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Abstract

The nitrogen vacancy (NV) center in diamond is a unique quantum system that

combines solid state spin qubits with coherent optical transitions. The spin states

of the NV center can be initialized, read out, and controlled with RF fields at room

temperature. It can be coupled to other spin systems in the environment while at the

same time maintaining an extraordinary degree of quantum coherence. Experiments

utilizing the NV center’s spin states have led to a wide range of demonstrations from

quantum error correction to high-sensitivity magnetometry. This thesis, however,

focuses on creating an interface between NV centers and light in the visible domain by

making use of its optical transitions. Such an interface connects the quantum system

consisting of NV centers and nuclear spins to photons, which can then be used to

both manipulate the spin qubits themselves or transport quantum information over

large distances.

We begin by introducing the structure, symmetry, and energy levels of the NV

center that give rise to its optical properties. We then present the demonstration of

entanglement between the electronic spin of the NV center and an optical photon. In

addition to being the first step toward using NV centers in long distance quantum

networks, this work showed that coherent control of optical transitions in the NV
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center is possible. Inspired by this, we then demonstrated all-optical sensing and

manipulation of the nuclear spin bath using coherent population trapping of the NV

center. We then turn to the issue of moving beyond these proof-of-principle experi-

ments toward implementing robust and scalable diamond-based photonic devices. To

this end, we demonstrate the creation of spectrally stable NV centers in a device layer

near the diamond surface. Finally, we discuss the implementation of nanophotonic

devices to enhance the interactions between NV centers and light.
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Chapter 1

Introduction

1.1 Background

The study of classical mechanics, thermodynamics, and electromagnetism have

brought on great technological advances over the course of history. We now live in an

exciting era where quantum mechanics begins to join these other fields of physics in

enabling new technologies with unprecedented capabilities. Theoretical and experi-

mental efforts have moved toward harnessing the power of various different physical

systems for applications in metrology, quantum information, and furthering our un-

derstanding of quantum mechanics itself.

Some of the most successful of applications of quantum mechanical systems to date

have been in the field of metrology, or the accurate sensing and measurement of forces,

fields, frequencies, etc. One important example of such a quantum technology is the

optical clock, which provides high accuracy standards for frequency and time based on

the fundamental stability of transition frequencies between quantum states of neutral
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atoms or trapped ions [1, 2]. One challenge of implementing such optical clocks is

lies in reducing the uncertainty of the clock transition frequency caused by external

effects. To this end, for example, different atomic species and level structures have

been extensively studied to find transitions between energy levels that are particularly

insensitive to external electromagnetic fields. In addition, the atoms are trapped and

cooled using ion traps or optical lattices to reduce the effect of atomic motion. The

other major challenge is developing techniques for probing the transition frequency

with high enough resolution and stability. This has led to the development of, for

example, high quality optical cavities for laser stabilization and the use of frequency

combs for analyzing and comparing the accuracy of different clocks [3, 4].

The field of quantum information and communications has given rise to another

class of quantum technologies that has become the focus of much effort in recent

years. There has been a large number of theoretical proposals for using quantum

systems for efficient computation, simulation of complex systems, secure dissemina-

tion of information, etc. [5, 6, 7]. However, the practical implementation of these

proposals in real physical systems remains an open challenge. A variety of different

avenues are being actively explored, ranging from photons, neutral atoms, ions, impu-

rities and structures in solid state systems, to more exotic materials such as electrons

on the surface of liquid helium [8, 9, 10, 11, 12]. To get a sense of both the excit-

ing developments and difficult challenges of this field, one can look at the example

of superconducting quantum bits (qubits). This class of qubits consists of devices

constructed from superconducting circuit elements such as Josephson junctions and

engineered to satisfy requirements such as energy level anharmonicity, addressability,

2



Chapter 1: Introduction

and immunity to external perturbations [10]. When these qubits are integrated with

resonator and waveguide structures, they can be initialized, manipulated, and read

out with very high fidelity through microwave fields [13, 14]. In addition, the strong

coupling achievable between superconducting qubits and microwave resonators have

led to demonstrations of multi-qubit gates and operations that pave the way towards

scalable architectures for quantum computation [15, 16]. As complex mesoscopic sys-

tems, however, these qubits can be highly sensitive to their environment, which leads

to loss of quantum information through decoherence. Tremendous progress has been

made to isolate these systems from the environment, with qubit relaxation and deco-

herences times increasing from nanoseconds to nearly 0.1 ms in a little over a decade

[17, 18, 19]. However, fully understanding the underlying mechanisms for decoherence

in these systems will require further studies in the fields of material science, surface

chemistry, and the physics of superconductors [20, 21].

From the above examples, it can be seen that a common theme for the implemen-

tation of quantum technologies is the seemingly contradictory need for controllability

and isolation from external effects. Undesirable effects of the environment must be

minimized, while at the same time techniques and tools must be developed that en-

able us to interact with the system in a controllable and well-defined manner. This

thesis addresses several aspects of this theme with regards to a particularly promising

candidate for developing applications in both metrology and quantum information:

the nitrogen-vacancy (NV) center in diamond. In particular, we explore how the NV

center can be investigated, controlled, and efficiently coupled with optical photons,

and tackle the challenges of controlling the optical properties of these emitters inside

3
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a complex solid-state environment.

As with other solid state systems such as quantum dots, rare earth dopants in inor-

ganic crystals, and superconducting qubits, NV centers present the attractive feature

of eliminating the need for trapping and cooling, as is usually required for atomic

systems. In addition to greatly reducing the complexity of experiments, solid state

systems offer the possibility of straightforward integration with fabricated structures

and development of scalable quantum devices. The issue of scalability, however, is not

simply a matter of being able to create a large number of physical devices in a small

volume. In order to truly move beyond proof-of-principle experiments, the properties

of many qubits and devices must all be well controlled in a reproducible, reliable, and

efficient manner. In other words, while it is important to demonstrate that a certain

quantum operation, coherence time, metrological sensitivity, etc. is possible in one

particular device with favorable characteristics, it must also be possible to reproduce

these characteristics for a large number of systems.

1.2 Overview of thesis

With the above considerations in mind, this thesis is organized as follows. After

an introduction to the system we are working with, we present two proof-of-principle

experiments where the NV center is utilized as an interface between spin qubits and

light. The first is a crucial step toward the implementation of long-distance quantum

communication schemes, while the second demonstrates the power of this optical

interface for controlling the spin qubits themselves. In the following chapter, we then

lay the groundwork for future quantum devices based on these types of experiments by

4
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developing a method for reliably creating NV centers with desirable optical properties

inside a well-controlled environment. This then opens up the possibility of creating

structures to taylor the interactions between NV centers and photons, which will be

explored in the next chapter. Finally we will conclude by discussing some remaining

challenges for implementing quantum devices with NV centers and light, and present

an outlook for the field.

1.2.1 Optical properties of NV centers

Unlike atomic systems, where optical spectroscopy has been used for decades to

elucidate the energy levels and interactions of the system, a complete and detailed

description of the NV center’s level structure has only become fully developed over the

past several years. Chapter 2 gives a theoretical description of the optical transitions,

along with a collection of experimental methods and results concerning spectroscopy

of NV centers. The model of the NV center’s electronic structure is built up from

symmetry considerations followed by the inclusion of various interactions and eternal

effects such as spin-orbit, spin-spin, and crystal strain. We then describe the exper-

imental techniques that are used to investigate the NV center’s optical properties

through PLE spectroscopy and coherent manipulation. Finally, we demonstrate the

interplay between the spin and electronic degrees of freedom by using the optical

transitions to probe and control the ground state spin sublevels. The ideas and tech-

niques described in this chapter provide the foundation for the work presented in the

rest of the thesis.
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1.2.2 Spin-photon entanglement

Chapter 3 describes the realization of quantum entanglement between a NV center

and a single photon. The scheme we use is inspired by previous work done in trapped

ions [22]. Based on our knowledge of the NV center’s level structure, as described in

Chapter 2, we identify a Λ type three-level structure that enables the generation of

entanglement between the ms = ±1 spin sublevels of the NV center’s ground state

and the polarization degree of freedom of spontaneously emitted photons. In addition,

we demonstrate resonant readout of the spin-state of the NV center using a different,

cycling optical transition involving the ms = 0 spin states, which allows us to verify

the fidelity of the entanglement.

The demonstration of spin-photon entanglement is the first step in implementing

a quantum network architecture for long-distance quantum communications using

NV centers [6]. Such an entangled state connects the solid state, spin-based local

quantum register with optical photons, which can then be disseminated over free

space or through optical fibers. Following this experiment, tremendous progress has

been made in achieving the next steps in building a diamond-based quantum network.

Hong-Ou-Mandel interference was demonstrated with indistinguishable photons from

remote NV centers hosted in separate diamond samples [23, 24]. Combined with spin-

photon entanglement, this allowed for the remote entanglement of two NV centers

separated by a distance of three meters through entanglement swapping [25].
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Chapter 1: Introduction

1.2.3 All optical measurement and manipulation of the nu-

clear spin bath

In addition to being an ideal carrier of quantum information over long distances,

optical fields are also powerful tools for quantum control of the local system associated

with the NV center. In Chapter 4, we use the optical transitions of the NV center

to sense and manipulate its surrounding spin bath, which consists of the spin of the

14N nucleus associated with the NV center itself and the 13C nuclei in the diamond

lattice. We do this by making use of the same Λ type system involved in generating

spin-photon entanglement. Such a level structure allows us to use coherent population

trapping to optically pump the NV center into a particular dark state of the ms = ±1

spin sublevels if their energies satisfy a two-photon resonance. The energies of these

spin sublevels are in turn determined by the Zeeman splitting due to a combination

of the externally applied magnetic field and the Overhauser field from nuclear spin

bath. Therefore, by monitoring the photons collected from the NV center for different

external fields, we are able to determine the state of the nuclear spins on a timescale

faster than their inherent dynamics. In addition, our measurement can be used to

prepare the spin bath in a well-defined state. Such a decrease in the uncertainty

of the nuclear spin state can be used to improve the sensitivity of diamond-based

magnetometers by reducing the decoherence caused by hyperfine coupling between the

NV center and the spin bath. In addition, this work has inspired ongoing experimental

and theoretical work in studying the complex dynamics of the nuclear spin bath itself

and its interactions with the NV center under optical addressing. For example, there

are indications that such a scheme can be used to observe Levy-flight statistics in a

7
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single quantum system [26, 27].

1.2.4 Creation of optically coherent NV centers

The experiments presented in Chapters 4 and 3 were both performed using a nat-

ural diamond sample, known as the ”Magic Russian Diamond”, that was one-of-a

kind in its resolvable concentration of native NV centers with stable, coherent optical

transitions. However, such specialized samples can only be used for proof-of-principle

experiments, while the development of scalable diamond-based quantum optical de-

vices requires high quality starting materials that are reproducible. Such a material

has two basic requirements. First, the NV centers must have optical transitions that

are stable in frequency, which is in general not the case due to spectral diffusion caused

by fluctuations in the local charge environment. Second, they must be introduced at

a well-defined depth and concentration near the surface of the diamond to allow for

incorporation into structures and devices. To this end, Chapter 5 presents a method

for satisfying both of these requirements by creating NV centers inside synthetic dia-

mond material through a combination of techniques including ion implantation, high

temperature annealing, and surface treatments. The resulting NV centers demon-

strate spectral diffusion that can be less than a factor of three of the lifetime-limited

linewidth of the optical transition, which is a record for the spectral stability of NV

centers in any material. The depth and concentration of the NV centers can also be

controlled by the energy and dose of the implantation. This work provides an ideal

starting material for the creating of diamond-based nanophotonic structures, which

are discussed in the next chapter.

8
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1.2.5 Nanophotonics with NV centers

In this last chapter, we describe some preliminary work to create structures and

devices to enhance the interaction between NV centers and light. These devices will

be necessary for using techniques such as those demonstrated in Chapters 3 and 4 to

build efficient optical devices based on NV centers. We begin by discussing how cavity

quantum electrodynamics (cQED) can be used to effectively improve the quality of the

NV center’s optical properties and increase the amount of useful, coherent photons

that can be extracted from the system. Starting with the material developed in

Chapter 5, we describe several directions for the fabrication of nanoscale structures

such as photonic crystal cavities. Using one such device, we demonstrate Purcell

enhancement of coherent emission from the NV center, which is an important step

toward implementing scalable, diamond-based optical devices based on interactions

between NV centers and photons.
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Chapter 2

Optical properties of the NV

center

2.1 Introduction

Optical spectroscopy is a powerful tool for determining the structure and behav-

ior of quantum systems, and has historically been the main experimental method

contributing to the understanding of atoms, ions, and molecules. There are now well-

established methods in the field of atomic, optical and molecular physics for trapping,

cooling, and manipulating the internal states of these systems with light. More re-

cently, however, there has been significant interest in discovering and exploring solid

state systems that exhibit atom-like optical properties for the goal of building scalable,

compact devices. Great progress has been made in understanding and utilizing the

optical properties of, for example, self-assembled quantum dots, dye molecules em-

bedded in organic matrix materials, rare earth ions in doped crystals, and impurities
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in insulators and semiconductors [28, 29, 30, 31].

Diamond is a particularly interesting host material for optically active quantum

emitters due to its wide bandgap (5.5 eV) and consequently large transparency win-

dow. It supports a huge variety of impurities and defects that give rise to optical

bands at energies throughout the infrared and visible spectrum [32]. The NV center

is unique in that it combines well-defined optical transitions with long-lived spin sub-

levels in the ground state, much like alkali atoms with transitions involving hyperfine

sublevels. In recent years, a comprehensive theoretical model has been developed

to describe the spin and optical properties of the NV center. We begin this chap-

ter by summarizing this theoretical framework, which allows us to understand the

underlying physics of the subsequent experimental results. We then describe the ex-

perimental techniques that are used to investigate and address the optical properties

of NV centers. As part of this description, we will encounter some general character-

istics of the system that will be come important issues to be addressed later in the

thesis, such as the Debye-Waller factor and the sensitivity of the excited state to the

local environment. Based on our theoretical understanding and spectroscopic results,

we find that the level structure of the NV center gives rise to a rich set of possibilities

for coherent optical control of the system. In particular, we show that the spin state

of the NV center can be measured and manipulated all optically.
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2.2 Level structure and polarization properties of

the NV center

As is the case in any system, the electronic structure of the NV center can be

analyzed by considering its symmetry, in addition to the various interactions that

are present. Our description below starts with electronic states that obey the C3v

symmetry of the NV center. We then consider the effect of various interactions one

by one, starting from the the Coulomb interaction that sets the energy scale of the

optical transitions. Spin-orbit and spin-spin interactions act to lift the degeneracy of

the different states in the ground and excited state manifolds. Finally, we consider

the effect of external perturbations such as electric and magnetic fields that change

the nature and energies of the unperturbed states. More detailed analysis of many of

the concepts presented in this section can be found in [33].

2.2.1 Electronic states of the NV center

The negatively-charged NV center has six electrons, five of which are from the

nitrogen and the three carbons surrounding the vacancy. They occupy the orbitals

states a
�
1
, a1, ex, ey, which are combinations of the four dangling bonds surrounding

the vacancy that satisfy the symmetry imposed by the nuclear potential. These states

can be written as

a
�
1

= α
σ1 + σ2 + σ3

3
+ βσn, (2.1)

a1 = β
σ1 + σ2 + σ3

3
+ ασn, (2.2)

ex =
2σ1 − σ2 − σ3√

6
, (2.3)
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Figure 2.1: Single electron orbitals of the NV center. The nitrogen and three carbons
surrounding the vacancy are shown, and the perspective is along the NV axis. The
color scale roughly represents the sign and occupation of each orbital.

ey =
σ2 − σ3√

2
(2.4)

where σ1, σ2, σ3 and σn are the dangling bonds from the three carbons and the

nitrogen, respectively. These orbitals transform as the irreducible representations of

the C3v group and have been extensively used by many authors [34, 35, 36, 37]. They

are schematically illustrated in Figure 2.1 to give an idea of their symmetries. From

these pictorial representations, one can deduce that, for example, �ey| ŷ·�r |ex� = �ex| x̂·

�r |ex� = −�ey| x̂ ·�r |ey� �= 0. This means that the |ex� and |ey� states have permanent

electric dipole moments, which will become important later for understanding the

electric field sensitivity of the NV center’s excited states and spectral diffusion of the

optical transitions. In addition, one also sees that �a| x̂ · �r |ex� = �a| ŷ · �r |ey� �= 0,

which gives rise to the transition dipole moments between the ground and excited

states. These properties will be discussed in more detail in the following sections.

In the ground state of the NV center, the a
�
1

and a1 states, which are lowest

in energy, are filled by four electrons, as shown in Figure 2.2. The remaining two

electrons occupy the degenerate orbitals ex and ey. The orbitals ex and ey can be

viewed as p-type orbitals, and we can define their combinations, e+ = −ex − iey,

e− = ex− iey, that are analogous to p states with definite orbital angular momentum.

An antisymmetric combination of the orbital states minimizes the Coulomb energy
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and results in a spin-triplet ground state manifold

���3A2

�
= |E0� ⊗






|+1�

|0�

|−1�

(2.5)

where |±1� , |0� correspond to the ms = ±1, 0 states, respectively. The notation

|E0� = |exey − eyex� indicates that the orbital state has 0 orbital angular momentum

projection along the NV axis. A2 denotes the orbital symmetry of the state, which

is determined by the symmetries of the ex and ey orbitals. From here on, we will

often denote these ground states simply as |0� and |±1� when it’s clear that we are

referring to the full electronic state and not just the spin projections.

The relevant excited state for the optical transitions of the NV center is a pair of

triplets which arises from the promotion of one of the electrons occupying the orbital

a1 to the ex or ey orbitals [35]. Note that this state can be modeled by one hole in

the orbital e and another hole in the orbital a1, i.e. a triplet in the ae electronic

configuration (similarly, the ground state can be modeled by two holes in the e
2

electronic configuration). A total of six states can be formed in this configuration

and their symmetries are determined by a group theoretical analysis [33],

|A1� = |E−� ⊗ |+1� − |E+� ⊗ |−1�

|A2� = |E−� ⊗ |+1�+ |E+� ⊗ |−1�

|Ex� = |X� ⊗ |0�

|Ey� = |Y � ⊗ |0� (2.6)

|E1� = |E−� ⊗ |−1� − |E+� ⊗ |+1�

|E2� = |E−� ⊗ |−1�+ |E+� ⊗ |+1�
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Figure 2.2: Ground and excited states associated with the NV center’s optical tran-
sitions. The four symmetrized states are filled by six electrons, which can also be
viewed as two holes (indicated with green, dashed arrows). The Coulomb interaction
defines the optical transition energy of the NV center. The effect of the spin-orbit
and spin-spin interactions are indicated for both the ground and excited states. In
the ground state, the application of a magnetic field further splits the |ms = ±1�
states due to the Zeeman interaction. In the excited state, crystal strain modifies the
energies of sublevels.
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where we have named the first four states as A1, A2, Ex and Ey according to their

symmetries and named the last two states as E1 and E2 since they also trans-

form according to the irreducible representation E. Here, |E±� = |ae± − e±a� and

|X(Y )� =
���aex(y) − ex(y)a

�
.

As spin-orbit and spin-spin interactions are invariant under any operation of the

C3v group, the states given in equation (2.6) are eigenstates of the full Hamiltonian

including these interactions and in the absence of any perturbation such as mag-

netic field and/or crystal strain. The Hamiltonians for the spin-orbit and spin-spin

interactions can be written in the basis of the six states listed above as

Hso = λz (|A1��A1| + |A2��A2| − |E1��E1| − |E2��E2|) (2.7)

Hss = ∆ (|A1��A1| + |A2��A2| + |E1��E1| + |E2��E2|)

−2∆ (|Ex��Ex| + |Ey��Ey|) + ∆� (|A2��A2| − |A1��A1|)

+∆�� (|E1��Ey| + |Ey��E1| − i|E2��Ex| + i|Ex��E2|) (2.8)

where λz is the axial spin-orbit interaction and 3∆ ≈ 1.42 GHz and ∆� ≈ 1.55 GHz

characterize the spin-spin induced zero-field splittings [36, 38, 33]. It can be seen

that spin-orbit interaction splits states with different total angular momentum, i.e.,

the pairs (A1, A2), (Ex, Ey) and (E1, E2) are split from each other by about 5.5 GHz

[36, 39, 40]. The ∆�� term leads to non-spin preserving cross transitions, which results

to optical pumping of the spin states and plays a role in, for example, limiting the

efficiency of spin readout using resonant excitation. The spin-spin interaction also

plays a crucial role in the stability of the states |A1� and |A2�. This interaction shifts

up the non-zero spin states (A1, A2, E1 and E2) by ∼ 1

3
1.42 GHz [41, 40] and shift

the states |Ex� and |Ey� down by ∼ 2

3
1.42 GHz. Thus, the gap between (A1, A2) and

16



Chapter 2: Optical properties of the NV center

(Ex, Ey) is increased, but the gap between the states (Ex, Ey) and (E1, E2) is reduced.

In addition, the spin-spin interaction splits the states |A2� and |A1� by ∼ 3.3 GHz

[40]. Thus, for relatively low strain, we obtain a very robust |A2� state with stable

symmetry properties that are protected by an energy gap arising from the spin-orbit

and spin-spin interactions.

We note here that the zero-field splitting in the ground state also arises from the

spin-spin interaction, and gives an energy difference of ∆gs ∼2.88 GHz between the

|ms = 0� and |ms = ±1� states.

2.2.2 Properties of optical transitions

Once the wavefunctions are known, it is possible to calculate the selection rules

of optical transitions between the triplet excited state and the triplet ground state.

The dipole moment between the ground and excited state is produced by the hole left

in the a orbital under optical excitation. As mentioned earlier, the matrix elements

�a| x̂ ·�r |ex� and �a| ŷ ·�r |ey� are non-zero, where x̂ and ŷ represent the polarization of

the involved photon. We can then calculate the selection rules for transitions between

every pair of ground and excited states, as shown in Table 2.1. As expected, these

selection rules conserve the total angular momentum of the photon-NV center system.

The allowed optical transitions and their polarization properties indicate several

possible Λ schemes in the NV center. However, while these properties are relatively

robust in the |A1� and |A2� states, the |A1� state is coupled non-radiatively to a

metastable singlet state, which then decays to the ground state |0�. This results in

leakage out of the Λ system consisting of the |A1� state and the |±1� states. Thus, we
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Table 2.1: Selection rules for optical transitions between the triplet excited state (ae)
and the triplet ground state (e2). Linear polarizations are represented by x̂ and ŷ,
while circular polarization are represented by σ̂± = x̂ ± iŷ. As an example, a photon
with σ+ polarization is emitted when the electron decays from state A2 to state 3

A2−.

Pol A1 A2 E1 E2 Ex Ey

3
A2− σ̂+ σ̂+ σ̂− σ̂−

3
A20 ŷ x̂

3
A2+ σ̂− σ̂− σ̂+ σ̂+

find that the |A2� state provides the an almost ideal closed Λ scheme for experiments

such as spin-photon entanglement, as described in Chapter 3. On the other hand,

the open Λ system involving |A1� can be useful for efficient detection of dark states

during coherent population trapping, as shown in Chapter 4.

2.2.3 The effect of strain

We now discuss the effect of local strain on the properties of the optical transitions

in order to understand variations between different NV centers and deviations from

the unperturbed system described above. This perturbation splits the degeneracy

between the ex and ey orbitals and results in their mixing. In the limit of high

strain (larger than the spin-orbit splitting), the excited state manifold splits into two

triplets, each with a particular well defined spatial wavefunction. Orbital and spin

degrees of freedom separate in this regime and spin-preserving transitions are excited

by linearly polarized light.

The strain Hamiltonian is given by [38, 33]

Hstrain = δ1 (|ex��ex| − |ey��ey|) + δ2 (|ex��ey| + |ey��ex|) (2.9)

where δ1 and δ2 are different parameters describing the crystal strain. Figure 2.3
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shows an example of how δ1 strain splits and mixes the excited states, and as a

results changes the polarization properties of the optical transitions. A similar effect

occurs for δ2 strain, where |A2� is mixed with |E1�. The full Hamiltonian for the

excited state manifold of the NV center is then

H = Hss + Hso + Hstrain, (2.10)

which can be written in the set of basis states {|A1� , |A2� , |Ex� , |Ey� , |E1� , |E2�} as

H =





∆−∆� + λz 0 0 0 δ1 −iδ2

0 ∆ + ∆� + λz 0 0 iδ2 −δ1

0 0 −2∆ + δ1 δ2 0 i∆��

0 0 δ2 −2∆− δ1 ∆�� 0

δ1 −iδ2 0 ∆�� ∆− λz 0

iδ2 −δ1 −i∆�� 0 0 ∆− λz





(2.11)

It is worth mentioning that while the excited state configuration is highly affected

by strain, the ground state configuration is unaffected to first order due to its anti-

symmetric combination of ex and ey orbitals. It is also protected by the large optical

gap between the ground and excited state to second order perturbation in strain.

2.3 Experimental techniques

Having developed a theoretical model for the optical transitions of the NV center,

we now move on to experimental explorations of these properties. While there are
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Figure 2.3: Effect of strain on the properties of the NV center. a. Energies of the
excited states as a function of strain, expressed in units of the linear strain induced
splitting between the |Ex� and |Ey� states. b. Strain induced mixing of the |A2�
and |E2� states, showing the fraction of A2 and E2 character of the highest energy
excited state. c. Polarization character of the optical transition between |A2� state
and the ground state |+1� as a function of strain. As strain increases, the polarization
changes from circularly to linearly polarized. The transition between |A2� and |−1�
shows the same behavior, except with σ− and σ+ switched. Therefore, at high strain,
decay from the |A2� results in a separable state of the photon polarization and spin
rather than an entangled state.
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many available descriptions of setups and procedures for room temperature experi-

ments with NV centers [42, 43], we will focus here on some techniques relevant for

low-temperature studies of the optical properties.

2.3.1 Diamond materials

We begin this section with a description of different types of single crystal diamond

samples and their differences with regard to NV center properties. The first type of

commonly available diamond material is classified as type Ib. In these diamonds, sub-

stitutional nitrogen atoms (also called P1 centers) are the dominant defects, which

cause the samples to have a yellow color [32]. Type Ib diamonds can occur naturally

and are typically grown by the high-pressure-high-temperature (HPHT) method by

companies such as Element Six and Sumitomo. Element Six specifies their type Ib

diamond as having substitutional nitrogen concentrations of <200 ppm. In our ex-

perience, the concentration of NV centers in type Ib samples vary widely through

different samples, but NV centers in bulk samples are usually unresolvable under

confocal microscopy. There have been no reports of coherent optical transitions from

type Ib diamonds, except in one nanocrystal sample where a narrow, but spectrally

unstable line was observed under photoluminescence excitation (PLE) spectroscopy

[44]. However, as far as we know, this result has never been reproduced. In our experi-

ments, type Ib samples are typically used for developing and fabricating nanophotonic

structures, along with studies of NV centers in these structures at room temperature.

The rest of the diamond samples that we typically work with can be classified

as type IIa, which is typically defined as having nitrogen impurity concentrations of
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less than 1ppm. Type IIa diamonds are rare in nature, but one such sample was

found containing a resolvable concentration of single NV centers that show optical

linewidths that are close to the lifetime limited linewidth of 13 MHz [45]. Many

initial experiments on the optical properties of NV centers were performed on several

different pieces of this sample, including the ones in Chapters 3 and 4 of this thesis,

along with, for example, [45] and [46]. The unique properties of this sample, and

its somewhat murky origins in the Ural mountains, has earned it the name “The

Magic Russian Diamond”. The piece used in our experiments is shown in Figure

2.4a, but was accidentally cracked into several smaller pieces some time after the

picture was taken. Clearly, such specialized samples cannot be used for wide-scale

experiments and development of diamond-based devices. Therefore, we have also

worked extensively with synthetic type IIa diamonds grown using microwave assisted

chemical vapor deposition (CVD) at Element Six. Standard type IIa grade samples

typically also show a unresolvable concentration of NV centers. However, “electronic

grade” diamonds developed by Element Six, which are specified to have substitutional

nitrogen concentrations of <5 ppb, have NV center concentrations that range from

barely resolvable single NVs to less than 1 NV per tens of µm3. Native NV centers

found in these samples often have linewidths that are broadened by spectral diffusion

to several hundred MHz [24, 47, 48]. Nevertheless, they have been used in a variety

of experiments involving optical transitions of NV centers [25, 24, 23], and are also

excellent starting materials for introducing optically coherent NV centers through ion

implantation, as described in Chapter 5.
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Figure 2.4: Experimental setup and characterization of NV centers. a. The type IIa
natural diamond sample used for the experiments in Chapters 3 and 4. b. Confocal
microscope setup. Components in black are needed for a basic room temperature
apparatus for investigating the ground state spin physics of the NV center. Red
components, such as a cryostat and resonant excitation laser, are additionally needed
for low temperature studies of coherent optical properties. A supercontinuum laser is
added for characterization of photonic devices such as cavities and waveguides, and an
additional, independent collection channel is used for collecting light from a different
spatial location than the excitation, as shown in green. In addition, the spectrometer
can also be used for photoluminescence studies for the NV center. c. Confocal image
of single NV centers obtained using 532 nm excitation and PSB collection. d. Low
temperature photoluminescence spectrum of a NV center. Sharp peak is ZPL at 637
nm.
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2.3.2 Experimental setup for optical characterization of NV

centers

Figure 2.4b shows a schematic of a multi-purpose setup used for optical investi-

gation of NV centers and diamond-based photonic devices. Depending on the type

of experiment, only parts of this comprehensive setup are needed. A typical basic

confocal microscope for room-temperature studies of NV centers is shown in black. A

high numerical aperture (NA) objective is used to focus laser light onto the sample.

In order to scan over the sample and locate individual centers in a confocal image

such as shown in Figure 2.4c, the diamond is either mounted on a high resolution

positioning stage, or the optical path is scanned using a glavo mirror imaged onto

the back of the objective with a pair of lenses comprising a 4f imaging system. The

vibronic sidebands of the NV center’s optically excited states can be addressed using

a laser of higher energy than the 637 nm zero-phonon line (ZPL). Typically, this is

done using a 532 nm frequency doubled Nd:YAG laser, which is the most common

method for controlling the charge state of the NV center. CW 532 nm excitation can

ionize both the negatively charged NV center and surrounding charge donors such as

substitutional nitrogens, resulting in a equilibrium charge state of the NV center that

is ∼ 70% NV− and ∼ 30% NV0 [49]. Off resonant excitation is also used in room

temperature experiments to polarize the spin of the NV center in to the |ms = 0�

ground state. This process happens through non-spin preserving transitions from the

optically excited state into spin-singlet states of the NV center, which then preferen-

tially decays to the |ms = 0� state [39]. Finally, microwave and RF fields for driving

spin transitions of the NV centers can be applied with a variety of methods, including
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copper wires, coplanar waveguides, and resonator structures.

For low temperature experiments, the diamond sample is placed inside a helium

flow cryostat (Janis ST-500) and cooled to ∼4K. Alternative low temperature systems

such as closed-cycle pulse tube coolers and bath cryostats can also used. Diamond

samples are typically mounted onto the cold finger, or some intermediate substrate

such as a silicon wafer, using indium or silver paste. For resonant excitation of the

NV centers, a external cavity diode laser around 637 nm is introduced into the optical

path. The New Focus TLB 6304 laser is a popular choice due to its large mode-hop-

free scanning range of 60-80 GHz, wavelength tunability over several nanometers, and

ease of operation. Both the 532 nm and 637 nm lasers need to be pulsed for most

experiments, which can be accomplished using acoustic-optical modulators (AOM)

or electro-optical modulators (EOM).

Fluorescence from the NV center is collected through the same optical path, cou-

pled into single-mode fibers, and detected using avalanche photodiodes (APD) or a

spectrometer. Filters are placed in the collection path to remove reflected excitation

light and separate different parts of the emission spectrum. As shown in Figure 2.4d,

the NV center spectrum consists of a broad separate phonon-sideband (PSB) and a

sharp ZPL at low temperatures. The percentage of emission into the ZPL is typically

3−5%, which is a major limitation on the efficiency of applications based on coherent

photons from the NV center. In Chapter 6, we will address this issue by enhancing

the emission into the ZPL using cavity QED with nanophotonic structures. In or-

der to characterize these structures, we use an additional supercontinuum laser as a

broadband light source to perform transmission measurements of cavities and waveg-
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uides. The light is coupled into one port of the optical device, and the transmitted

light must be collected from an output port at a spatially separate location. For this

purpose, a second collection channel can be added with its own set of galvo mirrors.

In addition, the signal from the two channels can be combined on a time-correlated

single photon counting (TCSPC) device for measurements of the second-order auto-

correlation function g
2(τ) of the emission from individual NV centers to show that

they are single-photon emitters [50]. This can also be accomplished by splitting the

light collected in a single channel using a fiber beamsplitter.

2.3.3 PLE spectroscopy of NV centers

The optical transitions of the NV center can be identified using PLE spectroscopy

by scanning the resonant excitation laser across the ZPL and collecting photons in the

PSB. Since the |0� → |Ex� and |0� → |Ey� are best the cycling transitions, they are

usually the ones observed in PLE spectroscopy in the absence of microwave driving

or laser modulation. However, repeated resonant excitation eventually ionizes the

NV− or optically pumps the NV center into a different ground state spin sublevel

due to the small non-spin conserving cross transitions out of the |ms = 0� excited

states into the |±1� ground states [51]. Therefore, some form of charge and spin

repumping must eventually be performed. As shown in Figure 2.5b, the first method

we use involves scanning the 637 nm laser across the NV transitions and turning on

the laser while simultaneous collecting PSB counts for ∼ 2 ms at each frequency.

At the end of the scan, the 637 nm laser is turned off and a 532 nm repumping

pulse is applied. Any duration of repumping longer than a few µs is sufficient to
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reinitialize the NV center. Depending on the charge environment of the NV center

and its strain-dependent level structure, however, it may be difficult to obtain good

signal from this simple method. For example, in the presence of a large number

of other charge traps in the environment, the NV center may be ionized before a

sufficient number of photons are scattered on resonance. Another potential issue is

that the finite branching ratio of the |0� → |Ex� and |0� → |Ey� transitions into

the ms = ±1 states causes a decrease in fluorescence on the timescale of several

microseconds. However, fluorescence can potentially still be detected due to off-

resonant excitation of transitions from the |±1� spin states. For example, at high

strain, the |±1� → |A1� transition becomes almost degenerate with the |±1� → |Ex�

transition, allowing a steady state fluorescence to be established. However, this may

not be the case for all NV centers. More robust methods of obtaining the PLE

spectrum without repumping during the scan involve either CW microwave mixing

of the |0� and |±1�, or modulation of the resonant excitation laser by the ground

state zero-field splitting, which also allows the |ms = ±1� transitions to be observed

[51, 52, 53].

Figure 2.5b shows the results of PLE scans taken using this first method. A clear

resonance can be seen in each scan, whose frequency then jumps during each successive

scan. This is an indication of spectral diffusion, where changes in the local electric

field environment of the NV center causes the energies of its excited states to fluctuate

over time. As mentioned earlier, from the electronic orbitals |ex� and |ey� involved in

the excited states, one can see that the |Ex� and |Ey� states have a permanent electric

dipole moment. This dipole moment has been measured to be ∼0.8 Debye, which
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Figure 2.5: Methods for PLE spectroscopy of NV centers. a. Pulse sequence for
repumping during each PLE scan (top), along with an example showing the result of
successive scans (bottom) and the averaged spectrum (middle). b. Pulse sequence
for repumping at the end of each PLE scan (top), along with corresponding results
for the same transition as in a., except zoomed in over a smaller frequency range.
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gives rise to energy shifts of ∼4 GHz/MV/m [33]. It is now well established that

532 nm repumping causes complex charge dynamics in the diamond environment by

photoionizing impurities that act as charge donors [54]. Therefore, while very narrow

single-scan linewidths can be obtained using this method [44, 45, 52], the long-term,

extrinsically broadened linewidth obtained by averaging many such scans can be much

broader [24, 47, 48]. This issue is addressed in detail in Chapter 5 of this thesis.

A second method of obtaining the PLE spectrum involves a pulse sequence con-

sisting of a 1 µs 532 nm repumping pulse, followed by a 10 µs resonant excitation

pulse, during which PSB counts are collected. As the 637 nm laser is scanned across

the NV transitions, this sequence is repeated many times for each frequency, as il-

lustrated in Figure 2.5a. This method has the advantage that it is robust against

ionization and spin polarization, and should in principle give good signal to noise

regardless of the charge environment and strain-dependent level structure of the NV

center. It also shows the overall lineshape of the transition, including the effects

of spectral diffusion, in a single scan. Again, microwave fields are used to obtain a

spectrum of all the possible transitions, including those that involve the |ms = ±1�

states.

2.4 Studies of the optical properties of NV centers

Figure 2.6a shows a PLE spectrum taken with CW microwave excitation that

mixes the ground states during the 637 nm laser pulse. All resonances expected

from the direct and cross transitions are observed, as shown in 2.6b, along with some

possible microwave-optical two photon transitions.
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Figure 2.6: Optical transitions of the NV center. a. All possible transitions between
the ground and excited states, with direct transitions indicated with solid lines, and
spin non-conserving cross transitions indicated with dashed lines. b. PLE spectrum
taken with CW microwave excitation. c. Frequencies of all possible transitions shown
in a. as a function of strain. The frequencies of the peaks in b. are matched to a
particular strain value (black dots). The extra unidentified peak may be due to a two
photon transition from the |0� state to the |Ex� state through the absorption of an
optical photon and emission of a microwave photon.
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2.4.1 Optical Rabi oscillations and resonant spin readout

The strongest transitions in 2.6a are the |0� → |Ex� and |0� → |Ey� cycling

transitions. Figure 2.7a shows an example of optical Rabi oscillations on the |0� →

|Ey� transition, measured by turning on a 40 ns resonant laser pulse a rise time of

∼1 ns using an EOM (Guided Color Technologies). We then accumulate a histogram

of photon arrival times on a TCSPC device with a timing resolution of 195 ps. The

photon count rate is proportional to the population in the |Ey� state, which, in the

absence of decay or decoherence, is given by PEy
(t) =sin2(|Ω|t), where Ω = �µ · �E/h̄ is

the Rabi frequency. In this case, however, the oscillations are damped by the finite

lifetime of the excited states, which can be measured by fitting to the exponentially

decaying tail after the pulse turns off. In addition to population decay, additional

decoherence, such as frequency fluctuations of the transition frequency relative to the

laser frequency caused by, for example, spectral diffusion, will also contribute to the

damping of Rabi oscillations. We note here, however, that this additional dephasing

alone does not give a good estimate of the spectral diffusion of the NV center, unlike

what is claimed in [46]. For example, if the transition frequency jumps well outside of

the power-broadened linewidth of the transition, then the NV center will effectively

not be excited, and there will simply be no contribution to the Rabi oscillation data.

By measuring Rabi oscillations, we can determine the length of laser pulse needed

to, for example, perform an optical π pulse to transfer population to the |A2� state

for entanglement generation, as described in Chapter 3. Note that, while optical

Rabi oscillations can also be observed between the |ms = ±1� ground and excited

states, the dynamics are more complicated due to the fact that these are Λ-type
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Figure 2.7: a. Optical Rabi oscillations detected using PSB fluorescence and resonant
excitation, along with corresponding pulse sequence. The 637.2 nm laser is tuned to
the |0� → |Ey� transition and is on from 50 ns to 90 ns. b. Rabi oscillations between
|0� and |+1� (blue) detected using resonant spin readout and corresponding pulse
sequence. Red lines are calibration levels for the |0� and |+1� states. To initialize the
spin states for this calibration, we use a measurement-based technique where the |0�
is prepared conditioned on the detection of a PSB photon after excitation to the |Ey�
state. To prepare the |+1� state, we then apply a microwave π pulse before readout.
More details are available in section A.3
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transitions. In the absence of a magnetic field, instead of settling to a steady state

value corresponding to 50% population in the excited state, the photon count rate

continually decreases after a few optical cycles as population is pumped into a ”dark”

ground state that is not excited by the by the laser. However, the observed Rabi

oscillations are usually sufficient for determining the optical π pulse length.

The cycling transitions of the NV center can also be used to efficiently read out

the spin state of the NV center. As shown in Figure 2.7, when a resonant laser

pulse is turned on for 10 µs, the number of photons scattered is proportional to the

population in the |ms = 0� states, and microwave-driven Rabi oscillations between the

|0� and |+1� ground state sublevels can be observed. A detailed description of the

resonant spin-readout procedure used in Chapter 3 can be found in section A.3. The

efficiency and fidelity of this spin readout method is limited by the photon collection

efficiency, the temperature, and the branching ratio out of the |ms = 0� manifold. As

can be predicted by the Hamiltonian given in Equation 2.2.3, this branching ratio

depends on the local strain. In our first experiments, the spin readout contrast was

limited to cM = 0.11 ± 0.0022 counts/shot when the spin was prepared in the |0�

state and a background-limited cB = 0.0057± 0.0010 counts/shot when the spin was

prepared in the |±1� states. Therefore, to determine the spin of the NV center, the

state had to be prepared and read-out many times to obtain an average number of

counts per shot C, which then allows us to calculate the population in the |0� state

as P = (C − cB) / (cM − cB). By increasing the collection efficiency with a solid

immersion lens and working with low strain NV centers, single shot resonant readout

of the spin state has subsequently been demonstrated [55].
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2.4.2 Multi-level systems and all-optical spin manipulation

While the previous section mostly focused on cycling optical transitions, the NV

center’s level structure enables us to explore and make use of more complex dynamics

beyond that of a two-level system. For example, Chapter 4 makes use of the Λ-type

system between the |±1� ground states and the |A1� or |A2� excited state to perform

coherent population trapping (CPT). A single linearly polarized laser field was used

to simultaneously drive the σ
+ and σ

− polarized transitions. In this case, for the |A2�

system, the Hamiltonian in the rotating frame is given by

H = ∆|A2��A2| −
δ

2
|−1��−1| + δ

2
|+1��+1| (2.12)

−Ω+ |A2� �+1| + Ω− |A2� �−1| − Ω∗
+
|+1� �A2| + Ω∗

− |−1� �A2| , (2.13)

where ∆ is the one-photon detuning and δ is the two photon detuning corresponding

to the Zeeman splitting between the |±1� states. From this Hamiltonian it can be

seen that the dark state

|D� =
Ω− |+1�+ Ω+ |−1�

�
|Ω−|2 + |Ω+|2

(2.14)

is perfectly decoupled from the excited state when δ = 0. Since δ is given by the sum

of the externally applied magnetic field and the Overhauser field from the nuclear spin

bath, we can determine the nuclear spin configuration by finding the external field

for which the NV fluorescence is suppressed, indicating that the system is trapped in

the dark state. This is the idea behind the work presented in Chapter 4.

Based on this description of multi-level dynamics, we now describe several exper-

iments to manipulate the spin of the NV center by all-optical means. Even though

methods for microwave manipulation of the spin states are well established, all-optical
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spin manipulation is useful in potentially allowing more flexibility in the transitions

addressed and achieving faster operations, especially in applications where the geom-

etry does not allow easy access with high power microwave fields. For example, in

photonic devices where light fields are well coupled to the NV center and are already

being used as the signal, it would be desirable use all-optical means to control and ini-

tialize the device as well and eliminate the need for fabricating additional structures

for microwave delivery.

As a first example of all-optical spin manipulation, we demonstrate two-photon

Rabi oscillations between the |±1� states mediated by the |A2� state. We explore

the case where there is no externally applied magnetic field so that the |±1� states

are mostly degenerate except for hyperfine couplings with nuclear spins. This is one

situation where all-optical spin manipulation is advantageous. Without a Zeeman

splitting, is difficult to selectively address a well-defined combination of the |±1�

states with microwaves, since the polarization of microwave fields are much more

difficult to control than the laser polarization.

Again, we use a single linearly polarized laser to address both branches of the

three level system, now far detuned from the |±1� → |A2� transition, i.e. ∆ is large

and δ = 0. In this case, the system behaves as if the |±1� states are coupled by an

effective two-photon Rabi frequency Ω� = Ω∗
+
Ω−/∆. In the limit that the detuning

∆ is large enough so that

Ω2

+

∆2
γ,

Ω2

−
∆2

γ � Ω�
, (2.15)

where γ is the lifetime of the excited state, one should be able to observe Rabi

oscillations between the |±1� states.
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Lacking the ability to selectively transfer population between |±1� and |0� with

microwaves and perform conventional resonant spin readout, we must be able to both

prepare and directly read out the population in the |+1� or |−1� states all-optically

to observe the spin dynamics. State preparation can be achieved by optical pumping.

For example, to prepare the |−1� state, we first apply a laser pulse for 20 µs on the

|0� → |Ex� transition. This optically pumps the spin states in to |±1�. We then

apply a σ− polarized laser to selectively excite the |+1� → |A2� transition for 400 ns.

Using this method, a spin polarization of ∼80% in the |−1� state was achieved. The

effectiveness of this method is limited by off-resonant excitation of the |±1� during the

first pumping step, and imperfect state selection during the second step. In addition,

the long optical pumping step can result in ionization of the NV center. It should

be possible to improve spin polarization by optimizing the power and duration of the

|0� → |Ex� pulse, and by better controlling the polarization of the |+1� → |A2� laser.

In the low strain limit, unlike the |ms = 0� transitions, the transitions involving the

|ms = ±1� states are not cycling. Therefore, we read out the spin state by applying

a π pulse to the |A2� state and collecting the emitted photons. We can choose the

particular superposition of |+1� and |−1� by choosing the polarization of the readout

laser. To separately characterize the effectiveness of this method, we first apply a

magnetic field and use this technique to detect microwave-driven transitions between

|+1� and |0�. Figure 2.8 shows a comparison of the two methods for reading out the

|+1� and |0� populations, along with the associated level scheme and pulse sequences.

As expected, the oscillations are π out of phase from each other. While the laser power

and duration was not optimized for the |0� → |Ex� data, we see that the |+1� → |A2�
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Figure 2.8: Readout of |−1� spin state popluation. a. Level structure showing
laser excitation and microwave field. An external field was applied here so that the
microwaves are state-selective. However, the Zeeman splitting is not resolvable with
the |+1� → |A2�, so state selectivity is ensured by using making the laser σ− polarized.
b. Pulse sequence showing two alternative readout schemes. c. Ground state Rabi
oscillations detected using conventional spin readout with |0� → |Ex� transition. d.

Ground state Rabi oscillations detected using |+1� → |A2� transition.

readout results in better contrast, but much fewer counts.

We now remove the external magnetic field and combine the spin polarization and

readout techniques above to demonstrate two-photon Rabi oscillations, as shown in

Figure 2.9. First, the NV center is optically pumped into the |−1� state as described

above. Using an EOM, we then apply a linearly polarized laser pulse of varying

duration that is detuned 2.24 GHz from the |±1� → |A2� transition. The population

in the |+1� state is then read out with the same laser as the one used for |+1� to |−1�
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optical pumping. As a reference, we again read out the |+1� state after applying

only the |0� → |Ex� optical pumping step, which should prepare the spin state in

an equal superposition of |+1� and |−1�. We normalize the counts obtained during

the readout after two-photon Rabi to the counts obtained during readout after the

reference sequence. As can be seen in Figure 2.9c, we observe oscillations of the

|+1� state population that eventually decays to a steady state value of 1 relative to

the reference, which corresponds to 50% population. The two-photon Rabi frequency

follows a linear dependence in the laser power, as expected (Figure 2.9)d. We estimate

the expected two-photon Rabi frequencies by directly measuring the Rabi frequencies

on either the |0� → |Ex� or |+1� → |A2� transition. We also take into account the

fact that the |±1� → |A1� is close by, with an additional detuning of 3.2 GHz. Since

the |A1� state has the opposite relative phase as the the |A2� state between the |±1�

spin components, we expect that Ω+(A2) = −Ω+(A1). Therefore, the two-photon

Rabi frequency is given by

Ω� =
Ω+Ω−

∆2

− Ω+Ω−

∆1

(2.16)

where ∆1,2 are the detunings from the |A1,2� states, respectively.

The decay of the oscillations is due to off-resonant excitation of the excited states.

The decay rate is given by the total population in the excited states multiplied by

their decoherence rate, which we estimate to be Γ ∼ 100 MHz including the effect

of spontaneous decay, spectral diffusion, and laser frequency fluctuations. Therefore,

we estimate the effective decay rate to be

Γ� =

�
Ω2

+

∆2
2

+
Ω2

−
∆2

2

+
Ω2

+

∆2
1

+
Ω2

−
∆2

1

�

Γ. (2.17)

We again plot this quantity using the two estimates of the Rabi frequency in Figure
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Figure 2.9: Two-photon Rabi oscillations between the |±1� ground states. a. Level
structure showing the transitions involved. One laser is used for optical pumping from
|0� state (magenta). Another σ− polarized laser is used for optical pumping and spin
readout from |+1� state (red). A third, linearly polarized laser is used for driving
the two-photon transition (orange). b. Pulse sequence showing spin preparation,
manipulation, and readout steps. An additional set of pulses provide a reference for
eliminating the effects of count rate fluctuations due to spatial drift of the NV center
and laser frequency fluctuations. c. Two-photon Rabi oscillations with 46 µW of
laser power. d. Two-photon Rabi frequency as a function of laser power, with linear
fit (blue line) and estimates based on Rabi frequencies of the |0� → |Ex� (black, solid
line) or |+1� → |A2� transition (black, dashed line). e. Decay rate of two-photon
Rabi oscillations as a function of laser power, with fit and estimates as in d.

2.9e.

In order to achieve full all-optical control of the spin states, we also require a

method of coherently transferring population between the |0� and |±1� states. This

requires the use of non-spin preserving cross transitions between the ground and

excited states. Cross transitions involving the lower branch of the excited state levels

under high strain were previously used in CPT experiments [53]. We choose to instead

39



Chapter 2: Optical properties of the NV center

use the tripod system formed between the |A2� excited state and all three ground state

levels in the same low-strain NV center as above. In principle, such a system would

allow for selective coherent operations between |0� and either |+1� or |−1� even at

zero magnetic field, since the two branches of the Λ subsystem between |A2� and |±1�

have orthogonal circular polarizations. This is not the case for high strain NV centers.

Here, we present an initial characterization of the tripod system. To do this, we scan a

single linearly polarized laser across the |0� → |A2� transition and modulate the same

laser using an EOM to create sidebands for addressing the |±1� → |A2� transition.

In this case, the Hamiltonian of the system is given by

H = −∆|0��0| − (∆� +
δ

2
)|+1��+1| − (∆� − δ

2
)|−1��−1|

−(Ω0|A2��0| + Ω+|A2��+| + Ω−|A2��−| + c.c.). (2.18)

Here, as illustrated in Figure 2.10a, ∆ is the one photon detuning of the carrier

laser frequency, δ is the Zeeman splitting between the |±1� states, and ∆� = ∆ −

∆ZFS + ωmod, where ∆ZFS = 2.88 GHz is the ground state zero field splitting and

ωmod is the laser modulation frequency. In the experiment, we perform the usual PLE

spectroscopy with a 50 µs resonant excitation pulse and collect PSB photons during

that interval. In addition, during each successive scan, we change the modulation

frequency such that the sideband sweeps through the |±1� → |A2� transition. An

external magnetic field was applied to split the |±1� states by 18 MHz. As can be seen

in Figure 2.10c, when the sideband is far detuned from the |±1� → |A2� transitions,

we simply obtain a resonance corresponding to the |0� → |A2� cross transition. When

the modulation frequency is such that the Λ systems involving the |0� and |+1� or

|0� and |−1� states are in two-photon resonance, we see a decrease in fluorescence

40



Chapter 2: Optical properties of the NV center

Figure 2.10: Spectroscopy of the |A2� state tripod system. a. Level structure. b.

Theoretical excited state population as a function of one-photon detuning and mod-
ulation frequency. c. Experimental data showing PSB fluorescence during laser
excitation as a function of one-photon detuning and modulation frequency.

indicative of population becoming trapped in a dark state. We can model this system

including the effects of excited state decay using a full master equation approach.

The results are shown in Figure 2.10b, and agree qualitatively with the experimental

data.

The four-level system investigated here can be used for transferring population

between the |0� and |±1� states using, for example, two-photon Rabi or stimulated

Raman adiabatic passage (STIRAP) techniques. In addition, there have been pro-

posals for using tripod systems for performing robust geometric gates between two of

the ground state levels for quantum computation applications [56, 57].
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Quantum entanglement between

an optical photon and a solid-state

spin qubit

3.1 Introduction

A quantum network [6] consists of several nodes, each containing a long-lived

quantum memory and a small quantum processor, that are connected via entangle-

ment. Its potential applications include long-distance quantum communication and

distributed quantum computation [58]. Several recent experiments demonstrated on-

chip entanglement of solid-state qubits separated by nanometer [59] to millimeter

[60, 61] length scales. However, realization of long-distance entanglement based on

solid-state systems coupled to single optical photons [62] is an outstanding challenge.

The nitrogen-vacancy (NV) center, a defect in diamond consisting of a substitutional
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nitrogen atom and an adjacent vacancy, is a promising candidate for implementing a

quantum node. The ground state of the negatively charged NV center is an electronic

spin triplet with a 2.88 GHz zero-field splitting between the |ms = 0� and |ms = ±1�

states (from here on denoted |0� and |±1�). With long coherence times [63], fast mi-

crowave manipulation, and optical preparation and detection [64], the NV electronic

spin presents a promising qubit candidate. Moreover, it can be coupled to nearby

nuclear spins that provide exceptional quantum memories and allows for the robust

implementation of few-qubit quantum registers [59, 65]. In this work we demon-

strate the preparation of quantum entangled states between a single photon and the

electronic spin of a NV center:

|Ψ� =
1√
2
(|σ−� |+1�+ |σ+� |−1�), (3.1)

where |σ+� and |σ−� are orthogonal circularly polarized single photon states.

The key idea of our experiment is illustrated in Figure 3.1a. The NV center is

prepared in a specific excited state (|A2� in Fig 3.1a) that decays with equal proba-

bility into two different long lived spin states (|±1�) by the emission of orthogonally

polarized optical photons at 637 nm. The entangled state given by Eq. 3.1 is created

because photon polarization is uniquely correlated with the final spin state. This

entanglement is verified by spin state measurement using a cycling optical transition

following the detection of a 637 nm photon of chosen polarization.
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Figure 3.1: Scheme for spin-photon entanglement. a. Following selective excitation to
the |A2� state, the Λ system decays to two different spin states through the emission of
orthogonally polarized photons, resulting in spin-photon entanglement. b. Schematic
of the optical setup. Individual NV centers are isolated and addressed optically using
a microscope objective. Two resonant lasers at 637 nm and an off resonant laser at
532 nm address various optical transitions. Fluorescence emitted from the NV center
is spectrally separated into PSB and ZPL channels, and are detected with APDs. The
latter channel contains entangled photons and is sent through a polarization analysis
stage.

3.2 Characterization of NV centers

Understanding and controlling excited state properties is a central challenge for

achieving such a coherent interface between spin memory and optical photons. In

contrast to isolated atoms and ions, solid state systems possess complex excited state

properties that depend sensitively on their local environment [51]. Non-axial crystal

strain is particularly important to the present realization because it affects the optical

transitions’ selection rules and polarization properties [39].

In the absence of external strain and electric or magnetic fields, properties of the

six electronic excited states are determined by the NV center’s C3V symmetry and

spin-orbit and spin-spin interactions (shown in Figure 3.2a) [39]. Optical transitions

between the ground and excited states are spin preserving, but could change electronic
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orbital angular momentum depending on the photon polarization. Two of the excited

states, labeled |Ex� and |Ey� according to their orbital symmetry, correspond to the

ms = 0 spin projection. Therefore they couple only to the |0� ground state and

provide good cycling transitions, suitable for readout of the |0� state population

through fluorescence detection. The other four excited states are entangled states of

spin and orbital angular momentum. Specifically, the |A2� state has the form

|A2� =
1√
2
(|E−� |+1�+ |E+� |−1�), (3.2)

where |E±� are orbital states with angular momentum projection ±1 along the NV

axis. At the same time, the ground states (|0�, |±1�) are associated with the orbital

state |E0� with zero projection of angular momentum (for simplicity the spatial part

of the wavefunction is not explicitly written). Hence, due to total angular momentum

conservation, the |A2� state decays with equal probability to the |−1� ground state

through σ+ polarized radiation and to |+1� through σ− polarized radiation.

The inevitable presence of a small strain field, characterized by the strain splitting

(∆s) of |Ex,y�, reduces the NV center’s symmetry and shifts the energies of the excited

state levels according to their orbital wavefunctions. For moderate and high strain,

the excited states are separated into two branches and there is mixing between levels

[53]. In the upper branch, an energy gap protects |A2� against low strain and mag-

netic fields, preserving the polarization properties of its optical transitions. A group

theoretical analysis of the excited states and polarization properties of the transitions

are provided in Section 2.2.

To ensure that |Ey� is a good cycling transition and |A2� acts as an entanglement

generation transition as required for the current study, we select a NV center with
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Figure 3.2: Characterization of NV centers. a. Energy levels of the NV center
under strain. Solid lines are based on a theoretical model from [51] and dots are
data from seven NV centers. The dashed line indicates the NV center used in this
paper. b. Excitation spectrum of the NV center under CW microwave radiation. c.

Polarization properties of the |±1� → |A2� transition in absorption. The system is
initially prepared in |+1� (blue) or |−1� (red). We then apply a laser pulse of varying
polarization to the |A2� state while collecting fluorescence. Oscillations with visibility
77 ± 10% indicate that the transitions linking |±1� to |A2� are circularly polarized
and mutually orthogonal (see Section A.4 for details).
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relatively small strain splitting (∆s ∼ 2× 1.28 GHz). Figure 3.2b presents its excita-

tion spectrum, while Figure 3.2c demonstrates the desired polarization properties of

the |±1� ↔ |A2� transitions via resonant excitation.

3.3 Experimental demonstration of spin-photon en-

tanglement

We now turn to the experimental demonstration of spin-photon entanglement.

Our experimental setup is outlined in Figure 3.1b and described in Section A.2. To

create the entangled state, we use coherent emission within the narrow-band zero

phonon line (ZPL), which consists of only 4% of the NV center’s total emission. The

remaining optical radiation occurs in the frequency shifted phonon side band (PSB),

which is accompanied by phonon emission that deteriorates the spin-photon entan-

glement [66]. Isolating the weak ZPL emission presents a significant experimental

challenge due to strong reflections of the resonant excitation pulse reaching the de-

tector. By exciting the NV center with a circularly polarized 2 ns π pulse that is

shorter than the emission timescale, we can use detection timing to separate reflec-

tion from fluorescence photons. A combination of confocal rejection, modulators,

and finite transmittivity of our optics suppresses the reflections sufficiently to clearly

detect the NV center’s ZPL emission in a 20 ns region (Figure 3.3).

For photon state determination, ZPL photons in either the |σ±� or |H� = 1√
2
(|σ+�+

|σ−�), |V � = 1√
2
(|σ+� − |σ−�) basis are selected by a polarization analysis stage and

detected after an optical path of ∼ 2 m. Spin readout then occurs after a 0.5 µs spin
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Figure 3.3: Experimental procedure for entanglement generation. a. After spin
polarization into |0�, population is transfered to |+1� by a microwave π pulse (Ω+1).
The NV is excited to |A2� with a 637.19 nm π pulse and the ZPL emission is collected.
b. If a σ+ or σ− photon is detected, the population in |+1� or |−1� is transferred to
|0�. If a |H� or |V � photon is detected, a τ − 2π − τ echo sequence (see Section A.5)
is applied with Ω+1 and Ω−1, followed by a π pulse which transfers the population
in |M� (see text) to |0�. c. The population in |0� is measured using the 637.20 nm
optical readout transition. d. Pulse sequence for the case where a |H� or |V � ZPL
photon is detected (time axis not to scale). If a σ± photon is detected instead, only
a π pulse on either Ω+1 or Ω−1 is used for spin readout. Inset: Detection time of
ZPL channel photons showing reflection from diamond surface and subsequent NV
emission (blue) and background counts (purple).
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memory interval following photon detection by transferring population from either

the |±1� states or from their appropriately chosen superposition into the |0� state

using microwave pulses Ω±1. The pulses selectively address the |0� ↔ |±1� transi-

tions with resonant frequencies ω± that differ by δω = ω+−ω− =122 MHz due to an

applied magnetic field. For superpositions of |±1� states an echo sequence is applied

before the state transfer to extend the spin coherence time (see Section A.5). The

transfer is followed by resonant excitation of the |0� ↔ |Ey� transition and collection

of the PSB fluorescence. We carefully calibrate the transferred population measured

in the |0� state using the procedure detailed in Section A.3.

Figure 3.4a shows the populations in the |±1� states, measured conditionally on

the detection of a single circularly polarized ZPL photon. Excellent correlations

between the photon polarization and NV spin states are observed.

To complete the verification of entanglement, we now show that correlations per-

sist when ZPL photons are detected in a rotated polarization basis. Upon detection

of a linearly polarized |H� or |V � photon at time td, the entangled state in Eq. 3.1 is

projected to |±� = 1√
2
(|+1� ± |−1�), respectively. These states subsequently evolve

in time (t) according to

|±�
t
=

1√
2

�
e
−iω+(t−td) |+1� ± e

−iω−(t−td) |−1�
�
. (3.3)

In order to read out the relative phase of superposition states between |+1� and

|−1�, we use two resonant microwave fields with frequencies ω+ and ω− to coherently

transfer the state |M� = 1√
2

�
e
−iω+t |+1�+ e

−i(ω−t−(φ+−φ−)) |−1�
�

to |0� (see Figure

3.3b), where the initial relative phase φ+−φ− is set to the same value for each round
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Figure 3.4: Measurement of spin-photon correlations in two bases. a. Conditional
probability of measuring |±1� after the detection of a σ+ or σ− photon. b. Condi-
tional probability of measuring |±� after the detection of a H or V photon, extracted
from a fit to data shown in (c) and (d). c&d. Measured conditional probability of
finding the electronic spin in the state |M� after detection of a V (c) or H (d) photon
at time td. Blue shaded region is the 68% confidence interval for the fit (solid line) to
the time-binned data (see Section A.6.1). Errors on data points are one STD. Com-
bined with the data shown in Figure 3.4(a), oscillations with amplitude outside of
the yellow regions result in fidelities greater than 0.5. The visibility of the measured
oscillations are 0.59 ± 0.18 (c) and 0.60 ± 0.11 (d).
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of the experiment. Thus, the conditional probability of measuring the state |M� is

pM |H,V (td) =
1 ± cos α (td)

2
, (3.4)

where α (td) = (ω+ − ω−) td + (φ+ − φ−). Eq. 3.4 indicates that the two conditional

probabilities should oscillate with a π phase difference as a function of the photon

detection time td. This can be understood as follows. In the presence of Zeeman

splitting (δω �= 0), the NV center’s spin state is entangled with both the polarization

and frequency of the emitted photon. The photon’s frequency provides which-path

information about its decay. In the spirit of quantum eraser techniques, the detection

of |H� or |V � at td with high time resolution (∼ 300 ps � 1/δω) erases the frequency

information [67, 68]. When the initial relative phase between the microwave fields Ω±1

is kept constant, the acquired phase difference (ω+−ω−)td gives rise to oscillations in

the conditional probability and produces an effect equivalent to varying the relative

phase in the measured superposition, allowing us to verify the coherence of the spin-

photon entangled state.

The detection times of ZPL photons are recorded during the experiment without

any time gating, which allows us to study spin-photon correlations without reducing

the count rate. The resulting data are analyzed in two different ways. First, we time-

bin the data and use it to evaluate the conditional probabilities of measuring spin state

|M� as a function of |H� or |V � photon detection time (Figures 3.4c,d). Off-diagonal

elements of the spin-photon density matrix are evaluated from a simultaneous fit

to the binned data (see Section A.6.1). The time bins are chosen to minimize fit

uncertainty as described in Section A.6.1. The resulting conditional probabilities are

used to evaluate a lower bound on the entanglement fidelity of F ≥ 0.69 ± 0.068,
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above the classical limit of 0.5, indicating the preparation of an entangled state.

We further reinforce our analysis using the method of maximum likelihood esti-

mate. As described in Section A.6.2, this method is applied to raw, un-binned ZPL

photon detection and spin measurement data and yields a probability distribution

of a lower bound on the fidelity. Consistent with the time-binned approach, we find

that our data are described by a near Gaussian probability distribution associated

with a fidelity of F ≥ 0.70 ± 0.070 (see Figure A.6.2). Significantly, the cumulative

probability distribution directly shows that the measured lower bound on the fidelity

is above the classical limit with a probability of 99.7 %.

Several experimental imperfections reduce the observed entanglement fidelity.

First, the measured strain and magnetic field slightly mixes |A2� state with the other

excited states. Based on Figure 3.2b, we estimate that |A2� state imperfection and

photon depolarization in the setup together reduce the fidelity by 12 %, the latter

being the dominant effect. Imperfections in readout and echo microwave pulses de-

crease the fidelity by 3 %. Other error sources include finite signal to noise in the

ZPL channel (fidelity decrease 11 %), as well as timing jitter (another 4 %). The

resulting expected fidelity (73 %) is consistent with our experimental observations.

Finally, the entanglement generation succeeds with probability p ∼ 10−6, which is

limited by low collection and detection efficiency as well as the small probability of

ZPL emission.
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3.4 Conclusions and outlook

Entanglement of pairs of remote quantum registers is one important potential

application of the technique described in this chapter [69]. This can be done by coin-

cidence measurements on a pair of photons emitted by two remote NV centers. The

key figure of merit for such an entanglement operation over a distance L is propor-

tional to p
2 γT

1+γτ
, where γ ∼ 2π × 15 MHz is the spontaneous decay rate of the NV

center, τ = L/c is the photon travel time, and T is the memory lifetime. A large

figure of merit is critical for applications such as quantum repeaters and entangle-

ment purification protocols. The 0.5 µs spin memory interval in our experiments can

be extended to several hundred microseconds using spin echo techniques. Further-

more, by mapping the electronic spin state onto proximal nuclei, T can be extended

to hundreds of milliseconds [65]. The key limitation in attaining a large figure of

merit is low p. It can be circumvented if optical cavities are utilized, which simul-

taneously enhances emission into the ZPL and improves collection efficiency through

integration with appropriate waveguides. For example, by using a photonic crystal

nanocavity [70, 71, 72], the potential rate for spin-spin entanglement generation can

be about a MHz for τ < 1/γ and a few Hz for τ corresponding to L ∼ 100 km,

resulting in p
2 γT

1+γτ
≥ 1. Beyond this specific application, our ability to control in-

teractions between NV centers and quantum light fields demonstrate that quantum

optical techniques, such as all-optical spin control, nonlocal entanglement [69], and

photon storage [73], can be implemented using long-lived solid-state qubits, paving

the way for a wide variety of potential applications in quantum optics and quantum

information science.
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Laser cooling and real-time

measurement of nuclear spin

environment of a solid-state qubit

4.1 Introduction

Over the past two decades, CPT has been employed for laser cooling of neutral

atoms and ions [27], creation of ultra-cold molecules [74], optical magnetometry [75,

76], and atomic clocks [77], as well as for slowing and stopping light pulses [73]. The

electronic spin of the NV center is a promising system for extending these techniques

to the solid state. The NV center has a long-lived spin triplet as its electronic ground

state [39], whose ms = ±1, 0 sublevels are denoted as |±1� and |0�. In pure samples,

the electron spin dynamics are governed by interactions with the spin-1 14N nucleus

of the NV center and spin–1/2 13C nuclei present in 1.1 % natural abundance in
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the diamond lattice (Fig. 4.1a). Control over nuclear spins [65, 78] is of interest for

both fundamental studies and for applications such as nanoscale magnetic sensing

[79, 80] and realization of quantum networks [43, 81]. Here we achieve such control

via two complimentary methods: effective cooling of nuclear spins through nuclear

state selective CPT [82] and conditional preparation based on fast measurements of

the nuclear environment and subsequent post-selection [83].

While most prior work involved the use of microwave and RF fields for manipu-

lating both the electronic and nuclear spin states, we utilize all-optical control of the

electronic spin [84, 53, 85]. Specifically, we make use of Λ-type level configurations in-

volving the NV center’s |A1� and |A2� optically excited electronic states and the |±1�

ground states (Fig. 4.1a) [81, 33]. At low temperatures (<10 K) and in the limit of

zero strain, |A1� and |A2� are entangled states of spin and orbital momentum coupled

to the |+1� (|−1�) state with σ− (σ+) circularly polarized light. Correspondingly,

excitation with linearly polarized light drives the NV center into a so-called dark su-

perposition state when the two-photon detuning is zero [86]. In the present case the

two-photon detuning is determined by the Zeeman splitting between the |±1� states

due to the combined effect of the Overhauser field originating from the nuclear spin

environment and any externally applied magnetic field [82, 87]. When the external

field exactly compensates the Overhauser field, the electronic spin of the NV center is

pumped into the dark state after a few optical cycles and remains in the dark state,

resulting in vanishing fluorescence. This is the essence of the dark resonances and

CPT.
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4.2 Coherent population trapping with NV cen-

ters

In our experiments, the |A1� and |A2� states are separated by approximately 3

GHz and are addressed individually with a single linearly polarized laser at near zero

magnetic field. Since there is a finite branching ratio from the ms = ±1 manifold of

the electron spin into the |0� state, we use a recycling laser that drives the transition

between |0� and the |Ey� excited state, which decays with a small but non-vanishing

probability (∼ 10−2) back to the |±1� states. Figure 4.1b presents experimental

observation of the CPT spectrum as a function of an external magnetic field at three

different powers of a laser tuned to the |±1� → |A2� transition. While a broad

resonance is observed at high power levels, as the power is reduced, we clearly resolve

three features in the spectrum separated by 4.4 MHz, which is two times the hyperfine

splitting between three 14N nuclear spin states. This separation corresponds to the

magnetic field required to bring the electronic ms = ±1 hyperfine states with equal

nuclear spin projection (mI = ±1, 0) into two-photon resonance.

The dependance of the CPT resonance width upon the laser power, shown in

Figure 4.1c, reveals an important role played by repumping on the near-cycling |0� ↔

|Ey� transition. In contrast to a conventional, closed three-level system, this recycling

transition can be used to enhance the utility of our CPT system by both decreasing

the width of the CPT resonance and increasing the signal to noise ratio. The |A1�

state decays into the ms = 0 ground state through the singlet with a substantial

probability of ∼ 40% (see Section B.3). However, the population is returned back
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Figure 4.1: Coherent population trapping in NV centers a. The Λ-type transitions
between the ground states |±1� and excited states |A1,2� of a single NV center are
addressed with a CPT laser, while a recycling laser drives the |0� to |Ey� transition.
An external magnetic field is applied using a solenoid. b. Photon counts from NVa
in a 300 µs window are plotted versus the applied field for 10 µW (blue), 3 µW
(red), and 0.1 µW (yellow) of laser power addressing the |A2� state. Blue and red
datasets are shifted vertically by 5 and 2 counts for clarity. c. Width of individual
14N CPT lines versus CPT laser power when the |A1� (blue) or |A2� (red) state is
used. Errorbars in all figures show ±1 s.d. Solid curves represent theoretical model
discussed in the main text and Section B.2.
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into the ms = ±1 state from |Ey� only after ∼ 100 optical excitation cycles. As a

result, away from the two-photon resonance, the NV quickly decays to the |0� state

after being excited, where it then scatters many photons through the |0� ↔ |Ey�

cycling transition before returning to the Λ system. If the NV center is not in a

dark state, this process effectively increases the number of photons we collect by

2/η = γs1/γce, where γce is the cross transition rate from |Ey� into |±1� and γs1 is

the rate from |A1� to the singlet. The cycling effect also reduces the width of the

CPT line since the |0� ↔ |Ey� transition is quickly saturated away from two-photon

resonance, provided that the CPT laser excitation rate exceeds the leakage rate out

of recycling transition. Significantly, both of these effects lead to improved sensitivity

of dark resonances to small changes in two-photon detuning.

To demonstrate this effect, the widths of dark resonances observed via excitation

of |A1� and |A2� are compared in Figure 4.1c. Through an independent measurement

of the branching ratios (see Section B.3), we determined that
���A1(2)

�
corresponds to

an open (nearly closed) Λ system with ηA1 ∼ 3.1 × 10−2 (ηA2 ∼ 2.6). These experi-

mental results are compared with a theoretical model described in Section B.2, which

predicts that the resonance linewidth δ0 is given by δ0 =
�

R
2
A
/

�
1 + 1

η

�
RA

RE

+ 2RA

γ

��
∼

�
RAREηγ/(RE + γ) for small η, where RA(E) corresponds to the optical excitation

rate by a laser tuned to the A(E) state and γ is the decay rate of excited states.

The width at low powers is determined by the random magnetic field associated with

surrounding 13C nuclear states. When this line broadening mechanism is taken into

account (see Section B.2), the experimental results are in excellent agreement with

these predictions, plotted as solid lines, showing that a high degree of optical control
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over the electronic spins of NV center can be achieved.

4.3 Optical cooling and conditional preparation of

14
N nuclear spin states

Having resolved the hyperfine coupling between the NV electron and 14N spins, we

now demonstrate optical cooling of the nuclear spin states using dark resonances. This

method, illustrated in Figure 4.2a, is reminiscent of laser cooling of atomic motion via

velocity-selective CPT [27, 82]. A redistribution of the 14N spin state population upon

optical excitation takes place because the hyperfine coupling in the excited electronic

state of the NV center is enhanced by a factor of ∼ 20 compared to the ground state

[41]. If the external field is set such that, for example, the mI = 0 hyperfine states

are in two photon resonance, only the states with nuclear configuration mI = ±1 will

be promoted to the excited states, where flip-flops with the electron spin will change

the nuclear spin state to mI = 0. When the NV center spontaneously decays into the

dark superposition of electronic spin states, optical excitation will cease, resulting in

effective polarization (cooling) of nuclear spin into mI = 0 state.

Figure 4.2c presents experimental observation of laser cooling of 14N nuclear spin

via CPT. For each point, the pulse sequence shown in Figure 4.2b is applied, where

the magnetic field Bprep is kept at 0 during the preparation/optical pumping process,

while fluorescence is collected when the field is switched to a particular value of BRO.

The increased contrast of the mI = 0 CPT line relative to the other two corresponds

to a nuclear spin polarization of 61.5± 4.4%. As shown in Figure 4.2d, by optimizing
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Figure 4.2: Optical control and conditional preparation of the proximal 14N nuclear
spin. a. Mechanism for optical pumping of 14N states. b. Pulse sequence for
14N optical pumping using |A1� laser and a fixed readout of the prepared state us-
ing |A2� laser. To ensure that the NV was not ionized for all subsequent data runs,
we turn on all three lasers at the end of each run so that there is no dark state
and only keep data from runs where we obtain a high number of counts during this
verification step. c. Counts collected with NVa during the readout step versus the
readout magnetic field for no preparation step (blue) and preparation with optical
pumping using 100 nW of A1 laser power for 1.9 ms (red). Yellow curve shows the re-
sults of 14N polarization via measurement based preparation by selecting the readout
events in which the number of counts collected during the last 500 µs of preparation
is zero (see Section B.4.2). d. Steady-state population in the mI = 0 state after
optical pumping for varying powers of A1 laser, with theoretical model described in
Section B.2 (solid line).
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the power of the A1 laser, we achieve a maximum nuclear polarization of 76.4± 4.4%

within a timescale of 353 ± 34 µs. The degree of polarization is likely limited by the

escape rate out of the dark state due to off-resonant excitation of the A2 state and

dephasing caused by surrounding 13C nuclei. A simple theoretical model taking into

account these two processes and using independently measured parameters (solid line

in Fig. 4.2d) reproduces the qualitative features of our experimental results.

We can further improve preparation of the 14N nuclear spin in a desired state via

measurement and post-selection, as predicted by theoretical proposals [87, 83, 88].

Specifically, the observation of zero photodetection events during the preparation

step at Bprep = 0 measures the 14N to be in the mI = 0 state. For instances where

such a measurement result is obtained, the nuclear spin populations are subsequently

probed and shown in the bottom plot of Figure 4.2c. The resulting 14N polarization

of greater than 92 ± 6% demonstrates that high-fidelity conditional preparation of

nuclear spins is possible.

4.4 Observation of instantaneous Overhauser field

from the
13
C spin bath

While the 14N nuclear spin transitions can be spectroscopically resolved and ma-

nipulated individually, we next extend our technique to control the many-body en-

vironment of the NV center, consisting of 13C nuclei distributed throughout the di-

amond lattice. The large number of nuclear spin configurations associated with an

unpolarized environment results in a random Overhasuer field (Bov) with unresolved
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hyperfine lines. It produces a finite CPT linewidth in measurements that average

over all configurations of the 13C spin bath (Figure 4.1b, c).

We now describe how this limitation can be circumvented using fast measurements.

The key idea of our approach is to make use of the long correlation time (T nuc

1
)

associated with evolution of the nuclear bath to observe its instantaneous state and its

dynamics. Such a fast measurement is illustrated in Figure 4.3a, where the externally

applied field is ramped across a single 14N mI = 0 line while the CPT lasers are on.

The yellow curve in Fig. 4.3c shows the lineshape averaged over many experimental

runs. At the same time, the intensity plot in Fig. 4.3b shows counts collected in 80 µs

time bins during successive individual runs, many of which distinctly show a narrow

dark region. Lorentzian fits to selected experimental scans (blue and red curves in

Fig. 4.3c) reveal “instantaneous” CPT resonances with linewidths that are over a

factor three less than those of the averaged measurement. The motion of the dark

line centers (green dots in Figure 4.3b) indicates that the instantaneous field evolves

in time.

In order to provide more quantitative insight into the dynamics of the nuclear

environment, we record the fluorescence counts at a fixed value of the external mag-

netic field with 80 µs time resolution during 50 ms time intervals. The resulting

autocorrelation of photon detection events, shown in Fig. 4.3d, clearly reveals two

distinct time scales corresponding to τ1 = 350 ± 30 µs, consistent with 14N nuclear

spin polarization timescale, and τ2 = 8.40± 0.20 ms. Most significantly, since we can

detect dark states of the NV center within 80 µs , these results clearly indicate that

reliable measurements of the Overhauser field is possible within its correlation time.
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Figure 4.3: Observation of instantaneous Overhauser field from the 13C spin bath.
a. Pulse sequence for real-time measurement of the 13C nuclear configuration. The
applied magnetic field is ramped over a single 14N CPT line over 5 ms while counts are
collected in 80 µs bins. b. Counts from 200 successive runs are shown on horizontal
lines for NVb. Runs where the verification step fails are blacked out. The centers
of the constrained Lorentzian fits (Section B.7) to individual runs are indicated with
a green dot. c. Two such individual runs are shown with their fits (red and blue),
along with an average of scans that passed verification (yellow). d. Autocorrelation
of counts with magnetic field fixed at the mI = 1 14N line. Fit is to a bi-exponential
decay.

63



Chapter 4: Laser cooling and real-time measurement of nuclear spin environment of
a solid-state qubit

4.5 Measurement-based preparation of
13
C spin bath

We now demonstrate how fast measurements can be used to conditionally prepare

the 13C environment of the NV center in a desired state with post-selection. We record

counts accumulated during both the preparation and readout stages with relatively

low power using the sequence shown in Figure 4.4a. Similar to measurement-based

preparation of the 14N spin, by conditionally selecting zero photon detection events

during preparation step, we can select the states of the 13C environment with vanish-

ing two photon detuning δ = 2gµB(Bprep +Bov) = 0, where µB is the Bohr magneton.

The red curve in Figure 4.4b shows (unconditioned) readout counts recorded follow-

ing the preparation step, while the blue curve shows the result of measurement-based

preparation. The measured width of such a conditionally prepared distribution is sig-

nificantly smaller than the width corresponding to individual 14N resonances obtained

without preparation. We find that while this width depends on Bprep, the position

of the narrow feature follows Bprep, indicating that we can conditionally prepare the

13C environment via post-selection in a configuration of our choice (Fig. ramp2).

The prepared configurations appear to be long-lived both in the dark (� 6 ms,

Figure B.9) and in the presence of laser light, consistent with autocorrelation mea-

surements (τ2 = 8.4 ms, Fig. 4.3d).

We now discuss the experimental results and explore the limits of our ability to

probe and prepare the 13C environment.

We consider the situation in which the NV center is continuously monitored for

a time Tcond. The average number of photons detected during preparation is given

by n̄(δ)Tcond, where the photon detection rate n̄(δ) = Cδ
2
/(δ2

0
+ δ

2) is related to
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Figure 4.4: Measurement-based preparation of 13C spin bath. a. Pulse sequence
for preparation and subsequent measurement of the 13C configuration. Bprep is set
within the central 14N line while BRO is varied to cover all associated 13C states. A
preceding green laser pulse and 14N optical pumping step with the A2 and Ey lasers
are not shown. Counts during a conditioning window of length Tcond (ncond) at the
end of preparation and the readout window (nRO) are recorded for each run. Data
presented is an average of many such experimental runs. b. nRO for NVb versus BRO

is shown in red with double Lorentzian fit. The same dataset analyzed by keeping only
events with ncond = 0 is shown in blue. Unprepared 13C distribution from Fig. 4.3
is shown in black for comparison (shifted by 4.3 counts for clarity). c. Physics of
conditional preparation via measurement. d. Amplitude of broad (blue) and narrow
(red) distributions versus Tcond for NVb. The same dataset was used for each point
while the length of the conditioning window was changed in post-processing. e. Width
of measured 13C distribution with (blue) and without (red) conditional preparation
versus A1 laser power for NVa. Solid lines are theoretical predictions for the readout
linewidth δ0 (blue) and CPT linewidth for the unprepared 13C distribution, same as
in Fig. 4.1c (red).
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the instantaneous value of the Overhauser field through the two photon detuning

δ (Fig. 4.4c). The nuclear state probability distribution directly after preparation

by conditioning upon obtaining zero counts is P (δ|n = 0), which can be related

to the conditional probability of a zero count event P (n = 0|δ) by P (δ|n = 0) =

P (n = 0|δ) P (δ) /P (n = 0), where P (n), P (δ) are unconditional distributions. For

a Poisson distributed random process of photon counts, we find that P (δ|n = 0) ∼

exp(−CTcond × δ
2
/(δ2

0
+ δ

2)) × P (δ), where C is the fluorescence rate of the bright

state and Tcond is the measurement time. As Tcond increases, the range of δ for which

we obtain n = 0 counts due to the existence of a dark state becomes small. At the

same time, for large δ, we expect the average number of counts to be high, while

the probability of detecting n = 0 counts due to shot noise is small. This effectively

reduces the width of the conditionally prepared nuclear spin distribution.

As illustrated in Fig. 4.4c, conditional measurement prepares an Overhauser field

distribution that consists of the broad unconditioned distribution suppressed by

exp(−CTcond) and a narrow peak with a width δc =
√

ln 2δ0/
√

CTcond. The read-

out step itself has a “resolution” determined by the dark resonance linewidth δ0. The

observed features represent a convolution of the dark resonance probe with the con-

ditionally prepared distribution. For the conditional preparation to be effective, we

require that CTcond > 1, and therefore δc < δ0, indicating that the measured CPT

linewidth will be limited by the readout step. Experimentally, we find that our mea-

sured lineshapes can be well fitted with the combination of a narrow and a broad

Lorentzian distribution whose width and position are mostly independent of photo-

detection time Tcond. However, as Tcond is increased, the relative weight of the narrow
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distribution increases (Figure 4.4d). This is consistent with the theoretical prediction

that the readout-limited narrow resonance width does not depend on Tcond, while

better discrimination in conditional measurements increases the probability that the

nuclear spin state is in the narrow distribution.

Interestingly, we find that even without conditioning (red line Figure 4.4b), a

narrow distribution of nuclear spin configurations around Bprep is prepared. This

modification of the nuclear distribution is a result of CPT-based laser cooling of

the 13C bath, consistent with the predictions of Reference [82]. The specific phys-

ical mechanism of such cooling likely involves electronic spin dependent evolution

of the 13C nuclei, and will be discussed in detail in future studies. We emphasize

this observation gives a clear indication that the magnetic environment is affected

by the dynamics of the NV, providing direct evidence that the NV spin dynamics is

dominated by the Overhauser field rather than external magnetic field fluctuations.

Figure 4.4e shows the dependance of the observed linewidth of the narrow feature

on the CPT laser power. At low powers the observed width reaches a minimum value

of 104 ± 49 kHz. The limiting width results from the effects of strain splitting of

the |±1� states on the readout process at zero magnetic field (see Section B.5 for

a quantitative discussion of effects of strain) [89]. Due to this splitting, very small

magnetic field changes do not shift the energies of |±1� to first order. Therefore our

CPT readout signal becomes insensitive to Zeeman shifts on the order of twice the

strain splitting (see Section B.5). In addition, a minimal linewidth of ∼ 400 kHz was

obtained for measurements performed with a separate NV center (NVb) subject to

higher strain.
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4.6 Conclusions and outlook

The limit associated with strain splitting can be easily circumvented by using a

large external magnetic field to split the |±1� spin states and two laser frequencies

to address the NV center in a Raman configuration near zero two-photon detuning.

As described in Section B.10, a modest increase in collection efficiency by an order

of magnitude [90] would allow us to obtain quantum-limited narrowing of nuclear

distribution δc ∼ 1/Tcond, which, in turn, can be on the order of the inverse lifetime

of the given nuclear configuration [82].

The presented experiments open intriguing prospects for using coherent optical

techniques to control nuclear spins surrounding quantum emitters. For instance, they

can be used to study quantum many-body dynamics of so-called central-spin models in

real time, either in isolation or in the presence of dissipation [91]. Specifically, nuclear

field diffusion can be explored that, in the presence of CPT lasers, is expected to

have very interesting statistical properties reminiscent of Levy flights in VSCPT [26].

Furthermore, the present approach allows for direct application of quantum feedback

control to deterministically drive nuclear spins into a desired state. This may be

used to prepare non-classical superposition states of the nuclear spins analogous to

spin-squeezed states in atomic ensembles [92] and to “engineer” collective dissipation

for nuclear spin ensembles useful for applications in quantum information science,

such as long-term storage of quantum states [93]. Finally, our method allows for

a new all-optical approach to magnetic sensing [75, 76] that may enable interesting

applications in nanoscience [79, 80].
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Coherent optical transitions in

implanted nitrogen vacancy centers

5.1 Introduction

In this chapter, we report the observation of stable optical transitions in NV

centers created by ion implantation. Using a combination of high temperature an-

nealing and subsequent surface treatment, we reproducibly create NV centers with

zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-

limited optical linewidth. The residual spectral diffusion is further reduced by using

resonant optical pumping to maintain the NV− charge state. This approach allows

for placement of NV centers with excellent optical coherence in a well-defined de-

vice layer, which is a crucial step in the development of diamond-based devices for

quantum optics, nanophotonics, and quantum information science.

The negatively charged NV center in diamond is a solid state system that com-
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bines excellent spin coherence with atomic-like optical transitions at cryogenic tem-

peratures. Because of these properties, the NV center has emerged as a promising

candidate for the realization of unique applications in the fields of quantum informa-

tion, quantum optics, and metrology [25, 80, 94]. While many of these applications

make use of coherent interactions between light and NV centers [81, 24, 23], the op-

tical transitions of atom-like solid-state systems are generally imperfect because of

the influence of the solid state environment. In particular, the energies of the NV

center’s optically excited states are highly sensitive to local electric fields. Therefore,

fluctuations in the charge environment around the NV center cause fluctuations in

the frequency of the optical transition. This phenomenon, which is referred to as

spectral diffusion, is a generic effect associated with optical transitions in atom-like

solid state systems [95, 96]. Techniques to suppress and eliminate spectral diffusion

are currently being actively explored [54, 47, 24].

To investigate the optical properties of NV centers, photoluminescence excitation

(PLE) studies are typically performed by repeatedly scanning a resonant excitation

laser through the NV center’s ZPL [44, 45, 52, 97, 54, 47, 98, 48]. A 532 nm laser

is applied at the end of each scan to reverse potential photoionization of the NV

center caused by the resonant laser. For a single PLE scan, one typically observes

a narrow resonance. A nearly lifetime-limited single-scan linewidth of 16 MHz has

been reported in a single diamond nanocrystal [44], and a lifetime-limited single-scan

linewidth of 13 MHz was measured for a native NV center inside a natural diamond

sample [45]. However, these measurements of the single-scan linewidth exclude the

effects of spectral diffusion. It was observed that the narrow resonance jumps to a
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different frequency for each successive PLE scan, indicative of local charge fluctua-

tions caused by the repumping laser [44, 52, 97]. Previously, it has been shown that

off-resonant excitation can photoionize localized defects inside and on the surface of

the diamond crystal, leading to the observed spectral jumps [49, 54]. When the NV

center is monitored over long timescales, such behavior results in an overall linewidth

that can be much larger than the single-scan linewidth. This long-term, extrinsically

broadened linewidth, rather than the single-scan linewidth, is the limiting factor for

most applications requiring spectral stability. For example, remote entanglement of

NV centers relies on interference of photons with well defined matching frequencies

[24]. Efficient photonic devices such as single photon switches and transistors make

use of strong NV-photon interactions and require that the emitters remain on reso-

nance with the incident light [99]. Therefore, a number of different techniques have

been explored to reduce the effects of spectral diffusion, including active stabilization

and pre-selection of the transition frequency [47, 24]. However, all of these techniques

increase the technical complexity and limit the repetition rate of the experiments.

The “on demand” creation of emitters with inherently low spectral diffusion under

repeated excitation over long timescales is an outstanding challenge in implementing

scalable applications using quantum optics with atom-like systems.

Since one-of-a-kind natural diamond samples such as the one investigated in [45]

cannot be used as reproducible starting materials for scalable systems, recent experi-

ments have made use of NV centers incorporated into high quality synthetic diamond

during the growth process [24, 47, 48]. In addition to imperfections in their optical

coherence, NV centers introduced during the diamond growth process are limited in
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their usefulness due to their low concentration and random locations. For example,

in order to incorporate NV centers into nanophotonic or nanomechanical devices, it

is necessary to develop a method to create a controllable concentration of emitters in

a well defined device layer while maintaining their excellent optical properties.

The key idea of this work is to create NV centers in a surface layer that exhibit

coherent optical transitions with nearly lifetime-limited linewidths even under the

effects of spectral diffusion. We accomplish this by first introducing NV centers at a

well defined and controllable depth using ion implantation [100]. We then demonstrate

how to suppress the fundamental cause of spectral diffusion by creating a diamond

environment that is nearly free of defects that contribute to charge fluctuations. This

is acheived through a combination of annealing and surface treatments. Finally, we

further improve the optical properties of the NV centers by combining our approach

with a newly developed technique for preventing photoionization of the remaining

charge traps [97].

5.2 Procedure for NV center creation

Fig. 5.1 summarizes the experimental procedure to create shallow implanted NV

centers with narrow optical lines. As our starting material we use single crystal

diamond from Element Six grown using microwave assisted chemical vapor deposition

(CVD). The single crystal samples were homoepitaxial grown on specially prepared

�100� oriented synthetic diamond substrates, taking care to ensure that the surface

quality of the substrates was as high as possible to reduce sources of dislocations.

The CVD synthesis was performed using conditions as described in [101, 102]. The
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resultant diamond material is measured using electron paramagnetic resonance (EPR)

to have a nitrogen concentration of less than 5 parts per billion. The surface layer

of these samples is generally damaged and highly strained because of mechanical

polishing. Therefore, we first remove the top several micrometers of the sample

using a 30 min Ar/Cl2 etch followed by a 20 min O2 etch in an UNAXIS Shuttleline

inductively coupled plasma-reactive ion etcher. We then implant 15N+ ions at an

energy of 85 keV at a variety of doses from 109/cm2 to 1012/cm2. According to

simulations done using Stopping and Range of Ions in Matter (SRIM), this should

result in a mean nitrogen stopping depth of ∼100 nm with a straggle of ∼20 nm [103].

Subsequently, we anneal the implanted samples under high vacuum (P < 10−6 Torr).

Our standard annealing recipe consists of a 4 hour 400◦C step, a 2 hour 800◦C step,

and a 2 hour 1200◦C step, with a 1 hour ramp up to each temperature. The motivation

behind these temperature steps will be explained later in the text. It is important

that a good vacuum is maintained throughout the annealing process, since diamond

etches and graphitizes under residual oxidizing gasses at such high temperatures [104].

Following the anneal, we remove graphitic carbon and other surface contaminants by

cleaning the diamonds for one hour in a 1:1:1 refluxing mixture of sulfuric, nitric,

and perchloric acids. Finally, we perform a 465◦C anneal in an O2 atmosphere in

a rapid thermal processor (Modular Process Technology, RTP-600xp) in three 48

minute steps following the recipe used in [105]. This oxygen anneal is believed to

remove sp
2 hybridized carbon and result in a more perfect oxygen termination of the

surface than acid cleaning alone. We have observed that it enhances charge stability

in the NV− state and helps to reduce blinking and photobleaching.
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Figure 5.1: Procedure for creating spectrally stable NV centers through ion implan-
tation, annealing, and surface treatment. The Ar/Cl2 (O2) etch was done using an
ICP power of 400 W (700 W), a RF power of 250 W (100 W), a DC bias of 423 V
(170 V), a chamber pressure of 8 mTorr (10 mTorr), and a gas flow rate of 25/40
sccm (30 sccm). The sample temperature was set to 17◦C.

5.3 Spectroscopy of implanted NV centers

We investigate the resulting NV centers using a low-temperature confocal mi-

croscopy setup, where the diamond samples are cooled to <10 K in a helium flow

cryostat (Janis ST-500). Fig. 5.2(a) shows confocal images taken with ∼1 mW 532

nm laser excitation for four different implantation doses. An implantation dose of

109/cm2 results in a very low density of NV centers, comparable to the native NV

concentration in some electronic grade samples. A dose of 1012/cm2 results in a

high density layer of completely unresolvable NV centers. At an intermediate dose of

1010/cm2, however, we obtain resolvable single NV centers with a density on the order

of 1 NV/µm2, implying a conversion efficiency of ∼ 1%. Comparing the fluorescence

intensity to the single NV count rate, we can roughly estimate that, in the 1011/cm2

sample, there are ∼ 10 NV centers per focal spot, while in the 1012/cm2 sample,

there are ∼ 100 NV centers per focal spot. We note that the conversion efficiency is
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somewhat lower than previously reported values, which could result from differences

in starting material, dose calibration, and annealing procedures [100].

Figure 5.2: (a) Confocal images of the implanted layer of NV centers for four different
nitrogen ion doses. (b) Corresponding PLE spectra for the three highest doses.

In Fig. 5.2(b), we present corresponding ZPL spectra of NV centers for the three

highest implantation doses. The spectra were taken by scanning an external cavity

diode laser around 637.2 nm while collecting fluorescence in the phonon-sideband

(PSB). 532 nm excitation was performed at each point of the scan to alleviate the

effects of photoionization during resonant excitation. We emphasize here that Fig.

5.2(b) and Fig. 5.3(b-d) present spectra that are averages of many successive laser

scans taken over the course of minutes. Therefore, they are indicative of the spectral

stability of NV centers over both short and long time scales and include all effects

of spectral diffusion caused by the repumping laser. Beyond these timescales, longer-

term drifts of the NV frequency can be easily compensated by electric fields or tuning

the excitation frequency with minimal cost to the experimental repetition rate. At

a dose of 1010/cm2, most single NV centers exhibit narrow PLE lines. As the dose
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increases to 1011/cm2, the spectra show multiple features with several broader peaks.

Finally, at 1012/cm2, the spectrum is a mostly featureless peak several tens of GHz

wide. We note here that the spectra for the two highest doses exhibit the effects

of both increased single NV center linewidths and the presence of several NV cen-

ters in the focal spot. If the linewidths were comparable to the 1010/cm2 sample,

we should be able to observe a collection of narrow resonances spread over the scan

range. However, this is not the case, which is an indication that increased nitrogen

concentration in the environment of the NV center leads to additional spectral diffu-

sion. Indeed, the substitutional nitrogen defect has an ionization energy threshold of

2.2 eV and therefore can be photoionized with 532 nm light, which has an energy of

2.33 eV/photon [106].

From this point on, we focus on samples implanted with a dose of 1010/cm2. Fig.

5.3(a) shows a histogram of linewidths for 50 NV centers in four such samples. While

there is a range of linewidths, a majority of NV centers exhibit linewidths less than

500 MHz, which is comparable to naturally occurring NV centers deep inside elec-

tronic grade CVD diamond [24]. This is an indication that we have eliminated most

impurities with fluctuating charge states in the vicinity of the NV centers, which may

include both impurities on the nearby surface and defects inside the diamond intro-

duced by the implantation process. In Fig. 5.3(b), we present an example spectrum

of the narrowest linewidth we have observed, along with the results of twenty-one

successive PLE scans to demonstrate the long-term stability of the transition line.

Our measured linewidth of 37±4.8 MHz under conventional 532 nm repumping is, to

the best of our knowledge, a record for the extrinsically broadened linewidth of NV
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centers.

To further reduce residual spectral diffusion of the NV centers, we incorporate a

technique recently demonstrated in [97]. Instead of using 532 nm light to repump

the NV0 state into NV−, we use a home-built tunable frequency doubled external

cavity diode laser operating at 575 nm to resonantly excite the NV0 ZPL, which has

been shown to efficiently convert the NV center back to the negatively charged state

even at very low powers. The 575 nm laser was turned on and scanned across the

NV0 ZPL between each frequency scan of the 637 nm spectroscopy laser. As was

also demonstrated in [97], this method results in a drastic reduction of the spectral

diffusion because of the lower incident intensity and energy per photon of the 575

nm excitation (2.16 eV/photon) compared to the conventional 532 nm excitation.

For example, the NV shown in Fig. 5.3(c) has a NV− ZPL linewidth of 161 MHz

using 532 nm excitation. The linewidth was reduced to 27 MHz using the 575 nm

repumping technique (Fig. 5.3(d)).

5.4 Mechanism for NV center creation

We now discuss our sample preparation process in more detail and propose a

mechanism for the creation of optically stable NV centers through high tempera-

ture annealing. In general, annealing is required after ion implantation to mobilize

vacancies such that they combine with the nitrogen atoms to form NV centers. In

addition, the annealing process causes other defects to become mobile at particular

temperatures and potentially migrate to the surface, effectively repairing any dam-

age to the crystal caused by implantation. Earlier works have employed a range of
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different annealing temperatures, typically in the range between 400◦C and 1000◦C.

Several temperature steps in this range were shown to enable specific mechanisms

important to the efficient formation of stable NV centers. In particular, at 400◦C,

earlier work has indicated that vacancies and interstitial nitrogen atoms introduced

by implantation migrate and annihilate with each other [107]. At 800◦C, vacancies

become mobile and combine with nitrogen atoms on lattice sites to form NV centers,

which then remain stable [108]. At temperatures much less than 800◦C, this process

is too slow to allow NV formation in a reasonable time period. At temperatures much

higher than 800◦C, the vacancies are highly mobile, but there is indication that the

rate of NV formation is suppressed [109]. This could be because of the higher thermal

energy in the diamond lattice, which causes the local strain field around the isolated

nitrogen defects to becomes less efficient at trapping migrating vacancies.

At even higher temperatures, additional defects such as divacancies, sp2 type

defects, and hydrogen become mobile and anneal out [110, 108, 111]. Recent work

has demonstrated that annealing at a temperature of 1200◦C significantly improved

the coherence properties of implanted NV centers [112]. This indicates that some of

the remaining defects after 800◦C annealing are paramagnetic. The electronic and

optical properties of these defects, such as the level structure and ionization energies,

have generally not been well studied. However, we have briefly investigated the optical

properties of samples annealed without the 1200◦C step and found that, while a few

NV centers had linewidths greater than several hundred MHz, most had PLE lines

that were too broad to be discernible. These results provide evidence that annealing

at high temperatures eliminates localized defects that can affect the optical properties

78



Chapter 5: Coherent optical transitions in implanted nitrogen vacancy centers

of NV centers. The exact structure and properties of these defect states remain to be

determined through, for example, EPR measurements, optical spectroscopy, and ab

initio calculations of energy level structures.

5.5 Conclusions

Our work shows that it is possible to create implanted NV centers with excellent

optical coherence properties, opening up a large range of possibilities for future studies

and applications. In addition to a better understanding of the material and defect

properties that contribute to spectral diffusion, there are many other aspects and

parameters of our technique that remain to be explored. For example, while we have

not extensively studied the dependence of optical coherence on implantation depth,

there is evidence that reasonably stable transitions are possible with much shallower

NV centers. We have observed linewidths of a few hundred MHz from several NV

centers in a diamond sample created by implantation with a nitrogen dose of 1011/cm2

at an energy of 6 keV, giving a nominal depth of 10 nm. Further systematic studies

on the effect of implantation energy, dose, and annealing recipes are needed to explore

the possibility of creating optically coherent NV centers in high densities or very close

to the diamond surface for applications such as coupling of multiple NV centers and

electric field sensing.

Another important application that has recently become the focus of much effort

is the implementation of nanoscale photonic structures to tailor the interaction of

light and NV centers [113]. Thus far, all previous demonstrations of diamond-based

photonic structures have used diamond materials with a high density of native NV
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centers, whose linewidths are generally many GHz or more [113, 114]. To realize

quantum nanophotonic devices in deterministic, scalable fashion, it is important to

begin with a bulk material that contains very high quality emitters in a well-defined

device layer. For this reason, the ability to controllably create NV centers with inher-

ently good optical coherence, which we have demonstrated in this work, is a crucial

step for the practical development of many diamond-based quantum nanophotonic

devices and scalable quantum technologies.
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Figure 5.3: (a) Histogram of linewidths for NV centers in four samples implanted
with a dose of 1010/cm2 using 532 nm excitation to repump the NV into the negative
charge state. (b) Spectrum showing the narrowest linewidth from (a) (top) obtained
by averaging twenty-one successive PLE scans (bottom). Each scan takes ∼2 seconds.
(c) Spectrum of another NV taken using 532 nm repump (top). Corresponding single
PLE scans illustrating spectral jumps due to repumping (bottom). (d) Spectrum of
the same NV as in (c), taken using 575 nm resonant excitation of the NV0 state to
repump back into NV−.
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Diamond-based nanophotonic

devices

6.1 Introduction

In chapters 2 to 4, we have demonstrated the potential of using the NV center’s

optical properties for a variety of different applications. However, the NV center is

not a perfect optical emitter for several reasons. First, the Debye-Waller factor ξ, de-

fined as the ratio of emission into the ZPL vs. the total emission, is only 3-5 %. This

is dictated by the relatively large shift in nuclear coordinates between the NV center’s

ground and excited states, which, by the Franck-Condon principle, results in decay

from the excited state into phonon-coupled higher vibrational levels of the ground

state [115]. In addition to such intrinsic properties of the NV center, there are also

external effects such as spectral diffusion that result in non-ideal optical properties.

While we can eliminate these effects to a large degree, as demonstrated in Chapter

82



Chapter 6: Diamond-based nanophotonic devices

Figure 6.1: Collection efficiency of light from a dipole emitter. a. Collection efficiency
vs. dipole orientation for NA=0.95 and n2=1. b. Collection efficiency vs. dipole
orientation for NA=0.95 and n2=2.4. c. Collection efficiency vs. NA for φem = π/2
and n2 = 2.4. d. Collection efficiency vs. n2 for φem = π/2 and NA=0.95.

5, some residual imperfections in spectral stability usually remain. Additional tech-

niques to stabilize the transition frequency, such as feedback techniques with applied

electric fields, reduce the repetition rate of the experiments. Finally, it is generally

difficult to extract photons from bulk diamond material with high efficiency. Due to

the high index of refraction, total internal reflection confines most of the light inside

the diamond at an air interface. In general, as shown in [116], the collection efficiency

of a lens or objective with numerical aperture NA in a medium with index n1 for light

from a dipole source in index n2 is given by

C =
1

8

�
4− 3cosθmax − cos3

θmax + 3(cos3
θmax − cosθmax)cos2

φem

�
, (6.1)

where φem is the angle of the dipole axis with the optical axis, and θmax = sin−1(NA∗

n1/n2) is the effective NA of the collection optics. For reference, the collection effi-

ciency is plotted against several parameters in Figure 6.1. As can be seen, even for

optimal dipole orientation and a 0.95 NA objective in air, only around 6% of the

emitted photons are collected from a NV center in bulk diamond.

The combination of these factors result in a very low rate of indistinguishable, co-

herent photons from single NV centers. One promising path toward alleviating all of
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these imperfections is incorporating NV centers with photonic structures. For exam-

ple, optical cavities can be used to enhance the emission into the ZPL and overcome

spectral diffusion, while coupling to waveguide structures can increase the efficiency of

photon collection and detection. This chapter will explain the concept of using cavity

quantum electrodynamics (cQED) to make the NV center a more perfect emitter and

summarize some ongoing work to implement diamond-based nanophotonic devices.

6.2 Cavity QED with NV centers

Cavity QED has been used in a large variety of systems to enhance the interaction

between an emitter and a mode of the electromagnetic field inside the cavity. These

systems range from atoms and ions coupled to optical cavities to superconducting

qubits coupled to microwave stripline resonators. One particularly successful exam-

ple of cavity QED with solid state systems in the optical domain is quantum dots

inside photonic crystal or Bragg structure cavities, where strong coupling between

the emitter and cavity mode has been demonstrated [70, 117]. There has also been a

large body of work on cavity QED with NV centers. Many of these demonstrations

involve diamond nanocrystals, which can be relatively easily incorporated into sepa-

rate resonator structures, such as Fabry-Perot cavities, ring resonators, and photonic

crystal cavities [118, 119, 120]. This approach has the advantage that it allows for

flexibility in the cavity design and material. However, in these hybrid systems, the

position of the NV center does not usually overlap well with the mode of the cavity. In

addition, the optical properties of NV centers are generally quite poor, and no optical

transitions with long-term stability have been reported. Our work focuses instead on
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fabricating nanoscale photonic structures out of the diamond material itself directly

around NV centers. There has also been much progress in this field [114, 121]. How-

ever, the goal of combining optical coherent NV centers with nanoscale structures has

yet to be achieved.

The idea of using cavity QED to improve the emission properties of a NV center

is as follows: When a NV center is placed inside the an optical cavity, its emission

into the cavity mode is enhanced. By tuning the cavity mode to the NV center’s

ZPL, the ZPL emission is therefore enhanced relative to the PSB emission. When

this enhancement becomes larger than the Debye-Waller factor, the ZPL becomes

the dominant emission channel of the NV center. This enhancement of the emission

also means that the lifetime of the NV center is decreased and the lifetime-limited

linewidth of the ZPL is increased. When the lifetime-limited linewidth becomes much

larger than the spectral diffusion, the NV center can be viewed as a perfect emitter of

indistinguishable photons. In other words, the energy uncertainty of the excited state

caused by fast decay into the cavity mode is large enough that the energy uncertainty

introduced by spectral jumps is negligible.

We can calculate the lifetime of a NV center coupled to the cavity (τ) compared

to one that is decoupled from the cavity (τ0). They are related through a quantity

called the Purcell factor, given by

P =
3

4π2

�
λ0

n

�3
Q

V

| �ENV · �µZPL|2

| �Emax|2|�µNV |2

=
τ0

τ
− 1 (6.2)

where λ0/n is the wavelength of the resonant mode inside the cavity and Q is the

quality factor of the cavity. �ENV and �Emax are the electric fields at the NV and
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maximum field inside the cavity, respectively. The mode volume of the cavity is

defined as

V =

�
| �E(�x)|2dV

| �Emax|2
(6.3)

Finally, �µZPL is the effective dipole moment of the ZPL transition, which is the only

part coupled to the cavity, while �µNV is the total dipole moment of the NV center.

The Debye-Waller factor is then given by ξ = |�µZPL|2/|�µNV |2. The Purcell factor

gives the enhancement of emission into the cavity mode over the emission when the

NV is decoupled from the cavity. Here, we define “decoupled” as an NV that is still

spatially located in the cavity, but detuned from the cavity mode in frequency, as is

the case in our experiments. This means that n in the expression above is the effective

index including all possible modes of the structure. Although this quantity can be

difficult to estimate, it is somewhere between 1 and 2.4, the index of bulk diamond.

While the Purcell factor expresses the relevant enhancement of emission in terms

of experimentally relevant quantities, it is equivalent to the cooperativity, which gives

more physical intuition as simply the ratio between the coupling strength of the emit-

ter to the cavity and the decay rates of the system. The Purcell factor or cooperativity

can also be written as

P =
2g2

κγ
(6.4)

where κ = ω/Q is the decay rate from the cavity, with ω being the cavity frequency.

γ is the decay rate of the NV center into modes other than the resonant cavity mode,

and is given by

γ =
ω

3|µNV |2

3π�h̄c3
=

8π2|µNV |2

3�h̄

�
n

λ0

�3

. (6.5)

The single-photon Rabi frequency g is given by g = �ENV · �µZPL/h̄. We emphasize
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here that since the cavity mode only couples to the ZPL, we use the effective dipole

moment of that transition only. Inserting these expressions into Equation 6.4 and

using the fact that �
�
| �E(�x)|2dV = h̄ω, we recover the expression for the Purcell

factor given in Equation 6.2.

We note here that there are several alternative definitions of the Purcell factor

that might also be relevant here. One can also consider the lifetime change relative

to emission into bulk diamond or free space, in which case the index n in Equation

6.2 should be 2.4 or 1, respectively. Another quantity is the enhancement of the ZPL

emission into the cavity relative to the ZPL emission when the NV is decoupled from

the cavity. This is given by P
� = P/ξ, and a useful quantity when comparing the

Purcell enhancement to other cavity QED systems where the emitter has a single

decay channel. In other words, it gives a better comparison for the quality of the

emitter-cavity coupling without factoring in the internal imperfections of the emitter

itself, and is the quantity usually quoted in the literature. It is also the relevant

quantity for estimating the enhancement of the ZPL photon rate from the cavity

compared to, say, bulk diamond.

As explained above, in order to radiatively broaden the NV center through Purcell

enhancement to overcome spectral diffusion, we require that P � Γ

γ
, or P

� � 1

ξ

Γ

γ
,

where Γ is the extrinsically broadened linewidth. From Equation 6.2, we see that to

obtain a large Purcell factor, we need a large Q and a small mode volume. This can

be achieved using photonic crystal cavities, where the mode volume can be designed

to be ∼ (λ/n)3. Then, for a NV center with Γ ∼ 100 MHz, a cavity with a Q of

∼ 3000 is required. We now discuss some directions for the physical implementation
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of such cavities in diamond.

6.3 Diamond-based nanophotonic devices

Over the past several decades, a large range of techniques have been developed for

the fabrication of nanoscale devices in semiconductor materials ranging from silicon-

based materials to III-V compounds such as gallium arsenide [70, 122]. While many of

these techniques can be transferred to the fabrication of diamond, one major difference

between diamond and most semiconductor materials presents a significant challenge

to the fabrication of nanoscale devices for confining light. Because of the large lattice

mismatch of diamond with most other crystalline materials, it is not possible to grow

high quality thin films of single crystal diamond on top of a different substrate. This

means that we cannot take advantage of the index mismatch between the device

and substrate to confine light through total internal reflection. Here, we will briefly

describe two methods for creating diamond-based nanophotonic devices by either

creating a thin film that is placed on a substrate, or directly fabricating suspended

structures on the surface of a bulk diamond sample.

While the methods described below can be used to make a variety of structures

for different applications ranging from optomechanics to frequency comb generation,

we focus here on the implementation of 1D waveguides and photonic crystals. These

structures have been studied extensively and there exists a large body of work on their

operating principles and design [123, 124, 125], so we will not go into detail on this

topic here. Briefly, a photonic crystal cavity in a 1D waveguide geometry consists of

a periodic structure along part of a waveguide with some perturbation or defect that
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leads to localization of light. A completely regular and periodic lattice defines a Bragg

structure with a gap in the band structure such that light with frequency within that

gap cannot propagate. By tapering some parameter along the waveguide, such as the

lattice constant or the dimensions of the structure inside each unit cell, we define a

defect within the Bragg structure. With the proper design parameters, we can obtain

a photonic crystal cavity with large Q and mode volume on the order of (λ/n)3. We

note here that the Q in this case depends on the design, fabrication, and material

imperfections of the device. The design of the structure determines, for example,

how much light from the cavity is either scattered or leaked into the waveguide.

While light with well defined wavevectors can propagate without loss in a perfectly

periodic structure, the introduction of a perturbation generally couples modes with

different wavevectors, leading to scattering into free-space and other modes of the

structure. At the same time, if the cavity mode extends to the ends of the Bragg

structure, it can also leak out into the waveguide. Both of these mechanisms decrease

the Q of the cavity. While we generally try to minimize scattering by introducing a

gradual tapering, leakage into the waveguide can ultimately be desirable for collecting

light from the cavity. Of course, fabrication imperfections can introduce deviations

from the intended design, both by modifying the dimensions of the structure and

introducing surface roughness.

The first method for fabricating diamond-based photonic crystal cavities begins

with a bulk diamond membrane that has been mechanically polished to 10-30 µm in

thickness that is placed on a Si substrate. The membrane is thinned down using a

deep reactive ion etch (RIE) in an inductively coupled plasma (ICP) of oxygen to the
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device thickness, which is on the order of a few hundred nm. Devices are then defined

on these thin films by e-beam lithography (EBL) using hydrogen silsesquioxane (HSQ)

resist, which forms a mask that is transferred into the diamond film during another

RIE etching step. Finally, the diamond structures are suspended by an isotropic

RIE step that undercuts the Si substrate beneath the devices. Using such devices,

we have observed enhancement of the ZPL fluorescence by a factor of 7. This work

is described in detail in [126], and similar techniques have been used to create 2D

diamond photonic crystal structures in [121].

The method described above has the drawback that, since the membranes are

mechanically polished, there is often a gradient in the thickness, which transfers to

the thin film. This means that only a small region of the devices that are made using

the film has the desired thickness and wavelength. In addition, the thin films are dif-

ficult to handle and post-process. We have developed a second technique for scalable

fabrication of nanophotonic structures that involves undercut structures suspended

above the surface of bulk diamond. This is achieved using a technique described in

[127], where the diamond is placed inside a faraday cage during RIE so that the ions

are redirected and impinge on the surface at an angle. As a result, instead of etching

the diamond in the direction perpendicular to the surface, it undercuts the material

beneath the mask from two directions, resulting in suspended structures with a tri-

angular cross-section that are suspended from or supported by anchors, as shown in

Figure 6.2b. As shown in [127], we can make a variety of devices ranging from ring

resonators to cantilevers using this method. We have fabricated 1D photonic crystal

cavities using this method by etching an array of holes with tapered aspect ratios
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along the waveguide, again using HSQ as an EBL defined mask, as shown in Figure

6.2. We can characterize these cavities using by coupling a broadband light source

into the waveguide through a notch at one end and collecting the transmitted light

that is scattered from a notch at the other end. An example of such a transmission

spectrum is shown in Figure 6.2. Cavity resonances can be seen near the dielectric

band edge with Q’s of more than 3000.

One challenge of using such monolithic cavity designs is alignment of the NV

center position with the cavity field. Thus far, our suspended devices have been

made from a surface containing a layer of randomly positioned NV centers introduced

by implantation, as described in Chapter 5. Therefore, we cannot precisely control

the position of NV centers in the structure, and must rely on finding a device with

an appropriately positioned NV center by chance. Eventually, more deterministic

methods of introducing NV centers, such as implantation through a mask or AFM

tip [128, 129], can be used to increase the yield of usable devices. However, for

now, we increase the probability of optimally positioning NV centers in devices using

another design that involves hybrid structures where the cavity is created separately

from the diamond waveguide. Starting with a bulk diamond sample that has been

implanted with a surface layer of NV centers, we define 1D waveguide structures

using EBL with PMMA as a resist. After developing the resist, the mask pattern is

transferred to alumina using a sputtering and liftoff process. The alumina-masked

sample is then etched using the angled RIE technique described above, resulting in

solid, suspended 1D waveguides with a triangular cross section, suspended ∼ 1 µm

above the etched diamond surface. The sample is then re-annealed to repair damage
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Figure 6.2: Suspended diamond-based nanophotonic structures. a. Procedure for
angled RIE etching. A mask is defined using EBL on the surface of the diamond.
A top-down etching step performed, followed by an angle-etching step where the
diamond is placed in the center of a machined aluminum faraday cage shown on the
bottom left. The mask is removed, leaving a suspended structure attached at both
ends to anchors (not shown) b. SEM image of a large array of ∼1000 angle-etched
waveguides. c-d. SEM images of photonic crystal cavities formed in 1D waveguides.
e. Transmission spectrum of one such device.
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introduced during the etching process, as described in the next section. We then

characterize the randomly positioned NV centers inside the waveguides and take note

of their position relative to alignment markers also etched onto the surface. We

then spin a 2 µm thick layer of PMMA to cover the structures on the surface and

use EBL to define perpendicular slabs along the waveguide. By tapering the lattice

constant of this Bragg structure composed of PMMA slabs, we can define a cavity

with simulated Q’s of up to 5× 104. Q’s of several thousand have been demonstrated

in fabricated structures, which are shown in Figure 6.3. Since these cavities can

be made anywhere along the waveguide, we can center them around the position

of the previously identified NV centers. This is the main advantage of these hybrid

PMMA-diamond structures. One drawback of these devices is that they are somewhat

more fragile compared to all-diamond structures, and the PMMA slabs can be easily

destroyed in during SEM imaging or if there is a sudden pressure change, for example

while pumping out the cryostat for low-temperature characterization.

6.4 Spectral properties of NV centers inside nanoscale

structures

In Chapter 5, we demonstrated the creation of optically coherent NV centers in

a surface layer through implantation. This is the starting material used for hybrid

cavity devices. However, we find that the NV centers inside the nanoscale devices

are generally less spectrally stable than those inside bulk diamond. The narrowest

extrinsically broadened linewidths are on the order of a few GHz, while the single
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scan linewidths can be less than 100 MHz. In addition, our 1D waveguides have

to be re-annealed following a similar recipe as Figure 5.1, without which the NVs

are generally not photostable. There is also indication that the photostability and

spectral stability are improved by smoother etched surfaces or additional cleaning

and termination steps such as soaking the samples in a piranha solution. All of

these effects point toward surface states as the source of charge fluctuations in the

environment that lead to spectral diffusion. There is ongoing work to identify the

potential chemical composition and structure of the etched surfaces. However, this is

generally quite challenging given the small dimensions of our structures, which limit

the surface area from which signal can be collected.

6.5 Purcell enhancement from a coupled NV-cavity

system

While many improvements to our devices remain to be made, we present here a

preliminary measurement demonstrating the Purcell enhancement of a NV center’s

ZPL emission by a nanoscale cavity. These measurements were made on a NV center

with a 3 GHz linewidth inside a hybrid cavity with a Q of ∼600.

In addition to spatial alignment of the NV center to the cavity, it must also

spectrally overlap with the cavity mode. Here, we note that the NV center linewidth,

even with a spectral diffusion of several GHz, is much less than the cavity linewidth,

which is on the order of 100 GHz. In other words, we operate in the bad cavity

regime, where κ � g � Γ. However, due to variations in the fabrication process,
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the cavity can still be far detuned from the NV center. Therefore, to estimate the

Purcell enhancement based on the lifetime difference when the NV is on and off-

resonance with the cavity, we need to be able to tune the cavity mode frequency. To

do this, we use a combination of two techniques. The first method uses a O2 plasma

etcher (Technics, Model 220) to remove a layer of material from the structure [126].

This tunes the cavity resonance to lower wavelengths because more of the cavity field

resides in air than before and therefore has a higher energy. We have been able to

achieve a wavelength shift of ∼15 nm without significant degradation in the Q factor

using this method. Complementary to this blue tuning process, we can also red tune

the cavity resonance by depositing neon gas on the structure when it has been cooled

down inside the cryostat [130]. We note here that gas deposition is a common method

for tuning photonic crystal cavities, and a tuning range of ∼23 nm was observed

in [126]. However, it is somewhat less effective for our hybrid structures since the

high aspect ratio of the PMMA slabs prevent the diffusion of gas onto the diamond

waveguide, where the field is concentrated. Despite this, we have occasionally been

able to obtain tuning ranges of ∼6 nm.

To measure the change in lifetime when the NV center becomes coupled with the

cavity, we first tune the cavity resonance using plasma etching until it is to the blue

of the NV center’s ZPL. We then gradually red tune the cavity onto resonance with

the ZPL while measuring the lifetime using a filtered supercontinuum laser (NKT

photonics, SuperK EXTREME) as a pulsed laser source around 532 nm. As shown

in Figure 6.3, the lifetime decreases from 18.5 ns when the cavity is completely off

resonant to 11.6 ns when the cavity is tuned to the ZPL. This gives a Purcell factor of
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Figure 6.3: Purcell enhancement of the NV center ZPL emission using hybrid photonic
crystal cavities. a. SEM image of hybrid diamond-PMMA cavities. Visible are the
top surface of the suspended triangular beams, the top of the the PMMA layer and
slabs, along with the exposed diamond surface underneath. b. Transmission spectrum
of hybrid cavity (magenta) and emission spectrum of NV center (black). The spectra
have been scaled relative to each other to fit on the same scale. c. Zoomed in spectra
showing ZPL of NV center (black) and cavity resonance tuned to three different
frequencies (blue, magenta, and yellow). d. Lifetime measurements corresponding to
the detunings in c., taken by exciting the NV center with a pulsed laser and collecting
the PSB emission.
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P = 0.59, or a ZPL enhancement of P
� = 20 for ξ = 0.03. We emphasize here that this

enhancement factor implies that the ZPL emission is now ∼40% of the total emission

from the NV center. However, the lifetime limited linewidth is almost unchanged,

and a much larger Purcell factor is needed to overcome the spectral diffusion, which

in this case is a factor of Γ/γ ∼ 200.
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Conclusions and outlook

Finding an ideal system for implementing robust, scalable technologies that make

use of quantum mechanics is an exciting challenging. Such a system must satisfy a

set of seemingly contradictory requirements. On the one hand, it must be complex

enough such that there are enough degrees of freedom for us to store and manipulate

a large amount of quantum information. On the other hand, more complexity means

that it becomes harder to understand and control the system. Related to this idea,

the system must be sufficiently isolated from the environment to be able to store

quantum information for long periods of time, but must also interact with certain

aspects of the outside world so that it can be controlled, measured, and interfaced

with other systems. Generally, in order to develop useful quantum technologies, we

need to understand the complexities of the system we are interested in, turn as many

of them as possible into useful resources, and suppress any detrimental effects that

remain.

The work presented in this thesis illustrates our efforts to achieve this goal with the
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NV center system. While the NV center at room temperature is already a promising

system for metrology and quantum information, we take advantage of the additional

degrees of freedom offered by its coherent optical properties. This allows us to expand

the NV center beyond a local quantum register by interfacing it with photons and

other remote qubits. Of course, this requires a new level of understanding and control

of the optical transitions, which we presented in Chapter 2. As another example,

the nuclear spin bath surrounding the NV center is a complex system that affects

the spin coherence of the NV center through the hyperfine interaction. However, it

has been shown in many experiments that the nuclear spins can also be used as a

powerful resource [65, 131]. Therefore, efforts to better understand and control the

nuclear spin bath, such as the one described in Chapter 4, are important to fully take

advantage of complexity in the NV center spin system. In addition, while the NV

center’s spin degree of freedom is affected by the magnetic environment, its orbital

degree of freedom interacts with the equally complex electronic environment. This is

evident in the spectral diffusion of the excited states, which is an effect that we work

to understand and suppress in Chapter 5.

Initiated by the work presented in Chapter 3, there has been tremendous progress

in using optical photons to connect remote NV centers. Future work will explore

the possibility of combining the few-qubit local spin register with the resource of

remote entanglement through, for example, teleportation of quantum information

between remote, long-lived nuclear spin memories. Distribution of quantum infor-

mation by teleportation has been demonstrated in several different physical systems

[132, 16, 133]. However, remote teleportation over long distances is an outstanding
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challenge with solid state systems, which, in the long run, offers the possibility of

implementing more scalable local quantum nodes. In particular, one major factor

in determining the ultimate bandwidth and fidelity of a remote quantum channel is

the efficiency with which single photons can be made to interact with the station-

ary qubits and then extracted into, for example, an optical fiber. Current photon

collection efficiencies and entanglement rates may be sufficient for proof-of-principle

experiments, but certainly must be greatly improved for the implementation of prac-

tical quantum networks. The work described in Chapters 5 and 6 begins to address

this issue. The spectral stability of NV centers is an important factor in determining

the repetition rate of experiments requiring indistinguishable optical photons, such as

remote entanglement and teleportation. The availability of NV centers with lifetime-

limited linewidths would eliminate the need for active stabilization and post-selection

of the transition frequency in future experiments. Cavity QED has been used to

enhance the interaction of photons with atomic systems and improve their collection

efficiency, leading to demonstrations of quantum teleportation with high fidelity and

success rates [132]. Diamond-based nanophotonics offers the possibility of achieving

efficient photonic quantum devices in a solid state system.

The work described in this thesis can also be extended for use with a variety of

other systems. For example, a number of alternative defects in solid state materials are

being explored, with many of them showing great promise and potential improvements

over the NV center in certain aspects. One such system is the silicon-vacancy (SiV)

in diamond, where an impressive degree of spectral stability has been observed in

the optical transitions [134, 135]. The theoretical description of the SiV system has
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many parallels with that of the NV center, as presented in Section 2.2. While it is

not yet clear whether or not the SiV center has spin properties that are useful for

metrology or quantum information, it shows great promise in other applications such

as single-photon sources, whose efficiency could benefit greatly from incorporation

with nanophotonic structures such as those described in Chapter 6.

Finally, future quantum technologies will most likely be implemented with a com-

bination of several types of physical systems, each with its own strengths and weak-

nesses. There are already many theoretical proposals and experimental demonstra-

tions of interfacing NV centers with other quantum devices [136, 137]. Most of these

demonstrations make use of the NV center’s unique spin properties, effectively turn-

ing its interaction with the magnetic environment from a detriment into a resource.

Analogous to this, an potential direction for future exploration would be to take

advantage of the NV center’s optical transitions to interface it with other systems.

Thus far, we have treated the strain and electric field sensitivity of the NV center’s

excited states as a detrimental effect. However, these properties can also be used to,

for example, couple multiple nearby NV centers for the purpose of investigating in-

teresting collective effects or scaling up the local quantum register. In addition, they

allow for interactions between the NV center and other structures that can modify

its local strain or electric field, such as mechanical oscillators and superconducting

circuits. The strength of these interactions can potentially be much stronger than

the magnetic coupling using the ground state of the NV center. Combined with the

ability to communicate information with remote systems through optical photons, the

NV center becomes a quantum system that not only has uniquely attractive proper-
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ties as an isolated system, but can also be made to interact with other systems in a

controlled manner. Therefore, the ideas and techniques developed in this thesis will

enable us to use the optical properties of the NV center as a powerful resource for

building complex and useful quantum technologies.
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Supporting material for Chapter 3

A.1 Calculation of entanglement fidelity

To estimate the entanglement fidelity, we first use the conditional measurement

shown in Figure 3.4a,b to determine diagonal elements of the spin-photon density

matrix in the |σ±� , |±1� basis. Since σ± photons are emitted with equal probability

(see SI), we find ρσ+−1,σ+−1 = 1

2
p−1|σ+ = 1

2
(0.96± 0.12), ρσ+ +1,σ+ +1 = 1

2
(0.07± 0.04),

ρσ−−1,σ−−1 = 1

2
(0.10 ± 0.05), and ρσ− +1,σ− +1 = 1

2
(0.87 ± 0.14). To evaluate the off-

diagonal elements, we rotate the measurement basis by projecting the photon to the

|H� or |V � states and measuring the conditional probability of being in state‘ |M�,

which is equal to |±� for particular choices of α (e.g. |+� = |M� |α=0). The required

diagonal matrix elements in the |H� , |V � , |±� basis are then given by ρV +,V + =

1

2
pM |V (α = 0), and similarly for ρH +,H +, ρH −,H −, and ρV −,V −. We model the experi-

mentally measured conditional probabilities with the forms pM |H = (bH + aH cos α) /2

and pM |V = (bV − aV cos α) /2, where bH,V are the offsets of the oscillations and
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aH,V are their amplitudes. Using a simultaneous fit to the data in Figure 3.4c,

d that constrains the frequency to be the Zeeman splitting, we obtain the values

ρV +,V +−ρV −,V − = aV /2 = 1

2
(0.53±0.16), ρH −,H −−ρH +,H + = aH/2 = 1

2
(0.58±0.10)

The information obtained is sufficient to provide a lower bound for the entanglement

fidelity. Using the analysis in [22]:

F ≥ 1

2
(ρσ+−1,σ+−1 + ρσ− +1,σ− +1 − 2

√
ρσ+ +1,σ+ +1ρσ−−1,σ−−1

+ρV +,V + − ρV −,V − + ρH −,H − − ρH +,H +)

we find F ≥ 0.69±0.068. This analysis agrees with the results of an independent max-

imum likelihood analysis described in the SI, which yields a near Gaussian probability

distribution for a lower bound on the fidelity with F ≥ 0.70 ± 0.070.

A.2 Experimental details

A.2.1 Overview of experimental setup

The experiments in Chapter 3 are performed using a natural bulk diamond sample

kept below 7 K in a Janis ST-500 Cryostat. Resonant excitation of the readout and

entanglement generation transitions are done using two external cavity diode lasers.

To overcome the main experimental challenge of ensuring sufficient signal to noise

of the detected ZPL emission, we eliminate background from laser light reflected off

the diamond surface by creating an isolated excitation π pulse using two cascaded

waveguide modulators. This excitation pulse is sent through a quarter-wave plate that

is fixed during all experimental runs to produce the circular polarization that most

efficiently excites the NV to the |A2� state. We note that, since our measurements are
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conditioned on the detection of an emitted photon, optical π pulse imperfections only

affect the efficiency of the entanglement generation and not the measured fidelity.

In the collection path, the ZPL is sent to a polarization analysis setup consisting of

a half-wave plate and a polarizing beamsplitter for photon state selection. It then

passes through a narrow frequency filter before being detected by a low dark count

APD. We use a waveguide based electro-optical modulator before the APD to further

reduce reflections of the excitation pulse and suppress detector afterpulsing. Special

care is taken to minimize reflections during the measurement window to around the

dark count level of the detector.

Addressing of the |0� ↔ |±1� microwave transitions is carried out using a 15 µm

copper wire attached to the diamond. For simultaneous addressing, two microwave

fields generated by mixing the difference frequency of the two transitions with their

average frequency are separated using bandpass filters, individually attenuated, and

recombined to balance their power. Low shot-to-shot noise in the microwave fields’

relative phase is crucial. This is achieved by triggering all timing-sensitive channels

from one output event of a controller device that produces the entanglement genera-

tion and conditioned readout sequences. Timing information of both ZPL and PSB

photons are collected by combining them at the input of a time-tagged-single-photon-

counting device.

Given an experiment repetition rate of ∼ 100 kHz and an entanglement genera-

tion success probability of p ∼ 10−6, we then detect on average one signal photon

every few seconds. Since the microwave π pulses used for population transfer to the

|0� state are nearly perfect and about 100 repetitions are required for reliable spin
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state determination, roughly 24 hours of data taking were required for each of the

four photon polarizations measured. Overall, characterization, calibration, and data

acquisition for a given NV center were performed over a roughly two month period.

The overall measurement time for each individual NV center is limited by the long

term mechanical stability of the setup.

A.2.2 Optical setup

Optical access to individual NV centers is facilitated with a Nikon 0.95 NA Plan-

Apo microscope objective that is held inside vacuum with a bellow structure that

allows the objective to be moved relative to the sample. Our microscope contains two

excitation channels and two collection channels. The NV is off-resonantly excited

and spin polarized using a doubled YAG laser (532 nm Coherent Compass 315M-100)

modulated with an acousto-optical modulator (Isomet 1250C-848). Resonant optical

pumping is carried out with two external cavity grating lasers. A New Focus Ve-

locity TLB 6304 laser operating at 637.199 nm and locked to a Fabry-Perot cavity

(Atrix Management S A CC - 3.0GHz - 200) is used for the readout transitions (∼ 4

µW before objective), while a second laser (Atrix Management S A ECLD-0638-022)

operating at 637.189 nm is used for resonant optical pumping of the entanglement

generation transition (∼ 100 µW before objective). Both lasers are modulated with

acousto-optical modulators (Crystal Tech 3080-122). In addition, a high fidelity exci-

tation pulse (2 ns 3dB width and > 50 dB extinction in 4 ns from peak) is generated

from the 637.189 nm laser using two waveguide modulators in cascade (Guided Color

Technologies), each controlled by an 800 MHz arbitrary waveform generator (Ana-
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logic Polynomial Waveform Synthesizer 2045). Extinction of the excitation pulse is

critical because we use the relatively long lifetime of the NV center to seperate the

emission from the shorter (2ns) laser reflection photons.

Phonon-sideband emission from the NV is separated by dichroic filters from the

532 nm excitation path (Semrock LPD01-532RS-25) and ZPL path (Semrock Di01-

R635-25x35) before being filtered to remove any leakage or dominant raman lines (2x

Semrock NF01-633U-25, Semrock LP01-633RS-25). It is then coupled into a single

mode fiber and sent to a high quantum efficiency APD (SPCM ARQ-15-FC). The ZPL

collection path is separated from the resonant excitation path by a non-polarizing

beam splitter, and emission from the NV is sent to a polarization analysis setup

consisting of a HWP and a PBS. The emission is filtered by two narrow frequency

filters (custom Andover 1 nm bandpass around 638 nm, Semrock FF01-640/14-25)

and detected by a low-dark count APD (Micro-Photon-Devices, PDM Series). We

use a third waveguide based E-O modulator (EOSpace, driven by Stanford Research

Systems DG645 delay generator) before the detector to reduce the number of reflected

photons from the excitation pulse and suppress afterpulsing of the detector.

A.2.3 Microwave control

The two microwave transitions are addressed individually by separate oscillators:

a HP 8350B sweep oscillator with 83525A RF plugin tuned to 2.9387 GHz and an Ag-

ilent 83732B synthesizer tuned to 2.8174 GHz. For simultaneous addressing, a 60.85

MHz waveform generated by a high speed Tek 710 AWG is mixed using a Minicircuits

ZFM-15 mixer with the RF field generated from the Agilent synthesizer at 2.87875
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Figure A.1: Experimental Setup. The setup is shown in three functional groups.
The optical setup is show in blue and gray. In green are the control electronics and
the electrical pulses that are generated. A green arrowed line indicates a pulse being
generated by the source device and sent to the entity indicated by the arrow. For
example the FPGA generates the pulse that drives the AOM for 637.199 nm readout
laser. The microwave components and their connections are shown in red.

GHz. To balance the power of the two microwave frequencies of the simultaneous field,

they are first separated using two bandpass filters with 120 MHz bandwidth around 2.8

GHz and 3.0 GHz (Reactel 5C7-2800-120S11 and 5C7-3000-120S11). They are then

recombined using a diplexer around the same frequencies (Reactel 2DP7-2800/3000-

X120S11) after being individually attenuated (Minicircuits ZX76-15R5-PP-S+) and

re-amplified (Minicircuits ZX-60-6013E+). The measured variance in the relative

phase between two frequencies of the simultaneous field is below 0.19 radians. Fast

microwave switches (Minicircuits ZASWA-2-50DR+, Custom Microwave Components
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S0947A-C2) are used for time shaping of microwave pulses. All separate channels are

combined and sent to a 10 W solid state amplifier (Ophir 530324-002) before the

copper wire.

A.2.4 Experiment control and data acquisition

Experimental flow is controlled by a NI-7833R FPGA based intelligent DAQ device

programmed to run the entanglement generation sequence and switch to the readout

sequence within three clock cycles (75ns) upon the detection of a ZPL photon. Time

of arrival information of photons on both PSB and ZPL channels are collected by

passively combining the output of the two APDs to the input of a time-tagged-single-

photon-counting device (Picoharp 300). The device is configured to record the time

of arrival of all detection events relative to a trigger event marking the beginning

of the experimental sequence. Further processing of the data is done after each

experimental run to determine the number of relevant ZPL and readout events. All

channels / events that are timing-sensitive (e.g. trigger to the AWG or trigger to

the timing board) are generated from a single output event of the FPGA device that

triggers the Stanford DG645 signal generators running in burst mode, which have low

channel-to-channel and low trigger-to-output jitter.

An additional multi- function DAQ device from NI is used to find and characterize

the NVs. It is also used to record a second electronic copy of the photon arrival event

on the PSB channel to track the position and frequency drift of the NV/ crysotat/laser

system while the entanglement experiment is running.

Finally, we point out that the overall time required for finding and characterizing
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a low-strain NV is several weeks. Combined with the four day-long data acquisition

runs for entanglement verification, the amount of data we are able to take for the

same NV becomes limited by the long term stability of our setup. Further improving

the robustness of the setup and our ability to locate particular NV’s over long time

periods will be crucial for future experiments.

A.3 Spin readout

Spin readout is achieved through resonant laser excitation tuned to the |0� ↔ |Ey�

transition [40]. As the |0� ↔ |Ey� transition is cycling for low strain and is isolated

in frequency from other transitions the fluorescence collected in the presence of the

resonant laser field should be proportional to the population in the |0� state. However,

the fluorescence levels measured for different spin states may depend on the complex

dynamics associated with the singlet state, imperfections of the cycling transition,

photoionization, and spatial stability of the measurement setup. In order to accurately

calibrate our spin measurements, we use a procedure that involves the conditional

preparation of spin states. In the following section, we first describe the conventional

spin measurement procedure and then compare it to our conditional readout scheme.

Figure A.3(a) shows microwave Rabi oscillations detected using the conventional

resonant readout scheme. Following a polarization step carried out with a green

laser, a microwave pulse of varying length and resonant to the |0� ↔ |1� transition is

applied and the resulting state is read out using the resonant excitation. In an ideal

preparation and readout scenario, the |0� state would be bright while the |±1� states

would be completely dark. The high level of fluorescence achieved for the |0� state is
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Figure A.2: Spin readout via resonant excitation a Microwave Rabi oscillations
(in blue) recorded using the pulse sequence given in (b) without conditioning. Left
vertical axis shows the average number of counts received for a particular length of
microwave pulse duration (τ). Right vertical axis shows the normalized population in
the |0� state for the same pulse duration. The red lines are maximum and minimum
readout levels obtained using the conditioned readout technique shown in (b) and
described in the text. b Pulse sequence used for part (a). In the unconditioned case,
532 nm light is turned on for 1 µs to polarize the electronic spin to |0� state. After
6 µs, a microwave pulse resonant to the |0� ↔ |+1� of varying duration is applied.
Finally a 10 µs light pulse resonant to the |0� ↔ |Ey� transition is turned on 1 µs after
the microwave pulse and counts in the PSB are recorded in this interval. Additional
pulses used for conditioned readout are boxed, including a resonant optical π pulse
tuned to the |0� ↔ |Ey� or |±� ↔ |A2� transition. Only events where a PSB photon
is received within a 20 ns window around this pulse are kept, thus conditioning the
readout procedure on a fluorescent decay from the NV.

limited by the branching ratio between the |Ey� → |0� and |Ey� → |±1� transitions

(∼99 % as measured below) and the collection efficiency to about 0.11 counts per shot.

Thus multiple repetitions of the experiment are needed to build up enough statistics

for an accurate estimation of the initial state. When the NV center is nominally

prepared in the |+1� state, we observe counts above the background level, which may

be due to imperfect spin polarization or additional fluorescence from the |+1� state.

To characterize these effects further, we record time traces of the fluorescence

during the resonant readout stage where the state is initialized either in |0� or |1� in

the same way as the Rabi experiment (Figure A.3(b)). These are then compared to a
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Figure A.3: Stability and dynamics of optical transitions a One hundred suc-
cessive scans of the NV spectrum shown in Figure 3.2(b) of the main text. Each scan
taken over ∼10 seconds, demonstrating the spectral stability of the NV center over
long time scales. Spectral lines shown here and in Figure 3.2b of the main text have
widths larger than 100 MHz due to power broadening. b Histograms showing time
traces of fluorescence as recorded in the PSB following spin initialization to either
the |0� (red) or |1� (blue) state. Solid lines show simulated fluorescence from the NV
using the model shown in (c) and described in the text. Two other similar data sets at
different laser powers were used to determine the branching ratio of |Ey� to |±1� and
the spin polarization. c Model used to simulate the dynamics of optical transitions
leading to fluorescence time traces shown in (b). R gives the optical pumping rate of
the readout transition. γ00 and γ01 are decay rates to the |0� and |±1� states, respec-
tively. γ0s and γs are the non-radiative decay rates into and out of the metastable
singlet state |S�.

model of the NV center dynamics similar to the one discussed in [39] and illustrated

in Figure A.3(c). The model involves the |0� and |±1� ground states, the |Ey� state,

and a metastable singlet state |S�. The branching ratios from |Ey� state to |0�, |±�,

and |S� are related to the decay rates γ00 = 1/12ns, γ01, and γ0s, respectively. γ00

is determined by lifetime measurements, and the singlet decay rate to |0� is set to
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γs = γ00/33, as given in [39]. We then simulate the evolution of the system under a

continuous optical pumping of the |0� → |Ey� transition at a rate R, starting with

some initial spin population for the two cases of initialization in |0� or |1�. To estimate

the values of γ01, γ0s, R, and the spin polarization, these parameters are varied to fit

the simulation to the data by eye. This was done for three different laser powers, and

the data and simulation results for the medium power are shown in Figure A.3(b),

which corresponds to conditions under which the Rabi curve in Figure A.3(a) where

taken. Using this method, we estimate the branching ratio out of the system of

ms = 0 states to be 0.92 ± 0.16%, and the imperfection in spin preparation to be

7.2 ± 1.8%. This imperfection could be either due to incomplete spin polarization

or imperfect microwave pulses. The pulse error associated with a square pulse of

finite Rabi frequency (around 10 MHz) is estimated to be about 3 %. The error is

mostly due to the presence of the hyperfine interaction with the nuclear spin of 14
N

associated with the NV center[138]. We thus estimate the spin polarization after the

green excitation to be 96 ± 1.9%.

To directly calibrate our spin readout results and confirm that it is the imperfect

spin preparation stage which reduces the contrast of the Rabi experiment, we perform

two experiments in which we polarize the NV center by measurement and perform

conditional spin readout. In the first experiment, a π pulse (initialization pulse)

resonant to the |0� ↔ |Ey� transition is applied many lifetimes prior to microwave

manipulation. By only analyzing events in which a photon has been detected in the

PSB during the initialization pulse, we ensure that a photon has decayed from the |Ey�

state prior to microwave manipulation. The state should decay to the |0� state with
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99 % probability, and given that the signal / noise of the trigger photon is roughly

280:1, the state should be prepared in |0� with 99 % probability prior to microwave

pulses. Subsequent measurement of the spin by a separate laser tuned to the same

transition reveals 0.13 ± 0.025 counts /shot if no microwave manipulation is carried

out and 0.0092 ± 0.00054 counts/shot if a microwave π pulse is applied resonant to

the |0� ↔ |+1� transition. The ratio of the counts after subtracting the background

of 0.0057±0.0010 counts/shot is accounted for by the expected pulse error. A second

experiment was carried out where the initialization pulse was tuned resonant to the

|+1� ↔ |A2� transition. The detection of a photon in the PSB indicates that the state

has been prepared in the |±1�manifold, and a subsequent readout process without any

microwave manipulation yields the background level. We then conditionally measure

the populations in the |±1� states by individually transferring their population back

to |0� state. We find that their population levels are roughly equal (0.059±0.0013

counts/shot and 0.061±0.0014 counts/shot). Assuming that the PSB emission does

not change the spin projection, this data indicates that the |A2� state decays with

roughly equal probability to |±1� states.

We note that the readout levels achieved by the conditioned measurement proce-

dure could in principle be different from the values obtained without conditioning.

Although the difference is small for the NV center used in the current experiment,

we have observed a significant difference for other NV centers. One possible source

for this difference is photoionization of the NV− to NV0, in which case the NV center

effectively goes dark. The detection of a PSB photon during the conditional cali-

bration procedure described above ensures that the center is in the NV− state for
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that particular repetition of the experiment. The readout levels obtained using this

procedure are then relevant for normalization of our entanglement verification data,

which are similarly conditioned on the detection of a ZPL photon. On the other

hand, if no such conditioning was performed, the calibration levels obtained would

be reduced by the probability of ionizing the NV, and would not accurately corre-

spond to our entanglement data. In addition, there are many other sources of noise

that would have a similar effect, for example spectral instabilities of the laser - NV

center system and mechanical vibrations that quickly misalign the system. These

effects are slow compared to the repetition rate of our experiment, but short com-

pared to the total data acquisition time and could generate a difference in the two

spin readout methods. The NV center we work with has good long term spectral

stability within a linewidth of ∼100 MHz (Figure A.3(a)), and we actively track the

position of the NV by maximizing the fluorescence counts during the experiment.

However, to completely eliminate the effect of possible instabilities, we normalize our

measurements to the conditional calibration values. The population P in state |0� for

a given number of counts per repetition (C) is then P = (C − cB) / (CM − cB), where

cB = 0.0057 ± 0.0010 counts/shot and cM = 0.11 ± 0.0022 counts / shot correspond

to the background and maximum calibration values, respectively.

In summary, we find that resonant excitation in combination with conditioning-

based spin preparation is an exceptionally useful tool for spin readout of the NV

center. Not only can we use it to extract information about populations in relatively

few repetitions, but it allows us to fully characterize various procedures related to

the spin properties of the NV center, for example spin polarization achieved or pulse
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errors, with very few assumptions. In addition, the conditioned readout technique

may be useful in probing other properties of the NV center such as blinking and

spectral stability.

A.4 Verification of polarization selection rules for

|A2� state

Figure 3.2c in Chapter 3 text verifies that transitions from |±1� states to the |A2�

state have mutually orthogonal circular polarizations. Here we explain the observation

shown in the figure and describe how we can extract the polarization imperfections

of our system.

To obtain Figure 3.2c, the NV center is prepared in the |+1� (|−1�) state with

a 1 µs polarization step of off-resonant green excitation followed by a microwave π

pulse resonant to the |0� ↔ |+1� (|0� ↔ |−1�) transition. This transfer of population

is followed by a short (2 ns) resonant optical excitation pulse tuned to the |+1� ↔

|A2� (|−1� ↔ |A2�) transition. The fluorescence intensity recorded in the PSB in

the presence of this excitation pulse is plotted as function of quarter wave plate

(QWP) angle. The wave plate rotates the incident linearly polarized light into a well

defined superposition of circular polarizations dependent on the angle. The length

and intensity of the pulse is chosen such that it is close to an optical π pulse for the

appropriate QWP angle that maximizes the fluorescence for the selected transition.

The electric field projections to σ+ and σ− after the linearly polarized excitation

beam passes the QWP at an angle θ are 1

2

�
i + e

−2iθ

�
for σ+ and 1

2

�
i + e

2iθ

�
for σ−,
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so that the intensities in σ+ and σ− oscillate out of phase as functions of 2θ.

Figure A.4: Model and simulations for verification of circular polarization. a Sim-
plified model used to explain the non-sinusoidal behavior. The excited state |A2�
is coupled to the ground states |±1� with optical Rabi frequency Ω±. These Rabi
frequencies are determined by the particular QWP angle θ. The state prepared with
microwave excitation is on-resonance with the optical field while the other is detuned
by δω in the presence of the Zeeman splitting (2π× 120 MHz). b Calculated excited

state populations for Ω =
�

Ω2
+ + Ω2

− = 2π × 250 MHz. The pulse is on for 2 ns for
the blue and red dots and 3.5 ns for the yellow dots. The detuning is assumed to
be 0 for the red dots, 15 GHz for the blue dots and 120 MHz for the yellow dots.
Solid lines are plots of expressions for the population in the two limits explained in
the text.

Dynamics of the NV center under excitation by polarized light may be extracted

from the simple model shown in Figure A.4. As our excitation beam is tuned to a

particular transition, say |+1� ↔ |A2�, the other transition from |−1� is detuned by

the Zeeman splitting δω. The optical Rabi frequencies associated with each transition

are QWP angle dependent: Ω+ = Ω

2

�
i + e

−2iθ

�
and Ω− = Ω

2

�
i + e

2iθ

�
. We neglect

spontaneous decay for simplicity since the optical excitation is relatively short. Our

measured signal then corresponds to the population in the |A2� state after 2 ns (t =

π/Ω) of evolution under optical excitation from the initial |+1� or |−1� state.

We first consider the limit Ω � δω, where the natural basis is the “bright” and

“dark” states defined by |b� = Ω+|+1�+Ω−|−1�
Ω

and |d� = Ω+|+1�−Ω−|−1�
Ω

. The applied
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excitation always acts as an optical π pulse that transfers the population from |b�

to |A2�. As the QWP rotates, our signal varies with the overlap between the pre-

pared state |±1� and the bright state: |�±1 |b�|2 = 1±sin 2θ

2
. The expected angular

dependence is sinusoidal, as demonstrated in Figure A.4

In the opposite limit where Ω � δω, the detuned state is mostly off resonant,

and the natural basis is again |+1� and |−1�. In this case we may neglect the off

resonant level and consider two-level Rabi oscillations between the prepared state

and |A2�. The population in the excited state for this case is given by sin2 (Ω±t/2) =

sin2

�
π

√
(1±sin 2θ)

2
√

2

�
. As illustrated in Figure A.4, the population curve has a flattened

top compared to a simple sinusoid.

For the NV center considered in the main text, Ω ∼ 2π × 250 MHz and δω ∼

2π × 122 MHz. We are thus in the intermediate regime between the two limits.

As the QWP is rotated, both the Rabi frequency and the overlap with the bright

state change, leading to more complex behavior. The yellow dots in Figure A.4b

shows that if t is picked to be slightly longer than a π pulse, the |A2� population is

nearly independent of angle near circular polarization. As the angle deviates from

the θ = π/2, the Rabi frequency decreases so that the population transferred to the

|A2� state increases. On the other hand, the overlap of the prepared state with the

bright state decreases. The combination of these two effects give rise to an extended

flat-top behavior.

In addition, Figure 3.2c in the main text shows that the |+1� and |−1� cases give

rise to differently shaped curves. We attribute this to different overlap of the confocal

spot with the NV for the two measurements, which also explains the slightly different

118



Appendix A: Supporting material for Chapter 3

collection efficiencies assumed for the two cases to fit the observed data. The fits used

in the figure also include decay from the excited state, which decreases the population

transfered to the excited state, but has no other significant effect.

The finite contrast observed in Figure 3.2c could be due to imperfect selection

rules between the |A2� and ground states or imperfect circular polarization of the

optical excitation. With Figure 3.2c alone it is not possible to distinguish between

the two cases. Given the above discussion of the excited states, we estimate the

mixing between the |A2� states and other excited states to be about 1 %. From these

considerations we deduce that that the selection rules are nearly perfect as described

before, but that the imperfect optical system creates a slightly elliptical electric field

vector 0.94 |σ+� + 0.34 |σ−�. This ellipticity is expected to decrease the observed

fidelity by 12 %.

A.5 Effects of magnetic environment, detunings,

and echo

The entangled state given in Eq. 1 of the main text is suceptable to fluctuations

from the magnetic enviroment. In this section we show that these fluctations and

unaccounted detunings between the microwave fields and NV center transitions would

lead to a decreased contrast of the observed oscillations. We then describe the echo

technique used to improve the contrast.

We note that these imperfections, in the current context, mainly affect measure-

ments in the H,V basis. Their effect on the σ± basis is limited to inefficiencies in
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population transfer to |0� state and are thus accounted for by pulse errors, which are

treated seperately.

A.5.1 Effect of finite detuning

We generalize the description given in the main text by introducing the rotating

frame associated with the microwave fields:

���±1̃
�

t
= e

iφ±e
−i(ω±∓∆)t |±1� ,

where we have added a particular detuning ∆ that covers the effect of hyperfine

coupling to 14
N nuclear spin and AC Stark shifts from non-resonant microwave fields.

For the NV center used in this study there are no nearby 13
C nuclear spins, hence their

effect may be neglected. We estimate the static detuning of our microwave field from

the relavent NV transtion frequencies to be less then 500 kHz. The two microwave

frequencies are well separated by δ ∼ 120 MHz, so the presence of the non-resonant

field mainly creates an AC Stark shift. For our Rabi frequency of 8 MHz the shift

is estimated to be Ω2
/δ ∼ 0.5 MHz. For the idling times considered (∼ 500 ns), the

effect of the 13
C nuclear bath is relatively small.

Under these assumptions, the state right before detection of the photon may then

be written as:

|Ψ(td)� =
1√
2

�
e
−iφ+e

i(ω+−∆)td |σ+�
���−1̃

�

td

+ e
−iφ−e

i(ω−+∆)td |σ−�
���+1̃

�

td

�
.

Following the detection and idling time ti, the state becomes:

|Ψ(td)�ti =
1√
2

�
e
−iφ+e

i(ω+−∆)td−∆ti

���−1̃
�

ti

± e
−iφ−e

i(ω−+∆)td+∆ti

���+1̃
�

ti

�
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where + (−) corresponds to detection of a photon in H (V ) states. The idling time

effects the signal we observe through (re-defining α from the main text):

α = (ω+ − ω− − 2∆)td + 2∆ti −∆φ

For example, the presence of 14
N nuclear spin introduces a fixed detuning that is

static for the duration of an experimental run, but from run to run changes between

∆ = 0, ±2.2 MHz [138]. For ti of order 200 ns the detuning may decrease the

observed contrast significantly. While this effect can be reduced by simply waiting

for an appropriate rephasing time for the 14
N , there is still residual decoherence due

to the 13
C spin bath. To best eliminate all these effects and extend the memory time

of the spin state, we add an echo sequence prior to spin measurement.

A.5.2 Spin echo sequence

The echo is easiest to describe in the |M� =
����+1̃

�
+

���−1̃
��

/
√

2 and |D� =
����+1̃

�
−

���−1̃
��

/
√

2 basis. We apply a ti − 2π − ti sequence with microwave pulses

that drive the |M� ↔ |0� transition. This sequence is in spirit similar to the Bang-

Bang decoupling technique[139]. For an arbitrary superposition |ψ� of the orthogonal

states |M� and |D�, evolution of time ti under the detuning of the form given above

leads to coherent oscillations between the states |D� and |M� and results in the state

e
−i2∆tiσx |ψ�, where σi is the appropriate Pauli matrix in the |M�, |D� basis. If the

magnetic field fluctuates from shot to shot this leads to decoherence. A fast 2π

pulse effectively switches the sign of the |M� state (σze
−i2∆tiσx |ψ�). The subsequent

evolution then creates the state e
−i2∆tiσxσze

−i2∆tiσx |ψ� = σz |ψ�, which differs from

the original state only by a relative phase that is independent of ∆ti.
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In the context of section A.5.1, the procedure above results in the following state

after the echo sequence in the
���±1̃

�
basis: 1√

2

�
e
−iφ+e

i(ω+−∆)td

���−1̃
�
± e

iφ−e
i(ω−+∆)td

���−1̃
��

.

Hence our signal is only affected by the random arrival time of the photon td and not

the idling time. For detunings on the order of 5 MHz, the frequency shift is about 4

% of the center frequency of the oscillations (120 MHz) and may be neglected within

our current signal to noise.

We note that for a finite length of the 2π pulse (around 110 ns), the echo is

expected to be imperfect, as the magnetic field continues to rotate the states in the

|M�, |D� basis while the pulse is being applied. By timing the echo sequence correctly,

we can compensate for this imperfection.

To find the optimal timing of ti for our experiment, we carry out a simple echo

experiment illustrated in Figure A.5. Given Figure A.5b we pick ti = 170 ns for

optimum compensation such that an almost perfect echo is performed.

Figure A.5: Echo technique used. a. Pulse sequence implemented to test the echo
technique. The system is initialized to the |0� state followed by 5 µs of waiting time.
A π pulse is applied to create a bright superposition |M� of |±1� states. The state
is allowed to evolve for time ti before a 2π refocusing pulse is applied, after which
the state evolves for time ti again. A π pulse then maps the state back to |0� and is
followed by a resonant readout pulse. b. Result of the sequence described in part (a).
Solid line is a theory fit where only the effect of 14

N has been taken into account.
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A.6 Fidelity estimates

We would like to determine the lower bound for the entanglement fidelity[22]:

F ≥ (F1 + F2)/2 (A.1)

where

F1 = ρσ+ −1,σ+ −1 + ρσ− +1,σ− +1 − 2
√

ρσ+ +1,σ+ +1ρσ− −1,σ− −1 (A.2)

F2 = ρH+,H+ − ρH−,H− + ρV−,V− − ρV +,V +. (A.3)

We obtain F1 = 0.83 ± 0.10 by measuring the quantities ρσ+ −1,σ+ −1, ρσ− +1,σ− +1,

ρσ+ +1,σ+ +1, and ρσ− −1,σ− −1 in the original basis of the photon and spin. F2 is related

to the oscillation amplitudes aH/2 = ρH−,H−− ρH+,H+ and aV /2 = ρV +,V +− ρV−,V−,

measured in the rotated basis.

A.6.1 Time bin optimization

One approach to obtaining the amplitudes aH and aV is by directly fitting to the

oscillations in the conditional probability, as shown in Figure 3.4c of Chapter 4. The

resolution of our time-tagged-single-photon-counting device is 4 ps. However, due to

our low count rates, only a fraction of the 4 ps time bins register a photon in the

signal region during the entire experimental run. Therefore, to obtain the conditional

probability, we group the ZPL counts and their corresponding readout results into

larger time bins. One commonly used method is to optimize the goodness of the fit

of a particular model to the data by varying size of the bins so that the error of the

fit is minimized [140]. However, such a method involves computationally intensive
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procedures. Therefore we have used a simplified version of this method, motivated by

the fact that our count rates decrease exponentially as a function of td. In essence, the

time bins are determined one at a time starting from the beginning of the decay by

minimizing the fit error while varying each successive time bin between 900 ps and 2

ns, which is longer than the timing resolution of our photon detectors (∼ 300 ps) and

shorter than the period of the expected oscillations. Since the count rate is highest

at the beginning of the decay and should therefore be amenable to the smallest time

bins, we start by fixing the first three time bins to 900 ps. We then add the next

time bin, vary its length, and perform a fit to the data in these first four bins. The

length of the fourth bin is then chosen to minimize the mean squared error of the fit.

This optimization process is repeated for each successive time bin until 15 ns of data

are used. Such an optimization of the bin sizes is done separately for the H and V

polarizations.

We emphasize that the time bins are chosen to optimize the error of the resulting

fits, not the amplitude of the fitted oscillations. As shown in Figure 3.4c, the time-

binned data exhibit clear oscillations and allows us to extract a fidelity above the

classical limit using the fit.

A.6.2 Maximum likelihood estimate

Any time binning method, while necessary to present the data in a reasonable

fashion, introduces errors by changing the timing information of the raw data. In

order to ensure that such errors do not lead to an incorrect estimate of the fidelity,

we also extract the fidelity directly from the raw data using a maximum likelihood
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method. In addition, we calculate the probability distribution for the fidelity, which

not only indicates a high probability of entanglement demonstration, but, by virtue

of being nearly a perfect Gaussian, justifies minimization of the mean squared error

used in the optimization procedure above.

We first derive the formula for the joint probability distribution function of detect-

ing a photon at time t and measuring the spin state |M�. Due to the single exponential

decay of the optical excited state, the probability distribution for detection of a |H�

or |V � photon at time t is

pH,V (t) =
1

τ
e
−t/τ

, (A.4)

where τ = 12 ns is the lifetime of the excited states. For a perfect spin-photon

entangled state, upon detection of a |H� or |V � photon at time t, the conditional

probability of measuring the spin state |M� is pM |H,V (t) = 1

2
(1 ± cos α (t)) with

α (t) = (ω+ − ω−) t + (φ+ − φ−). For an imperfect spin photon entangled state, the

conditional probability has a reduced oscillation amplitude:

pM |H,V (t) =
1

2
(1 ± aH,V cos α (t)). (A.5)

Thus, the joint probability is

pM ;H,V (t) = pM |H,V (t) pH,V (t) (A.6)

=
1

2τ
e
−t/τ (1 ± aH,V cos α (t)) . (A.7)

Motivated by these considerations we aim to model the experimental data using

the following fitting functions:

fH (t) =
cH

2
(1 + aH cos (2πt/T + φ)) e

−t/τ + b0, (A.8)

fV (t) =
cV

2
(1− aV cos (2πt/T + φ)) e

−t/τ + b0, (A.9)
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with fitting parameters {cH , cV , aH , aV , T, φ, b0}. Here cH and cV are proportional to

duration of the experiment and b0 is the background.

We denote the number of conditional readout events within each ∆t = 4 ps detec-

tion time bin [t, t + ∆t] as nH,t and nV,t for the two photon polarizations, and obtain

the data sets {nH,t} and {nV,t} with t = t0, t0+∆t, t+2∆t, · · · . For a given set of data

and underlying probability model, a maximum likelihood estimate (MLE) picks the

values of the model parameters that maximize the likelihood function for the data,

compared to other choices of parameters. Given no prior knowledge of the fitting

parameters, we may assume an uniform distribution for the fitting parameters. Then

the likelihood function will be proportional to the probability distribution function.

In the following, we use the MLE to fit the theoretical model with experimental data

and obtain the oscillation amplitudes aH and aV .

The expected average number of events for the time bin [t, t + ∆t] are given by

equations A.8 & A.9 above. However, the number of recorded events for each time

bin has fluctuations characterized by the Poisson distribution

pλ (n) =
λ

n

n!
e
−λ

, (A.10)

where λ is the average number of events. Thus, the likelihood for recording nH,t events

of detecting an |H� photon at time t and measuring the NV center in spin state |M�

is

LH (nH,t, t) = pλ (nH,t) |λ=fH(t) (A.11)

= fH(t)
nH,t

nH,t!
e
−fH(t)

. (A.12)
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The likelihood for getting the list {nH,t} is

LH ({nH,t}) =
�

t

LH (nH,t, t) . (A.13)

Similarly, the likelihood for the list {nV,t} is

LV ({nV,t}) =
�

t

LV (nV,t, t) , (A.14)

where

LV (nV,t, t) =
fV (t)nV,t

nV,t!
e
−fV (t)

. (A.15)

We numerically maximize the following likelihood function for both lists {nH,t}

and {nV,t}:

L ({nH,t} , {nV,t}) = LH ({nH,t}) LV ({nV,t}) . (A.16)

We use the generic gradient ascend algorithm to maximize the likelihood function

with the optimal choice of parameters as listed in Table A.1. We verify that it is also

a global maximum by sampling throughout the entire parameter space numerically.

Table A.1: Optimal choice of parameters from the MLE.

Parameter aH aV cH cV T (ns) φ b0

value 0.65 0.55 0.083 0.090 8.2 −4.04 0.000

In Figure A.6.2a, we plot the contour of likelihood as a function of aH and aV .

Since we have no prior knowledge about the parameters aH and aV , we can use an

uniform prior probability distribution for aH and aV . Then the 2D likelihood plot is

proportional to the 2D probability distribution PaH ,aV
joint with the observed data.

The marginal probability distribution PaH+aV
associated with aH + aV is the pro-

jection of the full distribution to the +45◦ direction. The marginal probability dis-

tribution can be obtained by integrating the 2D probability PaH ,aV
along the −45◦
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Figure A.6: Results of maximum likelihood estimate. a. Contour plot of likelihood
as a function of aH and aV . The contour lines represent relative likelihood of 90%,
50%, 10%, 1% from inside out. With no prior knowledge of aH and aV , the likelihood
is proportional to the probability distribution. b. The probability distribution for
the lower bound on the entanglement fidelity F . c. The cumulative probability
distribution for the entanglement fidelity F . Inset: A zoomed plot around F = 0.5,
showing the cumulative probability is only 0.35%.

direction:

PaH+aV
(u) ∝

�
dvPaH ,aV

�
u + v

2
,
u− v

2

�
. (A.17)

Because F2 = (aH + aV ) /2, we obtain the probability distribution for F2:

PF2 (x1) ∝ PaH+aV
(2x1) . (A.18)

The probability distribution for the lower bound on the fidelity is a convolution

of PF1 (x) and PF2 (x):

PF (F = x) =
�

+∞

−∞
dx1PF1 (x1) PF2 (x− x1) , (A.19)

where PF1 is assumed to be a Gaussian probability distribution for F1 with mean 0.83
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and standard deviation 0.10. We find that the distribution PF (x) in Figure A.6.2b

is nearly Gaussian and obtain an entanglement fidelity of F ≥ 0.70 ± 0.070. The

cumulative probability distribution

Pr (F < x) =
�

x

−∞
dx

�
PF (x�) (A.20)

is shown in Figure A.6.2c and indicates that the probability that the entanglement

fidelity is above the quantum threshold of 0.5 is

Pr (F > 0.5) = 99.7%. (A.21)

These results confirm that our experiment provides a reliable observation of spin-

photon entanglement.
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B.1 Experimental details

B.1.1 Sample description

The diamond sample used in the experiments described in Chapter 4 was a natural,

high purity, type IIa diamond with a �111� cut kept at ∼ 7 K. Within this sample,

we used three separate NV centers for the data presented in Chapter 4 and this

appendix. A first NV center (NVa) is subject to a relatively low strain and has a

narrow distribution of 13C states. A second, higher strain NV center (NVb) has a

broader distribution of 13C states. All experiments on optical cooling and conditional

preparation were repeated with both of these NV centers with consistent results.

Figures 4.1, 4.2 and 4.4e and Fig. B.3 present measurements for NVa. The remaining

figures in Chapter 4 and this appendix excluding Fig. B.5 present measurements on

NVb. An additional NV (NVc) was used for ESR measurements in Section B.5 ,
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which was used to calibrate the ground state strain for other NV centers by assuming

that it is proportional to the strain measured in the excited state [89].

B.1.2 Experimental setup

Our experimental setup is similar to that described earlier [81], with several mod-

ifications. First, the three excitation lasers addressing the |A1� , |A2�, and |Ey� states

are kept within a “rough” beatnote lock (3 dB width ∼ 5 MHz) relative to each

other. The master laser, driving the |A1� transition, is allowed to “float” freely. Its

frequency relative to the NV is monitored through fluorescence counts and adjusted

manually every few minutes. The beatnote lock is achieved by feeding the beatnote

of the relevant pair of lasers to a commercial PLL board (Analog Devices ADF4007)

which converts the beatnote to an error signal. This signal is fed into a commercial

FPGA based reconfigurable data acquisition board (National Instruments NI-7833R).

The FPGA is programmed to act as a PI controller, and its outputs are fed into the

current and cavity inputs of the lasers.

To apply an external magnetic field along the �111� direction a solenoid was placed

outside our cryostat. The cryostat significantly alters the magnetic field at the loca-

tion of the NV from the applied field. We compensate for this effect of the solenoid –

cryostat system by characterizing its frequency response using the NV electron spin as

a local magnetometer. We then apply the magnetic field waveform that compensates

for the linear response of the setup, so that the desired time varying magnetic field

is generated at the NV.
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B.1.3 Effects of ionization and other forms of spectral drift

We have already touched upon the effects of ionization in Chapter 4. Here we

provide the details of the experimental sequence used to obtain the data presented in

Chapter 4.

Under continuous resonant excitation the NV center ionizes with a timescale that

depends on the laser power [84]. For example, with 50 nW of power on the A1 laser

and 1µW of power on the Ey laser, we measure an ionization timescale of ∼ 29 ms

(Fig. B.1). The ionization feature is present regardless of whether the data is taken

within or outside a CPT dip. This effect complicates comparison of data taken with

different laser power or durations, decreases the observed contrast of CPT resonances,

prevents the accurate extraction of other timescales, etc. To eliminate the influence

of this effect, we perform all of our measurements except those shown in Figure 4.1

with a step at the end of each run of the sequence to verify that the NV has not

ionized. To do this we turn on the A1, A2 and Ey lasers simultaneously for ∼ 1 ms.

With all three lasers present there is no dark state, and the NV should produce a

large number of counts if it is not ionized, and zero photons if it is. We then discard

data from runs that do not pass a threshold for the number of collected verification

photons. The effect of this post-selection process is shown in Fig. B.1. We note that

this process not only selects for unionized cases, but also for accurate positioning of

the NV and tuning of the laser frequency. This could lead to the slight rise in counts

seen in the post-selected cases, where the NV is relatively dark at the beginning and

becomes brighter by the time of the verification step.
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Figure B.1: Average count rates under continuous A1 and Ey excitation at two dif-
ferent fixed magnetic field with (blue) and without (red) post-selection for ionization.
(a) Out of CPT resonance, decay timescale is 29.1 ± 0.3 ms without verification. (b)

In CPT resonance, decay timescale is 29.4 ± 0.6 ms without verification.

B.2 Multilevel description of the NV center

In order to understand the dynamics of our system including the effects of the

recycling transition, we model its behavior using a full master equation approach.

For simplicity, we neglect the |Ex� and |E1,2� states as they are detuned from all

driving fields. The resulting level structure and transitions are shown in Figure B.2.

In addition to all processes shown in the diagram, we include pure dephasing in

the excited state at a rate Γ. For resonant excitation of, say, the |A1� state, the

off-resonant excitation of the |A2� state does not play a significant role most of the

time as it is far detuned. We will neglect the effects of far detuned states for the

current discussion. We will find, though, that for understanding the 14N polarization

behavior these off-resonant excitations play a crucial role and its effects will be in-

cluded in Section B.4 describing the 14N polarization. As described in section B.5,
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Figure B.2: Simplified level structure of NV center. |B� and |D� are the bright and
dark states for a laser ΩA coupled resonantly to either the |A1� or |A2� state. δ is the
Zeeman splitting between |±1� states, such that δ/2 is the effective Rabi frequency
between between |B� and |D�. ∆ is the strain splitting in the ground state, and ∆1

is the energy splitting between |A1� and |A2� states. The |Ey� state is addressed by a
laser ΩE and decays into the |±1� states with a total rate γce, while the direct decay
rate back to the |0� state is γ. The |A1� (|A2�) state decays to the singlet |S� with
rate γs1 (γs2), which then decays to |0� with rate γs.
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we will assume an appropriate alignment of the A1,2 laser polarization relative to the

strain axis. We construct equations describing the evolution of the density matrix

elements d�ρ/dt = M�ρ, where M is the evolution matrix including the Liouvillian

operators for various decay and dephasing processes (defined in Figure B.2) as well

as Hamiltonian operators. Below we describe results showing the steady state of the

system of equations.

Since the |A1� state corresponds to an open Λ system with γce � γs1, we expect

essentially all of the excited state population to be in (and all the fluorescence to be

from) the Ey state. We can obtain an analytical solution for this population in the

following form:

PEy
= ρEy , Ey

=
c0δ

2

c1δ
4 + c2δ

2 + c3

(B.1)

where

c0 = 2γsγs1(γ + 2Γ)Ω2

A
Ω2

E
,

c1 = γγceγsΩ
2

E
,

c2 =
1

2
γγsγs1(γ + 2Γ)2Ω2

A
+ γγsγce(γ + 2Γ)2Ω2

E
+ 2γγsγce∆

2Ω2

E
+

2[4γsγceΓ + γce(γs + γs1)(γ + 2Γ) + 2γsγs1(γ + 2Γ)]Ω2

A
Ω2

E

c3 = γγsγce[(γ + 2Γ)2∆2Ω2

E
+ ∆4Ω2

E
+ 4∆2Ω2

A
Ω2

E
+ 4Ω4

A
Ω2

E
]

Assuming δ, ∆, and ΩA � γ + 2Γ, we can drop the second and third terms in

c3, the third term in c2, and ignore the fourth order term in δ. In addition, since

γce � γs1, the last term in c2 is approximately just 4γsγs1(γ + 2Γ)Ω2

A
Ω2

E
. As a result

we find

PEy
= A

δ
2

δ2 + δ
2
0

(B.2)
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where the amplitude is given by

A =
1

2 + γ(γ+2Γ)

4Ω2
E

+ γ(γ+2Γ)

4Ω2
A

2γce

γs1

=
1

2 + γ

REy

+ η
γ

RA1

(B.3)

and the width (HWHM) is given by

δ
2

0
=

∆2 +
4Ω4

A

(γ+2Γ)2

1 +
γs1Ω2

A

2γceΩ
2
E

+
4γs1Ω2

A

γceγ(γ+2Γ)

=
∆2 + (RA1/2)2

1 + 1

η
(RA1

REy

+ 2RA1
γ

)
(B.4)

Here REy =
4Ω2

E

γ+2Γ
, RA1 =

4Ω2
A

γ+2Γ
are the optical pumping rates for lasers tuned to |A1�

and |Ey�, and η = 2γce

γs1
.

For the case of the |A2� state, equation B.4 is inaccurate because γce is on the

same order as γs1. In this case the main difference is that we cannot simplify the last

term of c2, and we use instead the full expression for the width given by

δ
2

0
=

∆2 + (RA2/2)2

1 + RA2
ηREy

+ ( 2Γ

γ+2Γ
+ γs+γs2

2γs

+ 2

η
)RA2

γ

(B.5)

In addition to δ0 we can now express other relevant experimental parameters in

terms of results of the above model. The following set of equations lists the commonly

used parameters in the Chapter 4 and this appendix relevant for A1 CPT excitation:

C = A�γ =
RA�/η

1

η

�
2RA

γ
+ RA

RE

�
+ 1

(B.6)

δ0 =

�����
∆2 + (RA/2)2

1 + 1

η

�
RA

RE

+ 2RA

γ

� (B.7)

δc =
√

ln 2

�
δ
2
0

CTcond

=
√

ln 2

����η

�

∆2 + (RA/2)2

RATcond

(B.8)

where � is the collection efficiency roughly 5× 10−4 for our setup.

We note that δ0 approaches ∆ as RA goes to 0 and has a minimum minimum at

RA =
−REγη+

√
4(2RE+γ)

2
∆2+R

2
E

γ2+η2

2RE+γ
. For a certain range of experimental parameters

the minimum value of δ0 can be significantly less than ∆.
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For example, to compare these results with the CPT width using the |A1� state

shown in Figure 4.1, we convolve the Lorentzian CPT lineshape with a Gaussian

13C distribution with FWHM given by w0. The resulting Voigt profile [141] has a

FWHM of w
� ≈ 0.5346(2δ0) +

�
w

2
0 + 0.2166(2δ0)2. Similarly, the CPT width using

using the |A2� was determined using Eq. B.5. Note that the only fitting parameters

used for both sets of data are w0 and the conversion factor between optical power and

optical pumping rate. We determine all relevant decay rates through an independent

measurement described in the next section.

B.3 Measurement of branching ratios

As shown in the previous section, the behavior of our CPT system depends on

the branching ratios between various states of the NV center. In order to apply our

model to experimental results, we carefully measure these branching ratios for the

relevant excited states using the method described in Chapter 2. To do this we apply

a magnetic field such that the NV is not in a CPT resonance and there is a finite

precession rate between the dark and bright states. We then prepare the NV center

in either the |±1� or |0� state via optical pumping, and excite the |±1� ↔ |A1,2� or

|0� ↔ |Ey� transitions individually while collecting fluorescence as a function of time.

Figure B.3 shows double-exponential fits to data from NVa for all three transitions.

The branching ratios are directly linked to these observed timescales.

For the |A2� state, the short timescale correspond directly to the timescale of

optical pumping to the electronic dark state of the |±1� states, and is governed by

the optical excited state lifetime γ. Given a finite δ, this process should lead to a
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Figure B.3: Fluorescence decay of (a) |A1� (blue), |A2� (red), and (b) |Ey� states
with fits to double exponential decays (black lines).

steady state fluorescence rate. The presence of a second long timescale then indicates

a decay out of the three level system into the singlet and subsequently the ms = 0

manifold. For the |A1� state, we expect the fast decay into |0� to give rise to a short

timescale. Following this fast process, the remaining population in the electronic

dark states escape due to δ and gives rise to another longer time scale. Therefore,

we find the decay rates into |0� to be γs1 ∼ 1.6γ and γs2 ∼ 130γ, where γ is the

direct decay rate back into the ground state. For the |Ey� state, there is also a finite

branching ratio into the singlet, which then decays back into |0�. Combined with

the cross transition into the |±1� states, this effect gives rise to a double exponential

decay. Using rate equations for the dynamics between |0� , |S� , |Ey�, and |±1�, we

can determine the cross transition rate in terms of the measured timescales, which

correspond to the eigenvalues of the system evolution. Using this method, we find

that γ/γce ∼ 105.
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B.4
14
N polarization via optical pumping and mea-

surement based preparation

B.4.1 Optical Pumping

We now use our description of the open CPT system to model optical cooling

of the 14N nuclear states. The nuclear spin dynamics of interest are governed by

the flip-flop interaction between the nuclear and the electronic spin in the electronic

excited state [41, 142]. We note that this rate is slow compared to electronic dynam-

ics, therefore we will assume the electronic state reaches steady state instantaneously

within the nuclear diffusion time. For our model we will take the transition rates be-

tween different nuclear spin states to be proportional to the steady state excited state

population of the electron spin for the corresponding Overhauser field created by the

14N and the externally applied field. In accordance with our experiment (Figure 4.2),

we will set the applied magnetic field to the center of the three 14N CPT resonances

such that the mI = 0 state forms the dark (or trapping) state. The excitation rate

out of the dark state is expected to be small compared to the rate in from other

nuclear states. The final polarization that can be reached will be determined by the

steady-state solution to the nuclear state populations.

First, note that we work with REy near saturation, so equation B.2 can be sim-

plified as

PEy
(δ) =

δ
2

(2 + ηγ

RA1
)(δ2 + ∆2+(RA1/2)2

(1+
2R

ηγ
)

)
=

R
�(δ)

2R�(δ) + ηγ
(B.9)

where R
�(δ) = δ

2
RA1/(δ2 +∆2 +R

2

A1
/4) is the effective rate out of the dark state and
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into |A1�.

When the 14N spin is in the mI = ±1 states, the nuclear spin flip-flop rate, or the

rate into mI = 0, is given by Rin = AexPEy
(δN), where Aex is the hyperfine coupling

in the excited state, and δN=4.4 MHz is the hyperfine splitting in the ground state.

On the other hand, there are two contributions to the rate out of the mI = 0 state.

The first is due to δT
∗
2
, which we define as the average two photon detuning due to

interactions with the 13C bath. The second process is off-resonant excitation of the

|A2� state at a rate ξRA1, where ξ = (γ/2 + Γ)2
/∆2

1
with ∆1 being the detuning

between |A1� and |A2�. For the NV center used in our optical pumping experiments,

γ/2 + Γ ∼ 100 MHz and ∆1 ∼ 3 GHz. For small RA1, this off-resonant process

contributes as an additional incoherent decay rate out of the dark state given by

ξRA1/2, since the |A2� state decays with probability 1/2 into the bright state, where

it is then excited with rate RA1. Note that we are neglecting direct decay out of |A2�

into the ms = 0 states, since ηA2 � ηA1. As a result, the modified rate into |A1�

from the dark state for the mI = 0 state is R
�(δT

∗
2
) + ξRA1/2, and the rate out of the

mI = 0 state is given by

Rout = Aex

R
�(δT

∗
2
) + ξRA1/2

2(R�(δT
∗
2
) + ξRA1/2) + ηγ

(B.10)

Finally, the steady state population in mI = 0 is given by P0 = Rin/(2Rout +

Rin). We show this result with the experimental data in Figure 4.2d where no fitting

parameter has been used.
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B.4.2 Details of measurement based preparation

The dynamics associated with the 14N pumping mechanism determines the pulse

sequence used for measurement based preparation of the 14N state. Measurement

based preparation is carried out via post-selection of events in which zero counts are

detected during preparation photon counting time window (τprep in Fig B.4a). We

note that we want to maximize the polarization that is achieved and minimize the

experimental run-time needed to verify the obtained polarization.

Figure B.4: Measurement based preparation of 14N spin. (a) Pulse sequence used
in the Chapter 4 where duration of the photon counting window used for prepara-
tion (τprep) and time between the preparation counting window and the end of the
preparation laser pulse (τwait) are indicated. (b) Change in prepared population as
a function of τprep for the data presented in Figure 4.2c (red and yellow), τwait = 0.
Black line indicates the polarization achieved with optical pumping, and no mea-
surement based polarization. All data presented in this figure post-selects for events
where zero counts are detected during τprep. (c) Population of mI = 0 as a function
of τwait for τprep = 480 µs. Again black line indicates polarization achieved with only
with optical pumping.

In presence of photon detection shot noise, increasing the duration of the prepa-

ration time window increases the confidence in our estimate of the 14N state and there-

fore improves the measured spin polarization (see also the discussion for 13C environment

in Section 4.5). At the same time for measurement based preparation to be success-

ful, the nuclear state should remain in the dark state during the preparation window.
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When the NV is optically excited the 14N is being driven to a steady state with finite

polarization. As a result the success probability of post-selection decreases if the

preparation time window becomes too long. Both of these effects are illustrated in

Figure B.4 b: as the conditioning time increases (τprep), the observed polarization

increases while the decrease in success probability results in larger errorbars. We ex-

perimentally found that the 500 µs window used in the Chapter 4 gives the maximum

polarization while still maintaining an acceptable signal to noise.

To determine the result of measurement based preparation we record the counts

in a time interval at the end of the preparation step. This ensures that the preceding

optical cooling does not affect the prepared state and also increases the success prob-

ability for finding the 14N in the desired state. By using counts from the last 500 µs

of the preparation laser pulse, measurement based preparation of the 14N state yields

higher polarization compared to the optical cooling method. This is because we can

detect the 14N state faster than the timescale for its evolution under optical excita-

tion (τ1 ∼ 350µs). This is further illustrated by Figure B.4c. It shows that optical

excitation after initializing the state with measurement based preparation decreases

the achieved polarization, and brings it to its steady state value.

B.5 Strain dependence of CPT width

In the absence of a DC magnetic field, the ground state spin properties of the NV

center is significantly altered by strain or electric fields around the NV [143, 89]. For

example, the zero magnetic field ESR spectrum around mI = 0 shown in Figure B.5

clearly shows a doublet where a single peak with a width of 1/T ∗
2

would be expected.
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This observed effect has been explained by the presence of strain terms in the ground

state Hamiltonian (following the notation in [89]):

Hgs =
�
hDgs + d

�
gs

Πz

�
S

2

z
+ gµbSzBz + d

⊥
gs

�
Πx (SxSy + SySx) + Πy

�
S

2

x
− S

2

y

��

where d
⊥
gs

/h = 17±3 Hz cm V −1 Πx and Πy are the components of the strain/electric

field vector perpendicular to the NV axis along the molecular axes of the N-V center

[143], Si are the corresponding spin 1 angular momentum operators and h is the

Planck’s constant, hDgs is the 2.878 GHz zero field splitting and an external magnetic

field in the z direction has been assumed, where z direction is parallel to the NV axis.

The z component of strain changes the zero field splitting of the NV center and

is inconsequential to this work. With ∆

2
=

�
Π2

x
+ Π2

y
d
⊥
gs

and ∆

2
cos θ = Πxd

⊥
gs

and

∆

2
sin θ = Πyd

⊥
gs

, we can re-write the effective Hamiltonian for the |±1� states in a

very simple form:

Heff =
1

2

�
δ |+1� �+1| − δ |−1� �−1| −∆ie

+iθ |+1� �−1| + ∆ie
−iθ |−1� �+1|

�

where δ is the two photon detuning as in Section B.2 (δ = 2gµbBz). For δ = 0,

strain fixes the eigenstates to particular superpositions of |+1� and |−1� states, and

these eigenstates are split in energy by ∆. As Figure B.5 indicates ∆ = 170 kHz for

an excited state splitting of 6 GHz (corresponding to NVc). We use this value to

calibrate the ground state strain splitting for other NVs [89]. We measured an |Ex�

- |Ey� splitting of 3.5 GHz for NVa and 7.5 GHz for NVb corresponding to ground

state strain splittings of 100 kHz and 210 kHz respectively.

Since a careful analysis has already been carried out in Section B.2 describing the

effects of other levels, here we will concentrate on quantifying the effects of strain on
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Figure B.5: Measured ESR spectrum for B ∼ 0 for an NV with an excited state
Ex and Ey splitting around 6 GHz. Spectra is measured by first pumping all of the
population to the |0� state and then applying a resonant weak microwave pulse of
duration 35 µs whose frequency is tuned. The population in the |0� state is measured
afterwards using the |0� to |Ey� transition and integrating the counts for a 10 µs
window. The zero of the scan range corresponds to 2.878 GHz. The two peaks (fitted
with Lorentzians) are separated by 170 ± 6 kHz and their FWHM widths are 70 ±
14 kHz (center around -312 kHz) and 94 ± 14 kHz (center around -142 kHz)

the CPT experiment using a simple model based on the above effective Hamiltonian.

The CPT phenomenon can easily be explained in the context of the bright and dark

states, so we will use them as the basis states in our model. We optically pump the

system into the dark state let it evolve according to the ground state Hamiltonian for

time T , followed by a measurement of the population in the bright state. The linear

polarization of the CPT laser used for this measurement determines the angle φ as the

phase between the two circularly polarized components. This phase in turn sets the

particular superpositions that form the dark state |D� = 1√
2

�
e

iφ |+1� − e
−iφ |−1�

�

and bright state |B� = 1√
2

�
e

iφ |+1�+ e
−iφ |−1�

�
.

Within this model the population in the bright state can be easily calculated:

���
�
B|e−iTHeff |D

�

T

���
2

=
1

2

δ
2 + ∆2 cos2 (θ + 2φ)

R2

4
+ ∆2 + δ2

144



Appendix B: Supporting material for Chapter 4

Where �· · ·�
T

refers to the average over the classical random variable T
1. This indi-

cates that the HWHM of the CPT dip is determined by
�

R2/4 + ∆2, as discussed

in Chapter 4. The contrast of the CPT dip is determined by the polarization depen-

dent quantity ∆2 cos2(θ+2φ)

R2

4 +∆2
. For R � 2∆ good contrast is expected regardless of the

polarization of light. For R � 2∆, the polarization of light relative to the strain axis

determines the visibility of the CPT dip. This fact is very easy to interpret in two

limits. First if θ + 2φ = 0, no CPT dip is visible at low pumping rates. This special

case corresponds to the bright / dark states defined by the light field being equal

superpositions of the eigenstates defined by strain. Any prepared dark state quickly

precesses in to an equal superposition of dark / bright states before the measurement

by the optical field; under these conditions (regardless of the applied magnetic field),

no CPT dip is visible. The other extremal case, when θ + 2φ = π/2, corresponds to

the bright/states matching the eigenstates defined by strain and therefore having an

energy splitting of ∆. In this case a dark state clearly exists for δ � ∆ as there is

negligible precession rate out of the dark state.

We re-emphasize that all of the CPT datasets shown have been taken with an

optimal linear polarization that maximizes the CPT contrast observed at low powers.

Thus in Section B.2 it is assumed that the bright/dark states defined by the light

field matches the eigenstates defined by strain.

1The average time T is linked to optical pumping rate by: �T �T = 1/R, where T is assumed to

be an exponentially distributed random variable.
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B.6 Autocorrelation measurements and spectral den-

sity of signal

Here we present an additional analysis of the autocorrelation results shown in

the Chapter 4. To confirm that the observed timescales are indeed due to nuclear

dynamics, we performed a control experiment where the fixed magnetic detuning is

tuned 4 MHz away from the mI = +1 state. As Figure B.6a illustrates, there is a

clear difference in the amplitudes of the features observed between the case when the

fixed magnetic field is located at a CPT dip or away from a CPT dip. However the

timescales extracted using fits to double exponential decays are quite similar: 350 ±

30 µs and 8400 ± 200 µs for the dataset in a CPT dip and 760 ± 200 µs and 10700

± 800 µs for the datasets where B is tuned away from the CPT dip. To be able

to compare the two datasets easily we have normalized both autocorrelation spectra

such that the 0 time delay points are at 1. The 0 time delay point is not shown in

the plots because they are purely due to the shot-noise in our detector and the low

mean count rate per bin 80 µs2.

The oscillations observed in the autocorrelation data can be ascribed to harmonics

of 60 Hz that is caused by experimental noise. To clearly demonstrate this we show

the power spectrum of the two datasets for which the autocorrelations have been

2Our signal can be approximated by a random variable that gives us the counts obtained per bin

cn where n is the index of the bin. If shot noise is the only process that determines cn, then cn

become independent Poissonian random variables with a mean λ determined by the time-bin size,

collection efficiency, and the mean excited state population. The zero delay autocorrelation value

is given by �
�

n cncn� =
�

n

�
c2
n

�
=

�
n

�
λ2 + λ

�
while for any other delay j the autocorrelation is

given by �
�

n cncn−j� =
�

n �cn� �cn−j� =
�

n λ2. Since our count rate is relatively low such that

λ ≤ 1, the zero-delay point in autocorrelation is significantly higher compared to the rest of the

values.
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Figure B.6: Spectral and statistical properties of the observed CPT signal at a con-
stant external magnetic field. (a) Autocorrelation of the intensity for two constant
magnetic fields in a log-log scale when the external magnetic field is tuned away from
CPT resonance (red) and when the external field is tuned to be 0.3 MHz away from
the center of the mI = +1 resonance (blue), as explained in Chapter 4. (b) Power
spectrum of the same signal in a log-log scale clearly showing the harmonics of 60 Hz
lines and the difference of the off-resonance (red) and on-resonance (blue) for both
low frequencies and for high frequencies.

shown. As Figure B.6b illustrates, there are clear peaks at odd harmonics of the AC

line frequency of 60 Hz (180 Hz, 300 Hz, 420 Hz), and these features are present for

both datasets regardless of whether or not the external magnetic field is tuned to

be within a CPT dip. This clearly shows that the observed 60 Hz is not magnetic

in character, hence our results are not affected by the magnetic environment of the

room (which is dominated by 60 Hz noise).

We note that the power-spectrum within the CPT resonance is well described by

a sum of two lorentzians (with timescales given by 350 ± 30 µs and 8.4 ± 0.2 ms).

Since the power spectrum of the noise and autocorrelation functions are linked by

Fourier transform, this justifies the use of double exponential decays as a model for
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the autocorrelation function.

The two timescales associated with the CPT dip are tentatively ascribed to pro-

cesses associated with the nuclear spin environment. The fast time-scale corresponds

well with the 14N diffusion timescale (see Section 4.3), and we assign the slower

timescale to light induced changes in the 13C nuclear environment. The presence of

the two timescales in both datasets, although with very different amplitudes, may be

qualitatively explained by the slight sensitivity of our CPT signal to magnetic field

fluctuations even away from the CPT resonance.

Even though the 8 ms timescale is long compared to most of our experiments, this

value determines the timescale in which a prepared distribution of the Overhauser

field remains unchanged under optical illumination and hence is an important factor in

determining the utility of the narrowed distribution (see section 10 for an application

to magnetic field sensing). We have carried out experiments to verify that this slow

timescale is due to reconfiguration of the 13C environment. The results are presented

in the next section, where we outline measurements in which the magnetic field is

changed quickly under continuous optical illumination.

B.7 Nuclear configuration measurements using fast

magnetic field ramps

We examine here in more detail the experiments presented in Figure 4.3b and

c where the magnetic field was swept across one of the 14N resonances within a

relatively short time period. We now show the complete experimental sequence where
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a (forward) rising sweep proceeds the falling sweep that has already been discussed

in the Chapter 4. Using both directions of the magnetic field scan, we can extract

additional information about the dynamics of the 13C spin bath.

Figure B.7: Observation of the instantaneous configuration of the 13
C spin bath. (a)

Complete pulse sequence for real-time measurement of the 13C nuclear configuration.
Counts are recorded in 80 µs time bins. (b) Blue: Average of ∼15000 forward scans
that passed verification, showing full width of 14N line given by 1/T ∗

2
. Red: Average

of the same forward scans after shifting each individual run by the center position of
their fitted CPT lines. Yellow: Average of the backward scans after shifting each run
by the fitted CPT line position of its corresponding forward scan. Blue, and yellow
curves have been shifted up for clarity by 1 and 0.5 counts respectively.

First, we can compare the values of our estimate of the Overhauser field between

the forward and the backward scans. Figure B.7 shows in blue the average counts

obtained during the forward scan. We perform Lorentzian fits to individual forward

scans, and consider the fit successful if the parameters for the fitted distribution

falls within the averaged CPT line. Specifically if the fitted width is between 20

kHz (frequency sampling interval), and 2 MHz (overall width of the unconditioned

CPT width), and the center of the width is within 1.4 MHz of the center of the
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unconditioned with the fit considered to be succesful. The red curve is obtained by

shifting (or re-centering) individual forward scans by its corresponding fitted center

of the CPT dip if the fit succeeds. Clearly the red curve is a factor of ∼2 narrower

compared to the average scan. We can further verify that the environment remains

in this measured configuration by shifting the backward scan based on the value of

the Overhauser field estimated using the preceding forward scan. This then produces

the yellow curve which is again a factor of ∼1.4 narrower compared to the un-shifted

curve. This shows that we are indeed observing instantaneous configurations of the

magnetic field environment with a lifetime greater than the single-direction ramp time

of 5 ms.

The results of the preceding analysis motivates a method of measuring the timescale

of 13C spin bath dynamics by changing the the time of the field ramps and looking

at correlations between the position of the CPT resonance on the forward and back-

ward scans. To prepare a particular nuclear spin configuration during the forward

scan, we select runs in which the number of counts is zero for two successive time

bins corresponding to a particular value of the magnetic field B0. For the graphs and

discussion shown in this section we pick B0 so the state is prepared at the center of

the 13C distribution. The resulting distribution of counts is shown in Figure B.8a.

Plotting the averaged counts during the backward scan for these selected runs reveals

a narrowed distribution around B0. By repeating this measurement for increasing

ramp times, we see that the features in the post-selected data begins to broaden, in-

dicating decreasing correlations between the Overhauser field during the forward and

backward scans as they become further separated in time. We find that the timescale
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of this 13C spin bath reconfiguration to be on the order of five milliseconds, consistent

with the results of the autocorrelation data in the previous section.

Figure B.8: Analysis of forward and backward scans using the forward scan as prepa-
ration and backward scan as readout. (a) Distribution of counts in the forward scan
if we post-select those runs who have two successive 0 counts around Bprep = B0. The
selected points (artificially zero) have been dropped from the figure. The times for
each ramp direction are 2.5 ms (blue), 5 ms (red), 7.5 ms (yellow) and 15 ms (green).
The widths of the fits are roughly the same for all timescales. Blue, red, yellow and
green curves have been shifted vertically by 0.2, -0.05, -0.3, -0.55 counts respectively
for clarity. (b) The corresponding plot of the selected backward scans with the same
vertical shifts as in (a). (c) Extracted width as a function of the ramp time.

B.8 Bprep dependence of the observed width

In this section we will demonstrate that a narrow conditional distribution can

be prepared for any value of the two photon detuning that remains within the

13C distribution. However we show that the minimal value of the narrowed width

occurs away from the center of the distribution.

To explore this effect we carry out a similar experiment to the one described in

Figure 4.4 of the Chapter 4 (and the pulse-sequence reproduced in Figure B.10),

where we now vary the external magnetic field Bprep during the preparation step
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Figure B.9: Dependence of the conditional CPT dip as a function of Bprep for NVb.
(a) Change in the probability of detecting less than 1 count as a function of Bprep. (b)

Center estimate of the conditional distribution as obtained from a single Lorentzian
fit. (c) Estimate of the width of the conditional distribution as a obtained from a
single Lorentzian fit.

and obtain narrowing data for different Bprep. The data showing the properties of

the narrowed CPT dip is summarized in Figure B.9 for NVb. While Bprep remains

within the 13C distribution, we are able to prepare a relatively narrow CPT dip. As

Figure B.9b illustrates, the center of the narrowed CPT dip follows Bprep exactly.

As one moves further away from the center of the 13C distribution the probability

of being able to prepare the narrowed CPT dip changes. Specifically, far away from

the center of the distribution the probability decreases significantly (this is partially

illustrated in Figure B.9a), but never decreases to zero. The width of the narrowed

distribution also changes as Bprep moves away from the center of the 13C distribution.

In fact the narrowest feature is found away from the center. Similar results were

obtained for another center (NVa).

In our discussions so far we have treated the nuclear environment as a collective

system which can be characterized by a density of states. The fact that the center
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estimate of the narrowed distribution follows Bprep value supports this argument.

The variation of the narrowed width as well as the probability of successful state

preparation as a function of Bprep indicates that a varying density of states may be

playing a role in these experiments.

Qualitatively we expect the lifetime of the nuclear environment to be proportional

to the density of available states that yield that particular magnetic field value. As the

number of ways of escaping from the particular configuration is given by the possible

ways in which the nuclear spins can flip-flop between each-other the higher density

configurations should have a higher rate of escape. The associated density distribution

for the nuclear state of the carbon bath is expected to be peaked at the center, hence

we expect the smallest lifetime to be given at the center. With a small lifetime, the

prepared state can possibly change before or during the readout stage, yielding a

width that is wider compared to the case where the magnetic environment does not

change. Even though the lifetime should get longer as we one moves towards the edge

of the B distribution, the probability of finding the system in those configurations is

also lower. In the presence of false events that produce 0 counts during preparation,

the lower probability of finding the environment in the desired state would imply that

one should obtain the unprepared distribution for these cases and the width should

increase. Based on these qualitative arguments we expect the width to be given by

the shape observed in Figure B.9c. We note that this argument could be further

studied using the experiment described in Section B.6. Further exploration is needed

to determine the exact mechanism of diffusion between different nuclear spin states

and its effect on nuclear state preparation.
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Figure B.10: Change of the conditional CPT width as a function of dark wait time.
(a) Pulse sequence describing the experiment. The wait time (between the prepara-
tion step and the readout step) is varied and a different CPT spectrum is obtained
for each point similar to Figure 4.4 in the Chapter 4. Verification step is shown for
completeness. (b) A plot of the extracted width as a function of the wait time twait

showing no significant change up to 6 ms.

B.9 Lifetime in the absence of optical fields

In our discussions of nuclear dynamics we have neglected any evolution in the

absence of optical light fields. We now present data that suggests that lifetime asso-

ciated with prepared Overhauser field distribution in the dark is much longer than 6

ms.

To probe the effects of evolution in the dark, we repeat the experiment illustrated

in Figure 4.4 where we now change the wait time twait between the preparation and

readout. A change in the nuclear environment within this time would affect a change

in the width of the CPT signal that we observe in the readout step.

Figure B.10 illustrates the widths of the readout observed as a function of the wait

time twait. No noticeable change in the width occurs within 6 ms of twait, indicating

that if any change occurs within this time its effect on the Overhauser field distribution

is negligible for the results that we are reporting.
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B.10 Discussion

In this section we apply the results of the model developed in Section B.2 to

estimate the limits of measurement-based narrowing of Overhauser distribution and

discuss possible application of these techniques for magnetometry. In the following

RE � γ is assumed.

To explore the limits on narrowing given by δc we will consider two separate

cases. In the first case, applicable to current experimental realization, we assume

that preparation is limited by finite strain. The minimum δc is achieved by setting

RA = 4∆ (equation B.8). For this optimal value we find that

δc =

�
2 ln 2∆η/�

Tcond

. (B.11)

For the current experimental parameters, and Tcond ∼ 8 ms, we estimate that Over-

hauser distribution as narrow as 23 kHz and 40 kHz could be prepared for NVa

and NVb, respectively. Note that preparation of such a narrow distribution can not

verified directly via dark-resonance measurement near zero magnetic field since the

readout linewidth itself is limited by strain.

The limit associated with strain could be circumvented by using two-frequency

dark resonance excitation in a Raman configuration at high magnetic field (gBB �

∆). In the case of slowly evolving nuclei, RA and Tcond are then the only parameters

that define the width of prepared distribution δc. To decrease the CPT linewidth, RA

can be made very small, at the cost of reduced number of counts. To ensure that a

sufficient number of counts is obtained to differentiate the dark state we require that

CTcond > 1, which gives a minimal RA. Using this minimal RA, and assuming that
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Tcondγ�� 1, we find

δ
min

c
�
√

ln 2η/�

2Tcond

. (B.12)

This analysis thus indicates the present method should allow us to reach Heisenberg

limited narrowing δ
min

c
� 1

Tcond
with a modest improvement in collection efficiency

(from the current � = 5×10−4 to � = 10−2). This appears to be well within the reach

of current experiments using e.g. solid immersion lenses (SILs) [90]. Note that Tcond,

and correspondingly the narrowing, is eventually limited by the lifetime of prepared

nuclear configuration T
nuc

1
[82].

Finally, we outline how the techniques described in this work can be used for

sensing external magnetic fields. As compared with conventional methods involv-

ing microwave manipulation and readout with an off-resonant green laser [144], our

method can improve the magnetic sensitivity in a number of ways. First of all, we

note that use of the presented CPT-based method with a recycling transition results

in an improved readout mechanism (gain in sensitivity ×6), along with a gain in

sensitivity by employing both |+1� and |−1� states for magnetic field detection (gain

in sensitivity ×
√

2). Note that, by improving the collection efficiency by a factor of

10, the increase in the number of counts could boost the sensitivity by an additional

factor of three.

Further improvement can obtained via conditional preparation of nuclear environ-

ment demonstrated here. Specifically, reduction of the uncertainty in the Overhauser

field by setting it to a well-defined value via e.g. feedback control significantly im-

proves the sensitivity to low-frequency magnetic fields. For example, if one operates

at high bias fields such that the method is limited by the dynamical evolution of the
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nuclear environment, the resultant resonance narrowing could be as much as 1 ms/1µs

∼ 103. When combined with improved readout, the sensitivity to low frequency (DC)

magnetic fields could then be potentially improved from about µT Hz−1/2 [144] to nT

Hz−1/2.
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