRE 

is capable of sensing and tracking subpopulations that differ in their responses to hypoxia. 

 

An integrated DNA damage memory device 

To follow memory of DNA damage, the stable cell line MD12/p53R2-RE was generated via random 

genomic integration of the p53R2-RE trigger and loop as a single plasmid. While NCS was used as a 

DNA damaging agent in transient experiments, it was not amenable to long-term cell tracking due to its 

highly deleterious effects on cell viability. Alternatively, a brief burst of 10 J/m2 shortwave ultraviolet 

radiation (UV) allowed greater cell viability (Latonen, Taya, and Laiho 2001; Sharma et al. 2010). UV 
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exposure resulted in trigger and loop activation in 20.2% and 8.3% of cells, respectively, as determined 

by FACS (Figure 2.5A), and higher trigger activation corresponded to greater loop activation (Figure 

A.5C); this behavior was similar between all positive selected clones (Figure A.9). Fluorescence 

microscopy indicated that memory persisted for at least 2 d post-exposure within a subpopulation of 

cells (Figure 2.5B), however, a significant decrease in the percentage of cells expressing the loop was 

observed during the first 2 d post-exposure. 

While this characteristic precluded FACS analysis of sustained memory, fluorescence 

microscopy revealed that loop expression was maintained in small clonal populations when memory 

cells were isolated 2 d post-UV exposure (Figure 2.5B, A.6). The loop was expressed in a subpopulation 

of cells for at least 10 d (~ 8 generations) post-sort. This indicated that a subpopulation successfully 

activated the device above the bistable threshold for loop expression, permitting tracking of memory and 

non-memory cells. Gene dysfunction was not a contributing factor to the observed memory population 

decrease, as sorted non-memory cells were able to re-induce both the trigger and loop to levels 

comparable to their initial induction (Figure 2.5C). Furthermore, epigenetic silencing of the device did 

not likely affect its function over time: exposure to TSA alone caused no significant induction of the 

device, and pre-treatment with TSA did not increase the number of cells that responded to subsequent 

UV exposure (Figure 2.5D). 

 These results implied that the proportion of memory cells — having executed a stronger 

DNA damage response — decreased post-damage due to a growth defect or cell death, resulting in 

dilution of the population over time by the more rapidly growing or viable non-memory cells. When 

equal numbers of sorted memory and non-memory cells were plated and observed for 4 d by  
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Figure 2.5. MD12/p53R2-RE device identifies a subpopulation with unique memory of DNA damage.  
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Figure 2.5 (continued). MD12/p53R2-RE device identifies a subpopulation with unique memory of 

DNA damage. (A) Cells were exposed to UV and tracked by FACS for 2 d. (B) Cells were exposed to 

UV and recovered for 1d. Memory cells (YFP+) were sorted and followed by microscopy for 10 d. (C) 

Cells were exposed to UV and recovered for 1d. Non-memory cells were sorted and re-exposed to UV 5 

d post-sort. (D) Cells were exposed to dox, TSA, or TSA+UV to identify epigenetic silencing of the 

device. (A,C,D) FACS determined % cells positive for trigger RFP and loop YFP. Values represent mean 

± SE, n = 3. (E) Cells were exposed to UV and recovered for 2 d. Cell death was measured in memory 

versus non-memory cells by FACS. Values represent mean ± SE, n = 3. (G) MD12/p53R2-RE and 

U2OS cells were exposed to UV, and p53 target gene expression was measured. Values represent mean 

fold expression change over unexposed cells ± SE, n = 3. (H) Cells were exposed to UV and recovered 

for 1 d. Memory and non-memory cells were sorted, and p53 target gene expression was measured in 

each subpopulation. Values represent mean fold expression change in memory versus non-memory cells 

± SE, n = 2. 

 

  

  



	   42 

fluorescence microscopy, non-memory cells reached confluency 2 d sooner than memory cells (Figure 

A.7C). This slow growth phenotype could account for memory cells being diluted out of the population 

over time when memory and non-memory cells are grown together. Using the dead cell stain Sytox Blue, 

we also determined thatmemory cells were less viable than non-memory cells 2 d post-UV exposure: 

8.4% cell death versus 0.8%, respectively (Figure 2.5E). All together, these data suggest that memory 

cells maintained distinct growth and viability phenotypes after UV exposure. 

 We next asked whether unique gene expression profiles characterized how distinct 

subpopulations responded initially to DNA damage. Endogenous response pathways were similarly 

functional in MD12/p53R2-RE and its background strain post-UV exposure, as measured by p53 target 

gene expression using real-time PCR (Figure 2.5F) (Brady and Attardi 2010). Furthermore, a subset of 

target genes was specifically up-regulated in memory cells (Figure 2.5G). Memory and non-memory 

subpopulations were sorted 1 d post-UV exposure, and p53 target gene expression was compared by 

real-time PCR. Since exposed cells required 1 d of recovery before sorting, not all target genes were up-

regulated at the indicated time-point. In sum, these results verify that the synthetic circuit is capable of 

differentiating between subpopulations that uniquely respond to DNA damage.   

 To assess whether specific initial responses translated into each subpopulation maintaining 

distinct long-term expression profiles, we performed gene expression profiling of memory and non-

memory cells multiple days after UV exposure. After 3 d of recovery from UV treatment, memory and 

non-memory cells were sorted. The expression signature of memory cells was distinct from their non-

memory counterparts: 127 genes were up-regulated and 31 were down-regulated in memory cells (fold 

change ≥ 2.0, corrected P-value ≤ 0.05) (File A.2). Bioinformatics analysis identified the transcriptional 

pattern of oxidative stress in memory cells (Figure 2.6A): up-regulated genes were enriched for those 
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responsive to external stimulus (P = 1.48e-03), wounding (P = 1.56e-03), hydrogen peroxide (P = 

3.41e-03), stress (P = 3.89e-03), reactive oxygen species (ROS) (P = 6.05e-03), and chemical stimulus 

(P = 9.29e-03). Enrichments were validated by real-time PCR (Figure A.10A). To eliminate any 

background effect of expression of a synthetic device, transcriptional profiling of MD10/TetOx2 sorted 

memory versus non-memory cells was also performed and up-regulated genes were removed from the 

MD12/p53R2-RE data analysis (Figure A.10B, File A.2).  

While the microarray data defined a set of genes that were uniquely expressed in memory cells 

multiple days post-DNA damage, it does not inform upon the expression level of those genes at earlier 

time-points. To address this question, we tested the expression of 4 up-regulated genes - CDNF, MXD1, 

SCL39A2, and GRK5 – 1 d after UV exposure. Interestingly, all four tested genes showed significant up-

regulation in YFP+ cells, as compared to YFP- cells. Thus, these genes were expressed both 1 d and 3 d 

after UV exposure. This suggested UV-mediated DNA damage produced a transcriptional response that 

was maintained over time in memory and non-memory cells. Since differences not only in gene 

expression, but also viability and growth, were shown to persist for multiple days, we concluded that the 

MD12/p53R2-RE circuit is capable of capturing subpopulations with distinct long-term memories to 

DNA damage.  
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Figure 2.6. MD12/p53R2-RE device identifies a subpopulation with a unique transcriptional profile. 

(A) Gene ontology enrichment of genes up-regulated in memory cells 3 d post-UV exposure. (B) Cells 

were exposed to UV and recovered for 1 d. Memory and non-memory cells were sorted and gene 

expression was measured in each subpopulation. Values represent mean fold expression change in 

memory versus non-memory cells ± SE, n = 2.  

 

Discussion 

Building a prototype memory circuit in mammalian cells 

In this study, we present the successful engineering and implementation of synthetic memory devices in 

human cells. The construction of a prototype, dox-inducible circuit (MD10/TetOx2) revealed 

behavioral qualities of an integrated, transcription-based device that could inform further applied 

systems. In all isolated clones, most cells activated the trigger in response to dox, and a significant 

fraction activated the memory loop. Moreover, a subpopulation of loop-expressing cells transmitted the 

memory protein to daughter cells for multiple generations. These cells likely activated the circuit above 

its bistable threshold. The MD10/TetOx2 circuit provides one of the first synthetic examples of what is 

required to create a bistable mammalian memory switch based on positive feedback.  
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  While a significant percentage of cells maintained loop expression post-exposure, this 

population decreased over time. Indeed, time-lapse fluorescence microscopy revealed that some 

daughter cells failed to inherit memory protein from loop-expressing mother cells. As this was observed 

for all selected clones, the genomic integration location was unlikely to be causative. However, we 

hypothesize that epigenetic silencing resulted in memory loop deactivation, and stochastic noise in 

memory loop protein segregation during cell division might also have played a role. If a daughter cell 

randomly fails to receive a sufficient amount of loop protein to maintain feedback, it will switch to a 

non-memory state that is propagated in future progeny. This behavior has been observed for both 

natural and synthetic transcriptional auto-regulatory circuits (Becskei, Séraphin, and Serrano 2001; 

Weinberger and Shenk 2007; To and Maheshri 2010). Producing more loop protein before cell 

division, either by increasing the synthesis rate or reducing the rate of cell division, is expected to 

minimize any loss of memory over time (Ajo-Franklin et al. 2007). However, for certain uses — such as 

drug dosage in a clinical setting — short-term memory loop expression could be desirable. Indeed, 

exploring the tunability of our memory system could help define any constraints on the device’s 

potential applications. 

 

Integrating synthetic circuits with endogenous pathways 

To demonstrate its further potential to report on biological phenomena, the MD10/TetOx2 device was 

reconfigured to respond to endogenous hypoxia and DNA damage response pathways. Memory cells 

were identified as descendents of cells that experienced HIF-1 or p53R2 activity above the circuit’s 

bistable threshold, while non-memory cells were those that responded more weakly such that the loop 

was not activated. The formation and defining characteristics of these memory cells, versus their non-
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memory counterparts, could vary depending on cell state, DNA damaging or hypoxic agents, length of 

exposure, and time of recovery. Furthermore, a given stressor likely produces many subpopulations with 

uniquely protracted responses. Our goal was to use the described circuits to identify how an initial 

response translated into sustained biological characteristics that distinguished what we defined as 

memory and non-memory cell subpopulations.  

 Interestingly, the DNA damage and hypoxia memory devices behaved quite differently from the 

dox memory device. MD10/TetOx2 responded to dox by activating the trigger to similar levels in all 

cells and the memory loop to similar levels in approximately 43% of cells (Figure A.2). In contrast, 

MD15/HRE and MD12/p53R2-RE responded to hypoxia and DNA damage, respectively, with largely 

variable activation of the trigger and loop in a smaller percentage of cells (Figure A.5). Furthermore, 

while memory of dox exposure was sustained in a significant number of cells, memory of hypoxia and 

DNA damage persisted in a small subset.  

 Behavioral differences were likely due to the more heterogeneous activation of hypoxia and 

DNA damage signaling pathways. MD10/TetOx2 induction occurs when the tet-repressor can no 

longer bind the trigger’s promoter due to the presence of dox, resulting in strong, homogeneous trigger 

expression (Figure A.2). In contrast, MD12/p53R2-RE and MD15/HRE activation is dependent on 

signals transduced by biological pathways composed of numerous proteins, each with its own degree of 

biological noise affecting its behavior. Unlike the dox-inducible trigger, HIF-1 and p53 should not be 

uniformly activated within a population (Bristow and Hill 2008; Murray-Zmijewski, Slee, and X. Lu 

2008), resulting in heterogeneous trigger and memory loop activation (Figure A.5). MD15/HRE and 

MD12/p53R2-RE thus permit the isolation of two distinct subpopulations post-hypoxia or damage.  
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 The utility of the hypoxia and DNA damage memory devices to detect biologically unique 

populations was assessed in multiple ways. We determined in initial response to hypoxia or UV, HIF and 

p53 target gene expression was elevated in MD15/HRE and MD12/p53R2-RE cells that activated both 

the trigger and loop, as compared to cells that only activated the trigger. This result indicated that the 

devices work as intended: cells with a stronger response are capable of overcoming the bistable 

threshold of the circuit, such that the loop is expressed. We also established that a stronger response 

translated into long-term phenotypes, including slow growth and poor viability. Memory cells exhibited 

these characteristics for multiple generations past the point of exposure, as compared to their non-

memory counterparts.  

 Finally, gene expression profiling of revealed that DNA damaged memory cells had a persistent 

gene expression signature that was entirely different from that of non-memory cells and was maintained 

over time. The memory cell expression profile was largely enriched for genes responsive to oxidative 

stress, as well as stress in general, including DNA-damage-inducible transcript (DDIT3), glutathione 

peroxidase 3 (GPX3), MAX dimerization protein 1 (MXD1), egl nine homolog 3 (EGLN3), and tumor 

protein p53 inducible nuclear protein 1 (TP53INP1). UV radiation is known to cause significant 

intracellular production of ROS and reactive nitrogen species, as well as alter the levels of intracellular 

antioxidant enzymes (Zhang et al. 1997; Birch-Machin and Swalwell 2010). Our study shows that 

transcriptional responses to UV-induced oxidative damage persist through multiple generations in a 

subpopulation of cells. It is possible that this differential maintenance of gene expression translates into 

differences in vulnerability to future damage or aging, and may also dictate the mechanisms by which 

each subpopulation protects the fate of its progeny. 
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Conclusions 

The memory devices presented here have the potential to illuminate previously undescribed biological 

phenomena. The DNA damage and hypoxia memory circuits could be utilized in further analyses — 

such as deep-sequencing or epigenetic mapping — of differentially-responsive populations, to create a 

more detailed picture of how a cell’s history contributes to its biological future. Differentially regulated 

genes in memory cells could potentially serve as targets in future work toward defining how the inherited 

expression profile is maintained. This  approach could implicate genes that play a role in disease 

development. The work might also be translated to a xenograft model in mice to study the in vivo 

heterogeneous effects of DNA damage and hypoxia through the development of a solid tumor. It would 

be interesting to identify whether these transient stimuli produce subpopulations that are more or less 

prone to disease development. Given their modular nature, the circuits could potentially produce 

outputs other than fluorophores. For example, once a memory device is proven safe for patients, it could 

possibly be used in a clinical setting by modifying the loop to produce a therapeutic drug in response to a 

transient stimulus. The loop could also be altered to create a useful tissue engineering tool that produces 

morphogens or growth factors for differentiation control in tissue engineering applications. While these 

proposed ventures will require significant re-tooling and testing of the device, their pursuit will help 

advance and challenge the utility of synthetic circuits. 

 Our work demonstrates that complex biological problems can be investigated with an synthetic 

devices. To date, development of new synthetic devices has been hindered by a slow design cycle and 

poor device robustness, particularly in mammalian cell culture (Burrill, Boyle, and Silver 2011). 

Streamlining the mammalian design cycle is critical as synthetic biology strives to better integrate with 

complex human applications such as stem cell therapy and tissue engineering. Building more complex 
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mammalian devices will undoubtedly provide invaluable data for more comprehensive quantitative 

models, which will allow better predictions of function at the preliminary design stage and thereby 

reduce the number of tested iterations of a device. Synthetic devices destined for clinical applications 

must also demonstrate faithful performance; constructing genomically integrated devices, as with our 

memory devices, is an important first step. Improving mammalian cell design remains an essential task 

for synthetic biology, as the field continues to engage in the engineering of increasingly complex cell 

types. 

 

Materials and Methods 

Plasmid constructs 

Escherichia coli DH5α was used for all plasmid manipulations. Bacteria were grown in LB-ampicillin 

media to maintain plasmids; if engineered constructs contained synthetic zinc fingers, media was 

supplemented with 0.02 mM zinc chloride. DNA fragments with universal cloning sites (EcoRI, NotI, 

XbaI, SpeI, and PstI) were generated by PCR and assembled via BioBrick DNA assembly (Phillips and 

Silver 2006). 

 A CMV-TetOx2 promoter fragment (from pcDNA5/FRT/TO©, Invitrogen) ligated in front of 

a human kozak sequence produced a doxycycline (dox)-inducible promoter. HRE promoter was 

provided by the Brown lab (Shibata, Giaccia, and Brown 2000). Response elements from human p53R2 

gene (Ohno et al. 2008) were constructed as annealed oligos (Integrated DNA Technologies) and 

ligated in front a minimal promoter (Shibata, Giaccia, and Brown 2000) to generate p53R2-RE 

promoter. Human codon-optimized synthetic zinc fingers (Hurt et al. 2003) were commercially 

synthesized by Mr. Gene (Regensburg, Germany).  
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 For transient transfections, triggers and reporters were cloned as NotI/SpeI fragments into the 

Flp-In™ T-REx™ vector in which the promoter was deleted (Invitrogen, Silver Lab). For 

MD10/TetOx2 (clone MD10.21), trigger and memory loop genes were cloned as separate fragments 

into a pcDNA3.1™ (+)-based vector (Invitrogen) in which the neomycin resistance marker was 

replaced with hygromycin or puromycin resistance, respectively, and the constitutive CMV promoter 

was deleted (Silver Lab). For MD12/p53R2-RE (clone MD12.34) and MD15/HRE (clone MD15.21), 

trigger and loop genes were cloned as one fragment into the puromycin-resistant pcDNA3.1™ (+)-

based vector (Invitrogen, Silver Lab). 

 

Memory device design strategy 

Devices were built in two stages. First, multiple gene circuits were designed and tested via transient 

transfection. In these plasmid-based experiments, multiple designs were characterized to identify 

elements that generated the most effective circuit activation and least basal activity. Selected prototypes 

were then genomically-integrated to produce the final stable devices that are characterized in greater 

detail in this work. 

 

Cell culture and transfection 

Plain U2OS and U2OS Flp-In™ T-REx™ cells (Blacklow Lab) were grown in McCoy’s 5A medium 

supplemented with 10% tetracycline-screened fetal bovine serum (FBS) and 1% penicillin and 

streptomycin; T-REx™ cells were further supplemented with 15 ug/mL blasticidin and 200 ug/mL 

zeocin. Cells were grown at 37˚C in a humidified CO2 incubator.  
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 Transient transfections were performed by plating 1.2 X 105 cells/well in 12-well culture dishes 

and transfecting with 800 ng total plasmid DNA and 2 ul Lipofectamine® 2000 (Invitrogen) in 1 ml of 

antibiotic-free medium (Table A.1). Media was changed 4 h post-transfection and cells were exposed 20 

h later to 1 ug/mL dox (Sigma-Aldrich), 0.5 ug/mL neocarzinostatin (NCS) (Sigma-Aldrich), or 100 

μM cobalt chloride (CoCl2) (Sigma-Aldrich) for 24 h and analyzed by fluorescence activated cell sorting 

(FACS).   

 Stable cell lines were generated by plating 3.0 X 105 cells/well in 6-well culture dishes and 

transfecting with 2 ug plasmid DNA and 5 ul Lipofectamine®  2000 in 2 mL of antibiotic-free medium. 

Media was changed 4 h post-transfection and cells were exposed to selection media the following day 

(Table A.2). After 5 d of selection, media was changed to maintenance antibiotic concentrations (Table 

A.2). Clones were picked and screened for inducible expression via 1 ug/mL dox, 0.5 ug/mL NCS or 

100 μM CoCl2. Positive clones were expanded and maintained as stable lines. 

 

Induction of MD12/p53R2-RE and MD15/HRE cell lines 

To analyze MD12/p53R2-RE behavior, 3.0 x 105 cells/well were plated in 6-well plates. The following 

day, plates were exposed to a brief burst of 10 J/m2  shortwave ultraviolet radiation (UV) (Lahav Lab, 

Harvard Systems Biology). To analyze MD15/HRE behavior, 3.0 x 106 cells were plated in 10 cm plates. 

The following day, plates were exposed to anoxia (0% O2, ~2.0% H2) in an anaerobic chamber (Wyss 

Institute for Biologically Inspired Engineering) for 1 d in CO2-independent media (Invitrogen) or 

hypoxia (0.1% O2, 5.0% CO2) in a hypoxic chamber (Kaelin lab, Dana Farber Cancer Institute). When 

cells were returned to normoxia, media was replaced with appropriate maintenance media. 
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Flow cytometry and cell sorting 

Prior to FACS analysis, cells were fixed in 4% paraformaldehyde/1x PBS solution for 10 min, 

resuspended in 200 uL of 1x PBS, and stored at 4˚C. Cells were later loaded in 96 well plates or 5 mL 

polystyrene tubes (BD Biosciences) on an LSRII (BD Biosciences) with 488-nm (DsRed) and 568-nm 

(Fitc) lasers (Harvard Systems Biology). 1.0 X 104 cells were analyzed for RFP (DsRed) and YFP 

(FITC) fluorescence and gated based on cell size and granularity. Unexposed cells controlled for basal 

fluorophore expression. Data was analyzed using FlowJo software. 

 To sort MD10/TetOx2 cells, 3, 6-well plates were exposed to dox, washed with 1x PBS, and 

moved to 3, T-150 flasks for 2 d. Cells were then trypsinized, spun at 1100 rpm for 5 min, washed with 

1x PBS, spun a second time, resuspended in 3 mL of 1x PBS/1% FBS, and filtered. To sort 

MD12/p53R2-RE cells, 12, 6-well plates were exposed to UV and recovered for 2 d. Cells were then 

processed as described above, except that 4, 6-well plates of cells were pooled to produce three 

replicates. To sort MD15/HRE cells, 9, 10 cm plates were exposed to anoxia or hypoxia and recovered 

for 1 d. Cells were then processed as described above, except that 3, 10cm plates were pooled to produce 

three replicates.  

Processed cells were run on a FACS Aria II with a 100 uM nozzle at 20 psi (Harvard Systems 

Biology). Excitation optics for RFP consisted of a 75 mW 594 nm laser; detection optics included a 

630/22 bandpass filter. Excitation optics for YFP consisted of a 15 mW 488 nm laser; detection optics 

included a 520 nm longpass dichroic mirror and a 530/30 bandpass filter. For microscopy, 200,000 

memory and non-memory cells were sorted. Sorted MD10/TetOx2 and sorted MD15/HRE cells were 

seeded in 12-well dishes; sorted MD12/p53R2-RE cells were seeded in 24-well dishes. 
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Fluorescence microscopy 

For short-term microscopy, cells were imaged at 20x with a Nikon TE2000-E inverted fluorescence 

microscope equipped with a Hamamatsu ORCA-ER camera, and HcRed (RFP) and JP2 (YFP) filters 

(Silver Lab). Images were acquired and analyzed using Metamorph software.  

 For long-term imaging, 5.0 X 104 cells/well were seeded in a 12-well glass-bottom culture dish 

(MatTek) and exposed to dox for 1 d. Wells were next washed with media. Cells were allowed to recover 

for 1 d and then imaged every hour for 3 d using a Plan Apo 20x 0.75 NA objective lens on a Nikon 

TE200E motorized inverted microscope equipped with a Hamamatsu ORCA-ER cooled CCD camera, 

Prior Proscan II motorized stage and shutters, EXFO X-cite 120-XL fluorescence illuminator, a 37˚C, 

5% CO2 custom-built microscope enclosure incubation chamber, and mCherry (RFP) and YFP filter 

sets (Nikon Imaging Center, Harvard Medical School). Images were acquired and analyzed using 

Metamorph software.  

 
Cycloheximide assay 

MD10/TetOx2 cells were plated in 12-well dishes and exposed to dox in triplicate. After 24 h 

incubation, cells were exposed to 100 uM cycloheximide (CHX) (Sigma-Aldrich) for 8 h. 3 wells were 

fixed in 4% PFA / 1x PBS per hour and later analyzed by FACS. Same procedure was applied to regular 

T-REx™ cells.  

 

Histone deacetylase inhibitor assay 

MD10/TetOx2 cells were plated in 12-well dishes, MD12/p53R2-RE were plated in 6-well dishes, and 

MD15/HRE were plated in 10 cm plates. Cells were exposed in triplicate to 50 ng/mL trichostatin A 
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(TSA) (Sigma-Aldrich) for 16 h, and then washed and exposed in triplicate to dox, UV, or anoxia. 3 

wells were fixed in 4% PFA / 1x PBS and later analyzed by FACS. 

 
Sytox Blue assay 

MD15/HRE cells were plated in 10 cm plates, exposed to hypoxia, and recovered for 1 d. 

MD10/TetOx2 cells were plated in 6-well plates, exposed to dox, and recovered for 1 d. MD12/p53R2-

RE cells were plated in 6-well plates, exposed to UV, and recovered for 2 d. To analyze viability, cells 

were trypsinized, spun at 1100 rpm for 5 min and resuspended in 10 mL 1x PBS. 500 uL from each plate 

was stained with 1 uM Sytox Blue Dead Cell Stain (Invitrogen), incubated for 5 min, and analyzed by 

FACS using the AmCyan filter. Unexposed cells were similarly to treated to control for basal levels of 

cell death.  

 

Endogenous pathway induction 

MD12/p53R2-RE and MD15/HRE were plated and exposed to UV or hypoxia, respectively. Whole cell 

RNA was extracted using the RNeasy Mini Kit (Qiagen), and cDNA was prepared using the SuperScript 

III First Strand Synthesis System (Invitrogen). Unexposed cells served as controls for background 

expression. 

 

Gene expression profiling 

MD10/TetOx2 and MD12/p53R2-RE cells were plated in 6-well plates, exposed to dox or UV in 

triplicate, respectively, and allowed to recover for 3 d. Cells were then processed as described above for 

cell sorting. For each biological replicate, 200,000 memory and non-memory cells were sorted and RNA 

was extracted using the RNeasy Mini Kit (Qiagen). cDNA was prepared, biotinylated, and hybridized to 
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Gene 1.0 ST arrays (Affymetrix). Arrays were scanned and quantified according to standard Affymetrix 

protocols at the Dana Farber Microarray Core Facility (Dana Farber Cancer Institute). Datasets have 

been submitted to the GEO database, record XXXXXX. 

 

Identification and analysis of differentially regulated genes 

Data was annotated and normalized by RMA-analysis using Affymetrix Expression Console Software.  

Differential gene expression was determined using the Matlab Bioinformatics Toolbox (MathWorks). P-

values were calculated using a permutation t-test of 10,000 permutations. Genes with a fold change ≥ 2 

and p-value ≤ 0.05 were considered differentially expressed and analyzed for gene ontology enrichment 

via GoStat (http://gostat.wehi.edu.au), with Benjamini correction for multiple hypothesis testing; 

enrichment was considered significant with P ≤ 0.01. Differentially expressed genes were validated by 

real-time PCR using 0.5 ug RNA of specified cell populations. Primers amplified ~ 100 base pairs (Table 

A.3). Differential expression was normalized to human gene ACTB. 
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Abstract1 

Heterogeneous and long-term responses to transient cellular stimuli may underlie various 

developmental and disease processes. In particular, the heterogeneous nature of the cellular response to 

exogenous stresses makes these processes difficult to study in a large population of cells. Transcriptional 

memory devices, such as those discussed earlier in Chapter 2, allow us to isolate differentially 

responding subpopulations after exposure to hypoxia, DNA damage, and other stressors. In this 

Chapter, we discuss the study of long-term effects of hypoxic exposure demonstrating the necessity of a 

cellular memory device. We also explore the application of the DNA damage memory device to learn 

about the effects of γ-radiation exposure. Lastly, we modify the memory device to respond to 

inflammation via the NF-κB signaling pathway. Taken together, these studies show the modularity and 

broad usefulness of a cellular memory device. 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Portions of this chapter were reproduced with permission from Cold Spring Harbor Laboratory Press: 
Burrill DR, Inniss MC, Boyle PM, Silver PA. 2012. Synthetic memory circuits for tracking human cell fate. Genes Dev 
26:1486–1497.	  
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Studying the long-term effects of transient hypoxic exposure in human cells 

 

Introduction 

The role of hypoxia in cancer initiation, progression and prognosis has been recognized for the past 70 

years. The observation by Otto Warburg that tumor cells seem to favor glycolysis over aerobic 

respiration for energy production, even in the presence of oxygen, first suggested the involvement of 

hypoxia or hypoxic adaptation in this disease(Warburg 1961). Hypoxic cells have since been 

demonstrated to be present in many solid tumors, correlating with a poor response to treatment and 

increased chance of metastasis(Chan and Giaccia 2007). Solid tumors grow rapidly and outstrip their 

blood supply resulting in hypoxic conditions when cells are beyond the diffusion limit of 

oxygen(Teicher 1994). In addition, the new vessels formed by angiogenesis are often poorly formed and 

do not provide a consistent supply of oxygen and nutrients leading to cycling hypoxia(Cárdenas-Navia 

et al. 2008). 

 It has been shown that hypoxia can influence mutation rates in mammalian cells(Bristow and Hill 

2008). Hypoxia and reoxygenation can cause oxidative stress that in turn can cause DNA damage. It is 

hypothesized that this could result in the accumulation of mutations that may drive tumor progression 

and metastasis(Bristow and Hill 2008). Recent studies have shown that acute, cycling hypoxia early in 

tumor development may result in a larger number of metastases later on(Bindra, Crosby, and Glazer 

2007). In some cancer models, hypoxia appears to increase the amount of 8-oxo-dG (associated with 

GC-AT transitions) but has little effect on metastatic development, while in another cancer model, mice 

exposed to hypoxia show less 8-oxo-dG lesions but increased incidence of metastases(Bindra, Crosby, 

and Glazer 2007). This indicates that the relationship between hypoxia, DNA damage and metastasis is 
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more complicated than originally believed. 

 Aside from potentially causing DNA damage due to oxygen deprivation and reoxygenation, 

hypoxia has been proposed to impose epigenetic marks on cancer cells(Chen et al. 2006; Shahrzad et al. 

2007; Lee et al. 2009; Watson et al. 2009).  These changes in gene expression can be the result of 

chromatin modifications(Kouzarides 2007) or changes in transcriptional profile. Microarray studies 

have shown that numerous genes are differentially regulated as a result of hypoxic exposure, many of 

which are involved in pathways regulating cell proliferation, cell division and apoptosis(Fredlund et al. 

2008). In addition, it has been demonstrated that in the case of RUNX3, a gene often silenced in gastric 

cancer, exposure to hypoxia results in histone modification, specifically histone deacetylation and 

methylation of H3K9(Lee et al. 2009). We propose to study whether other genes down regulated by 

hypoxia are subject to histone modifications or promoter hypermethylation and whether these 

modifications are inherited through cell division.  

Microarray analysis will be used to look for genes that are differentially expressed due to 

exposure to hypoxia and whose expression remains changed once the cells have been reoxygenated. 

MCF10A cells will be exposed to hypoxia and allowed to recover in normal oxygen conditions for 

several days. RNA will be extracted from exposed cells and unexposed control cells that have been 

passaged at the same time.  Transcript levels will be probed using the Human Gene 1.0 chip 

(Affymetrix). Once a set of differentially expressed genes has been identified, we will investigate whether 

these changes are the result of chromatin modification, DNA methylation, or transcriptional regulation. 
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Results and discussion 

Preliminary characterization of hypoxic response 

To determine which cell line to use to look for long-term effects of hypoxic exposure on the 

transcriptional profile of cells, we first performed end-point PCR on a panel of candidate cell lines 

(MCF7, T47D, and MCF10A) to make sure they were responding as expected to hypoxia (Figure 3.1A-

C). Cells were exposed to 0.5% oxygen for 24 hours. RNA was then extracted and used to make cDNA. 

PCR was performed using primers for several known HIF-1 target genes. The product of these reactions 

was then analyzed by gel electrophoresis. We observed increased expression of CA-IX at 24 h relative to 

unexposed cells in all cell lines. We also observed moderately increased expression of VEGF and GLUT1 

at 24h in both MCF7 and MCF10A cells. While we did not observe long-term changes in these genes, 

we hypothesize that other genes may be affected. MCF7 and MCF10A are both cell lines derived from 

breast tissue. However, MCF7 is more representative of a cancer, while MCF10A is more “normal” cell 

type(Christofk et al. 2008). Based on this data, we decided to use MCF10A cells in further experiments, 

as our results would be more generalizable outside of a disease state. 
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Figure 3.1. Hypoxic exposure causes upregulation of hypoxia responsive genes.  
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Figure 3.1(continued). Hypoxic exposure causes upregulation of hypoxia responsive genes. Selected 

cell lines (MCF7, T47D, MCF10A) were exposed to 0.5% O2 for 24 hours and allowed to recover in 

normoxia. RNA was extracted, converted to cDNA, and end-point PCR was performed and results 

quantified by ImageJ (A-C). MCF10A was selected for further analysis. RNA from 24 h exposed, and 3 d 

recovered cells along with corresponding unexposed controls were submitted for microarray analysis. 

While expected patterns of gene upregulation were seen after 24 h exposure (D) no significant patterns 

were seen after 3 d recovery. 
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Microarray analysis of the long-term transcriptional response to hypoxia 

To investigate long-term transcriptional changes in response to hypoxic exposure, MCF10A cells were 

exposed to hypoxia (0.5% O2) for 24 hours and then allowed to recover in normoxia. RNA was extracted 

from hypoxic cells immediately after exposure as well as cells that had recovered for 3, 6, and 9 days. 

RNA was also extracted from unexposed cells that were passaged at the same time. RNA from the 

hypoxic and 3 day recovered cells was sent to the Dana Farber microarray core for processing for the 

Human Gene 1.0 ST array (File B.1). The data was annotated and normalized by RMA analysis using 

the Affymetrix Expression Console software. Differential gene expression was determined using the 

MATLAB Bioinformatics Toolbox (MathWorks) and P-values were calculated using a permutation t-

test of 10 000 permutations. Using a cutoff of fold change ≥ 2 and P-value ≤ 0.05, 79 genes were 

differentially regulated (66 up, 13 down). These genes were consistent with a typical response to low 

oxygen. However, using the same cutoffs, no genes were considered differentially regulated after 3 days 

recovery. When the fold change cutoff was relaxed to 1.5 fold, only 7 genes were differentially regulated 

(5 up, 2 down). Gene enrichment ontology analysis of the genes upregulated at 24 hours showed 

enrichment of expected hypoxia pathway genes (Figure 3.1D). 

Since it is known that cells can undergo lasting changes in gene expression and chromatin 

structure after hypoxic exposure, it may be possible that changes are occurring in a small subpopulation 

of cells. Microarray would most likely not be able to detect this signal over the background of unaffected 

cells. In future, the hypoxia memory device described earlier in Chapter 2 could be moved to a 

biologically relevant cell line such as MCF10A. We showed that this synthetic transcriptional circuit 

allows us to isolate a differentially responding subpopulation. This experiment could then be repeated, 

comparing memory and non-memory cells. 
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Conclusions 

While we did not observe a long-term transcriptional change due to hypoxic exposure by microarray 

analysis, previous work suggests that we might see a change in a subpopulation of cells. This result 

illustrates the advantage of using a synthetic memory device such as the one described in Chapter 2 of 

this work. Additionally, MCF10A may not be the appropriate cell line to use in this type of study. In 

future, we could engineer several cell lines with a hypoxia responsive memory device and analyze 

transcriptional changes using next-generation sequencing methods that can be more sensitive than 

microarray analysis. 
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Developing a γ-radiation sensing memory device in human cells 

 

Introduction 

One of the challenges present in manned space flight is mitigating the risk of exposure to high levels of 

radiation and its effect on human cell biology(Rizzo et al. 2012). In particular, astronauts are exposed to 

galactic cosmic rays (GCR) consisting of protons, helium nuclei, and high energy and charge (HZE) 

ions. While the immediate health implications of radiation encountered on earth are well studied, near 

and long-term consequences of GCR exposure are not yet understood(Hellweg and Baumstark-Khan 

2007). This uncertainty is one of many challenges that must be resolved before long-term interplanetary 

travel becomes feasible. Understanding the consequences of prolonged exposure to GCR will help 

develop appropriate measures to prevent negative effects. Moreover, it would be a major breakthrough 

to develop a therapeutic strategy to reverse space-travel related radiation damage. 

The effects of γ-radiation are often used as a proxy for GCR in estimating the impact of GCR on 

human health. Moderate doses of γ-radiation cause DNA damage and changes in gene expression, while 

higher doses increase the risk of developing cancer, and cause cell death leading to acute radiation 

syndrome (ARS), and tissue damage(Dörr and Meineke 2011). While the immediate impact of higher 

doses of γ-radiation is clear, the long-term consequences of both high and moderate exposure are more 

difficult to gauge. Similarly, the cellular response to GCR may depend greatly on the dose and fluence 

experienced. Additionally, it is not clear how to relate these data about γ-radiation to the potential health 

effects of GCR.  

The field of synthetic biology aims to engineer biological systems in a more predictable and 

rapid manner to solve previously intractable problems and perform novel functions. This encompasses 
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everything from designing new genetic circuits, to reengineering complex chemical pathways, or 

rebuilding entire genomes. In Chapter 2, we describe a synthetic memory device, that can isolate a 

differentially responding cell population that maintains memory of a given stimulus(Burrill et al. 2012). 

This memory device is modular and can be re-engineered to respond to a variety of inputs including, 

doxycycline, hypoxia (low-oxygen), and DNA damage (UV radiation). These devices allow us to isolate 

a biologically distinct supopulation of cells that maintain growth but show transcriptional differences for 

many days after exposure to hypoxia and DNA damage.  

 We propose using the DNA damage sensing memory device integrated in human cells to study the 

possible long-term effects of γ-radiation exposure. While this device has been characterized using 

genotoxic chemicals and UV radiation, it should also be activated by γ-radiation(Shen and Maki 2010). 

This would allow us to study the long-term effect of radiation on gene expression profile and phenotype 

of these cells. Future work could adapt the device to produce an output such as a therapeutic to attempt 

to mitigate the effect of DNA damage.  

 

Results and discussion 

Characterization of existing DNA damage memory device after γ-radiation exposure 

Previously, an integrated memory device responsive to the p53 repair response was built and 

characterized in U2OS cells using UV radiation (Chapter 2). This cell line was exposed to a range (from 

1 Gy to 12.5 Gy) of γ-radiation using a Ce source. To determine whether the engineered cell line was 

responding normally to γ-radiation we analyzed expression of p53 target genes by RT-PCR. We 

collected RNA at 24 and 72 hour time-points and performed qRT-PCR to determine whether 

expression of predicted targets is up-regulated as expected in this cell line (Figure 3.2A). Unexpectedly, 
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expression of target genes was upregulated most strongly after 72 hours.  

 The behavior of the memory device was next assessed by both fluorescence microscopy and flow 

cytometry over several days. As observed when cells were exposed to UV, the trigger was not activated in 

all cells and the level of response was heterogeneous, however, the time scale of the response to γ-

radiation was very different than UV (Figure 3.2B). While we observed a maximal response to UV 

exposure after 24 hours, at all exposure levels of γ-radiation, we observed the percent of responding cells 

increasing and reaching a maximum at 72 hours post-exposure. This tells us that the device is responding 

to p53 signaling in a similar manner to endogenous target genes. In addition, we observed a much 

smaller percentage of responding cells than when the same cell line was exposed to UV (see data 

presented in Chapter 2; Figure 2.5).  

 

Investigating memory of γ-radiation exposure 

To test whether expression of the memory device could still be maintained through cell division 

we exposed cells to γ-radiation and allowed them to recover for 72 hours. Based on previous data, we 

exposed the cells to 10 Gy γ-radiation as was the lowest dose tested that maximized response after 72 

hours. Memory and non-memory cells were sorted by FACS and cultured separately in order to observe 

“memory” behavior by fluorescence microscopy and flow cytometry. However, we determined that 

when cells are exposed to this level of radiation, the memory cells do not survive the sorting procedure. 

We then exposed cells to lower amounts of radiation (5 Gy) recovered for 5 days, sorted by FACS, and 

cultured memory and non-memory cells separately. Memory was observed for up to 10 days post-

sorting (Figure 3.2C). As with the DNA damage memory device described in Chapter 2, the memory  
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Figure 3.2. DNA damage cell line responds and remembers γ-radiation exposure. (A) The DNA 

damage memory cell line (MD12.34) described in Chapter 2 was exposed to γ-radiation (0, 7.5, 10, or 

12.5 Gy) and allowed to recover for 24 or 72 h. RNA was extracted and analyzed by RT-PCR in 

triplicate. (B) Cells exposed to γ-radiation and allowed to recover for 24, 72, or 120 h were analyzed by 

flow cytometry to determine activation of trigger and memory genes. (C) Cells exposed to 5 Gy γ-

radiation were allowed to recover for 5 d before cell sorting by FACS. Memory and non-memory 

(negative) cells were cultured for 10 d before imaging by fluorescence microscopy. 
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population grew much more slowly that the non-memory population indicating we most likely isolated a 

differentially responding subpopulation. 

  

Improving response of memory device to γ-radiation 

In an effort to improve responsiveness of the memory device to γ-radiation we constructed two alternate 

trigger constructs (Figure 3.3A), in parallel; the first based on the natural MDM2 promoter 

region(Batchelor et al. 2011), and the second built on a synthetic Gadd45-based promoter. Gadd45 was 

chosen as it is reported to be upregulated very quickly after γ-radiation exposure(Kastan et al. 1992). 

The synthetic promoter consists of six repeats of the p53 binding site from Gadd45 followed by a 

minimal CMV promoter(Shibata, Giaccia, and Brown 2000). As in the original device, both promoters 

drive transcription of an artificial transcription factor consisting of a synthetic zinc finger (ZF) DNA-

binding domain (Hurt et al. 2003), one copy of the red fluorescent protein (RFP) mCherry (Shaner et 

al. 2004), the VP64 activation domain (Beerli et al. 1998), and a nuclear localization sequence (NLS) 

(Kalderon et al. 1984). We transiently transfected these constructs along with the original p53R2-RE 

trigger into U2OS cells to compare their inducibility by γ-radiation. Cells were exposed to either 10 

J/m2 UV or 5Gy γ-radiation and allowed to recover for 1 d before analysis by flow cytometry. While 

both the MDM2 promoter and synthetic Gadd45 promoters respond to DNA damage in the form of 

UV and γ-radiation, the MDM2 promoter showed relatively higher activation by γ-radiation. However, 

the original synthetic p53R2 promoter is activated in a higher percentage of cells by both forms of 

radiation. Therefore, we decided to continue using the original device.  
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Figure 3.3. Synthetic and natural p53 responsive promoters are activated by γ-radiation. (A) Schematic 

comparing the new trigger genes to the original DNA damage memory device. The 3kb MDM2 

promoter or a synthetic promoter consisting of 6 repeats of the p53RE from the Gadd45 promoter 

region were cloned in place of the original p53R2RE promoter. (B) The responsiveness to γ-radiation 

was assayed by transient transfection of trigger constructs into U2OS cells. Cells were transfected, 

exposed the following day to γ and UV radiation, and analyzed by flow cytometry 24 h later.  
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Conclusions 

We have demonstrated that the DNA damage memory device can be used to detect more diverse types 

of stimuli than UV radiation as characterized in Chapter 2. We also demonstrated that the synthetic 

promoter used in previous work is actually quite sensitive. This shows that the memory device can have 

broad applicability for further studies. In future, we would like to move the DNA damage memory 

device to more biologically relevant cell types and continue to characterize its responsiveness to different 

stimuli. This synthetic device will help us gain a greater understanding of the long-term effects of 

transient exposure to multiple sources of DNA damage. 
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Development of an inflammation responsive memory device 
 

Introduction 

Human disease pathology is complex, involving multiple tissues and organs(Huh et al. 2012). While 

traditional 2D cell culture systems have been integral in uncovering the architecture of many cellular 

signaling pathways, these systems are not representative of normal physiology(Huh, Hamilton, and 

Ingber 2011). For instance, in the context of drug discovery, these culture systems are used for initial 

screening of drug candidates. Animal studies are then needed to understand the effect of these drug 

candidates on whole organisms. However, even the best animal model is not a perfect substitute for 

human physiology and many drugs fail in clinical trials(Huh et al. 2012). Significant progress has been 

made developing 3D culture systems that more closely mimic the natural environment. As these systems 

incorporate human cells, they have the potential to become even more useful in the drug development 

process than animal models. The combination of novel 3D cell culture systems and synthetic memory 

devices presents an opportunity to gain an even greater understanding of underlying biology and 

develop a more refined drug discovery platform. 

Type 2 diabetes is a complex disease characterized by elevated blood glucose as a result of 

insulin insensitivity(Novials, Montane, and Cadavez-Trigo 2014). This disease also involves an 

inflammatory response along with oxidative stress and endoplasmic reticulum (ER) stress which can 

eventually lead to a loss of beta cell function and cell death(Novials, Montane, and Cadavez-Trigo 

2014). The NF-κB signaling pathway is central to the cellular response to all these triggers. NF-κB family 

transcription factors integrate signal from inflammatory cytokines and metabolic stress (including 

hyperglycemia), impacting further inflammation, cell survival, immunity, and metabolic 

pathways(Tornatore et al. 2012). By modifying the DNA damage memory device described earlier to 
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respond to NF-κB signaling, we can create a synthetic memory device that responds to inflammation 

and cellular stress in general. Such a device will help us learn about long-term cellular responses to 

inflammation and stress in a diabetes model. By integrating engineered cells into a 3D culture system, we 

can also help detect stress responses after drug treatment, thus enabling more effective drug 

development. 

We propose to move the existing DNA damage memory device along with a newly developed 

inflammation sensing memory device into beta cells to use in a novel drug discovery platform. Initially, 

these devices will be characterized in the immortalized insulinoma cell line βTC-6(Poitout et al. 1995), 

but will eventually be integrated in primary rat islet cells and human iPS cells. These synthetic circuits 

will allow us to gain a deeper understanding of biology of a complex disease like diabetes and could 

enable more sensitive screening of potential drug candidates. 

 

Results and discussion 

Design of an inflammation sensing memory device 

To develop an inflammation sensing memory device, we used a similar strategy as described in Chapter 

2 for building the hypoxia and DNA damage responsive devices. As we previously demonstrated the 

modularity of the memory device, it should be possible to modify the promoter of the trigger gene to be 

activated by an endogenous inflammation responsive pathway. We chose to couple memory to 

activation of NF-κB, as this signaling pathway is central to inflammatory responses as well as a general 

stress response pathway(Tornatore et al. 2012). To build a synthetic NF-κB responsive promoter, we 

chose to put several repeats of known NF-κB response elements (NRE) from the IL-1β gene(Hiscott et 

al. 1993; Cogswell et al. 1994) or the pNiFty3 promoter (Invitrogen) upstream of a minimal CMV 



	   77 

promoter(Shibata, Giaccia, and Brown 2000) (Figure 3.4A). This promoter mirrors the structure of the 

original DNA damage responsive promoter. We built four variants of this promoter by using one of two 

NREs and one of two spacings between NREs in each (Table 3.1). The four promoters were cloned 

upstream of the same artificial transcription factor described earlier, consisting of a synthetic zinc finger 

(ZF) DNA-binding domain (Hurt et al. 2003), one copy of the red fluorescent protein (RFP) mCherry 

(Shaner et al. 2004), the VP64 activation domain (Beerli et al. 1998), and a nuclear localization 

sequence (NLS) (Kalderon et al. 1984). 

 

Table 3.1. Synthetic NF-κB responsive promoter elements. 

Promoter NRE Variant Spacer Length Variant Sequence 

NRE1 A 24 bp 
A: GGGAAAATCC 

NRE2 A 12 bp 

NRE3 B 24 bp 
B: GGGACTTTCC 

NRE4 B 12 bp 
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Figure 3.4. Synthetic NF-κB responsive promoter responds to inflammatory stimulus. (A) Schematic 

comparing the new trigger genes to the original DNA damage memory device. A synthetic promoter 

consisting of 6 repeats of the NFκB response element from the IL-1β promoter region or the pNiFty3 

vector upstream of the minimal CMV promoter was cloned in place of the original p53R2RE promoter. 

(B) Responsiveness to inflammation-like stimuli was assayed by transient transfection of trigger 

constructs into βTC-6 cells. Cells were transfected, exposed the following day to LPC and IL-1β, and 

analyzed by flow cytometry 24 h later. 
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Characterization of NF-κB responsive trigger genes 

We next tested these novel trigger genes by transient transfection. As we are interested in using this 

device to study inflammatory responses of beta cells in response to drug treatment, we first characterized 

these constructs in a insulinoma cell line; βTC-6.  Cells were plated in 12-well plates and allowed to 

adhere overnight. Cells were transfected and the following day, they were exposed to LPC 

(lipopolysaccharide, 20 μg/mL; PMA, 10 ng/mL; db cAMP, 100 μM) or IL-1β (0.1 μg/mL).  Three of 

the four triggers showed little or no expression in response to these stimuli; however, the fourth 

construct was induced by IL-1β (Figure 3.4B). Expression was also seen after LPC treatment, however 

levels of activation were comparable to an uninduced control. Thus these preliminary results suggest 

that we have successfully built an NF-κB responsive trigger gene that may allow us to study long-term 

effects of inflammatory responses in human cells. Work is ongoing to refine this trigger gene, assemble a 

complete memory device, and integrate this into the genome. In addition, this circuit, along with the 

DNA damage memory device, will be tested in primary rat beta cells as well as iPS cells. 

 

Conclusions 

While we did not assemble the whole inflammation sensing memory device, we have preliminary results 

showing that we can create a synthetic NF-κB responsive trigger gene. Future work will refine this 

promoter and combine the trigger gene with the memory loop gene before integrating these constructs 

into the genome of βTC-6 cells as well as primary rat islet cells and human iPS cells. This will create a 

cell line that can help us study the long-term effects of inflammatory signaling. As the NF-κB pathway 

lies at the intersection of many stress response pathways, this synthetic memory circuit will be useful for 

studying a variety of disease pathologies. 
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Materials and Methods  

Plasmid constructs 

Escherichia coli DH5α was used for all plasmid manipulations. Bacteria were grown in LB-ampicillin 

media to maintain plasmids; if engineered constructs contained synthetic zinc fingers, media was 

supplemented with 0.02 mM zinc chloride. DNA fragments were generated by PCR and assembled via 

restriction cloning or Gibson assembly (Gibson et al. 2009). 

 Response elements from human p53R2 gene (Ohno et al. 2008), IL-1β gene (Hiscott et al. 

1993), or pNiFty3 vector (Invitrogen) were constructed as annealed oligos (Integrated DNA 

Technologies) and ligated in front a minimal promoter (Shibata, Giaccia, and Brown 2000) to generate 

the p53R2-RE and NRE1-4 promoters. Human codon-optimized synthetic zinc fingers (Hurt et al. 

2003) were commercially synthesized by Mr. Gene (Regensburg, Germany).  

 For transient transfections, memory devices or triggers were cloned into a pcDNA3.1™ (+)-

based vector (Invitrogen) in which the neomycin resistance marker was replaced with puromycin 

resistance, and the constitutive CMV promoter was deleted (Silver Lab). 

 

Cell culture  

MCF7, T47D cells were grown in DMEM media supplemented with 10% fetal bovine serum (FBS) and 

1% penicillin and streptomycin. MCF10A cells were grown in DMEM supplemented with 5% horse 

serum, 20 ng/uL EGF (Peprotech), 0.5 mg/mL hydrocortisone (Sigma), 100 ng/uL cholera toxin 

(Sigma), 10 ug/mL insulin (Sigma) and 1% penicillin and streptomycin. U2OS cells were grown in 

McCoy’s 5A medium supplemented with 10% tetracycline-screened FBS and 1% penicillin and 
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streptomycin; βTC-6 cells were grown in DMEM supplemented with 10% FBS and 1% penicillin and 

streptomycin. All cell lines were grown at 37˚C in a humidified CO2 incubator.  

  

Transfection of U2OS and βTC-6 cells 

Transient transfections were performed by plating 1.2 X 105 cells/well in 12-well culture dishes and 

transfecting with 800 ng plasmid DNA and 2 ul Lipofectamine® 2000 (Invitrogen) in 1 ml of antibiotic-

free medium. Cells were exposed the following day to γ or UV radiation, LPC treatment 

(lipopolysaccharide, 20 μg/mL; PMA, 10 ng/mL; db cAMP, 100 μM) or IL-1β (0.1 ug/mL) (Cogswell 

et al. 1994) and analyzed by flow cytometry. 

  

Induction of DNA damage, hypoxic and inflammatory response 

To induce the DNA damage response in MD12/p53R2-RE cells, 3.0 x 105 cells/well were plated in 6-

well plates. The following day, plates were exposed to a brief burst of 10 J/m2  shortwave ultraviolet 

radiation (UV) (Lahav Lab, Harvard Systems Biology) or varying levels of γ-radiation from a Ce source 

(Harvard Medical School). To induce hypoxia, 3.0 x 106 cells were plated in 10 cm plates. The following 

day, plates were exposed to hypoxia (0.5% O2, 5.0% CO2) in a hypoxic chamber (Kaelin lab, Dana 

Farber Cancer Institute). When cells were returned to normoxia, media was replaced with appropriate 

maintenance media. To induce inflammation and NF-κB signaling, cells were exposed to LPC treatment 

(lipopolysaccharide, 20 μg/mL; PMA, 10 ng/mL; db cAMP, 100 μM) or 0.1 ug/mL IL-1β (Cogswell et 

al. 1994) for 24 hours.  
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Fluorescence microscopy 

Cells were imaged at 20x with a Nikon TE2000-E inverted fluorescence microscope equipped with a 

Hamamatsu ORCA-ER camera, and HcRed (RFP) and JP2 (YFP) filters (Silver Lab). Images were 

acquired and analyzed using Metamorph software.    

 

Flow cytometry and cell sorting 

Cells were trypsinized and resuspended in PBS before being loaded in 96 well plates or 5 mL polystyrene 

tubes (BD Biosciences) on an LSRII (BD Biosciences) with 488-nm (DsRed) and 568-nm (Fitc) lasers 

(Harvard Systems Biology). 1.0 X 104 cells were analyzed for RFP (DsRed) and YFP (FITC) 

fluorescence and gated based on cell size and granularity. Unexposed cells controlled for basal 

fluorophore expression. Data was analyzed using FlowJo software. 

 To sort MD12/p53R2-RE cells, 12, 6-well plates were exposed to γ-radiation and recovered for 

3 or 5 d. Cells were then processed as described above, except that 4, 6-well plates of cells were pooled to 

produce three replicates.  

Processed cells were run on a FACS Aria II with a 100 uM nozzle at 20 psi (Harvard Systems 

Biology). Excitation optics for RFP consisted of a 75 mW 594 nm laser; detection optics included a 

630/22 bandpass filter. Excitation optics for YFP consisted of a 15 mW 488 nm laser; detection optics 

included a 520 nm longpass dichroic mirror and a 530/30 bandpass filter. For microscopy, 200,000 

memory and non-memory cells were sorted. Sorted MD12/p53R2-RE cells were seeded in 24-well 

dishes. 
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Endogenous pathway induction for RT-PCR 

MD12/p53R2-RE and U2OS cells were plated and exposed to γ-radiation or hypoxia, respectively. 

Whole cell RNA was extracted using the RNeasy Mini Kit (Qiagen), and cDNA was prepared using the 

SuperScript III First Strand Synthesis System (Invitrogen). Unexposed cells served as controls for 

background expression. 

Differential expression of genes was analyzed by real-time PCR using 0.5 ug RNA of specified 

cell populations. Primers amplified ~ 100 base pairs (Table B.1). Differential expression was normalized 

to human gene ACTB or GAPDH. 

 

Gene expression profiling 

U2OS cells were plated in 10 cm plates, exposed to 0.5% O2 for 24 h in triplicate, and allowed to recover 

for 3, 5, 7, and 9 d. Unexposed cells were plated the same way and passaged at the same time. For each 

biological replicate, RNA was extracted from exposed and unexposed cells using the RNeasy Mini Kit 

(Qiagen). For the 0 and 3 d time points, cDNA was prepared, biotinylated, and hybridized to Gene 1.0 

ST arrays (Affymetrix). Arrays were scanned and quantified according to standard Affymetrix protocols 

at the Dana Farber Microarray Core Facility (Dana Farber Cancer Institute).  

 

Identification and analysis of differentially regulated genes 

Data was annotated and normalized by RMA-analysis using Affymetrix Expression Console Software.  

Differential gene expression was determined using the Matlab Bioinformatics Toolbox (MathWorks). P-

values were calculated using a permutation t-test of 10,000 permutations. Genes with a fold change ≥ 2 

and p-value ≤ 0.05 were considered differentially expressed and analyzed for gene ontology enrichment 
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via GoStat (http://gostat.wehi.edu.au), with Benjamini correction for multiple hypothesis testing; 

enrichment was considered significant with P ≤ 0.01. 
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Abstract  

The design and engineering of a robust event counter has been a goal in the synthetic biology field for 

many years. While preliminary counting circuits capable of detecting a few events have been built, 

designing a reliable and scalable counter is still a difficult task. One difficulty facing event counter 

function is the ability to define a single event, or pulse, regardless of its duration. To accomplish this, we 

propose a novel design for a pulse-detecting genetic circuit that responds specifically to the falling edge 

of a pulse. In this Chapter we discuss the characterization of a dominant negative mutant of cI protein as 

a potential component of a pulse detecting genetic circuit and describe preliminary characterization of 

the lambda switch as a functional pulse detector.  
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Introduction 

In previous Chapters, we discussed the development and applications of synthetic cellular memory 

devices. We showed that these devices can be used to study heterogeneous responses to cellular stresses 

and discussed their future applications in drug development and tissue engineering. However, memory 

devices are also a key component of a more complex circuit: a counter(Subsoontorn and Endy 2012). 

An isolated memory device can be thought of as a 1-counter as it toggles between 2 states. By linking 

multiple orthogonal memory devices together, we can build counters that can count higher. While 

unidirectional memory devices like the ones discussed earlier in this dissertation can be used to build a 

counter, the limit of counting is equal to the number of switches(Subsoontorn and Endy 2012). This 

makes counting to high numbers challenging, as many orthogonal systems must be designed. 

Alternatively, reversible or bidirectional memory switches can also be used to build a counter. In this 

case, we can theoretically count much higher with fewer components.  

 Building a counter has been a goal in the field of synthetic biology for many years. Such a device 

would be very useful for studying disease progression in cancer, or learning more about development 

(Bonnet et al. 2013). A robust counter would also be useful in engineering cells – both eukaryotic and 

prokaryotic – to perform novel tasks. In complex electrical circuits and computation, counters play an 

integral role. If we hope to someday program biological systems with the same degree of sophistication, 

the development of well-characterized and functional counters will be essential. To date, significant 

progress has been made in building the necessary foundational memory switches. Unidirectional 

transcriptional memory switches based on both transcriptional positive feedback loops and DNA 

rearrangement have been studied extensively(Kramer et al. 2004; Ajo-Franklin et al. 2007; Burrill and 

Silver 2011; Burrill et al. 2012; Lou et al. 2012).  In addition, several groups have also developed 
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transcriptional double-negative feedback loops – toggle switches – and reversible DNA rearrangement 

based switches creating bidirectional memory(Gardner, Cantor, and Collins 2000; Ham et al. 2008; 

Bonnet, Subsoontorn, and Endy 2012; Siuti, Yazbek, and Lu 2013). However, only a few circuits with 

limited counting ability have been created(Friedland et al. 2009).  

 One obstacle standing in the way of building a robust event counter is the ability to detect a 

single event regardless of the length of its occurrence. For example, previous counters were sensitive to 

the length of time they are exposed to inducer; too short and the count is not advanced, too long and the 

count moves ahead too far(Friedland et al. 2009). This decreases the modularity of the device, as it can 

be tuned to work in a certain situation but may fail if moved to a different context. We propose to build a 

pulse detector that responds only to the falling edge of a pulse of stimulus. This would mean, regardless 

of the length of exposure to inducer, a counter would only advance at the end of the pulse (Figure 4.1). 

While synthetic circuits have been built that respond to the rising edge of a stimulus by generating a 

pulse of output(Basu et al. 2004), our design represents the first synthetic biological circuit that detects 

the end of a pulse of stimulus. 

 

Figure 4.1. A pulse detecting genetic circuit responds to the falling edge of a pulse of stimulus. Our 

proposed design for a pulse-detecting genetic circuit will have no output when inducer levels are low or 

high, however, when transitioning from high to low inducer, the circuit should produce a pulse of 

output. 
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Our design for the pulse detector is based on the lambda cI repressor protein(Ptashne et al. 

1980). This protein has several features that make this circuit possible. The lambda phage has both a 

lysogenic state – the phage is integrated in the E. coli genome and is replicated during cell division – and 

a lytic state – the phage produces many new phage particles and lyses the cell. This decision is made 

based on the stress on the bacterial host caused by environmental conditions. Controlling this behavior 

is a transcriptional switch consisting of the cI and cro genes transcribed from a divergent promoter (Prm 

and Pr, respectively)(Ptashne 2004) (Figure 4.2A). While cro represses expression of cI, cI represses cro 

expression as well as promoting its own expression(Hochschild, Irwin, and Ptashne 1983). However, 

high levels of cI expression will also shut down the Prm promoter maintaining cI at a moderate level. 

Thus, when cI is expressed, cro is repressed and the phage remains in a lysogenic state. However, if cro is 

expressed, cI is repressed and the phage enters the lytic cycle. Importantly for our design, cI normally 

binds to its operator sequences as a dimer(Ptashne 2004). A lambda phage unable to form lysogens was 

isolated and found to contain a mutation in the DNA binding domain of the cI protein (N55K)(Nelson 

and Sauer 1986). It was found that this mutation abolished binding specificity at the operator sequences 

and the non-specific DNA binding affinity was increased, however it should not interfere with 

dimerization of the protein. We refer to this protein as dominant-negative cI (cIDN). 



	   93 

 

Figure 4.2. Components of the lambda phage switch can be used to build a pulse detecting genetic 

circuit. 
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Figure 4.2 (continued). Components of the lambda phage switch can be used to build a pulse detecting 

genetic circuit. (A) The lambda switch is a bistable switch consisting of a double negative feedback loop 

where cI and cro repress the other’s transcription. In addition, cI also activates its own expression from 

the Prm promoter. (B) A pulse detecting genetic circuit can be designed by coexpressing a dominant-

negative mutant of cI along with wild-type cI, and building a cI reporter using the Prm promoter. By 

increasing the degradation rate of cIDN, a pulse detector is created. (C) When no inducer is present, 

neither cIDN nor cI is expressed and there is no output. When inducer is added, both proteins are 

expressed, cIDN blocks cI function, and no output is detected. However, when inducer is removed, cIDN 

degrades and cI can activate expression of the reporter gene. 
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We propose building a pulse detecting genetic circuit by co-expressing a degradation tagged cIDN 

and wild-type cI from a single inducible promoter (Figure 4.2B). A reporter gene will be expressed from 

the Prm promoter. Before induction, neither cIDN or cI will be produced and no output is expected from 

the reporter gene. When the circuit is induced, both cIDN and cI will be produced, cIDN will block cI 

function and still no reporter expression will be observed. Only when inducer is removed will cIDN 

degrade leaving cI to dimerize and activate reporter expression (Figure 4.2C). This will produce a novel 

pulse-detecting circuit that reports on the falling edge of a stimulus. 

 

Results and discussion 

Construction of inducible cI and cIDN genes 

To engineer a pulse detecting circuit, we first built a small library of inducible cIDN variants and an 

inducible wild-type cI. To characterize the interaction between cIDN variants and cI protein, we used a 

reporter plasmid obtained from the Registry of Biological Parts. This plasmid contains a modified Prm 

promoter driving transcription of a degradation-tagged sfGFP gene(Huang, Holtz, and Maharbiz 2012). 

The promoter has been modified to eliminate auto-inhibition by high levels of cI so that expression of 

the reporter will increase with higher levels of cI expression, even if these are beyond the natural level of 

cI repressor maintenance(Huang, Holtz, and Maharbiz 2012). 

 In the initial design of the characterization strains, we planned to express cI repressor from the 

arabinose-inducible pBAD promoter(Guzman et al. 1995). Using gene synthesis, we built a plasmid 

containing araC and the pBAD promoter followed by the wild-type cI gene. This construct was 

integrated in the phi80 phage attachment site using the CRIM integration system. This strain was then 

transformed with the Prm sfGFP reporter plasmid (Figure 4.3A, Table 4.1). Cells containing inducible  
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Figure 4.3. A fluorescent reporter system for lambda cI activity. 
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Figure 4.3 (continued). A fluorescent reporter system for lambda cI activity. (A) A fluorescent reporter 

of cI activity was built by integrating an arabinose-inducible cI gene into the genome of E. coli. These 

cells were then transformed with a reporter plasmid carrying sfGFP transcribed from a modified PRM 

promoter (PRM-GFP)(Huang, Holtz, and Maharbiz 2012). This promoter has mutations in OR3 

preventing auto-inhibition by high levels of cI. (B) Cells carrying the PRM-GFP (MCI001) were 

exposed to 10mM arabinose for 4 h and then imaged by microscopy. Induced cells showed a much 

higher GFP signal. (C) The induced and uninduced cells were also analyzed by flow cytometry. Induced 

cells had a significantly higher GFP signal, however, uninduced cells also showed GFP expression. (D) 

The reporter system was rebuilt by replacing pBAD cI with a rhamnose-inducible cI gene while the 

reporter plasmid remained unchanged (MCI002). (E) MCI002 cells were induced with varying 

concentrations of rhamnose for 4 h and analyzed by flow cytometry. The percentage of GFP positive 

cells increased in a dose dependent manner. 
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cI and reporter (MCI001) were then grown in the presence and absence of 10 mM arabinose in LB and 

then analyzed by flow cytometry and microscopy (Figure 4.3B,C). As expected, we observed a 

significant increase in GFP expression upon induction of cI. However, we also observed expression of 

GFP, albeit at a much lower lever, in the absence of arabinose. This was most likely due to incomplete 

repression of the pBAD promoter. Indeed, we observed a significant growth defect in the pBAD cI strain 

compared to the parent strain even in the absence of reporter plasmid. This suggests that expression of 

the cI protein is toxic to the cells. The growth difference was suppressed by addition of glucose to the 

growth media causing tighter repression of the arabinose genes. In addition, we ordered constitutively 

expressed versions of the cI repressor and not only was production of these constructs seriously delayed, 

propagation of the resulting plasmids was difficult further supporting the hypothesis that expression of 

the repressor was toxic. 

As the arabinose promoter showed significant leaky expression, we decided to rebuild the 

inducible cI construct with the rhamnose-inducible pRham promoter(Giacalone et al. 2006). The 

rhamnose-inducible cI construct was integrated at the araB locus by recombineering. This strain was 

then transformed with PRM-GFP (Figure 4.3D). Cells containing the rhamnose-inducible cI and the 

reporter plasmid (MCI002) were then induced with several concentrations of rhamnose and analyzed 

by flow cytometry (Figure 4.3E). We observed increasing expression of GFP with increasing amounts of 

rhamnose showing that our reporter system was functioning correctly. 

 

 

 

 



	   99 

Table 4.1. List of strains used in this study. 

Strain 
name 

Host Genotype Plasmid Source 

MCI001 BW25113 attPφ80::gentR-pBAD->cI ind- 
PRM-
GFP this study 

MCI002 BW25113 araB::CAMR-pRham->cI ind- 
PRM-
GFP this study 

MCI003 BW25113 
araB::CAMR-pRham->cI ind-, 
putAP::CAMR-tetP-> cIDN 1 

PRM-
GFP this study 

MCI004 BW25113 
araB::CAMR-pRham->cI ind-, 
putAP::CAMR-tetP->cIDN3 

PRM-
GFP this study 

MCI005 BW25113 
araB::CAMR-pRham->cI ind-, 
putAP::CAMR-tetP->cIDN4 

PRM-
GFP this study 

PAS132 MG1655 
araB::CAMR-tetP->cro, mphR:KanR-OL-
rexBA-cIind--OR-cro::lacZ, rpsLK42R none 

(Kotula et al. 
2014) 

MCI006 MG1655 
putAP::CAMR-tetP->cIDN2, mphR:KanR-
OL-rexBA-cIind--OR-cro::lacZ, rpsLK42R none this study 

TB10 MG1655  none 
(Thomason et al. 
2001) 

BW25113   none 
(Haldimann and 
Wanner 2001) 

 

 We also synthesized several tetracycline inducible cIDN variants: a single mutant (N55K), and a 

triple mutant (N55K, Y88E, T154E) both with and without degradation tags. While the N55K mutation 

is reported to interfere with specificity of DNA binding, the Y88E and T154E mutations are novel. We 

expect that the N55K mutation will affect DNA binding but not dimerization. If a cIDN monomer will 

bind to other cIDN monomers with the same affinity as wild-type cI monomers, a pool of non-productive 

cIDN homodimers will form. We selected the Y88E and T154E mutations – these mutations lie at the 

protein-protein interface in the crystal structure of the cI dimer(Stayrook et al. 2008) – in an effort to 

discourage homodimerization without affecting heterodimerization, thus, lowering the concentration of 

cIDN monomer necessary to block cI function (Figure 4.4). Conversely, if these mutations also interfere  
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Figure 4.4. Structural model of lambda cI and cIDN heterodimer bound to DNA. In this model of cI 

dimer bound to DNA(Stayrook et al. 2008), we colored the residues mutated in the cIDN in red, N55K 

(at the DNA binding interface), Y88E (center) and T154E (top) at the interface between the two 

monomers. 
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with dimerization, we would observe a weaker effect on cI function. After synthesis of the single and 

triple mutants, we proceeded to make all other single and double mutants by site-directed mutagenesis. 

 

Table 4.2. List of cIDN mutants: 

cIDN mutant Mutations Degradation tag 
cIDN 1 N55K N 
cIDN 2 N55K Y 
cIDN 3 N55K, Y88E, T154E N 
cIDN 4 N55K, Y88E, T154E Y 
cIDN 5 N55K, Y88E N 
cIDN 6 N55K, Y88E Y 
cIDN 7 N55K, T154E N 
cIDN 8 N55K, T154E Y 
cIDN 9 Y88E, T154E N 
cIDN 10 Y88E, T154E Y 
cIDN 11 Y88E N 
cIDN 12 Y88E Y 
cIDN 13 T154E N 
cIDN 14 T154E Y 

 

Characterization of interaction of cI and cIDN	   

After building a small library of cIDN constructs we began to characterize their ability to interfere with cI 

function. After integrating the tet-inducible cIDN 1-4 constructs, these were transduced into the 

rhamnose-inducible cI strain. Resulting strains were transformed with the PRM-GFP(Huang, Holtz, and 

Maharbiz 2012) (Figure 4.5A). Colonies were grown overnight, back diluted 100-fold and induced with 

varying concentrations of rhamnose (0, 0.1, 1, and 10 mM) and ATC (0, 1, 10, and 100 ng/mL) for 5 

hours. Cells were then pelleted, resuspended in PBS, and analyzed by flow cytometry (Figure 4.5B-G). 

In all cases, increased expression of GFP was observed with increasing amounts of rhamnose. In 

addition, addition of 100 ng/mL ATC significantly decreased GFP expression at most levels of ATC  
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Figure 4.5. cIDN inhibits cI activity in a dose dependent manner. 
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Figure 4.5 (continued). cIDN inhibits cI activity in a dose dependent manner. (A) Strains were built 

containing rhamnose-inducible cI, one of several tet-inducible cIDN variants, and reporter plasmid. The 

single N55K mutant (B,C), triple N55K, Y88E, T154E mutant (D,E), and degradation-tagged triple 

mutant (F,G) were assayed for their ability to block cI function. Cells were induced with varying 

concentrations of rhamnose in the absence or presence of 100 ng/uL aTC (B, D, F) and varying 

concentrations of aTC in the presence or absence of 1 mM rhamnose (C, E, G) and then analyzed by 

flow cytometry. Two biological replicates were measured for each strain in each condition, and 100,000 

cells were measured. 
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induction. The effect was much stronger in the case of the single mutant (Figure 4.5B), completely 

eliminating gfp expression at all levels of rhamnose. This repression occurred in a dose dependent 

manner(Figure 4.5C). Cells were induced with 1 mM rhamnose and increasing concentrations of ATC. 

As the level of induction of cIDN increased, more repression of gfp was seen. This demonstrates that the 

cIDN mutants are interfering with wild-type cI function as expected. These results also show that the 

triple mutant is less effective than the single mutant. This may be due to decreased dimerization, poor 

protein folding, or decreased stability of the protein. In addition, we observe a weaker effect of the 

degradation-tagged triple mutant compared to the plain triple mutant. This is expected as the increased 

degradation rate will result in a lower concentration of cIDN at a given induction level. While we do not 

currently have the corresponding data for the single mutant, we infer that a similar effect would be 

observed. 

 

Design of pulse-detecting genetic circuit 

In the process of designing the pulse-detecting circuit, we modeled the expected behavior of the circuit 

using ordinary differential equations (ODEs). Rather than model the induction of the circuit we set the 

initial parameters for the amount of cI and cIDN protein explicitly. This represents what would happen 

after a period of constant induction long enough for cI and cIDN concentration to reach steady-state 

levels. We expect to see no expression of reporter at time 0 in the simulation and over time, a pulse of 

reporter should appear as cIDN degrades. Indeed, with certain sets of parameters (Tables C.1-C.3) for 

relative initial concentrations and degradation rates of the two proteins, this behavior is observed. 

Importantly, while the modeling does not predict specific values, it suggests that we should choose 

ribosome binding sequences so that cIDN concentration is at least 10 fold higher than cI concentration at  
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steady state. In addition, the degradation of cIDN must be significantly faster than cI to produce a pulse of 

output.  

 

State of assembly of pulse detector library 

In an effort to build genetic constructs that fulfill the requirements revealed by modeling, we decided to 

construct a moderately sized library of candidate designs. We chose a standard ssrA degradation tag for 

cIDN that has been fairly well characterized and shown to be quite strong (Huang, Holtz, and Maharbiz 

2012). We placed the cI gene after the cIDN gene in a single operon(Figure 4.1B). This will ensure both 

proteins are expressed together and the placement of cIDN first in the operon should result in higher 

expression levels separate from RBS strength. We then designed 24 variants of the RBS for both the cIDN 

and cI genes to try and tune expression of the two proteins. This library was being built in collaboration 

with Ginkgo Bioworks by leveraging their automated assembly pipeline. However, the toxicity of 

spurious cI and cIDN expression made automated assembly of the library problematic and we were not 

able to assemble an acceptable library of constructs. We are proceeding with building a smaller library 

manually.  

 

Lambda memory switch as a pulse detector 

While the original design for a pulse detecting genetic circuit involved controlling the activity of cI 

repressor through interaction with a dominant negative mutant, there are other ways of achieving this 

goal. In our lab, we have taken advantage of the lambda switch to build a robust memory device in E. 

coli(Kotula et al. 2014). The lambda switch was integrated into the genome so that Pr cro read directly 

into lacZ. In the initial cI state, cells would not express lacZ (Figure 4.6A), however, when cro was  
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Figure 4.6. The natural lambda switch can function as a pulse detector.  
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Figure 4.6 (continued). The natural lambda switch can function as a pulse detector. (A) In the basal 

state of the lambda based memory device (PAS132), cI is expressed repressing cro and lacZ expression. 

(B) When cro expression is induced from an exogenous tet-inducible promoter, cro is produced to a 

high enough level to repress expression of cro and lacZ from the Pr promoter. (C) Conversely, when 

cIDN is expressed from an exogenous tet-inducible promoter (MCI006), it interferes with cI but does not 

affect the Pr promoter. This allows cro and lacZ to be expressed from the Pr promoter, switching the 

device to the cro state immediately. (D,E) Cells were induced with 100 ng/mL aTC, aliquots were 

diluted in PBS and plated on LB plates containing kanamycin without aTC (D) or containing 100 

ng/mL aTC (E). On plates without aTC, both the cro trigger and cIDN trigger were able to switch 

100% of the population after 4 h. However, when plated on reporter plates containing aTC, cells 

expressing cIDN are 100% switched, while cells expressing cro remain unswitched. 
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expressed exogenously from a tetracycline-inducible promoter, cells would switch to the cro state and 

express lacZ (Figure 4.6B). This switching can be detected by growing cells on plates containing X-gal 

and looking for blue colonies. They showed that this circuit also specifically reports on aTC exposure 

when cells are introduced in the gut of a mouse, demonstrating its potential use as a diagnostic probiotic. 

During the characterization of this device, it was noted that no switching was observed during 

induction. LacZ expression was only detected once cells were plated on reporter plates. As mentioned 

earlier, while cI promotes its own expression from the Prm promoter, it also inhibits its production once 

levels are too high. Similarly, cro can also inhibit its own expression from the Pr promoter if it is present 

in high enough amounts; for instance, when expressed from a tetracycline-inducible promoter. This is 

demonstrated by comparing the switching of the device by expression of cro and expression of cIDN. We 

integrated the tet-inducible cIDN into PAS132 where pTet cro had been deleted(MCI006). We expect 

that when cIDN is expressed, it will interfere with cI binding leaving the Pr promoter free allowing 

expression of cro and lacZ (Figure 4.7C). When induced with aTC, both cro and cIDN induce switching 

of the device (Figure 4.6D). However, when plated on reporter plates containing aTC, cells expressing 

cIDN are 100% switched, while cells expressing cro remain white (Figure 4.7E). Thus, the lambda 

memory switch already functions as a pulse-detecting circuit.  

 

Conclusions 

While the construction of the complete pulse-detecting circuit is still ongoing, in this Chapter we have 

described the characterization of a dominant-negative mutant of cI. This will allow future assembly of 

more complex circuits. In addition, we demonstrated that an existing device – the lambda memory 
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switch – already behaves as a pulse detector. These types of devices will allow better control over gene 

expression in engineered cells in the future.  

 

Materials and Methods  

Plasmid construction  

Escherichia coli NEB Turbo Competent (NEB), BW23474, and BW23473 were used for all plasmid 

manipulations. Bacteria were grown in LB media with either 10ug/mL chloramphenicol, 20ug/mL 

kanamycin, 10ug/mL gentamycin, or 100ug/mL ampicillin to maintain plasmids as appropriate. DNA 

fragments with were generated by PCR and assembled via Gibson assembly(Gibson et al. 2009). 

Inducible cI and cIDN constructs were cloned into CRIM plasmids containing the R6Kgamma origin of 

replication(Haldimann and Wanner 2001) and one of several phage attachment sites. These  plasmids 

can only be propagated in pir+ hosts such as BW23474 and BW23473. 

 

Bacterial strain construction 

Constructs built in CRIM plasmids were integrated as described(Haldimann and Wanner 2001). In 

brief, the recipient E. coli were transformed with a helper plasmid expressing the appropriate integrase, 

made electrocompetent, and transformed with plasmid containing the construct to be integrated. Cells 

were then selected on appropriate antibiotic and screened for loss of helper plasmid. Integration was 

verified by colony PCR and Sanger sequencing. 

 Later, constructs were built by overlap extension PCR(R Higuchi 1988) and integrated directly 

into the genome by recombineering(Thomason et al. 2001). Recipient cells were transformed with 

pKD46, made electrocompetent, and transformed with PCR product. Alternatively, PCR product was 
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electroporated into TB10 that do not require a helper plasmid. In both cases, cells were then recovered 

at 30 degrees for 1 h and heat shocked at 42 degrees for 30 min. Cells were then plated on LB plates 

containing appropriate antibiotics and grown at 37 degrees. Integration was confirmed by colony PCR 

and Sanger sequencing. Strains containing multiple constructs were made by moving previously 

integrated constructs into the final strain using P1 transduction. 

 

Flow cytometry 

Cells containing PRM-GFP plasmid (Addgene plasmid 40127) were back diluted 1:100 in LB with 

ampicillin, induced with various concentrations of rhamnose (0, 0.1, 1, 10 mM) and ATC (0, 1, 10, 100 

ug/mL) for 5 h. Induced cultures were spun down, resuspended in 1x PBS, and diluted 50 fold in PBS. 

Cells were later loaded in 96 well plates (BD Biosciences) on an LSRII (BD Biosciences) with a 568-nm 

(FITC) laser (Harvard Systems Biology). 1.0 X 105 cells were analyzed for GFP (FITC) fluorescence 

and gated based on cell size and granularity. Unexposed cells controlled for basal fluorophore 

expression. Data was analyzed using FlowJo software. 

 

Microscopy 

Cells were imaged at 100x with a Nikon TE2000-E inverted fluorescence microscope equipped with a 

Hamamatsu ORCA-ER camera, and HcRed (RFP) and JP2 (YFP) filters (Silver Lab). Images were 

acquired and analyzed using Metamorph software.  
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Lambda memory switching assay 

Strains were grown overnight in LB supplemented with 20 ug/mL kanamycin. Cultures were 

backdiluted in fresh LB with antibiotics and induced with 100ng/mL aTC. Aliquots of culture were 

diluted by serial dilution between 10-3 to 10-6 in PBS then 100 uL were plated on LB plates containing 

kanamycin and 20 ug/mL X-Gal. Colonies were counted the following day and scored for lacZ 

expression. 
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Where are we now? 

 While synthetic biologists have been able to achieve ambitious goals, from engineering bacteria 

and mammalian cells to produce novel compounds(Wang et al. 2009), remember past events(Ajo-

Franklin et al. 2007; Burrill and Silver 2011; Bonnet, Subsoontorn, and Endy 2012; Burrill et al. 2012; 

Kotula et al. 2014), communicate with each other(Bulter et al. 2004), and compute complex 

logic(Lohmueller, Armel, and Silver 2012; Bonnet et al. 2013; Siuti, Yazbek, and T.K. Lu 2013); as far as 

rebuilding bacterial genomes(Benders et al. 2010; Gibson et al. 2010), and even an entire eukaryotic 

chromosome(Annaluru et al. 2014), the field has just begun to cross the threshold from building 

prototype circuits to creating useful tools. This is not meant to undermine what has already been 

accomplished. On the contrary, these projects are important and essential milestones on the path to 

learning to predictably and reliably engineer biological systems. Just as we learn more about the systems 

we try to build through our failures, we learn more about how to effectively design these systems through 

trial-and-error. For instance, we initially assumed we could abstract away much of the messiness of 

biology emphasizing its modularity(Purnick and Weiss 2009), but found this “noise” was actually 

important to build in to our designs(Daniel et al. 2013). This knowledge, alongside the development of 

high-throughput screening and selection techniques, led to the strategy of casting a wide net by building 

and testing every conceivable variant of a circuit. However, it is becoming apparent that a more 

restrained approach falling somewhere between these two extremes is often the most efficient 

tactic(Silver et al. 2014).  

 In this dissertation, we discussed the development of synthetic memory circuits and a pulse 

detecting circuit. In Chapter 2, we showed that by treating promoters, and protein coding regions as 

modular units, you could build transcriptional memory circuits triggered by a variety of inputs. While 
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the building and testing of the initial prototype circuit was difficult and time-consuming, the modularity 

of this system with respect to the trigger promoter made it a relatively simple matter to modify this 

device to respond to novel inputs. By changing one element, we were able to change the input from 

doxycycline exposure, to either hypoxia, or DNA damage. Importantly, we showed that this circuit is 

useful in the study of long-term and heterogeneous responses to these stimuli. In Chapter 3, we explored 

further applications for this memory circuit, including the long-term effects of exposure to γ-radiation, 

and an effort to modify the promoter once again to respond to inflammation. Chapter 4 describes the 

effort to rationally design a pulse-detecting circuit. By combining, abstraction with modeling of the 

relevant protein interactions, we showed that it would be possible to design a small library of candidate 

designs that can be screened for proper function. While the projects in Chapters 2 and 3 rely on our 

ability to abstract biology into elements such as promoter and transcription factor, Chapter 4 falls more 

closely into the new paradigm of combining this abstraction with rational design of a limited library of 

constructs.  

 

What stands in our way? 

 Even though we understand a lot about transcriptional networks and cellular signaling, creating 

novel circuits that function as intended both in vitro and in vivo remains a difficult challenge. In addition, 

circuits that function reliably in one context can become unpredictable when moved to a different 

environment, often through changes as subtle as modified growth medium. While natural biological 

circuits have had the opportunity to evolve robustness to these types of changes, our novel circuits have 

not had that chance. In an effort to streamline and simplify synthetic genetic networks, we may even be 

designing out the flexibility needed to build a robust device. Currently, the design of the architecture of 
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synthetic circuits is mostly done by intuition, or mimicry of natural circuits. It is not unreasonable to 

assume this is limiting the variety of circuits being developed. To address this issue, as well as to speed up 

the design process in general, significant effort is being put into the development of computer aided 

design (CAD) programs(Chandran, Bergmann, and Sauro 2009; Cai, Wilson, and Peccoud 2010; 

Clancy and Voigt 2010). This would automate the “coding” portion of the design process enabling 

researchers to define inputs and desired outputs while the software would design the actual genetic 

network allowing us to test non-intuitive designs. 

 In addition to the design process, the actual building and delivery of our designed circuits also 

remains challenging. While techniques for efficiently assembling several small pieces (several kb to 

hundreds of kb) of DNA have become commonplace in many academic labs(Gibson et al. 2009), as 

designs become more complex, assembly of large numbers of constructs (library preparation), and large-

scale constructs (> 1 Mb) are still beyond the reach of most researchers. However, as with earlier 

assembly techniques, recent breakthroughs in the construction of whole genomes(Benders et al. 2010) 

and chromosomes(Annaluru et al. 2014) will open the door for others. In addition, the falling cost of 

synthesis and creation of synthetic biology companies focused on bulk production of constructs will 

enable researchers to test large numbers of designs more quickly. As libraries and individual constructs 

become larger, efficient delivery to the cell becomes more challenging as well. In the end, the current 

roadblocks and obstacles in the design and building of novel synthetic circuits are mostly technical in 

nature, so we can anticipate they will eventually be solved. Hopefully, in the near future, testing of 

candidate designs will be the rate-limiting step for synthetic biologists. The most important question we 

need to ask is not how, but what do we want to design and why? 
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Where do we go from here? 

 In this dissertation, we have demonstrated that synthetic biology has the potential to help us 

answer questions that would be difficult to investigate by traditional means. For instance, we used 

synthetic memory circuits to learn more about long-term and heterogeneous responses to transient 

stimuli. Building synthetic circuits also lets us learn more about the natural circuits that inspire them. 

However, the potential of synthetic biology is greater than just as a tool for learning about biology. For 

example, we could develop engineered cellular therapies that would be programmable “smart” 

therapeutics. These could be nanostructures or other vectors for delivering drugs to specific tissues or 

cell types, or even engineered cells, such as T-cells, delivered directly into the blood stream(Ruder, T. 

Lu, and Collins 2011; Ausländer and Fussenegger 2012). Synthetic biology approaches could eventually 

be used to program stem cell differentiation to engineer tissues. Bacteria can be modified to become 

engineered probiotics that can diagnose or potentially treat disease. It is easy to be optimistic about the 

future of synthetic biology. Its potential seems bounded only by our imagination. However, this 

optimism must be tempered with the knowledge that we still have technical hurdles and obstacles to 

overcome.  
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Supplementary figures1 
                     

(A)    (B)    (C) 
 

 
 
 
 

 
 
 
Figure A.1. Transient transfections. (A) Reporters and loops were transfected to detect basal activity. 
(B) Reporters and loops were mismatched and transfected to determine orthogonality. (C) p53R2-RE 
and HRE triggers and loops were co-transfected.         
 
 
 
 
 
 
 
 
 
 
Figure A.2. Representative FACS scatter plots demonstrating how MD10/TetOx2 was analyzed by 
flow cytometry. “+dox”: 24 h dox exposure. “2 d post-dox”: 48 h recovery from dox exposure.      
           
 
 
 
 
 
 
 
 
 
 
 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Portions of this chapter were reproduced with permission Cold Spring Harbor Laboratory Press: 
Burrill DR, Inniss MC, Boyle PM, Silver PA. 2012. Synthetic memory circuits for tracking human cell fate. Genes Dev 
26:1486–1497.	  
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Figure A.3. Selected MD10/ TetOx2 clones behaved similarly. Each row of FACS plots represents a 
clone. 

 

 
 
 

Figures A.4. RFP (left) and YFP (right)   degrade at similar rates. MD10/TetOx2 was exposed to dox to 
induce fluorophore expression and then exposed to cycloheximide (CHX) to observe protein decay. 
Aliquots were fixed each hour and fluorescence was measured by FACS.     Decay was measured as a 
percentage of starting intensities at time 0 h of CHX exposure. 
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 (A)       (B)           (C) 
 

 
 
Figure A.5. FACS scatter plots (top row) showing distribution of fluorescence intensity when 
MD15/HRE and MD12/p53R2-RE are activated by (A) anoxia, (B) hypoxia, or (C) UV. Fluorescence 
intensities in each quadrant are shown below each scatter plot. Error bars represent the mean ± SE for 
three biological replicates. 
 
 

 
 
Figure A.6. FACS scatter plots showing distribution of fluorescence intensities when MD15/HRE and 
MD12/p53R2-RE are activated by anoxia, hypoxia, or UV and recovered for 2 d. 
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(A)  (B) 
 
 
 
 
 
 
 
(C) 
 

   
    

 
 
 
 
 
Figure A.7. Growth and viability of stable cell lines. (A) MD15/HRE memory cells were sorted 1 d 
post-hypoxia and growth was compared at subsequent time-points. (B) MD10/TetOx2 cells and (C) 
MD12/p53R2-RE were sorted 2 d post-UV or dox, and growth was compared at subsequent time-
points. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure A.8. MD15/HRE transmits memory of hypoxia through cell division. Cells were exposed to 
hypoxia, sorted 1 d post-exposure for YFP+ cells, and followed by microscopy for 8 d. 
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Figure A.9. FACS scatter plots of MD12/p53R2-RE clones.  
 
 
 
(A) (B)

 
     

  
Figure A.10. qPCR validation of up-regulated genes in memory versus non-memory cells. (A) 
MD12/p53R2-RE and (B) MD10/TetOx2 cells were sorted 3 d post-UV or dox in biological triplicate, 
and RNA was extracted. Values represent mean fold difference in gene expression between memory and 
non-memory sub-populations ± SE across three biological replicates.  
 
  

MD12/p53R2-RE

0

30

40

325

10

20

250

CD
NF

MX
D1

GR
K5

CY
P1
1A
1

DD
IT3

GP
X3

TO
R1
B

CY
P4
F1
1

EG
LN
3

CY
P4
F1
2

TP
53
IN
P1

SL
C3
9A
2

PD
LIM

1
DP
P4

fo
ld

 d
iff

er
en

ce
 in

 g
en

e 
ex

pr
es

si
on

(m
em

or
y 

/ n
on

-m
em

or
y)

MD10/TetOx2

TN
FR
SF
9

OA
SL

GB
P4

CC
L5

RS
AD
2

CX
CL
11

fo
ld

 d
iff

er
en

ce
 in

 g
en

e 
ex

pr
es

si
on

(m
em

or
y 

/ n
on

-m
em

or
y)

0

10

20

30

40

clone MD12.12

tri
gg

er
 (R

FP
) 

flu
or

es
ce

nc
e 

in
te

ns
ity

 (a
.u

.)

loop (YFP) 
fluorescence intensity (a.u.)

tri
gg

er
 (R

FP
) 

flu
or

es
ce

nc
e 

in
te

ns
ity

 (a
.u

)

tri
gg

er
 (R

FP
) 

flu
or

es
ce

nc
e 

in
te

ns
ity

 (a
.u

.)

loop (YFP) 
fluorescence intensity (a.u.)

loop (YFP) 
fluorescence intensity (a.u.)

clone MD12.14 clone MD12.34



	   127 

Supplementary Tables 
 
Table A.1. Transient transfection guidelines. 

construct amount (ng) construct amount (ng) 

trigger 400 reporter or loop 400 

Flp-In T-REx™ vector 400 reporter or loop 400 

trigger-spacer-reporter 800 ----- ----- 

trigger-spacer-loop 800 ----- ----- 

 

Table A.2. Media requirements for stable cell lines. 

integrated 

construct 

U2OS cell 

type 

antibiotic selection 

concentration 

(ug/mL) 

maintenance 

concentration 

(ug/mL) 

MD10/TetOx2 

 

Flp-In  

T-REx™ 

hygromycin 

puromycin 

blasticidin 

300 

3 

15 

100 

1 

15 

MD12/p53R2-RE plain puromycin 3 1 

MD15/HRE plain puromycin 3 1 
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Table A.3. Primer sequences used for real-time PCR. 

 

 Gene  Sequences (5’- 3’, forward first, reverse second) 

 ACTB  tccctggagaagagctacga, aggaaggaaggctggaagag 
 OASL  tttctgcccatccttcagcgagc, ggacctggctttcacatactgctgg 
 TNFRSF9  ccgacctctctccgggagcat, tgcggagagtgtcctggctct 
 GBP4  ctcgaggatccaggcgcagg, ctggataacctggtgtgggcactg 
 CCL5  tacattgcccgcccactgcc, gggtgacaaagacgactgctggg 
 CXCL10  tggcacactagccccacgtt, tgctgagactggaggttcctctgc 
 RSAD2  accctgtccgctggaaagtgttc, gcaggacacttctttgtggcgct 
 CXCL11  tgctacagttgttcaaggcttcccc, cactgcttttaccccagggccta 
 CDNF  ttgcgccgggcttttggtct, ctttacatacttcacagtcggcccc 
 MXD1  gctccgactccgacagggaaat, atgctgccccgctcgtcaga 
 SLC39A2  agccagaggtcatcaccggcta, gctgatctgttctgcaccatgaact 
 GRK5  ggagggggctgcagaggtca, cgcgggggtctggaacgaag 
 DDIT3  atgttaaagatgagcgggtggcagc, ttgaacactctctcctcaggttcca 
 GPX3  tcgcagagccggggacaaga, tggtgagggctccgtactcg 
 CYP11A1  agcagggagcgacccggtat, acgttgccgagcttctcccttag 
 TOR1B  ccgctcaacgcttcggctct, gccagcccagccgtgtaagg 
 ABCB1  accagataaaagagaggtgcaacgg, tcccggcccggattgactga 
 CYP4F11  acaagtggagccgccaccg, acatgtccagtctggcgctgc 
 EGLN3  cgtggatcgggggcaacgag, gcaagccaccattgccttagacct 
 CYP4F12  actcgacccagatgtcggcca, ttgggtgcaatggcagctgagg 
 TP53INP1  agcccaagtagtcccagagtgga, tccactgggaagggcgaaagc 
 PDLIM1  tgaaccccaggaggtcctgcac, aggcgaggcggtaaagggca 
 DPP4  gagtgactccaccgcccgga, cacggtgtcttcatcgtcggc 
 P53R2  tccctcagcgcccgtagctt, atgatctctcatcctgatccagccc 
 P21  gcactcagaggaggcgccatgt, tcgctgtccactgggccgaa 
 APAF1  gcgagacagagccctgcacc, gctgtcaaccatgagccaagcct 
 DDB2  aggacgcgatggctcccaaga, ctaggaccggagcccttcgca 
 BAX  agcaaactggtgctcaaggccc, gtctcacccaaccaccctggtct 
 GADD45A  aagctgctcaacgtcgacccc, tctcgcagcaaaacgcctgga 
 MDM2  cgcgccccgtgaaggaaact, gcacatttgcctgctcctcacca 
 Maspin  ttctgcccagacacggtcgc, ccattgcgggcctggagtcac 
 P53  gccagactgccttccgggtc, gggacggcaagggggacaga 
 TP53INP1  agcccaagtagtcccagagtgga, tccactgggaagggcgaaagc 
 VEGF  aaggaggagggcagaatcat, cacacaggatggcttgaaga 
 CA-IX  tggaagaaatcgctgaggaaggct, agcactcagcatcactgtctggtt 
 GLUT1  atcgtggccatctttggctttgtg, ctggaagcacatgcccacaatgaa 
 EPO  cgggcatgggcactcccttg, agaggccagcccccatcctg 
 TF  gtgccagagtttccgcgacca, cgtttgccgcaatggccctga 
 TFR  acggaggacgcgctagtgttct, ttgccgagccaggctgaacc 
 NOS2  ggacccgcaccactacaggc, gtggcacggctggatgtcgg 
 ENO1  tgggtacccggagcacggag, tgaacttctagccactgggtctcgt 
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Supplementary Files 

File A.1. Time-lapse video of MD10/TetOx2. Cells were plated, exposed to dox for 1 d, and recovered 

for 1 d. Cells were then imaged every hour for 3 d. Phase, RFP, and YFP channels were overlaid using 

Metamorph software. Cells can be seen dividing and transmitting memory to daughter cells, as well as 

when the circuit does not remain active after division. 

 

File A.2. Transcriptional profiling array analysis of MD12/p53R2-RE and MD10/TetOx2. 
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Supplementary Tables 
 
Table B.1. qRT-PCR primer sequences 
 

Primer name Sequence 
p53 qPCR F CAGCACATGACGGAGGTTGT 
p53 qpCR R TCATCCAAATACTCCACACGC 
Atm qPCR F ATCTGCTGCCGTCAACTAGAA 
Atm qPCR R GATCTCGAATCAGGCGCTTAAA 
p21 qPCR F TGTCCGTCAGAACCCATGC 
p21 qPCR R AAAGTCGAAGTTCCATCGCTC 
Mdm2 qPCR F GAATCATCGGACTCAGGTACATC 
Mdm2 qPCR R TCTGTCTCACTAATTGCTCTCCT 
Rad51C qPCR F TTTGGTGAGTTTCCCGCTGTC 
Rad51C qPCR R AACTTCTTTGCTAAGCTCGGAG 
Ddb2 qPCR F ACCTCCGAGATTGTATTACGCC 
Ddb2 qPCR R TCACATCTTCTGCTAGGACCG 
Gadd45A qPCR F GAGAGCAGAAGACCGAAAGGA 
Gadd45A qPCR R CACAACACCACGTTATCGGG 
Bax qPCR F CCCGAGAGGTCTTTTTCCGAG 
Bax qPCR R CCAGCCCATGATGGTTCTGAT 
Fas qPCR F AGATTGTGTGATGAAGGACATGG 
Fas qPCR R TGTTGCTGGTGAGTGTGCATT 
RelB qPCR F CCATTGAGCGGAAGATTCAACT 
RelB qPCR R CTGCTGGTCCCGATATGAGG 
BclXL qPCR F GAGCTGGTGGTTGACTTTCTC 
BclXl qPCR R TCCATCTCCGATTCAGTCCCT 
C-Myc qPCR F TCCCTCCACTCGGAAGGAC 
C-Myc qPCR R CTGGTGCATTTTCGGTTGTTG 
Gapdh qPCR F ACAACTTTGGTATCGTGGAAGG 
Gapdh qPCR R GCCATCACGCCACAGTTTC 

 
 
Supplementary Files 
 
File B.1. Transcriptional profiling array analysis of MCF10A exposed to 0.5% O2 for 24 h and recovered 
for 3 d. 
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Supplementary Tables 
 
Table C.1. Model Equations 
 

d(pRM_D0)/dt = 1/cell*(-ReactionFlux6) 
d(lacZ_mRNA)/dt = 1/cell*(ReactionFlux9 + ReactionFlux10 + ReactionFlux11 - 
ReactionFlux14) 
d(lacZ_pro)/dt = 1/cell*(ReactionFlux12 - ReactionFlux13) 
d(cI_wt)/dt = 1/cell*( - -2*ReactionFlux1 - ReactionFlux2 - ReactionFlux4) 
d(cI_DN)/dt = 1/cell*(-ReactionFlux2 - -2*ReactionFlux3 - ReactionFlux5) 
d(pRM_D1)/dt = 1/cell*(ReactionFlux6 - ReactionFlux7) 
d(pRM_D2)/dt = 1/cell*(ReactionFlux7 - ReactionFlux8) 
d(cI_dimer)/dt = 1/cell*(ReactionFlux1 - ReactionFlux6 - ReactionFlux7 - ReactionFlux8) 
d(cI_mixed)/dt = 1/cell*(ReactionFlux2) 
d(cI_DN_dimer)/dt = 1/cell*(ReactionFlux3) 

 
 
Table C.2. Model Fluxes 
 

ReactionFlux1 = cI_dimerize.kdimF*cI_wt*cI_wt-cI_dimerize.kdimR*cI_dimer 
ReactionFlux2 = cI_hetero.kdimF*cI_wt*cI_DN-cI_hetero.kdimR*cI_mixed 
ReactionFlux3 = cI_DN_dimerize.kdimF*cI_DN*cI_DN-
cI_DN_dimerize.kdimR*cI_DN_dimer 
ReactionFlux4 = kdeg*cI_wt 
ReactionFlux5 = kdeg2*cI_DN 
ReactionFlux6 = kbind0F*cI_dimer*pRM_D0-kbind0R*pRM_D1 
ReactionFlux7 = kbind1F*cI_dimer*pRM_D1-kbind1R*pRM_D2 
ReactionFlux8 = kbind2F*cI_dimer*pRM_D2-kbind2R 
ReactionFlux9 = basal_txn_D0.ktxn*pRM_D0 
ReactionFlux10 = basal_txn_D1.ktxn*pRM_D1 
ReactionFlux11 = activated_txn.ktxn*pRM_D2 
ReactionFlux12 = ktln*lacZ_mRNA 
ReactionFlux13 = kdeg_pro*lacZ_pro 
ReactionFlux14 = kdeg_mRNA*lacZ_mRNA 
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Table C.3. Model Parameters 
 

cI_dimerize.kdimR = 1 
cI_dimerize.kdimF = 0.05 
cI_hetero.kdimF = 0.05 
cI_hetero.kdimR = 1 
cI_DN_dimerize.kdimF = 0.05 
cI_DN_dimerize.kdimR = 1 
kdeg = 0.01 
kdeg2 = 1 
kbind0F = 0.33 
kbind0R = 1 
kbind1F = 0.66 
kbind1R = 1 
kbind2F = 0.03 
kbind2R = 1 
basal_txn_D0.ktxn = 10 
basal_txn_D1.ktxn = 10 
activated_txn.ktxn = 110 
ktln = 1 
kdeg_pro = 0.01 
kdeg_mRNA = 10 
cell = 1 
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