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Density-Based Separations in Aqueous Multiphase Systems:  

Tools for Biological Research and Low-Cost Diagnostics 

 

Abstract 

Cells often exist in heterogeneous mixtures.  Density provides a property to separate 

several types of cells from the mixed sample in which they originate.  Density-based separation 

methods provide a standard method to quickly separate or enrich specific populations of cells, 

such as lymphocytes from whole blood. This dissertation explores the use of aqueous multiphase 

systems (AMPS) as self-forming step-gradients in density for the separation of cells.  AMPS 

were first discovered over a hundred years ago as aqueous two-phase systems.  Density as a tool 

to separate cells is at least as old.  Despite this long history, the work in this thesis is the first 

work to use AMPS to perform density-based separations on cells. This combination provides a 

powerful technique to separate cells and enable new testing at the point-of-care.  Chapter 1 

provides a short overview of aqueous multiphase systems and density-based separations of cells. 

Chapter 2 describes the process of taking technology, including AMPS, from a demonstration in 

a laboratory to a large scale evaluation in a field setting.  In Chapter 3 and Appendix I, AMPS 

provide a means to enrich reticulocytes from whole blood as a means to grow malaria parasites.  
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Chapter 4 and Appendix II describe the development and proof-of-prinicple of a density-based 

diagnostic test for sickle cell disease (SCD) using AMPS.  Chapter 5 and Appendix III detail the 

results of a large scale field evaluation of a rapid test for SCD using AMPS in Zambia.  

Demonstrations of AMPS for density- and size-based separations are provided in Appendices IV 

and V.  Appendix VI demonstrates the general usefulness of density to separate crystal 

polymorphs with another density-based separation method: magnetic levitation in a paramagnetic 

fluid.  Beyond density, novel combinations of technology, such as electrochemistry and 

telecommunications provide opportunities for enabling global health (Appendix VII). 
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Abstract 

 This chapter reviews the use of aqueous multiphase systems (AMPS)—immiscible 

solutions of polymers, salts, surfactants, and/or ionic liquids—as a tool for the density-based 

separation of cells.  AMPS provide self-assembling step-gradients with molecularly-sharp 

interfaces to collect and concentrate cells.  Osmolality, pH, and viscosity provide additional 

parameters of the solution to improve separations.   Centrifugation of cells through these systems 

provides a simple means to enrich cells as a preparative step—such as the enrichment of 

reticulocytes for the cultivation of malaria parasites—or for the separation and identification of a 

specific subset of cells—such as the separation of dense, sickled cells to diagnose sickle cell 

disease.   
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1. Introduction  

1.1. Aqueous Multiphase Systems 

When a mixture of polymers, surfactants, salts, and/or ionic liquids are dissolved in 

water, they often spontaneously form immiscible phases.  Although these phases are primarily 

composed of water, they are separated by distinct, molecularly sharp interfaces.  The 

combinations of components that form two phases are called aqueous two-phase systems 

(ATPS), and have been reviewed extensively.
1
  Combinations can also be found that result in the 

formation of more than two phases.
2
 These systems can be, thus, more generally described as 

aqueous multiphase systems (AMPS).  AMPS possess four qualities that make them particularly 

appealing for separations: i) they are self-forming, ii) they are scalable in volume, iii) they can be 

made biocompatible, and iv) their physical properties are tunable. 

Biochemists have used AMPS for the purification and extraction of proteins and other 

biomolecules.
3–5

  Recently, the partitioning ability of AMPS has been extended to enrich 

nanoparticles and other non-biological materials.
6
  The combination of AMPS in microfluidic 

systems also provides new techniques to exploit partitioning to separate materials.
7
  In addition 

to partitioning, the physical properties of AMPS (e.g., density and viscosity) have been exploited 

to create new methods for separations and provide the opportunity for far broader use.
2,8

 The 

phases of an AMPS form layers based on density; these systems are self-assembling step-

gradients in density with well defined, molecularly sharp steps in density between phases.
2
  As 

such, AMPS provide a simple tool to separate cells by density.  

1.2. Why separate cells? 

Whether in tissues, a tumor, or blood, cells often appear in mixtures in nature.  

Sometimes, only one type of cell is of particular interest; scientists have developed a number of 
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methods to separate and enrich particular cells from heterogeneous mixtures.  Separating cells is 

an important ability in three aspects of biomedicine: 1) diagnostics, 2) biological research, and 3) 

therapeutics.  In diagnostic applications, separation is generally a means for identification.  The 

identification of cells present at low concentrations in blood (e.g., circulating tumor cells) is 

greatly enabled by the prior removal of cells present in much higher concentrations (e.g., 

erythrocytes and leukocytes).
9–11

  In research applications, separation makes it possible for 

scientists to perform experiments on specific populations of cells.  Pure populations of cells 

enable studies on genomics, cellular function, and differentiation.  For example, the ability to 

separate and enrich cells enabled immunologists to understand the role of dendritic cells
12

 and 

study the ways in which natural killer cells and T-lymphocytes defend against bacteria.
13

  

Separations are also important for therapeutics.  Plasma enriched in platelets has been used to 

treat a variety of musculoskeletal injuries and disorders.
14–16

  Stem cells enriched from adipose 

tissue may be useful for tissue engineering.
17,18

   

Labeling a cell using an antibody conjugated to a marker (e.g., a fluorophore or a 

magnetic bead) allows the separation of specific cells using molecular recognition. Both 

fluorescence-activated cell sorting (FACS) and magnetically activated cell sorting (MACS) 

allow a wide range of cell separations.
19

 While label-based separations are often useful, in some 

cases, label-free methods offer advantages.
20

   Biochemical labels may trigger internal signals in 

a cell.  For assays of immune response—where the objective is to understand the behavior of 

white blood cells—labeling may affect cell membranes or produce a phenotype that does not 

represent the state of the original sample.
21

  Similarly, certain therapeutics require unlabeled 

cells; labels on stem cells may affect differentiation.
22

  The use of labels, and the associated 

washing required to remove excess reagents, can increase the number of steps necessary for a 
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separation.  In point-of-care applications, limits on time, the stability of reagents, and the 

availability of trained users may be easier to overcome with label-free separation methods.  

Separating cells without labels, however, requires the identification of properties or 

characteristics of a cell that provide a degree of specificity to the population of cells of interest. 

Among the physical properties that have been exploited to separate cells are morphology,
23

 

size,
24,25

 stiffness,
26,27

 and dielectric constant.
19,28

 

1.3.  Density and Cells 

Density—the mass over the volume—has also been exploited in the research of many 

different cell types from various biological samples.  Table 1.1 provides a list of some of the 

most frequent cellular separations by density.   The density of a cell is a biophysical indicator 

dependent on the phenotype and environment of a cell.  As such, biophysical indicators can 

provide useful information for managing diseases
29

 or understanding cellular differentiation.
30

   

In cells, changes in density are generally the result of two processes: 1) dehydration or 

swelling, and 2) the production or consumption of proteins.  These processes can be the result of 

invasion by a parasite, cellular responses to the environment, differentiation, or aging.
31–34

 

Compared to mass and volume separately, density may provide a more robust parameter to 

monitor changes in cells.
35

  

Centrifugation over AMPS allows the label-free separation of cells by small ( Δρ < 0.001 

g/cm
3
) differences in density.  The self-forming nature of AMPS allows for their use over a wide 

range of volumes.  A drop of blood from a fingerprick can be separated in a capillary tube, or a 

unit of blood can be separated in large conical tubes. The use of AMPS to separate cells can not 

only improve the ease of separations currently done with other methods, but also enables new 

applications of density-based separations of cells, such as point-of-care diagnostics. 
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Table 1.1. Examples of cell types separated by density. 

Enriched cell type(s) Method Original suspension 

Density of 

Barrier(s) 

(g/cm
3
)

[a]
 

Purity 

Lymphocytes Nycoprep Human Leukocyte 

Suspension 

1.072 98.6 ± 0.4
36

 

Granulocytes Layered Gradient Whole blood 1.075,  

1.096–1.098 

99.7% of leukocytes, 

purity of total cells 

not reported
37

 

Mononuclear cells  Lymphoprep Whole blood NA 94.5% ± 6.2
[b]38

 

Myeloblasts + 

promyeloblasts 

Lymphoprep Bone marrow NA 8.6 ± 3.7%
38

 

P. falciparum infected 

RBCs 

Ficoll solution Blood cultures of P. 

falciparum 

NA  76.2%
39

 

Disseminated tumor 

cells 

Ficoll & 

oncoquick 

Whole blood NA 84–87%
40

 

P. falciparum schizonts Continuous 

Percoll gradient 

Blood cultures of P. 

falciparum 

NA 66.6%
41

 

Spermatozoa Discontinuous  

Percoll gradient 

Semen NA 85.2%, based on 

vitality
42

 

Candida albicans Discontinuous 

sucrose gradient 

Polymorphic cell 

culture 

NA 80%, hyphal from 

yeast forms
43

 

Alveolar macrophages Discontinuous 

Percoll gradient 

Bronchoalveolar 

lavage 

1.045, 1.055, 

1.065, 1.075 

>94%
44

 

[a] Note that many references provide only the concentrations of substances used but do not characterize the density 

of these systems. 

[b] calculated based on reported values 
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1.4. Scope of the Review 

Previous work on AMPS has largely focused on the subclass of systems with two phases, 

ATPS.  These systems have been reviewed extensively and several good books have been 

written about their use in partitioning of biomolecules.
1,45,46

  In this review, we will provide a 

sketch of the historical context of AMPS and refer the reader to previous works for more detailed 

information on ATPS.  This work focuses primarily on advances in the use of AMPS to separate 

cells by density.  Previous work on AMPS has focused most heavily on applications in the 

separation of small biomolecules, such as proteins. This review does not cover work on AMPS 

as a tool for synthesis, such as their use for the formation of particles of hydrogels or other 

aqueous structures.
47

  

1.5. History and Previous Work 

Previous reviews have covered the formation of phases in AMPS,
1
 the design and use of 

AMPS
46

 for partitioning biomolecules, and theoretical models of phase separation.
48

  Phase 

separation of aqueous polymers was first noted by Beijerinck
49

 in 1896, but the use of these 

systems became popular after Albertsson demonstrated their use to partition biomolecules in the 

1950's.
50

  Since then, AMPS have been applied to separate numerous proteins, cells, and 

nanoparticles (Table 1.2).
51–53

   AMPS have been formed using polymers, salts, surfactants, and, 

more recently, ionic liquids.
54–56

   

As the use of AMPS grew, theoreticians began to devise models of phase separation and 

partitioning behavior. These models include osmotic virial expansion, lattice theories, Flory-

Huggins theory, and excluded volume models.
48,57

 Debye-Huckel theory can be added to many 

of these models to account for charged species.
48

  All models rely on measured parameters to 

characterize a particular interaction; to our knowledge, no model exists to predict phase  
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Table 1.2. Applications of AMPS 

Method Application Examples 

Partitioning Separation of enzymes laccases,
58

 lipases
54

 

Separation of organelles spinach leaf mitochondria,
59

 rat brain 

mitochondria
60

 

Separation of cells lymphosarcoma tumor cells,
61

 

erythrocytes,
62–64

 plant cells
65

 

Purification of nanoparticles gold nanoparticles,
66

 carbon nanotubes
67

 

Separation of antibodies monoclonal antibodies
3,68,69

 

Oligonucleotides DNA, RNA
70,71

 

Density centrifugation Separation of cells reticulocytes (Ch. 3), sickled cells (Ch. 4) 

Separation of polymers nylon
2
 

Rate-zonal centrifugation Purification of nanoparticles nanorods from nanospheres 
8
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separation based on the chemical structure and concentration of components alone.  Despite this 

lack of a comprehensive, fundamental mechanism for phase separation, the models that have 

been developed provide guidance about the ways in which changes to experimental parameters, 

such as temperature, molecular weight, ionic strength, and concentrations of components, can 

affect phase separation. 

1.6. Use of AMPS with Cells 

Although the use of AMPS for the density-based separation of cells is quite recent 

(Chapters 3, 4, and 5) previous work on AMPS demonstrated the enrichment or separation of  

cells by partitioning (Table 1.2).
65,72

  This work with partitioning demonstrates that AMPS can 

be used as a biocompatible medium in which to separate cells.   

2. Density-based Separations of Cells 

Several methods exist to separate cells by density.   Different methods may be 

appropriate for a specific application depending on the requirements for speed, simplicity, 

throughput, and the level of purity of the separated population.   

2.1. Differential Centrifugation 

The simplest method of density separation, differential centrifugation, involves nothing 

more than a centrifuge and a suspension of cells in a liquid medium (e.g., plasma or cell-culture 

media).
73

  Under centrifugation, the natural sedimentation of cells accelerates.  Denser cells 

sediment faster than less dense cells.  These cells migrate until they pack against the bottom of 

the container.  Less dense cells pack above denser cells, which create a gradient of packed cells 

that are ordered by density.  In blood, the “buffy coat” (i.e., the leukocyte and platelet rich layer) 

that is found on top of packed red blood cells after centrifugation is a result of the lower density 

of white blood cells compared to red blood cells.   
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Higher speeds and longer centrifugation times allow finer separations in density.  Within 

the population of red blood cells, less dense, immature reticulocytes can be enriched in the top 

quarter of the packed red cells through differential centrifugation.
73

  Removing purified 

populations from cells packed by differential centrifugation can be difficult because the cells 

themselves form a gradient in densities.  The boundaries between types of cells is no bigger than 

the size of a single cell.  In the example of the buffy coat, significant skill and a steady hand are 

required to remove this desired layer of cells fully without also removing red blood cells just 

below the layer and compromising the purity of the isolate.   

2.2. Centrifugation Over a Solution 

The removal of cells separated by density is improved by the use of separation media.  

These media often include additives (e.g., salts, sucrose, Ficoll, and Nycodenz).  designed to 

provide liquid layers of a specific density.
36,74,75

  Layering a suspension of cells above these 

media and centrifuging them allows the cells to separate into bands above and below the solution 

separated by a distance commensurate with the amount of media used.  The solution provides a 

liquid barrier in density that only allows cells to pass to the bottom of the solution if they are 

denser than the liquid.  Other additives are used in part to control the properties of the medium 

required to maintain physiological conditions (e.g., pH and tonicity). For example, 

Lymphoprep—a combination of salts and Ficoll—is a commercial medium to separate 

lymphocytes from red blood cells and has an osmolality of 295 mOsm/kg to match that of blood 

plasma.
76

 

Solutions may also be prepared with non-physiological tonicities to enhance separation of 

a specific cell type, combining responses to osmotic stress with density.
75

   For example, 

hypertonic solutions of Nycodenz or Polymorphprep can separate granulocytes from red blood 
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cells by exploiting the difference in dehydration experienced by these cells in response to a 

hypertonic environment; the selective dehydration of the red blood cells increases their density, 

allowing them to be separated from the granulocytes.
77,78

 

Recovering cells from these systems is simpler than recovering cells from differential 

centrifugation; in differential centrifugation, the desired cells are adjacent to the rest of the cells 

while, in the case of centrifugation over a solution with a specific density, desired cells are 

separated from the rest of the cells by the liquid media. Obtaining reproducible results from these 

systems requires gently layering cells on top of the media.
79,80

  With the exception of 

Polymorphprep, these systems only allow the separation of a single population of cells by 

density. 

2.3. Centrifugation in Colloidal Media 

An alternative to creating a solution with a specific density is to use a colloidal 

suspension, such as Percoll.  Percoll is a suspension of silica spheres of polydisperse sizes that 

are coated with polyvinylpyrrolidone (PVP).
81

  The polymer coating provides steric stabilization 

of the suspension.  Percoll provides a solution capable of achieving high densities (~ 1.13 g/cm
3
) 

with low osmolality (< 25 mOsm/kg), and low viscosity (~ 10 cP). The microspheres of silica 

contribute to the relative density of the solution without contributing directly to the osmolality of 

of the solution because the spheres are suspended rather than dissolved.  Solutions of Percoll, 

thus, are often used as media for density separations.     

Percoll can also form a gradient in density in situ.
41,82

  Under centrifugation, large 

particles will sediment faster than small particles; the resulting continuous gradient in particle 

size is also a gradient in density. A continuous gradient can be formed using a fixed-angle rotor 

and controlled timing.  The use of density-standard beads allows users to create a calibration 
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curve of the densities so that fractions of cells at a particular position within the gradient can be 

matched to their density.  Percoll has found wide uses in the separation of cells.
44,83,84

  

2.4. Centrifugation Over Layered Gradients 

Both solutions and colloidal suspensions can be used to create layered gradients.
44,85

  

Media of different densities are layered sequentially with media of lower densities placed on top 

of media of higher densities.  Cells sediment through the gradient and stop at the boundary above 

a layer that has a higher density than the cells.  Layered gradients allow multiple populations to 

be separated in a single step.  Assembling layers, however, can be tedious and great care must be 

taken to create reproducible gradients.  Manual assembly of gradients has limited the minimum 

volume that these systems can be used to milliliters.
85,86

 

2.5. Separation in Microfluidic Systems 

Microfluidics allow separations of cells by density and can be particularly useful when 

volumes of samples are limited.
20

  In the simplest implementations, sedimentation under gravity 

provides a means to separate cells vertically in a microchannel.
87,88

   By adding features, such as 

herringbone structures, to microchannels, the flow of particles and cells can be made density- 

and size-dependent.
89

  Similarly a double spiral microchannel can effectively enrich cells based 

on a combination of size and density.
90

  Another way to use the density of cells to change the 

flow of cells is acoustic focusing.  Standing waves generated in a microchannel push cells to 

flow along nodes or peaks depending on their densities.
91

    These methods have been 

demonstrated to separate cells with differences in density on the order of 0.1 g/cm
3
.   

The growth of "lab-on-a-disc" technologies also could exploit differences in density 

between cells to perform separations.  Devices in this field already exploit the sedimentation of 

cells to extract plasma for assays.
92
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Combining microfluidics with micro-electromechanical systems (MEMS) provides 

higher resolution in density.  A system using microfluidic channels running through a cantilever 

measures the density of individual cells with a resolution of < 0.001 g/cm
3
.
35

   

Although the management of small volumes is advantageous for point-of-care 

applications where only a drop of blood may be available, microfluidic systems are less useful 

for applications that require high-throughput (e.g., therapeutics) or those applications limited by 

cost of equipment or complexity of an assay.  

2.6. Centrifugation Over AMPS 

AMPS provide an additional centrifugation method to separate cells by density.  The self-

forming characteristic of AMPS allows step-gradients over a wide range of volumes (from liters 

to microliters).  AMPS for density-based separations could even be implemented in 

microfluidics, as they have already been implemented for phase separation in such devices.
7,93

   

3. AMPS as a Tool for Density-based Separations 

3.1. Properties & Comparison to Other Methods 

As a media-based separation method, AMPS provide a means to separate different 

populations of density by significant distances to facilitate the subsequent removal of cells.  Like 

layered gradients, AMPS separate multiple populations of density in a single system.  Unlike 

layered systems, the boundary between layers is molecularly sharp and easily reforms if 

perturbed.   The self-forming nature of the layers in AMPSs reduces variability and increases the 

ease-of-use compared to layered systems.   

The density between phases can be quite small (as low as 0.0005 g/cm
3
); these small 

steps in density allow fine resolution of populations separated by density.   The step-gradients 

formed by AMPS are independent of the angle of the rotor used for centrifugation, unlike the 
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continuous gradients formed by Percoll.  When applications require high throughput separations, 

AMPS can be used in large volumes.   For point-of-care applications, AMPS can be used in 

microcapillary tubes with small, portable hematocrit centrifuges.  The versatility of AMPS can 

provide a useful density separation method that covers applications ranging from those covered 

by conventional density-gradient centrifugation techniques to point-of-care applications covered 

by microfluidic density-separation methods.   

3.2. Applications in Cells: Enriching Reticulocytes 

The fine resolution of AMPS allows the enrichment of cells even when the population of 

interest has a distribution of densities that overlaps with background cells.  Erythrocytes are a 

heterogeneous mixture of cells of different ages.
33,73

  Reticulocytes are a particular subclass of 

erythrocytes; immature erythrocytes. Reticulocytes have a larger size
94

 and a lower density,
95

 on 

average, than mature erythrocytes.  Despite this difference, the density distributions of both cell 

types overlap significantly.
96

  Using density alone, therefore, may be unable to separate a pure 

population of reticulocytes.  With fine control of density and well-defined interfaces, however, 

enrichment is possible.
73

 

An AMPS designed to have densities necessary to isolate the least dense fraction of all 

erythrocytes can enrich reticulocytes (Figure 1.1A) (Chapter 3). Tuning the density can increase 

the total yield of erythrocytes or the total purity of the erythrocytes.  The maximum purity 

obtained was 64 ± 3%.   

Specific applications dictate the desired level of yield and purity. Several species of 

malaria preferentially invade reticulocytes.
97–99

  To grow these species in continuous culture 

requires a higher purity of reticulocytes than is typically present in whole blood.  Growing 

substantial numbers of parasites for experiments also requires a volume of > 10 uL of packed  
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Figure 1.1. Density-based separations of cells with AMPS.  (A) Reticulocytes (red arrows) are 

enriched by centrifugation over an AMPS with two phases.  (B) The bands of red blood cells at 

the interfaces (t/m, m/b, b/s) of a three phase system (with phases, T, M, and B) enables the 

identification of sickle cell disease (SCD positive) and can help distinguish subtypes (Hb SS 

from Hb SC).  
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cells and, thus, higher yield allows cultivation with less whole blood.  Tuning an AMPS to 

produce an enrichment of >15% while maintaining a yield of >1% allowed the growth of 

Plasmodium knowlesi that had not been adapted to grow in human blood.   

3.3. Applications in Cells: Identifying Sickle Cell Disease 

In some cases, the difference in densities between the population of cells of interest and 

background cells is large enough that separation can be achieved.  With these cells, not only are 

pure separations possible, but simple diagnostics devices can be created.  

Sickle cell disease (SCD) is a genetic disorder that causes a mutation in hemoglobin (Hb 

S).  This mutation leads to the formation of sickle cells and leads to a population of dense, 

dehydrated cells in blood.
84,100

  The dense cells present in SCD are ~ 0.02 g/cm
3
 more dense than 

normal erythrocytes and the most dense cells present in SCD do not overlap with the tails of the 

distribution of normal cells.
101,102

  Using AMPS to separate the dense cells present in SCD from  

cells with normal densities provides a way to identify SCD (Figure 1.1B) (Chapter 4).  

Implementation of the test in a capillary tube with a hematocrit centrifuge enables a simple test 

for SCD in low-resource settings (Chapter 5).  

4. Principles in Designing Systems 

4.1. Choosing a system 

Several components are available to form an AMPS: polymers, salts, ionic liquids, and 

surfactants. For separating cells, the phases of the AMPS must be biocompatible.  This 

requirement rules out salts and surfactants, as the concentrations of these components in their 

dominant phase would generally disrupt cell membranes or cause significant osmotic stress. A 

number of ionic liquids have been tested on mice and seem to be biocompatible.
103

  To the best 

of our knowledge, AMPS using ionic liquids have not yet been used to separate cells.  In general, 
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density-based separations of cells are limited to the subclass of AMPS that comprise polymers.  

A number of polymers that form AMPS have been used extensively with cells.
64

  Reviews on 

polymers used in biological applications provide guidance on using polymers with cells.
104,105

  

For any specific application, however, one must demonstrate that the polymers used do not 

interfere with cellular function and viability.  For example, while some studies demonstrate low 

cytotoxicity associated with polyethyleneimine when used as a vector for gene transfer,
106

 other 

studies demonstrate that polycations may indeed have adverse effects on cells.
107

  

Biocompatibility may be a function of the concentration of a polymer.
106

 

The number of desired subpopulations to be separated sets the minimum number of 

phases needed.  A system with n phases has n-1 liquid-liquid interfaces, a liquid-container 

interface, and a liquid-air interface; the total number of interfaces where populations can be 

separated in an AMPS is thus n+1.  In many applications, a solution containing cells—such as 

blood—may be layered on top of an AMPS.  The boundary between this layer and the top phase 

will be a diffuse boundary rather than a well-defined interface, leaving n molecularly sharp 

interfaces for separation (Figure 1.2). 

4.2. Density of the Phases 

The difference in density between the desired cells and the background cells determines 

the differences in densities between phases.  The step in density between phases depends on the 

composition of phases. The composition of phases is a function of the specific polymers used, 

the concentrations of those polymers, and the molecular weight of the polymers used. In ATPS, 

ternary phase diagrams can provide some guidance on the initial concentrations to use for a 

specific molecular weight.
5,108

  AMPS with more than two phases can be harder to predict, but  
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Figure 1.2. An AMPS with three phases has four interfaces (Int. 1-4) when no liquid is layered 

on top of the system. If a liquid is added over the AMPS, the air/Phase 3 interface is no longer a 

stable interface and becomes a diffuse boundary, Sample/Phase 3. 
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phase diagrams of each two phase combination comprising the AMPS can provide parameters to 

understand how each polymer affects the other.   

Adding other solutes, such as salts or Nycodenz, can increase the overall density of the 

system while, generally, maintaining the steps in density between phases.
2
  For this reason, it is 

often easier to first identify mixtures of polymers that provide the needed difference in density 

and then adjust the overall density of the system through additives. 

4.3. Considering Other Properties 

Besides the choice of polymers and the densities, several other considerations are specific 

to the kind of separation desired.  In general, when the targeted cells are desired for use in assays 

after separation by density, the environment of the cells should be maintained as close to 

physiological conditions as possible.  The use of buffers and adjusting pH can be important, 

especially in cases where cells change their density in response to pH. In some cases, differences 

in density can be increased if the targeted population of cells responds to pH, osmolality, or 

tonicity in a different way than background cells.
109

    

Often, the volumes of different phases can be adjusted without varying the density of 

each phase.   In ATPS, this variation is accomplished by changing the initial concentrations of 

each polymer while remaining on a tie-line between the binodal curve.
1
  The composition of the 

top and the bottom phase, and hence the densities of each phase, are constant along the tie-line.  

Increasing the volume between two interfaces makes the subsequent removal of cells from the 

interfaces easier than if they were closer.  This increased ease comes with a tradeoff; the time of 

centrifugation necessary to allow cells to all sediment to their equilibrium position in density 

increases with increased volume between phases.   
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The minimum volume between phases has a practical limit that is dependent on the size 

of the container and the interfacial tension between phases.  In general, the interfacial tension 

between phases is remarkably low (100 nJ/m
2
–100 µJ/m

2
)
1
 because both phases contain, 

predominantly, water.   The differences in the polymers that contribute to phase separation, 

however, can lead to differences in surface interactions with a surface.  As a result, the interface 

between two phases will have a contact angle (θ) with the wall of the container used that is 

dependent on the material of the container and the composition of the AMPS.  The competition 

between the surface tension and gravitational forces shapes the meniscus between two phases.  

When the gravitational term dominates the balance of forces, the meniscus is almost flat.  When 

the surface tension dominates, the meniscus may be quite pronounced.  This effect is most 

pronounced when the distance (d) between opposing walls of a container is small (< 1 mm), as is 

the case with many capillary tubes.   

In a regime with a low Bond number (i.e., a regime where surface tension dominates over 

gravity), the Young-Laplace equation provides a simple solution to the meniscus between two 

liquids in a cylindrical capillary; the meniscus will have spherical curvature with a radius (R) that 

is a function of θ and d.  Equation 1 describes the distance (h) between the depression in the 

meniscus and the intersection of the meniscus with the container.   

  
         

     
      (Equation 1) 

The shape of the interfaces between phases has important implications for the design of 

AMPS for density-based separations.  In a three phase system, an interface with positive 

curvature above an interface with negative curvature reduces the effective distance between the 

top and the bottom phase.  Assuming a minimal influence of gravity, we can use Equation 1 to 
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derive the maximum distance (D) that two interfaces—with contact angles θ and φ—could 

deform towards each other (Equation 2). 

   
 

 
 
        

    
 

      

    
               (Equation 2) 

The distance between phases, and the corresponding volume of the phases, should be 

chosen to be greater than the distance of deflection given by Equation 2. For the extreme case of 

contact angles of 90º, D is the same as d, the diameter as a capillary.  As a rule of thumb, the 

distance between phases (H) should be greater than the distance between the walls of the 

container (d) to ensure that cells at the two interfaces can be distinguished and separated (Figure 

1.3).  For systems that do not have asymptotically small or large Bond numbers, the work of 

Concus provides a comprehensive mathematical description of the shape of a meniscus in a 

cylinder.
110

  In situations where AMPS are used in larger containers (d > 1 cm) than capillaries, 

one can often separate cells at interfaces separated by less than the diameter of the tube.  

The choice of the container depends on the specific application.  Separations of large 

volumes (> 10 mL at a time) can be done in conical tubes or any containers that fit in a 

centrifuge.   Separations for point-of-care applications or where the volume of the sample is 

limited should be done in capillary tubes.  Using polycarbonate microhematocrit tubes allows 

interfaces to be isolated by cutting the tube with a razor blade in the phases between the 

interfaces.   

The densities of the phases of AMPS will change with temperature.  Choosing 

compositions of AMPS within the phase-separated region of the phase diagram ensures that 

variations in temperature will not strongly impact the composition of each phase.  With water as 
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Figure 1.3.  The distance between the phases of an AMPS must be chosen such that the 

curvature of the interfaces does not interfere with the separation of cells, especially in cases 

where capillaries are used as the container. The contact angles of the interfaces around a phase (θ 

and φ) along with the diameter of the capillary (d) dictates the distance (H) that should be used to 

separate the phases by a distance (h).  By choosing H > d in capillaries, the interfaces between 

phases will not interfere with separations.  
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the predominant component, the behavior of water with temperature dictates the behavior of 

AMPS.   

To quantify the effect of temperature on AMPS, we investigated one of AMPS used for 

the enrichment of reticulocytes from blood: a mixture of 12% (w/w) Ficoll with a molecular 

weight of 400 kDa and 12% (w/w) dextran with a molecular weight of 500 kDa in a hypertonic 

buffered solution.  During continuous mixing, we aliquoted small volumes of the AMPS into six 

sets of smaller batches. Each set contained three technical replicates and incubated at a specific 

temperature for over 30 minutes before centrifugation at the same temperature.  Upon phase 

separation, we immediately removed pure volumes of each phase.   

Using a temperature controlled density meter (Anton Paar DMA 4100M), we measured 

both the density and the specific gravity (density of solution/density of water at the same 

temperature) of each phase at the temperature at which the AMPS was formed.  Measuring both 

density and specific gravity allowed us to estimate the contribution of water to the change in 

density as a function of temperature. 

The densities of both phases decreased as temperature increased (Figure 1.4A).  

Variations in specific gravity as a function of temperature are much less (Figure 1.4B).  Between 

20–40 ºC, the maximum change in density of each phase is over four times greater than the 

maximum change in specific density.  This relatively small variation in specific gravity implies 

that the variation in density in phases in this range of temperatures is dominated by water.   The 

20–40 ºC range is relevant for many settings where point-of-care diagnostics may be used.  For 

separations of cells—whose mass is dominated by water—media whose densities mirror the 

changes in density of water with temperature could be useful over a range of pertinent 

temperatures for point-of-care hematology. 
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Figure 1.4.The density of the phases of a dextran-Ficoll AMPS as a function of temperature.  

(A) In both phases, the density decreases as temperature increases.  (B) Between 20–40 °C, the 

change in the specific gravity in the phases is small (< 0.002 g/cm
3
); most of the change in 

density of the phases in this range of temperatures can be attributed to the change in density of 

water. Error bars depict the standard error of the mean for technical replicates (n = 3). 
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4.4. Expanding the Range of Cells Accessible by Density-based Separation 

In instances where populations of cells have distributions of density that overlap, natural 

differences in density alone may not be enough to achieve a desired separation.  As discussed 

previously, some parameters, such as pH, tonicity, and osmolality can be used to increase 

differences in density.  Sometimes these parameters may still not provide enough resolution 

between populations.  In these cases, coupling other properties with AMPS can expand their 

applications. 

Cells that are very similar in density but have a different size or shape will have the same 

isodensity point in a density gradient, but will approach the equilibrium position with different 

dynamics.  By stopping centrifugation before equilibrium positions are achieved, hydrodynamic 

differences can provide a way to resolve different populations of cells.  These differences can be 

further amplified by changing the viscosity of phases.  This method successfully separated gold 

nanorods from gold nanospheres in AMPS.
8
   

When the end goal of a separation is detection, labeling cells may not be a limitation.  In 

these instances, biochemical labels attached to particles with high densities (e.g., lead or gold) 

can act as anchors to pull specific cells to a desired interface.  This approach has been exploited 

in simple single layer density media separations to pre-enrich CTCs
111

 and to separate CD4+ T-

lymphocytes for CD4 counts.
112

  If label-free isolates are required, density-tags could still be 

helpful to selectively deplete or remove background cells.  Although this method has not been 

explicitly employed with AMPS or other density separation methods, it has proven to be 

effective in microfluidic systems.
11
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5. Conclusions 

As a method that uses a biophysical marker, AMPS fill a niche separate from techniques 

that rely on biochemical markers, such as cell sorting techniques assisted by fluorescence (i.e., 

FACS) or magnetic actuation (i.e., MACS).  AMPS offer a tool for separating cells where at least 

one of the following three criteria are required: 1) the cells desired for separation should be free 

of biochemical labels, 2) several populations of cells require separation, and 3) ease-of-use and 

simplicity are critical.  The ability of AMPS to form across a large range of volumes (nL to L) 

provides a degree of versatility uncommon in other density-separation methods.   

When populations of cells have overlapping density distributions, enrichments of cells 

are still possible and can be improved by modulating other properties, such as osmolality.  In 

these cases, however, pure separations of cells are difficult to obtain.  For certain applications, 

such as the enrichment of reticulocytes for the cultivation of malaria, enrichment may be suitable 

even without high purities.  Given the large number of cell types that are currently separated by 

layered gradients, AMPS should find plentiful applications where the reproducibility and 

simplicity of self-assembling gradients offers an advantage over manually creating layered 

gradients.   

The ability of AMPS to provide density-gradient centrifugation over small volumes (nL 

to µL) is particularly exciting as a prospect for point-of-care hematology.  As the development of 

a rapid test for SCD demonstrates, density-based separations in AMPS can provide useful 

clinical information.   Digital analysis with a cell phone camera, variations in timing, and 

additional phases could provide ways to estimate other parameters from a single test, such as 

white blood cell counts, mean corpuscular hemoglobin concentration (related to density), 

hematocrit, and red blood cell distribution width. The future development of AMPS and 
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supporting analytical methods could enable a wealth of hematological information at the point-

of-care. 
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Abstract 

 Despite the growth of research on point-of-care (POC) diagnostics for global health, 

many devices never leave the laboratory.  This chapter describes a framework for the process of 

moving diagnostic technology from the laboratory to the field to perform evaluations of 

operation and performance.  Two case studies illustrate the framework: 1) the development of a 

paper-based device to measure liver function tested in Vietnam, and 2) the development of a 

density-based device to diagnose sickle cell disease tested in Zambia.  General lessons drawn 

from these experiences may aid scientists and engineers designing rapid tests aimed at having an 

impact in developing countries. 
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1. Introduction  

Over the past two decades the advent of lab-on-a-chip technologies and the expansion of 

mobile phone technology have each led to tremendous activity in the field of point-of-care 

(POC) testing and diagnostics.  The growth in publications on this topic has risen at an 

exponential rate over the last two decades (Figure 2.1). Despite this activity, the promise of 

devices that will allow personalized and low-cost healthcare, to a large extent, remains just that: 

a promise.  

What steps are necessary to bridge the gap between publications on POC tests and POC 

tests that are actually being used to improve healthcare?   

Transitioning from a concept in a laboratory to a product is a hard task in any field, but 

the task can become Herculean in medical applications.  Large clinical trials and regulatory 

approval require long times and substantial resources.  As a first step, a POC test must go from 

the bench to the field; a device needs to demonstrate performance in a real field setting.   

Some might argue that scientists should be concerned only with discovering new methods 

and enabling new technologies; testing in the field should be left to companies.  This model 

works well when potential profits are large and risks are low; market forces will then encourage 

companies (either startups or large companies) to invest in early-stage technologies.  

Technologies aimed for the bottom of the pyramid, however, do not fit this model because they 

often provide little or no financial incentive and a higher risk.   

By performing initial field evaluations, scientists can improve their technologies and 

reduce the uncertainty about whether a company should invest to develop a POC diagnostic.  

This translational step is itself no small task because it requires a set of skills and experiences  
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Figure 2.1.  The number of publications with the topic of point-of-care tests or diagnostics 

(POC) and publications on the field evaluation of such devices (Field) have both increased 

exponentially over the past decade.  Publications on the devices themselves are about 60 times 

more frequent than publications about the field evaluation of the devices.  
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that—while common in fields like public health—are rare among engineers and applied 

scientists.   

Publications on field trials and evaluations of POC devices illustrate the difficulty of 

going from the bench to the field.  Each year, only one paper is published about field testing or 

evaluation of POC devices for every 60 papers published about laboratory tests of devices 

pointed toward POC diagnostics. This ratio has been fairly consistent for the past two decades 

(Figure 2.1). We hope that this ratio might be changed by sharing experiences and creating a 

more open discussion about the less scientific, but still quite imposing, challenges that scientists 

face when testing a technology in the field.   

Here we present a general framework for creating POC diagnostics, and illustrate its 

structure with two case studies from our own experience.  In the last 7 years, we have taken two 

technologies from the bench
1–3

 to the field.
4
  For each technology, we have adopted a slightly 

different approach.  In one case, development and field testing were done through a strong 

partnership with a non-profit company and other organizations.  In the other case, development 

and field testing was led by our academic laboratory.  By sharing these details, we hope that 

others interested in testing their devices can benefit from the lessons we have learned, and 

anticipate some of the challenges of this phase of development of a fielded technology.   

1.1. What is a Field Trial? 

A scientist who has designed a new method to detect a disease in a simple, portable 

device may believe that the most appropriate way to test the device in the field would be to travel 

to rural clinics in a low- and middle-income countries (LMICs) and begin using the devices with 

patients.  If the device is designed for the POC, should not the POC be the best place to test the 
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device?  Testing the performance of a device at the POC is essential, but not necessarily the first 

work that should be done in the field. 

Field trials and, more generally, field work refers to a wide range of activities (Figure 

2.2).  Work in field settings can be broken down into four tiers: Tier 1) needs—identifying a 

problem and understanding its context, Tier 2) evaluation—testing a prototype of a device in the 

field to identify aspects of the test to improve, Tier 3) validation—demonstrating clinical 

performance in a field setting, and Tier 4) efficacy—testing whether the use of the device has an 

impact on outcomes in health.  The two cases we describe were at a stage between Tier 2 and 

Tier 3 when they were evaluated in the field. In both cases, however, field work began much 

earlier, and included an assessment of needs and an evaluation of designs with potential end-

users. 

2. A Framework for Development 

2.1. Defining a Problem 

A successful technology must solve a real problem.  For a diagnostic device intended for 

LMICs to make an impact, the problem addressed by the device should have four characteristics: 

1) a sufficiently large number of people should be impacted by the disease for a research 

program intended to ameliorate the problem to receive adequate attention from funding agencies, 

non-governmental organizations (NGOs), and governments, 2) the diagnostic device being 

designed should provide actionable information that can improve the wellbeing of the patient, 3) 

simple interventions should already exist to treat the patient once a diagnosis has been provided, 

and 4) existing solutions to the problem should be inadequate.  The last criterion is especially 

important when the final goal is to create a useful product.  Analyzing the market for current 

solutions provides an idea of the level of performance that must be surpassed to make a  
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Figure 2.2. The spectrum of field work can be broken down into four tiers.  Progressing upwards 

from an initial assessment of needs, the activities and milestones that a device must pass requires 

increased time and resources. Field trials of a POC diagnostic for LMICs can refer to testing in 

an LMIC done anywhere above Tier 2.  Field trials of the paper-based liver function test (LFT) 

and the density-based test for sickle cell disease (SCD-AMPS) were between Tier 2 and Tier 3.  
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substantial impact.  Several reviews provide detailed examples for these characteristics applied 

to different diseases.
5–8

 

To identify needs and outstanding problems in global health, it is not enough to simply 

read reports from the World Health Organization (WHO) or look at the latest grand challenges 

list from the Bill and Melinda Gates Foundation (BMGF), although both organizations do 

extensive research on the ground to come up with these lists. By their nature, lists neglect the 

details, and in POC applications, the detail is where the devil lives.  

To better understand problems that could be addressed by technology, experience at the 

point-of-care is necessary, whether it be in rural villages in Africa, urban slums in India, or a 

forward deployed military unit in a combat zone.  When this experience is not available to us as 

scientists, we must find partners that understand the needs, and can explain them in the context 

of technical challenges.   Once one has a team that brings together technical capabilities, medical 

expertise, and an understanding of field work, it is—in principle—possible to identify a problem 

properly, where new technology could have an impact. 

2.2. Building a Team 

Creating an interdisciplinary team with global scope requires little more than searching 

for potential partners, sharing ideas, and valuing what every member brings to the discussion. 

For scientists and engineers in academic departments, attending symposia or lectures aimed at 

medical audiences, or simply emailing doctors and researchers at local hospitals or nearby 

schools of public health are easy ways to find partners who can guide your capabilities toward 

real problems. 

International collaborations can often be initiated without boarding an airplane.  In the 

U.S. and Europe, many hospitals and medical schools have at least some doctors who have 
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worked in LMICs.  Many of these doctors operate, or work with, NGOs that may be a resource 

for conducting trials.  In developing countries, Ministries of Health and local NGOs can be 

valuable partners. 

Trust and mutual understanding are important aspects to any partnership, but especially 

so in international collaborations.  Online communities and forums, such as Global Health 

Delivery Online (www.ghdonline.org) and Engineering for Change 

(www.engineeringforchange.org), make it much easier to begin communicating with potential 

partners, but establishing a good working partnership is often best done in person.  Over the last 

several years, international conferences and workshops on POC diagnostics have been held 

around the world; in 2012 a workshop on "Bringing Diagnostic Prototypes to the Point-of-Care" 

was held in Nairobi, Kenya and in 2013 the "Micro Med A" workshop was held in Pilanesberg, 

South Africa. Several universities have also begun to offer courses that take students and 

professors abroad to work with organizations in the field.  Taking advantage of these 

opportunities can lead to partnerships and new research programs.  Partnering with organizations 

that have experience doing field work is another option. Engineers Without Borders (EWB) 

provide a grassroots network with global connections.  Larger institutions like the Program for 

Appropriate Technologies in Health (PATH) and the Foundation for Innovative New Diagnostics 

(FIND) are particularly well suited to help evaluate diagnostics. Table 2.1 lists these and other 

resources to help establish partnerships.  

2.3. Design Considerations 

A well-defined problem requires solutions to fit within specific constraints.   The 

ASSURED criteria (affordable, sensitive, specific, user-friendly, robust, equipment-free, 

delivered), developed by the WHO, provide a rough guide to, and check-list for, design, but  
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Table 2.1. List of potential partner organizations with global reach. 

Organizations Type Headquarters 

Countries of 

Collaboration 

Experience 

Developing 

Diagnostics 

Center for Integration of Medical 

Innovation and Technology (CIMIT) 

& Center for Global Health (CGH) 

Consortium Boston, MA, 

USA 

> 20 countries 

worldwide 

Yes 

Global Scientific Solutions for 

Health, Inc. (GSSHealth) 

Consultants MD, USA > 15 countries 
(Africa & Asia) 

Yes 

John Snowe Inc. Consultants Boston, MA, 

USA 

> 75 countries 

worldwide 

Yes 

Clinton Health Access Initiative 

(CHAI) 

Foundation Boston, MA, 

USA 

> 25 coutnries 

worldwide 

Yes 

USAID Government 

Agency 

Washington, 

DC, USA 

> 100 countries 

worldwide 

Yes 

National Center for the Advancement 

of Translational Science (NCATS-

NIH) 

Government 

Institute 

Bethesda, MD, 

USA 

Fund 

programs/initiati

ves worldwide 

Yes 

Engineers for a Sustainable World 

(ESW) 

Network Pittsburgh, PA, 

USA 

> 9 countries 

worldwide 

 

Engineers Without Borders (EWB) Network Denver, CO, 

USA 
> 47 countries 
worldwide 

 

Bill and Melinda Gates Foundation NGO Seattle, WA, 

USA 
> 100 countries 
worldwide 

Yes 

Foundation for Innovative New 

Diagnostics (FIND) 

NGO Geneva, 

Switzerland 

> 60 countries 

worldwide 

Yes 

Partners in Health (PIH) NGO Boston, MA, 

USA 

> 12 countries 

worldwide 

 

Program for Appropriate 

Technologies in Health (PATH) 

NGO Seattle, WA, 

USA 

> 70 countries 

worldwide 

Yes 

Center for Emerging & Neglected 

Diseases (CEND) 

University 

Center 

Berkeley, CA, 

USA 

worldwide Yes 

D-Lab (MIT) University 

Center 

Cambridge, 

MA, USA 

> 20 countries 

worldwide 

Yes 

National School of Tropical 

Medicine (Baylor) 

University 

Center 

Waco, TX, USA > 7 countries 

worldwide 

 

Sandra Rotman Centre University 

Center 

Toronto, ON, 

Canada 
worldwide Yes  

Stanford Biodesign & Center for 

Innovation in Global Health 

(Stanford) 

University 

Center 

Stanford, CA, 

USA 

worldwide Yes 
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should be understood in the specific context under which they were developed: criteria for rapid 

tests for sexually transmitted infections.
9
 These criteria are important, but, as has been pointed 

out by others, they are guidelines and should not be used as a substitute for the considerations 

and requirements that are specific for a particular disease.
7
  In some cases, the ASSURED 

criteria may be too constraining.  For example, the "equipment-free" in ASSURED may not 

apply if your device would be employed in a district hospital where small scale equipment could 

be used.  Similarly, a cell phone could count as a piece of equipment, but simple mobile phones 

are readily found, even in many remote villages (more advanced cell-phones that are now often 

proposed for POC use in resource-limited, POC applications often are not).  Some problems 

require quantitative measurements while others only need a simple yes/no answer. 

Scientists developing POC technology can visit sites where they intend their devices to 

function or can work with clinical and international collaborators to learn the detailed context 

around their diagnostic target.
10,11

  Designing a device with a specific context and problem in 

mind prevents unnecessary restrictions while retaining constraints that are crucial to success in a 

field evaluation. 

2.4. How to obtain funding 

Finding funding for field trials can be a challenge. A first step is to understand costs.  

Depending on the size and scope of the field evaluation, costs can range from $15,000 (e.g., a 

week-long program in a rural setting to get end-user feedback) to over $100,000 (e.g., a six-

month clinical evaluation of performance on several hundred subjects). By working with the 

international partners on the team and maintaining clear communications, one will be able to 

estimate costs for personnel, equipment, and local transportation for your specific device. With a 

realistic set of costs, the team can factor field testing into budgets for grants from traditional 
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funding agencies, like the NIH, or foundations sympathetic to global health causes, such as the 

BMGF.   

Many institutions and non-profit organizations offer "accelerator", "innovation", or 

"translational" grants, designed to position a technology in such a fashion that it becomes easier 

to obtain funding from companies or venture capitalists.  Design competitions or "hack-a-thons" 

are also becoming popular and can provide money, insight from others in the field, and a 

mechanism to build a team.    

Funding may also be available from LMICs interested in technologies that will be of 

benefit to their citizens. Even when money is not available, in-kind services—such as access to 

space in a clinical laboratory or accommodations in dormitories—may reduce the amount of 

funding needed from external sources. Close connections to partners in the country can be 

crucial to take advantage of such opportunities.  

Companies that make diagnostic instruments and other supplies (e.g., Beckman Coulter) 

are sometimes willing to donate ancillary supplies and equipment when there is a potential 

benefit to the public; these kinds of donations can further reduce the costs of a field evaluation.      

2.5. When is a device ready for field work? 

Ideally, one would test a device in field settings early and often throughout the entire 

spectrum of field work (Figure 2.2).
12

  The constraints of time and funding, however, require a 

more judicious use of resources.  Much preliminary work can be done in a laboratory or with 

medical partners in developed countries.  The state of development that a device must attain 

before testing in the field depends on specific problem being addressed and the objectives of the 

field work.  Diagnostic devices developed in academic laboratories can often benefit from an 
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early evaluation of operability in the field. Sometimes a device may advance farther to some 

point on the spectrum below Tier 3 (Validation) where a more advanced field evaluation could 

provide feedback on performance as well as operational issues.  How can one tell whether a 

device is in a phase of development that will benefit from evaluation in the field?  

A field evaluation of a prototype device (between Tier 2 and 3) can quickly identify the 

most critical weaknesses of the device. The effect of environmental conditions (e.g., temperature 

and  humidity), variations in biological specimens (i.e., testing on true samples versus 

surrogates), and problems with use and interpretation are all critical challenges that can be 

identified.  These kind of studies can be short (< 1 month) and require a more modest number (n 

~ 30) of subjects than a higher tier field trial because the objective is to identify critical issues 

with the device rather than subtle influences.   

Despite the expectation of some area of failure, some degree of confidence in the device 

is necessary to undertake a field evaluation.  A proof-of-principle—demonstrations that the 

device works in a laboratory setting using clinically relevant samples or surrogates (e.g., serum 

or artificial urine spiked with an antigen)—provides a degree of confidence that, given proper 

settings and conditions, the device should work.  Although initial validation on 30 or more 

samples is desirable to provide statistical power,
13

 smaller sample sizes may still provide 

confidence in a result depending on the size of the effect being detected and the sensitivity 

required.  As a minimum, however, one should not use less than seven independent samples.
13

  

Make sure that experiments with surrogate samples are independent; spiking different levels of 

an antigen into aliquots of plasma from the same sample would not provide the same amount of 

variation in the background as spiking antigen into plasma from different samples. If using 

surrogate samples, scientists should consult closely with a clinical specialist to understand 
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limitations of the surrogate for the test that the device performs.  Using a sample representative 

of the sample in the field provides the best test of a device. A device designed tested only on 

blood from venipuncture may behave differently with fresh blood from a fingerprick; obtaining a 

reproducible and high quality sample from a fingerprick requires care and technique to avoid 

hemolysis or inclusion of large volumes of interstitial fluid.
14

 

Testing the device with naive users—people who were not involved in the development 

of the device—can provide important information about design and operations for the use of the 

device.  Not only does a naive user provide feedback about the usability of the test, the 

performance of the test being run and interpreted by such a user provides a more realistic 

estimate of performance in the field than use and interpretation by the developers. With both the 

technologies we describe in this piece, most testing before field work was done with some 

involvment of the developers of each technology.  If naive users had been introduced in testing 

in the laboratory, perhaps we could have reduced the time spent on pilot trials or identified areas 

to imrpove on the devices before they were evaluated in the field.   

Devices designed to give a binary readout (i.e. “positive” or “negative”) must be sensitive 

(able to detect positives) as well as specific (avoid classification of a negative sample as 

positive).  If a threshold is used to define whether a measurement is classified as positive or 

negative, a receiver operating characteristic (ROC) curve can provide a simple visual tool to 

understand the performance of the test.
15

 If the device provides a quantitative measurement, 

comparison to measurements from a standard diagnostic test using a Bland-Altman plot can 

identify potential bias in the measurement.
16

 

With confidence that the biological and technical side of your device can work, 

development efforts should focus on reducing the sources of confounding factors.  In preparation 
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for field evaluations, one needs to develop quality controls, identify suitable packaging, set 

storage requirements, and set shipping methods.  Packaging devices and then storing them in an 

oven or a high humidity environment can provide quick tests for stability under extreme storage 

conditions.  Packing some devices and sending them by a courier (e.g. FedEx, DHL, or UPS) 

with a return service provides exposure to different shipping environments.  The degree to which 

all these factors are understood and accounted for sets the level of confidence that a device will 

perform as expected in a clinical trial and provide a true measure of performance.   

Field evaluations conducted during this phase of development, before the final design has 

been frozen, provide an important opportunity to test a device on clinically relevant samples and 

to identify unexpected problems before conducting a field trial on the level of the third tier of 

field work (Figure 2.2), such as a trial for regulatory approval.   In both of the case studies that 

follow, the design was not finalized but work to test for shipping, stability, and quality control 

had been done to different degrees.  Table 2.2 provides a representative example of a timeline 

for development and field evaluation.  

A field trial at or above Tier 3 requires high confidence that the device will work and a 

fixed design (including packaging and storage conditions).  This level of confidence requires 

demonstration of diagnostic accuracy (both sensitivity and specificity) on larger numbers of 

clinically relevant samples (n > 30) on devices produced in different lots.  Multiple users should 

both perform and interpret tests. The intention of a field trial at Tier 3 is no longer to 

troubleshoot the device, but to demonstrate validity of the rapid test (often as a means towards 

regulatory approval).  A field trial above Tier 4 requires a device that has passed a field trial at 

Tier 3 and is essentially in the form of a product.  At Tier 4, field work aims to establish whether 

the use of the device at the POC provides a significant health outcome.  Above Tier 3, the  



49 
 

 

 

 

Table 2.2.  Representative timeline for moving a device from the laboratory to a field evaluation. 

  
Timeline - 5 Year Plan  

Task 1 2 3 4 5 

1. Defining the Problem                                         

a. Team building                                         

b. Needs assessment                                         

2. Device Design & Testing                                         

a. Prototyping                                         

b. End-user feedback                                         

c. Validation on clinical samples                                         

d. Quality Control/Stability/Storage                                         

3. Supporting Activities                                         

a. Grant Writing                                         

b. IRB approvals                                         

c. Institutional agreements                                         

3. Field Evaluation                                         

a. Trial Design                                         

b. Shipment/Purchasing of Supplies                                         

c. Training                                         

d. Pilot Phase                                         

e. Full Study                                         

4. Next steps                                         

a. Analysis of Results                                         

b. Publication                                         

c. Discussion with companies/providers                                         
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support of a company is often critical to bring manufacturing standards and scale to validation 

and efficacy testing.  

2.6. Ethical Considerations 

Research involving human subjects generally requires the approval of an Institutional 

Review Board (IRB)—these are committees common at universities and hospitals that review 

research proposals involving human subjects to ensure that the study is designed ethically and 

participants are properly informed and protected.  An important exception relevant to diagnostics 

is the use of existing samples that are either publicly available or obtained in such a manner that 

subjects are unidentifiable.  In any case, researchers involved in a field evaluation should  

complete training on human subject research.   The IRB review process, while sometimes 

cumbersome, is essential to protect the trial subjects from physical or emotional harm.  In fact, if 

approached properly, committees on the use of human subjects and IRB committees can provide 

guidance to ensure the ethical and proper collection of data. Often, these committees are 

knowledgeable about regulatory requirements, and they can provide advice to ensure that the 

study is designed in a manner appropriate for regulatory approval.  In general, field trials carried 

out abroad must be approved both by an IRB in the country of the trial and by a separate IRB in 

the country where the research project originates.  Each IRB committee may have different 

requirements and standards; the process of reconciling these differences can take several months. 

2.7. Designing a study 

Once the prototype is ready to be tested in the field at or above Tier 2 (Evaluation), 

significant focus should go into the design of the study.  With the medical and local team, lay out 

clear goals for the study. The entire team should know which tier of field work is expected 

because, as discussed earlier, the objectives and requirements for each varies significantly.  
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During the design process, an institutional agreement between the research institution and the 

site of the field work should be established. This agreement can take the form of a subcontract or 

a memorandum of understanding.  Clear expectations of work and commitments should be laid 

out, including precise language about financial commitments and oversight.   

During a field evaluation, one may want to take a device to rural clinics to obtain 

feedback about the operation, interpretation, and design of the device.  Such field work falls in 

Tier 1 and has different requirements for partners in LMICs and for the design of the study. A 

field evaluation and an evaluation of usability at the POC can be done concurrently, but each 

requires a specific set of goals and objectives. In some cases, they may each require separate 

approvals from the IRB.    

Field evaluations past Tier 2 and before final efficacy testing (Tier 4) usually include 

checking the performance of the device on clinically relevant samples. Estimating performance 

requires comparison of measurements from the device to a gold standard test (i.e., a widely 

accepted, standard clinical test).  Often, these tests are not available at the POC.  The 

requirement to compare results to a gold standard may mean that initial trials must be done in a 

regional hospital in-country, where the necessary equipment is available to perform a gold 

standard test, rather than at the POC. If one aims to characterize device performance, make sure 

to follow best practices
17,18

 and sound statistics
19

 (e.g., ensure adequate sample sizes for 

statistical power,
20

 proper blinding of samples,
17

 well-defined inclusion and exclusion criteria
17

).    

Recruiting and training staff to carry out the study can require weeks to months; the 

investment in time used to find qualified and committed staff members will allow a study to be 

more robust against external events.  Training requires clear instructions on recruitment, 

workflow, sample collection and distribution, carrying out the rapid test, carrying out the 
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standard test, and recording results.   In addition to time for training, time should be set aside for 

a pilot study before the main study begins.  A pilot phase allows logistical problems to be 

identified and remedied without compromising the quality of the data from the trial.  

Data collection instruments (i.e., questionnaires and laboratory logs) should include as 

much information as possible without becoming cumbersome.  Moving from the lab to the field 

introduces many variables; unless you have tracked the externalities, the results of the study may 

be difficult to interpret.  Events that could affect a device occur from the moment devices are 

prepared in the laboratory to the time that they are used, but some factors are not immediately 

apparent.   For example, including a temperature logger when devices are shipped is often 

overlooked (indeed, see the Lessons Learned section).   

2.8. Context and Culture 

Establishing a working relationship with partners overseas early in the development of a 

device reduces the risk of a misunderstanding later during the implementation of a field trial or 

evaluation.  Partners may not have protected research time, especially in clinical settings, 

preventing them from devoting as much time to run the study as needed.  In such cases, it may be 

appropriate to hire a dedicated study coordinator for the project.  Different countries have 

different hierarchical structures.  Understanding the local culture can prevent a social faux-pas 

that can undermine a study or put a partnership at risk.   

2.9. Challenges 

With all the complications of carrying out an international collaboration and field 

evaluation, unexpected challenges will arise.  Strikes, natural disasters, and regional instability 

are just a few examples of unrelated events that can threaten a project.  Set timelines, but be 
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flexible. Take each obstacle in stride because each challenge is an indication that your device is 

slowly making its way to becoming something truly useful.    

 

3. Case Study 1: Liver Function Test 

3.1. The Problem 

In recent years, international efforts to combat HIV have enabled access to anti-retroviral 

therapy (ART) in LMICs. As of last year, over 10 million people were being treated with ART.
21

 

Drug-induced liver injury (DILI) is a significant side effect associated with ARTs.  DILI 

associated with nevirapine-based ART—widely used in the developing world—is of particular 

concern; rates of nevirapine-associated hepatotoxicity (a type of liver damage) exceed 13%.
22,23

 

Monitoring liver function provides an important tool to manage ART;
23,24

 dosages and treatments 

can be adjusted if signs of liver damage or hepatitis appear. Tests to monitor liver function, 

however, are often unavailable in low-resource settings where many patients with HIV receive 

care.  Levels of serum transaminases (aspartate aminotransferase, AST, and alanine 

aminotrasferase, ALT) provide a standard for monitoring DILI, but generally require centralized 

labs and venipuncture.
25

   

3.2. The Team 

We built a team combining academia, industry, and medicine.  A business plan 

competition at the Harvard Business School brought together business students and scientists 

from the Whitesides group.  The Whitesides group had developed the initial idea of 3D paper 

microfluidic devices that formed the architecture of the test.   

With the assistance of Carmichael Roberts, a former postdoctoral fellow in the 

Whitesides group, at that time a venture capitalist, Diagnostics for All (DFA) was formed as a 
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non-profit organization to develop paper-based devices as diagnostics.  Academic groups excel 

at basic research and innovation but lack both the proper resources and incentives to do the detail 

oriented engineering required to execute manufacturing and quality control for a product.  A 

company provided a vehicle to do high quality engineering.  The decision to create a non-profit 

stemmed from the idea that a for-profit entity driven by stakeholders might be forced to focus on 

developed world applications of paper-based diagnostics rather than first apply the technology to 

address needs in the developing world. 

The team identified enzymatic tests for liver function early on and discussions with 

doctors in Boston-area hospitals and experts in public health confirmed the importance of the 

problem, especially in countries with large populations of patients being treated for HIV or TB.  

After initially considering seven different assays, the team settled on ALT and AST based on the 

counsel of medical experts.    

Scientists from Diagnostics for All (DFA) developed a robust assay and integrated 

sample acquisition, preparation, and evaluation into a single device.  Dr. Nira Pollock at Beth 

Israel Deaconess Medical Center (BIDMC) provided medical guidance and led clinical 

validation in Boston.  Dr. Pollock identified a site in Vietnam to evaluate the test in a field 

setting.  After initial validation, DFA called Bernhard Weigl, the director of NIH-funded Center 

for Point-of-Care Testing at PATH, for assistance in running a field evaluation.   

3.3. Designing a Solution 

To monitor DILI at the POC in LMICs, we created a low-cost, rapid, liver function test 

(LFT) for serum transaminases using paper-based microfluidics.
3
  Paper provides an inexpensive 

substrate for immunoassays.  Patterning paper allows multiplexed flow and small test zones 

which reduce the need for large volumes of costly reagents.  Paper-based microfluidic devices 
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provide an attractive system to develop POC tests where low cost is a key design criterion. Tests 

that are performed frequently and potentially at high volume, such as tests to monitor liver 

function, are particularly sensitive to cost. 

The specific problem of measuring liver function provided guidance on the design of the 

test.  Although standard tests for serum transaminases provide a quantitative measurement, these 

measurements are generally interpreted in three bins.  In practice, this binning means that a rapid 

test needs to provide a semi-quanitative readout that will allow results to be placed into three 

bins. To meet this requirement, we made a colorimetric test with a read guide (a standard color 

bar) that would allow users to provide a semi-quantitative measurement of each test (Figure 2.3).  

Benchmark values for ALT and AST are based on measurements in blood serum.  In order to 

measure transaminases from serum, we incorporated a plasma separation membrane (PSM) into 

the paper device.    

With end-users at the POC in mind, the device was designed to be simple to use and 

interpreted by eye.  The device was covered in plastic lamination to protect the paper test zones 

from the outside environment and a small hole in the lamination over the PSM provided an entry 

to directly add blood from a fingerprick.  Positive and negative controls are built into the device 

to provide a metric to know if test results are valid (e.g., reagents are working, blood has not 

lysed). Several iterations of design have incorporated improvements to the ease-of-use, 

sensitivity, and interpretation of the test (Figure 2.4).  

3.4. Validation and Preparation for Field Evaluation 

In Cambridge and Boston, we tested analytical, operational and clinical performance of 

the LFT device.
3
 Briefly, these studies included defining the limit of detection, assessing 

repeatability, checking for cross-reactivity and interference, optimizing the time for the assay,  
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Figure 2.3. The design of a paper-based LFT provides a semi-quantitative test for LFT for serum 

transaminases.  (A) The stamp-sized devices receive a sample of blood on the "application side" 

and provide a colorimetric readout on the "read side." (B) The entire process of running the test 

requires minimal sample manipulation.  (C) Valid results are interpreted and binned into three 

levels using a read guide. 
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 Design Characteristics 

1 
 

 

 

Strengths: 

 Colorimetric assay 

  Low-cost 

 Incorporates plasma separation 
membrane 
 

Weaknesses: 

 No positive control for AST 

 AST and ALT assays produce different 
colors and require separate read guides 

2 

 

 

Strengths: 

 Added positive control for AST 

 Improved labeling 

 Different background colors to improve 
contrast for assays 
 

Weaknesses: 

 Hexagonal array confused some readers 

 Test spots same size as control spots 

3 

 

Strengths: 

 Clear differentiation of AST and ALT  

 Improved labeling 

 Improved contrast with background 

 Increased size of test zone (T) to 
emphasize importance over controls 
 

Weaknesses: 

 AST assay not reliable at high 
temperatures in pilot study 

4 

 

Strengths: 

 Simplified readout 
 

Weaknesses: 

 No capability to measure AST  

5 

 

Strengths: 

 Assay for AST and ALT now uses same 
chemistry 

 Same color readout 

 Allows same controls 

 Multiplexing 

 Simplified layout 

Figure 2.4. Iterations on the design of a rapid liver function test (LFT) (1-5). Each design has the 

same scale. The characteristics of each iteration demonstrate improvements to the design to 

create a user-friendly device. 
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designing methods for metering the sample, comparing the performance of the device to gold 

standard methods, and testing the stability of the device.  These studies were intended to validate 

the device and provide adequate supporting data to warrant initiation of field testing.  

During this time, members of the team from DFA had opportunities to travel to different 

countries for conferences and meetings with potential end-users in different healthcare settings.  

A trip to India in 2010 allowed a DFA member to show the design of the LFT at the time 

(Figure 2.4: Iteration 2) to clinical laboratory workers.  Workers at the clinic felt that the test 

was too small, and ceiling fans in the hot environment had the potential to cause samples 

toevaporate and change the dynamics of the test.  Later iterations of the device increased the size 

and added a small white tab to hold (Figure 2.4: Iteration 3 onward).  Protocols for running the 

test were modified to include placing the tests under a glass dish to prevent excessive 

evaporation.  

After three years of development, the team decided to perform a field evaluation to 

produce high quality data for use in refining the device.  Field evaluation would also assist in 

freezing aspects of the design that worked well; this step would then enable future trials for 

regulatory validation and enable manufacturing to be scaled up.  Most importantly, we hoped the 

field study would provide a test to see if the device could perform as a POC diagnostic in a 

setting where it could have a major impact.  This study enrolled 600 patients and was intended to 

provide the evidence that prototype test performed well in a controlled field setting.   

3.5. How Funding was Obtained 

The initial work to develop the test on paper-based microfluidics was supported by a 

grant from BMGF (51308–Zero-Cost Diagnostics).  This grant also enabled some early travel to 

countries where a large number of patients on ART could benefit from a test to monitor DILI. 
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Dr. Pollock was supported by an NIH K23 grant to carry out the clinical validation in Boston (5 

K23 AI074638-04).  By working with PATH, we were able to fund the field evaluation.  PATH 

had an NIH funded Center to Advance Point-of-Care Diagnostics for Global Health (NIBIBU54-

EB007949). 

3.6. Study Design 

Working with BIDMC, we sought an international partner who worked with a large 

number of patients on ART and who would both be able to benefit from a POC LFT.  The 

partner also needed to have the infrastructure in place to measure serum transaminases as a gold 

standard comparison to our test.  BIDMC had a long-standing partnership with hospitals in 

Vietnam through the Harvard AIDS Initiative in Vietnam (HAIVN). Dr. Pollock connected with 

Dr. Donn Colby who had spent years living and working with hospitals in Vietnam as part of this 

program.  Dr. Colby provided an essential link who had a longstanding relationship with both the 

medical team developing the device and the local site in Vietnam where the device would be 

connected.  With Dr. Colby's assistance, the Hospital for Trpical Diseases (HTD) in Ho Chi 

Minch City was identified as a site for testing. 

The HIV clinic at the HTD provided the right combination of appropriate patient 

population and supporting infrastructure.  The clinic we chose saw 3,000 HIV-positive patients 

on ART, provided free through the Vietnam Ministry of Health. Of these, a significant 

proportion were on nevirapine-based ART (known to confer risk of DILI) or were at risk for co-

infection with hepatitis B (HBV, 15% prevalence) and/or hepatitis C (HCV, 25% prevalence).  

The clinic also had an existing practice of routine transaminase monitoring (once every six 

months) for patients receiving HIV treatment, following Vietnamese national guidelines.
26

  As a 
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result, the clinic had capabilities to do standard tests, but also could benefit from a POC LFT that 

could enable more frequent and less expensive monitoring. 

The study recruited patients scheduled for routine clinical ALT testing (specimen 

collected by venipuncture) by their physicians; after venipuncture, subjects proceeded to 

fingerstick collection for LFT testing.  Working with PATH and HTD, DFA and Dr. Pollock 

chose a target population of adults since this population would be one of the largest to benefit 

from the LFT and would be able to provide informed consent themselves (an important 

consideration to simplify IRB approval and the consenting process).  The Vietnam field study 

was evaluated and approved by the Institutional Review Boards of the Hospital for Tropical 

Diseases, Ho Chi Minh City, as well as by Research Ethics Committees at PATH and Beth Israel 

Deaconess Medical Center. All participants in the study provided informed consent. 

Working with HTD rather than a rural clinic enabled validation of results using standard 

tests.  Using resources at HTD, automated ALT testing was performed in parallel (Roche Cobas 

6000 analyzer) using blood obtained by venipuncture.  In order to collect additional information 

that could be relevant to the devices performance, the study was designed to collect more clinical 

information, as available, for each subject: hepatitis B virus (HBV) status, hepatitis C virus 

(HCV) status, current HIV medications, current TB medications, and most recent CD4 count. 

Results of any laboratory tests ordered concurrently with ALT on the day of enrollment were 

also captured as available (e.g., AST, hemoglobin, hematocrit, platelet count, creatinine, and 

CD4).   

Outside of clinical information, we also tried to record other variables that could have an 

impact on the performance of the LFT.  Packaged LFTs were stored in ambient conditions, and, 

thus, a temperature and humidity logger, combined with historical weather data from Weather 
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Underground (wunderground.com) provided a log of ambient environmental conditions.  

Initially, no data loggers were included during the shipment of LFTs to Vietnam.  The team 

carrying out the trial, however, added data loggers to the second batch of LFTs that were sent to 

the study site. 

Three activities occurred at the site of the study: 1) training, 2) pilot phase, 3) study 

phase.  The training was meant to familiarize all staff with the study and establish competency 

reading the LFT.  The pilot phase was designed to recruit 50 subjects and ensure that study 

procedures were working as expected before beginning the study phase and recruiting 600 

participants over six months.  

3.7. Implementation 

Approximately one month prior to the beginning of the study, representatives from 

PATH and DFA traveled to HTD and provided training to nurses who would carry out the study.  

The training curriculum included review of the study objectives and recruitment procedures, 

overview of the device structure and function, steps for completing the fingerstick and 

transferring sample to the device, and practice reading with mock devices.   In addition, nurses 

were specifically instructed to read and record device results privately, without interaction with 

any other individual. The study nurses were required to pass a proficiency test using the mock 

devices (pass criteria: > 80% bin placement accuracy and 100% determination of invalids) before 

patient enrollment could start. If they failed this test, they were retrained with the mock devices 

and given another test. Each nurse was allowed a maximum of two trials to pass the test. During 

the pilot phase, the study nurses received immediate feedback on correct and incorrect use 

(including fingerstick, sample transfer procedure, and device reading) from an expert DFA 
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representative. No additional training or feedback was given once evaluation study enrollment 

began. 

The temperatures during the pilot phase were often higher than the range the LFT was 

designed for (4-30 0C).  The read-time for the test was adjusted for the higher temperature and 

the AST test was removed from the device due to poor stability of reagents for that test at higher 

temperatures (current improvements in the AST test have addressed these issues and will be 

evaluated in future trials).  

All tests were performed following a set of instructions provided with each product by 

the DFA, the details of which are described elsewhere.
4
  Notably, each test was read by two 

nurses.  Neither the patients nor their doctors were informed of the results of their fingerstick 

testing. Although the field work took only six months, the total time to plan for the study, obtain 

IRB approval and carry out the work at the field site took over a year.  

3.8. Context and Culture 

Working with multiple partners—academics (Harvard and BIDMC), a non-profit 

company (DFA), an NGO (PATH), and a hospital (HTD)—provided the benefit of specialized 

knowledge and experience from each partner.  Managing such a multi-institutional collaboration, 

however, also has challenges.  Each partner has their own needs and their own timeframe.  

Academics want to publish results, hospitals need to maintain enough staff for their primary 

operations outside the study, companies want to learn as much as possible about their test for use 

in development, and NGOs needs to ensure that the device is at a mature enough stage to merit 

investing time and resources into a trial. In the case of the field trial in Vietnam, we believe 

everyone was able to meet their needs effectively, but this success required clear and open 

communication from the outset and throughout the study.  For example, DFA and PATH had 
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wanted to have ten nurses reading tests independently in order to estimate concordance for the 

visual test.  HTD was not comfortable with providing so many nurses to the study based on the 

resources they needed.  A compromise was reached and three nurses were provided by HTD for 

the study.   

Every healthcare system operates differently and differences in norms can potentially 

disrupt a study.  At HTD, nurses rotate their positions every six months.  The team from PATH 

and DFA arrived and began training nurses during the pilot phase in the middle of a rotation 

cycle; all the trained staff would have been rotated out of the clinic halfway through the study 

and could have caused major inconsistencies.  The practice of rotating staff came to the attention 

of the PATH trainers, fortunately, during the pilot phase.  Working with HTD, they were able to 

negotiate for some of the key personnel that were trained to remain at the clinic for the duration 

of the trial.   

Stigma associated with HIV can pose a challenge for diagnostics designed for those with 

the disease. Working with an established HIV clinic provided an environment where patients 

were comfortable.  Sometimes patients may be reluctant to participate in a study when there is no 

direct compensation.  By choosing to work with an HIV clinic where patients were already being 

monitored regularly for DILI, the potential future benefit of a rapid LFT was clear to patients.  

3.9. Challenges 

From the study, we found numerous parameters of the LFT device to improve.  Some 

involved the ease-of-use, such as bin placement accuracy.  Others related to quality control in 

components; several tests were invalid because of a batch of faulty plasma separation 

membranes.  Even though DFA had performed some tests of environmental conditions (humidity 

and temperature) and shelf-life, the results from the study indicated that further optimization of 
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these parameters was necessary.  Temperatures at the study site went up to 36 0C during the 

course of the study. This temperature was higher than the recommended storage temperature for 

the device.   

At the beginning of the study, nurses felt that devices were difficult to read, but, but the 

end of the study, they reported that tests were easy to read 90% of the time and that the 

instructions provided with the test were “very clear and easy to follow.” The most frequently 

mentioned challenge to using the test was matching the color on the device to the reader guide 

(Figure 2.3). 

3.10. Lessons learned 

Based on the characteristics of the test that were tested, we identified several aspects of 

the test to focus on in further development.  For example, to improve bin placement, we are 

working to expand the dynamic range of assay for clearer visual differences between different 

levels of ALT.  To avoid invalids, we have incorporated quality testing of incoming materials 

that are used in the assembly of the LFT devices.  DFA has also tightened the requirements for a 

controlled manufacturing environment to reduce lot-to-lot variability. Finally, research has been 

focused on stabilization of device components to improve shelf-life.  

Like many rapid tests, the LFT requires that results be read within a specific window of 

time to avoid false positives and false negatives.  Interestingly, in discussions with the nurses 

using the LFT in Vietnam, several expressed a desire for tests that were not as time sensitive and 

could be read within several hours.  As busy nurses in a hospital, managing time between 

patients and other duties makes it difficult for tests to be read at a very specific time.   

Although much research has been done on POC diagnostics using paper-based 

microfluidic devices, this study was the first-ever large scale field evaluation of such a device.  
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As such, it provides evidence that paper-based devices could be feasible in LMICs.  In particular, 

we found health workers performing tests on samples from a clinically relevant population had a 

high degree of concordance on visual readings. Successful development of this device for 

clinical use will require further, iterative, optimization of the device, but the initial field 

evaluation provided us with guidance on the aspects requiring focus.  

3.11. Next Steps 

In the past year, DFA has made improvements to the LFT device.  The newest prototype 

has a better accuracy, is less sensitive to environment conditions, and more importantly is stable 

for over a year at 20-30
o
C. Most of the issues identified in Vietnam have been addressed.  We 

are currently preparing for field testing of the new prototype and beginning the process of 

validation of the product for regulatory approval.  

The intensive training of users allowed in the context of this first field study is unlikely to 

be feasible or reproducible outside of study contexts. A thorough understanding of the minimal 

training requirements for novice users will ultimately be key to understanding the range of 

clinical environments in which this test can be used–whether that be in centralized clinics as 

performed by trained staff, decentralized clinical settings as performed by minimally trained 

health-care workers, or even at home as performed by patients themselves.  DFA is currently 

planning an “Untrained User Study” with 50-100 participants in order to obtain Clinical 

Laboratory Improvement Amendment (CLIA) waived certification for the LFT device. 

Field evaluation provided helpful information on the performance of the LFT on a large 

patient population as well as operational information about user-to-user variation and potential 

environmental conditions.  This knowledge has enabled DFA to design a next generation 



66 
 

prototype of the LFT device that we hope will provide an accurate and easy-to-use test to 

monitor DILI.  

4. Case Study 2: Sickle Cell Diagnostic Test 

4.1. Problem 

Sickle cell disease (SCD) is an example of an illness where an early diagnosis can have a 

major impact on health outcomes.  Each year, over 300,000 children are born with SCD, most in 

sub-Saharan Africa and India.
27

  In countries without early diagnosis and targeted treatment, the 

mortality rates of children under 5 years old with the disease ranges from 50-90%.
28

  

Interventions as simple as prophylactic penicillin and parental education can have a significant 

impact on child survival rates.
29

  The lack of a low-cost, rapid, point-of-care test for SCD, 

however, means that the potential of these interventions goes largely unrealized.   

4.2. The Team 

Students in the Whitesides group at Harvard University had developed aqueous 

multiphase systems (AMPS)—mixtures of polymers in water that spontaneously form 

immiscible liquid phase—as a method to separate cells by density.  Based on the literature
30–32

 , 

the Whitesides members recognized the potential for AMPS to identify SCD early on, but initial 

efforts with AMPS were focused on a variety of other applications in blood separation.  A 

chance encounter with Dr. Thomas Stossel (Brigham and Women’s Hospital, Boston) at a 

symposium at Harvard Medical School provided the incentive to think seriously about the 

underlying problem, and the real need for a rapid test for SCD.  Dr. Stossel spent the better part 

of a decade doing medical and dental work in rural Zambia. As a hematologist, he quickly 

realized the large burden of undiagnosed patients with SCD in the country.   He also understood 

the constraints that a test would have to meet to be useful in rural areas.   
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Table 2.3. Timeline from the conceptualization of a density-based rapid test for sickle cell 

disease to a field evaluation in Zambia. 

  
Timeline   

Task 2011 2012 2013 2014 

1. Defining the Problem                                 

a. Team building                                 

b. Needs assessment                                 

2. Device Design & Testing                                 

a. Prototyping                                 

b. End-user feedback                                 

c. Validation on clinical samples           

 

                    

d. Quality Control/Stability/Storage                                 

3. Supporting Activities                                 

a. Grant Writing                                 

b. IRB approvals                                 

c. Institutional agreements                                 

3. Field Evaluation                                 

a. Trial Design                                 

b. Shipment/Purchasing of Supplies                                 

c. Training                                 

d. Pilot Phase                                 

e. Full Study                                 

4. Next steps                                 

a. Analysis of Results                                 

b. Publication                                 

c. Discussion with companies/providers                                 
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Once the team realized the potential impact of a density-based assay to identify sickle cell 

disease, they met with Dr. Carlo Brugnara (Children’s Hospital, Boston), and recruited him onto 

the team.  Dr. Brugnara added a depth of understanding of the density of red blood cells in 

SCD.
33,34

  Dr. Stossel connected the team to Dr. Catherine Chunda-Liyoka, a physician at the 

University Teaching Hospital (UTH) in Lusaka, Zambia. Dr. Chunda-Liyoka complemented Dr. 

Stossel’s knowledge of the needs for sickle cell diagnostics with her experience managing SCD 

in patients in Zambia. 

The team moved from a conceptual idea to an evaluation in the field in Zambia in three 

years (Table 2.3).  The speed of development was driven in part by the simplicity of the 

technology, and in part by the ability of team members to work together efficiently in the design 

and implementation of the field work. 

4.3. Design Considerations 

Using AMPS, we created self-assembling step gradients in density designed to separate 

dense cells present in sickle cell disease and provide a visual test for SCD (Chapter 4).  The self-

forming nature of AMPS allowed us to make large batches of AMPS and preload them into 

microhematocrit capillary tubes.   

Based on discussions with Dr. Stossel and Dr. Chunda, we wanted to minimize the power 

and time requirements for the test so that it could be run in rural clinics.  For cells to move 

through an AMPS in a short amount of time (minutes rather than hours/days), centrifugation is 

required.  The faster the centrifuge, the more power that is required, but the less time that will be 

needed for the test.  Consultation with our medical team along with other organizations, 

including DFA, brought us to the conclusion that time was the more critical component and that 
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a target of less than 20 minutes could be useful in rural clinics.  This time target set the speed of 

the centrifuge and power requirements.   

The use of the centrifuge brings the need for electricity.  District hospitals and even many 

provincial hospitals in Zambia do not have the capability to diagnose SCD by standard methods 

due to the expense of equipment and reagents. In these hospitals, line electricity is available.  

Many Zambians, however, receive their care from rural clinics.  A number of these clinics are 

equipped with solar panels.  In fact, in rural parts of Zambia, usually one home can be found in a 

community with a car battery charged by a solar panel. This setup is often used by enterprising 

individuals to charge cell phones of neighbors for a small fee.  Whether at a district hospital or in 

a rural clinic with a solar setup, we believed the unmet need for a rapid test for SCD was large 

enough to allow for  the use of a microhematocrit centrifuge to enable a density based test to be 

fast. 

To ensure the test was easy to use, we had to think about the entire process of the 

interaction of a patient with a diagnostic, from sample acquisition to reading the results (Figure 

2.5).  For ease of use and safety, we used polycarbonate capillary tubes rather than glass tubes.  

We designed the test so that tubes would be preloaded with polymers.  Taking a sample from a 

subject and adding it into a device in a simple way is often a non-trivial task.  We iterated several 

designs (Figure 2.6) before finding a simple method to add a fixed volume of blood to a 

capillary that was already sealed on one end and partially filled with an AMPS solution.   Visual 

readout removes the need for additional equipment or computing power.  Including aspects of 

sample acquisition and readout into the design of the device ensured a smooth interaction with an 

end-user.  All that a user would have to do is to load a drop of blood and spin the small test in the 

centrifuge.    
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Figure 2.5. AMPS enable a simple, rapid test for SCD using density. (A) A capillary pre-loaded 

with AMPS wicks a fixed volume of blood into the device.  After covering the hole for filling the 

tube with a sleeve, centrifugation enables the rapid sedimentation of cells over the AMPS and 

provides a result that can be read by eye. A red layer above the seal at the bottom of the tube 

indicates the presence of SCD.  (B) The entire process of performing a test, including 

centrifugation, requires ~12 minutes.   
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Figure 2.6. Iterations on the design of the loading mechanism for a density-based SCD test. We 

tested three different methods to add blood to a capillary tube that was preloaded with AMPS 

and sealed on one end: 1) tube-in-tube method, 2) paper-in-tube method, and 3) hole-in-tube 

method.  The tube-in-tube method allows a fixed volume of blood to be added to the larger tube 

loaded with AMPS, but requires dexterity to assemble. The paper-in-tube method uses the 

wicking ability of a thin strip of chromatography paper with large pore sizes to add whole blood 

into the tube by simply touching the open end to a drop of blood, but causes lysis upon 

centrifugation to remove the blood from the paper.  The hole-in-tube method allows a fixed 

volume to enter the preloaded tube via capillary action and a silicone sleeve covers the filling 

hole to prevent blood from leaking during centrifugation.    
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4.4. Validation and Preparation for Field Evaluation 

Blood samples provided by our collaborators at Children’s Hospital Boston allowed us to 

make rapid improvements on early iterations of our density-based test.  Once densities of the 

AMPS were identified that provided discrimination between normal blood and blood from 

individuals with sickle cell disease, the design was frozen and testing was carried out on a larger 

number of samples (n = 59).  To achieve this sample size, we collaborated with researchers at 

Tulane University and the Sickle Cell Center of Southern Louisiana, one of whom had been a 

postdoctoral fellow in the Whitesides group.   

For the initial proof-of-principle, we included the main two genotypes of SCD (HbSS and 

HbSC) and also tested sickle cell trait (HbAS) along with other non-sickle cell subjects (HbAA). 

Initial results showed a promising ability to discriminate between SCD and non-SCD with only 

10 minutes of centrifugation and a drop (~5 µL) of blood.  To enable the test to leave the bench, 

we also began work on the issues of packaging and storage.  We used various packaging 

materials and accelerated storage tests in an oven to assess the risk for evaporation.  

4.5. How Funding was Obtained 

Although the clinical need for a rapid test for SCD was clear from conversations with Dr. 

Stossel and Dr. Chunda-Liyoka, the way to fund such research was not apparent at first.  In 

general, SCD suffers from a low level of funding, as is often the case with neglected tropical and 

orphan diseases.  We began applying to a number of innovation awards focused on global health.  

One difficulty with these grants was pressure to already have data from the field to justify the 

award.  Research to provide such data, however, required funding.   

To obtain our initial funding for SCD, we had to think of other applications for  the 

AMPS technology that would perhaps be more attractive to investors or granting agencies.  By 
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proposing to useAMPS to both diagnose SCD and to explore circulating tumor cells, we were 

able to put together a successful proposal to the Blavatnik Biomedical Accelerator Fund. This 

award supported the development of the test and the field trial at UTH.   A smaller award from 

the Harvard Global Health Institute enabled us to perform an evaluation of the usability of the 

test with end-users in rural clinics in Zambia.   

4.6. Designing the Study  

Dr. Stossel’s connection to Zambia was one of the motivations for beginning work on a 

SCD diagnostic and, thus, work in Zambia was a natural choice for a field evaluation.  Through 

Dr. Stossel, the team from Harvard connected with Dr. Chunda-Liyoka at UTH and began to 

draft grant applications, study protocols, and IRB submissions.  

The site for the field evaluation was the Department of Paediatrics and the Department of 

Haematology at UTH in Lusaka, Zambia.  The facilities at UTH could support equipment to do a 

gold standard measurement of SCD (i.e., hemoglobin electrophoresis) and UTH also had a large 

population of SCD patients.  UTH regularly monitors patients with SCD through a program that 

included regular evaluation and follow-up.  As a result of this program, over 3,000 patients with 

SCD are currently being managed by the program.  Every Friday, roughly 50 patients visit a 

specific clinic in the hospital for continuing evaluation.   

The primary relevance of a rapid test for SCD is for use in children, and hence, the study 

only enrolled subjects under 18 years of age.  Working with children required consent of a 

guardian as well as assent for children above a certain age.  Literacy and language differences 

also added to the requirements of the consenting process to ensure adequate protection of 

subjects.  Working in close consultation with both the local IRB in Zambia and the Committee 
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on the Use of Human Subjects at Harvard was critical to ensure that all aspects of the ethics of 

the research were considered. 

SCD screening at UTH relied primarily on solubility tests (Sickledex).  Positive tests 

were followed up by gel electrophoresis.  The electrophoresis equipment, however, was quite old 

and unreliable.  Part of the study budget, therefore was allocated to update the clinical laboratory 

at UTH with a semi-automated hemoglobin electrophoresis unit (SAS1/2, Helena).  In particular, 

this would allow quantitative measurements of different hemoglobin types, including fetal 

hemoglobin (HbF)—a parameter of interest for the density-based test.  We also collected routine 

complete blood count (CBC) information on all subjects in the study and used a questionnaire to 

gather basic demographic information and information about factors that may constitute a 

confounding factor for our method (i.e., recent sickle crisis) so that we could understand the 

effect of these variables.   

Outside of the medical data, we also designed methods to record tests that had packaging 

failures, temperature on the days testing was performed, and the time between the blood draw 

and the use of rapid and gold-standard tests.  Guidelines for the use of samples for various tests 

(CBC, hemoglobin electrophoresis, and the rapid test) were decided based on guidelines from the 

manufacturers or, in the case of the rapid test, experience from initial validation.   Samples that 

were processed on any method outside the recommended timeline would be invalid.  One 

variable that was overlooked in the design phase of this trial was the inclusion of temperature 

and humidity loggers during shipment.   

Through the Harvard Catalyst program, the team consulted with a biostatistician to 

design the size of the cohorts to be recruited in the study.  The trial was designed to recruit ~600 

subjects over six months. The process of designing the study, obtaining IRB approval, and 
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installing the new hemoglobin electrophoresis equipment took over nine months before the study 

could begin. 

In addition to the evaluation of the performance of the test, we also wanted to evaluate 

the test in rural clinics for ease-of-use.  Working with UTH and the U.S. Peace Corps in Zambia, 

we identified rural clinics to visit and designed a program to explain the test and receive 

feedback.  The U.S.-based IRB committee declared the survey instrument to be exempt from full 

review as human subject research because of minimal risk and the nature of the information 

collected.  The Zambian-based IRB committee, however, required a full review of the survey at 

the rural sites.   

4.7. Implementation 

Researchers from Harvard University traveled to Lusaka at the beginning of the trial.  

Over the course of a week, the trial was set up.  A full day training of the study staff included the 

overall design of the study, workflow, recruitment, use of the rapid test, and management of data.  

Four readers were trained (two laboratory technicians and two nurses) using images of results of 

rapid tests and examples by an expert reader.  A poster outlining each step of the use of the rapid 

test was placed prominently in the laboratory where rapid tests were run. A two-week pilot phase 

followed.  

The pilot phase was critical for the success of the study.  During this time, we evaluated 

initial concordance between the readers at UTH and the expert reader.  We also identified and 

remedied potential problems with sample handling and workflow.  For example, blood samples 

were collected in vacutainers containing ethylenediaminetetraacetic acid (EDTA) as an 

anticoagulant. A fraction of each sample was transferred to a second tube.  One tube of the 

sample went to the laboratory running hemoglobin electrophoresis while the other tube went to 
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the laboratory running the rapid tests.  Using separate laboratories aided with blinding the study. 

Initially, the second tube that blood was added to also contained EDTA.  This additional EDTA 

could have caused dehydration of the cells and compromised the rapid test.  This potential 

problem was identified during the pilot phase and all subsequent samples were aliquotted into 

untreated tubes after collection in anticoagulant treated tubes.  

Halfway through the study, the expert reader from Harvard returned to the study site and 

performed a blinded test for concordance with three of the local Zambian readers.  Throughout 

the study, the team at Harvard made batches of AMPS solutions and assembled packages with 

hundreds of rapid test to ship to the study site.   

4.8. Context and Culture 

Recruitment of subjects with SCD was generally much easier than recruitment of subjects 

without SCD because patients with SCD and their parents generally were more knowledgeable 

about the disease and the need for a rapid diagnostic test than the general population. 

Occasionally, parents chose not to participate in the study because there was concern about what 

could be done with the blood of their child.  Some parents expressed a belief that a child has a 

finite amount of blood in their entire life and they were afraid that the child would not have 

blood left if they provided blood for the study in addition to a clinically indicated blood draw.   

4.9. Challenges 

Several unexpected obstacles threatened the completion of the study, but fortunately, all 

were overcome.  At two points during the six month trial, nurses at UTH went on strike.  

Although the nurses on the study did not strike, their workload for their non-study obligations 

increased.  The continued recruitment of subjects during this time is a testament to the 

commitment of these nurses to the study.   
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Near the middle of the study, a major fire broke out in the Nairobi International Airport 

in Kenya.  Although far from the study site, this airport was part of the delivery route for the 

batches of AMPS tests shipped to Zambia. The fire occurred just after one batch had been 

shipped overseas and, as a result, that batch took an extra week to arrive at UTH.  This extra 

shipping time could have compromised the tests, but unfortunately, the conditions during 

shipment are unknown.  Indeed, the performance of the delayed batch was significantly worse 

than the other batches (Chapter 5), but without additional information, we could not justify 

exclusion from the data analysis. This experience demonstrates the importance of setting clear 

parameters for valid results, including shipping and storage conditions, along with the use of 

temperature and humidity loggers to capture the relevant data. 

Although the nurses’ strike did not halt the study, supply-chain problems did cause a 

temporary pause.  Initially, we purchased about 20% more electrophoresis gels than we believed 

would be required for the study. A fault in the heating unit in the electrophoresis instrument 

meant that only eight out of twelve lanes ran properly.  Delays in getting a technician to fix the 

instrument meant that we ran out of gels before recruitment was complete.  As a result, we 

suffered a one month halt in the study while we waited for additional gels from the supplier.  

Even though we were not able to recruit the number of subjects that we had wanted due to the 

delays, we were still able to collect enough samples to retain statistical power before the budget 

for the study was spent.  The dependence of the gold standard device on maintenance and 

technical expertise highlighted the need for simplicity in design of diagnostics for the POC.  

4.10. Lessons learned 

The details of the performance of the device and user feedback are described in Chapter 

5.  Briefly, of the two prototypes tested, the best system had a diagnostic accuracy of 77%.  In 
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general, false positives were more frequent than false negatives (more so than was found in the 

initial validation studies).  Variation in performance between batches was fairly significant.  We 

are actively working on improving quality controls and developing standards to use with the 

rapid tests to reduce the variability between batches. Concordance between readers was high, but 

could be improved by clearer guides for readers and more extensive training.   

Apart from the technical knowledge gained from the field evaluation, we also gained 

significant contextual knowledge.   The visit to the rural clinics was particularly informative.  

We were able to verify that appropriate interventions for SCD existed in rural clinics as well as 

off-grid access to power through solar panels charging car batteries.  

Perhaps one of the most interesting outcomes of the field evaluation came to light during 

exit interviews of the study staff in Zambia by the Harvard team.  A number of staff members 

commented—without any specific prompting—that they had a new perspective when thinking 

about using diagnostics and developing technology for issues relevant to Zambia; if researchers 

abroad could come up with low-cost rapid tests, perhaps they could also come up with useful 

technologies.  Although quantifying the impact of inspiration and modeling innovation is 

difficult, at best, the aspect of directly sharing knowledge and skills during such an international 

collaboration is a welcome side-effect of co-creation and field-evaluation.   

4.11. Next Steps 

Development of the next generation prototype is underway.  Data from the field 

validation and initial work has enabled us to write new grants and has sparked conversations 

with companies interested in developing the technology. Although nothing is concluded at this 

point, the results of the field evaluation allows us to think, seriously, about real translation either 

as a startup or by licensing to an established company.   
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5. Conclusions & Recommendations 

5.1. General lessons learned 

In both cases presented here, the technologies are not yet products, but field evaluation 

has brought significant gains in understanding the technology and has identified specific 

deficiencies to address.  Based on our experiences, we believe the following five pieces of advice 

will assist the scientist who has developed a POC diagnostic in setting up a field trial: 1) Begin 

planning and partnerships early. Ideally, partnerships should be in place before applying for 

grants.  Long-standing partnerships allow clear communications that allow a team to properly 

identify a problem and also to work through challenges of performing a field trial while 

maintaining good relations; 2) Get feedback early and often.  Even if a full field trial is not 

appropriate for the stage of development that a device is at, getting feedback about the design 

and use of a device consistently throughout development will improve its quality and the chances 

of success in a large field trial; 3) Track every variable.  No matter how much validation is done, 

there will be variables that are not accounted for in the technical specifications of a device.  Even 

if every variable is not controlled, most variables can be measured and these data may prove to 

be the key to understanding the results from the field; 4) Aim for more subjects than the 

minimum needed.  Unexpected problems can pause or end a study prematurely.  Be sure to 

understand the statistical power of your study and what your acceptable loss in recruited subjects 

would be before the study loses value.  Within reason, aim for more than you would need so that 

you can be flexible with the timing of the study; 5) Have patience. Take the time to get IRB 

approval, define every part of the protocol, work out the details of the supply chain, and do a 

pilot study to ensure the field trial is successful. 
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5.2. From the Bench to the Field, and the Field to the Shelf 

Field evaluations are not only the purview of companies.  Although a partnership 

between a company (DFA) and an academic group (the Whitesides group) developed the LFT, 

an NGO (PATH) led the field evaluation of the LFT device.  An academic group (the Whitesides 

group), led the field evaluation of the AMPS-based rapid test for SCD with partners at UTH. In 

fact, the ability to demonstrate functionality (even imperfect functionality) in the field provides 

an academic group the chance to leverage more funding and piques the interest of potential 

commercial partners.   

Someday, we hope that both the LFT and the SCD-AMPS could be available on the shelf 

of a clinic as a finished product.  When that day arrives, the experience and lessons of early field 

evaluations will surely have played an important role. 
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Abstract 

This chapter demonstrates the enrichment of a reticulocytes by centrifuging whole blood 

through aqueous multiphase systems (AMPS)—immiscible phases of solutions of polymers that 

form step-gradients in density.  The interfaces of an AMPS concentrate cells; this concentration 

facilitates the extraction of blood enriched for reticulocytes. Varying the osmolality and density 

of the phases of AMPS provides different levels of enrichment and yield of reticulocytes.  A 

maximum enrichment of reticulocytemia of 64 ± 3 % was obtained.  Several species of malaria 

parasites show a preference to invade young erythrocytes and reticulocytes; this preference 

complicates in vitro cultivation of these species in human blood. Plasmodium knowlesi malaria 

parasites invade human blood enriched for reticulocytes to 4–21% by AMPSs at a rate 2.9 times 

greater than they invade unenriched blood. Parasite invasion in blood enriched by AMPS was 1.3 

times greater than in blood enriched to a similar reticulocytemia by differential centrifugation 

followed by centrifugation over Percoll. 
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Introduction 

The characterization of different cellular components of human whole blood plays an 

important role in medical diagnoses and research.
1
  This task is often accomplished by isolating 

or enriching a specific cellular sub-population from the complex mixture of cells found in whole 

blood.  Whole blood is composed of cells—leukocytes, platelets, and erythrocytes—suspended 

in protein-rich plasma; each type of cell is useful in the evaluation of the health of a patient.  

These cells can be further subdivided into important components. For example, the isolation of 

reticulocytes—immature erythrocytes—is important for research on malaria.   

Plasmodium (P.) vivax, P. ovale, and P. knowlesi—three causative agents of malaria in 

humans—preferentially invade human reticulocytes.
2–4

  The study of these species of malaria 

suffers from the practical difficulty of in vitro cultures in whole human blood. Their cultivation 

in blood enriched for reticulocytes would provide concentrated host cells in which the parasites 

proliferate; continuous cultures of these parasites would make their study much more practical.
4–

7
 Enrichment is difficult because reticulocytes exist at a low concentration (0.5–2.5% of 

erythrocytes) in whole blood
8
 and have a short half-life in culture (~30 hours).

9
  

Cryopreservation provides a method to store samples that have been enriched with 

reticulocytes,
10

 but enriched samples must be obtained prior to freezing.  A method to routinely 

enrich reticulocytes from normal, whole blood with high yields and reproducibility would enable 

more scientists to perform research with reticulocytes.  

 This paper describes a new method to obtain samples of cells that are enriched for 

reticulocytes using centrifugation through aqueous multiphase systems (AMPSs).  AMPSs are 

systems of polymers in aqueous solutions that generate immiscible phases when mixed.  These 
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phases provide self-assembling step-gradients in density.
11

  We demonstrate that centrifugation 

through AMPSs separates cells based on their density, and concentrates them at interfaces.  P. 

knowlesi multiplies at a higher rate in reticulocytes enriched by this method than in normal 

human blood or in blood enriched for reticulocytes by conventional means (differential 

centrifugation followed by centrifugation over Percoll).  We exploit two differences between 

reticulocytes and mature erythrocytes—density and osmotic response to hypotonic and 

hypertonic environments—to enrich reticulocytes from whole blood to a maximum 

reticulocytemia of 64 ± 3%.   

Current methods to obtain substantially enriched (> 15% of erythrocytes) samples of 

reticulocytes are impractical, expensive, labor-intensive, or not satisfactory for routine use for 

applications that require reproducible yields.  These methods include culture and development of 

progenitors,
12

 differential centrifugation,
13

 centrifugation over layered gradients,
14

 and affinity-

based separation.
15

 We describe these methods in Appendix I. 

Density provides a label-free characteristic to use in enriching reticulocytes. The average 

density of reticulocytes is slightly lower than that of mature erythrocytes (Δρ ≈ 0.009 g/cm
3
).

16,17
  

The reticulocyte population is concentrated in the least dense quarter of the distribution of 

densities of erythrocytes.
17,18

  AMPSs provide steps in density suitable for enriching reticulocytes 

from blood.   

  Each phase of an AMPS consists predominantly (60–95% (w/v)) of water, and contains 

concentrations of polymers or surfactants ranging from 1–40% (w/v) (that is, micromolar to 

millimolar).  These compositions determine the physical properties of the phases of an AMPS 

(e.g., density, viscosity, ionic strength, and refractive index). The phases order, on settling or on 

centrifugation, according to their densities.
19

 Many AMPSs are biocompatible
20

 and have been 
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used for separations of cells by partitioning
21–25

—that is, by a process based on the preferential 

interaction of the surfaces of different types of cells with the components of the different 

phases.
26

  Partitioning methods result in relatively low enrichment of reticulocytes (< 2%).
25

  

The differences in the densities of the phases of AMPSs provide a means to perform 

density-based separations.
11 

The interfaces between phases mark discontinuities (on the 

molecular scale) between continuous fluid phases of different density.  The densities (ρA and ρB) 

of the phases above and below the interface establish the range of densities for components (ρC) 

that will localize at the interface (ρA > ρC > ρB).  The interfacial surface energy between the 

phases of an AMPSs is astonishingly low (from nJ/m
2
 to mJ/m

2
);

27
 a low interfacial surface 

energy reduces the mechanical stress on cells as they pass through the interface.   

Compared to layered gradients in density (e.g., Percoll, Optiprep, or Nycodenz), AMPSs 

offer several advantages: i) they are thermodynamically stable, ii) they self-assemble rapidly (t ~ 

15 minutes, 2000 g) on centrifugation or slowly (t ~ 24 hours) on settling in a gravitational field, 

iii) they can differentiate remarkably small differences in density (Δρ < 0.001 g/cm
3
), and iv) 

they provide well-defined interfaces that facilitate both the identification and extraction of sub-

populations of cells by concentrating them to quasi-two-dimensional surfaces.    

Experimental Design and Methods 

The choice of AMPSs to enrich reticulocytes from blood requires many considerations. 

When blood is layered on top of an AMPS, the region between the top phase and the blood forms 

a boundary of density like those found in layered gradients.  This boundary is diffuse and 

unstable because plasma is soluble in the phases of AMPSs.  Cells concentrated at the boundary, 

therefore, are not confined sharply, and the subsequent recovery of cells from the boundary 

region is more difficult than from a well-defined interface between two immiscible phases.   The 
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two phases of a two-phase AMPS provide two well-defined interfaces—one between the two 

phases of the AMPS, and one between the denser phase and the bottom of the container—in 

addition to the boundary that is formed with the blood.  In this arrangement, one interface (that 

between the two liquid phases of the AMPS) collects the enriched reticulocytes, and one 

interface (that between the denser phase and the bottom of the tube) collects the remaining 

erythrocytes.  An AMPS with more than two phases could also enrich reticulocytes.  Each 

additional phase could isolate a different population of cells, but would add to the complexity of 

the phase separation. To separate a reticulocyte-rich sub-population from mature erythrocytes, 

we thus chose to use an AMPSs with two phases, also known as an aqueous two-phase system 

(ATPS).
19,28

   

We surveyed several previously reported AMPSs (Appendix I).  A system prepared from 

dextran (MW ≈ 500 kD) and Ficoll (MW ≈ 400 kD) satisfied our two selection criteria: i) the 

ability to create a small step in density to separate reticulocytes from mature erythrocytes, and ii) 

the ability to maintain physiological pH while allowing the tonicity to be tuned.  In blood, the 

physiological reference range for pH is 7.38–7.44, and for osmolality is 285–295 mOsm/kg.
8
  

Changes to either of these parameters will result in changes to the morphology and density of 

blood cells. We describe methods to prepare and characterize the AMPSs that we use in this 

communication in Appendix I. 

We prepared a series of dextran–Ficoll AMPSs at various densities and osmolalities.  We 

expected that differences between ion transport in reticulocytes and mature erythrocytes would 

enhance differences in density due to unequal responses to osmotic stress 
14

. Osmolality thus 

provided an additional parameter to tune the separation of these cells based on density.  
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A range of available densities and tonicities—controlled by the concentrations of 

polymers and salts in each phase—allowed us to investigate the influence of these factors on 

both the final purity and the yield of reticulocytes concentrated at the interface of the AMPS.  

Based on literature precedent, we expected an AMPS with a density of the bottom phase near 

1.080 g/cm
3
 to isolate a band of reticulocyte-rich erythrocytes at the upper interface of the 

bottom phase 
17

. We explored a range of densities for a bottom phase near this value.  For 

hypertonic and hypotonic systems, we explored ranges of densities based on expected shifts in 

density from changes in hydration (Appendix I; Table I.1). 

In addition to reticulocytemia, we also chose to characterize yield and scale for our 

separations.  Yield and scale are important characteristics of reticulocyte enrichment for the 

cultivation of malaria parasites.  Systems that scale well to large volumes (> 10 mL of blood) and 

attain > 10 µL of packed reticulocytes would decrease the burden of time and resources to 

maintain cultures of P. knowlesi, P. vivax, or P. ovale.  Changing the volume ratio of blood to 

polymer affected the final enrichment of reticulocytes (Appendix I; Figures I.1 & I.2). A 

constant volume ratio of blood to polymer, however, achieves reproducible results at different 

scales (Appendix I; Figure I.3).  Details of the effects of volume ratio and scale are provided in 

Appendix I. 

 

Results  

AMPSs can enrich reticulocytes to a high purity.  Upon sedimentation of 1 mL of 

blood through 4 mL of a hypertonic (φ = 330 mOsm/kg) AMPS of 11.6% (w/v) of dextran and 

11.6% (w/v) Ficoll (ρtop= 1.086 g/cm
3
 and ρbottom= 1.089 g/cm

3
), we observed two layers of 

erythrocytes: one layer at the liquid/liquid interface between the two phases of the AMPS and 
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one layer between the bottom phase and the container (Figure 3.1).  After extracting cells with a 

pipette and washing them in phosphate buffered saline (PBS), cells were stained either with New 

Methylene Blue (to visualize intracellular RNA in reticulocytes by microscopy) or with acridine 

orange (to quantify reticulocytes by flow cytometry).     

For hypertonic, isotonic, and hypotonic systems, we found specific densities of the 

dextran–Ficoll AMPS that provided highly enriched reticulocytes (Figure 3.2, Appendix I; 

Figure I.4).  Appendix I; Table I.1 details the parameters of each AMPS and the results of each 

enrichment procedure.  For small shifts in osmolality, the difference in density between an object 

and water scales with the osmolality (Appendix I); the density of the best-performing hypotonic 

system is lower than that of the best-performing hypertonic system.  A hypotonic (φ = 269 

mOsm/kg) AMPS of 9.3% (w/v) dextran and 9.3% (w/v) Ficoll with ρtop= 1.068 g/cm
3
 and 

ρbottom= 1.072 g/cm
3
 enriched reticulocytes to 55 ± 8% at the interface of the AMPS (Figure 3.2).  

Although this system provided the highest purity of enrichment for a 1:4 volume ratio of blood to 

AMPS, it collected less than 10
7
 cells (~1 L of packed cells) at the interface.   

We also explored different volume ratios of blood to AMPSs to see if we could attain 

similar purities with a lower relative volume of AMPSs (Appendix I; Table I.4).   A 1:1 volume 

ratio of blood to a hypertonic (φ = 336 mOsm/kg) AMPS of 11.4% (w/v) dextran and 11.4% 

(w/v) Ficoll (ρtop= 1.084 g/cm
3
 and ρbottom= 1.088 g/cm

3
) provided the greatest enrichment of 

reticulocytes (up to 64 ± 3%) at the interface of the AMPS (Figure 3.2, Appendix I; Figure I.4). 

Variations between individuals can lead to significant differences in the performance of 

density-based separation methods. We enriched reticulocytes using four dextran–Ficoll AMPSs 

from the initial screen, and blood from four different donors (Table 3.1). Increasing the ratio 
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Figure 3.1. A hypertonic (φ = 330 mOsm/kg) AMPS of 11.6% (w/v) dextran and 11.6% (w/v) 

Ficoll (ρtop= 1.086 g/cm
3
 and ρbottom= 1.089 g/cm

3
) provides a step-gradient in density capable of 

enriching reticulocytes from blood.  Centrifugation of blood depleted of leukocytes over a 

column of the AMPS leaves the plasma above the top phase and a reticulocyte-rich layer of cells 

at the liquid/liquid interface (retics); the remaining erythrocytes pack below the bottom phase 

(packed cells). Arrows on the micrographs indicate reticulocytes.  The bottom phase becomes 

pink from the presence of suspended cells that are nearly isodense with that phase and, hence, do 

not settle at an interface for the centrifugation parameters used.  
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Figure 3.2. The fraction of blood at the interface of several AMPSs are enriched to a 

reticulocytemia over 50%. Filled, black symbols mark results from hypotonic (hypo)—square, 

isotonic (iso)—triangle and hypertonic (hyper)—circle—series of AMPSs where the volume 

ratio of blood to AMPS was kept constant at 1:4.  The half-black, half-white and white circles 

illustrate hypertonic series with volume ratios of blood to AMPS of 4:4 and 8:4. Error bars depict 

the average deviation from the mean of triplicate experiments. 
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Table 3.1. Performance of AMPS-enrichment of reticulocytes with multiple (n = 4) donors 

compared to a combination of differential centrifugation and layered Percoll. 

 Density (g/cm
3
) Osmolality  Reticulocytemia (%)  Yield of Reticulocytes

[a]
 (%)  

ID
[b]

 ρtop ρbot (mOsm/kg)  Median [Min, Max]  Median [Min, Max]  

C1 1.089 1.092 330  19 [15, 21]  1.6 [0.24, 6]  

C2 1.086 1.089 330  29 [15, 32]  0.90 [0.095, 1.7]  

A5 1.076 1.080 295  36 [18, 49]  0.012 [0.0065, 1.1]  

B3 1.071 1.075 260  40 [15, 45]   0.0061 [0.00079, 0.012]  

DC-P
[c]

 -- -- --  38 [6.0, 86]  0.61 [0.12, 9.7]  

[a] The percentage of the total reticulocytes from blood loaded on a system that are found in the enriched fraction.   

[b] IDs refer to specific densities and tonicities of the dextran–Ficoll AMPS specified in Appendix I; Table I.1. 

[c] Enrichments done by differential centrifugation followed by centrifugation over layered Percoll (DC-P). 
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of the volume of blood to polymer to 1:1 (i.e., 4 mL blood on 4 mL of AMPS) increased the yield 

of reticulocytes as measured by flow cytometry (Appendix I).   

The degree of enrichment and final yield varied significantly between donors (Appendix 

I; Table I.2).  The last three AMPSs from Table 3.1 demonstrate, however, that similar 

enrichments can be achieved between systems with different tonicities. The density of these 

systems increases as a function of osmolality, reflecting the increase in the mean density of the 

reticulocyte and mature erythrocyte populations.  Interestingly, in the systems with similar 

enrichments, the median yield is two times greater in the hypertonic AMPS than in the isotonic 

AMPS; it is more than 70 times greater in the isotonic AMPS than in the hypotonic AMPS.  We 

also compared our systems to a common enrichment method: differential centrifugation of blood 

followed by centrifugation of the enriched fraction over a layered gradient of Percoll (DC-

Percoll).  The enrichments with DC-Percoll showed a high degree of variability, with some 

separations attaining high yield (9.6%) and low purity (6.0%), and others attaining low yield 

(0.12%) and high purity (86%).  The hypertonic systems of AMPS provide a higher median 

yield, and their ranges for reticulocytemia and reticulocyte yield are smaller than blood enriched 

by DC-Percoll.  Separations with AMPS provide better reproducibility than DC-Percoll.    

Malaria parasites invade reticulocytes enriched by centrifugation through an 

AMPS. To ensure that we obtained a sufficient number of reticulocytes to perform an invasion 

assay after enrichment, we chose system C1 (Table 3.1).  We layered 25 mL of blood over 25 mL 

of the dextran–Ficoll AMPS in 50 mL conical tubes.  After centrifugation, we collected the cells 

from  the interface using sterile technique and washed them three times in a 100-fold volume of 

PBS. After washing, the morphology of the cells was comparable to the morphology before 

exposure to AMPS (Appendix I; Table I.3, Figure I.5); these cells were then used for culture. 
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Appendix I; Table I.4 details the reticulocytemia of enrichments from different donors.  We 

added purified late-stage parasites (e.g., late trophozoites and schizonts) of P. knowlesi H strain 

to the culture medium at a parasitemia—the percentage of erythrocytes that contain parasites—

between 0.5–2.5%. This mixture of enriched reticulocytes and parasites incubated at culture 

conditions for 18 hours. This time is sufficient to allow late-stage parasites to mature and rupture, 

and then to release infectious merozoites into the suspension of erythrocytes enriched in 

reticulocytes.   

We quantified the ability of parasites to reinvade by the parasitized erythrocyte 

multiplication rate (PEMR)—the ratio of the initial parasitemia to the parasitemia after 18 hours.  

If merozoites can invade the AMPS-enriched reticulocytes, we would expect to see an increase in 

the parasitemia after 18 hours (PEMR > 1); a PEMR > 1 is necessary for long-term cultivation of 

malaria parasites.  Reinvasion is an important step in culture that depends in part on the surface 

of the host cells; if residual polymers on the surface of reticulocytes compromised cultivation, 

we expected the effect would be most pronounced during reinvasion.   

Figure 3.3 shows the results from invasion assays using blood enriched by AMPS as well 

as results from similar invasion assays using normal human blood, blood enriched for 

reticulocytes by DC-Percoll, and blood from rhesus monkeys—the well-established experimental 

host for P. knowlesi.
29

  In normal human blood, the PEMR was often less than one because P. 

knowlesi H strain is limited to invasion of human reticulocytes and young erythrocytes.
4
  Blood 

enriched by DC-Percoll provides a benchmark comparison for reticulocyte enrichment.  For each 

invasion assay, we matched the enrichment of reticulocytes from DC-Percoll with that from 

AMPSs by diluting the more enriched sample with whole blood. Reticulocytemia in enriched  
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Figure 3.3. Reticulocytes enriched through a dextran–Ficoll AMPS are invaded by P. knowlesi.  

Parasites cultured in normal human blood (Human), AMPS-enriched human blood (AMPS), DC-

Percoll-enriched human blood (DC-Percoll), and rhesus blood (Monkey) show invasion after 18 

hours. P. knowlesi parasitemia increased more in media that contained blood enriched for 

reticulocytes by centrifugation in a dextran–Ficoll AMPS than in normal human blood. The 

horizontal bars indicate the mean parasitized erythrocyte multiplication rate (PEMR) for each 

invasion assay.  For human blood (Human, AMPS, DC-Percoll) each symbol represents average 

results from a different donor (n = 7) performed in triplicate.  Assays performed with blood from 

different monkeys are all shown with the same symbol (filled diamond). 
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samples was between 4–21%. Blood from a rhesus monkey provided a positive control in which 

multiplication of parasites was unrestricted by the availability of host cells.  

Blood from seven subjects provided biological replicates.  We performed three technical  

replicates with each subject.  We prepared thin smears of the samples immediately after the 

introduction of late stage parasites to the blood samples and at 18 hours after cultivation.  After 

staining the slides with Field’s Stain, we quantified the parasitemia of each sample (Appendix I). 

As expected, the multiplication rate in rhesus blood was greater than any of the human 

samples (Figure 3.3).  The enriched blood from both AMPSs and DC-Percoll performed better 

than normal blood to support the invasion of P. knowlesi.  On average, the PEMR in blood 

enriched by AMPSs was 2.9 times that of normal blood (p-value < 0.01).  Microscopy confirmed 

that the parasites that had invaded the reticulocyte-rich blood from AMPSs continued to develop 

normally in culture.  The average PEMR in blood enriched by AMPSs was 1.3 times that of 

blood enriched by DC-Percoll (p-value < 0.05).   

Discussion 

We have demonstrated that sedimentation through AMPSs is a useful technique to 

separate cells by density.  AMPSs concentrate cells at molecularly sharp interfaces that provide 

well-defined steps in density, and this concentration facilitates the enrichment of cell types that 

differ in density.  Specifically, AMPSs can enrich reticulocytes from human whole blood.  P. 

knowlesi H strain invades blood enriched for reticulocytes by AMPSs at a higher rate than it 

invades normal blood or blood enriched for reticulocytes by DC-Percoll. The ability to 

reproducibly enrich reticulocytes from normal, whole blood should benefit research involving 

reticulocytes, such as efforts to culture malaria species that preferentially invade reticulocytes 

(i.e., P. vivax, P. knowlesi, and P. ovale).    
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Existing methods to enrich reticulocytes are not suitable for the routine enrichments that 

would be required for a sustainable continuous culture.  Differential centrifugation provides a 

simple method to enrich reticulocytes, but the enrichment is low (< 3%).
13

  Affinity-based 

separation techniques and the direct growth of reticulocytes allows high purity (> 90%) that is 

not matched by enrichments using AMPSs, but these methods are expensive and impractical for 

routine use.
15

 DC-Percoll provides a means to enrich reticulocytes, but this method requires two 

separate centrifugation steps and two extraction steps; variation between steps compound to 

reduce reproducibility. Exposure to Percoll may also impair parasite development for specific 

strains of malaria parasites,
30

 and may, partly, explain the greater invasion of reticulocytes 

enriched by AMPS compared to those enriched by DC-Percoll.   

Enriching reticulocytes through AMPSs retains the simplicity of differential 

centrifugation (layering blood over an AMPS adds only one step to the general procedure), but 

provides much higher levels of enrichment (median reticylocytemia of 19%).  The scalability of 

AMPSs also allows researchers to process large volumes (~1 L) of blood in a single 

centrifugation step.  The combination of purity, scalability, and simplicity make centrifugation 

through AMPSs a valuable technique for separations of cells that require high throughput and 

routine use. The use of AMPSs to separate cells by density should aid in the cultivation of 

malaria species that require reticulocyte-rich blood, and facilitate the separation of other cells 

with natural differences in density such as lymphocytes and erythrocytes, as well as sickled 

erythrocytes and normal erythrocytes.   

Supporting Information   
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Supporting Information is provided in Appendix I and includes materials and methods, 

experimental details, analyses of separations, study of volume and osmotic effects, and additional 

background. 
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Abstract  

Although effective low-cost interventions exist, child mortality attributable to sickle cell 

disease (SCD) remains high in low-resource areas due, in large part, to the lack of accessible 

diagnostic methods.  The fluid, self-assembling step-gradients in density created by aqueous 

multiphase systems (AMPSs) identifies SCD by detecting dense cells.  AMPS separate different 

forms of red blood cells by density in a microhematocrit centrifuge, and provide a visual means 

to distinguish individuals with SCD from those with normal hemoglobin, or with non-disease, 

sickle-cell trait, in under 12 minutes.  Visual evaluation of a simple two-phase system identified 

SCD with a sensitivity of 90% (73-98%) and a specificity of 97% (86-100%).  A three-phase 

system identified SCD with a sensitivity of 91% (78-98%) and a specificity of 88% (74-98%). 

This system could also distinguish the main subclasses of SCD (Hb SS and Hb SC).  This test 

demonstrates the usefulness of AMPSs in point-of-care diagnostic hematology.   
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Introduction 

Over 300,000 children (approximately 1% of births) are born with sickle cell disease 

(SCD) in Africa each year.
1,2

  SCD is a genetic disorder caused by an array of genotypes (e.g., 

homozygous sickle cell disease—Hb SS, and hemoglobin SC disease—Hb SC) that lead to the 

sickling of erythrocytes and associated pathologies (Table 4.1).  Severity and specific symptoms 

vary between the subtypes of SCD, but the most prevalent form (Hb SS, > 75%)
3
 is the 

associated with the most severe effects.  

Children with SCD suffer high mortality due to acute vaso-occlusive crises and increased 

risk of bacteremia.
4,5

 Although inexpensive interventions exist to limit infection (e.g., penicillin 

prophylaxis, vaccinations) and reduce childhood mortality, over 50% of children < 5 years of age 

die in low-resource areas.
4,6,7

 Much of this mortality could be avoided, but to implement simple 

interventions, a diagnosis is necessary.
8,9

   Standard diagnostic procedures, such as hemoglobin 

electrophoresis (HE) or high performance liquid chromatography (HPLC), which are used in 

well-equipped facilities to detect SCD, are either unfeasible in low-resource settings—where the 

disease is highly prevalent—or do not differentiate between SCD and the non-disease, sickle cell 

trait (Hb AS). This unmet need has motivated the recent development of creative diagnostic 

methods for SCD using blood stains on paper devices
10

 and hemolysis in solutions of sucrose.
11

  

SCD also lacks simple metrics for management.
12,13

 Standard diagnostic tests lack the 

ability to provide prognostic information.  Genetic testing only confirms that the mutations for 

SCD are present.  HE and HPLC can quantify the level of fetal hemoglobin—a useful, but 

incomplete, modulator of clinical manifestations.
14

   Biophysical indicators, such as the rate of 

jamming of erythrocytes in microfluidic channels, have been proposed as integrative sources of 

information that could aid the management of SCD
13

—large clinical studies are still needed to  
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Table 4.1. Genetic disorders classified as SCD. 

Genotype Fraction of SCD Cases
[a]

 

Hb SS 75% 

Hb SC 20% 

Hb Sβ
+/0

 4% 

Hb SD <1% 

Hb SE <1% 

       [a] estimates based on literature
3,10,15
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verify this claim. The distribution of density of red blood cells provides another biophysical 

indicator that is closely related to SCD pathophysiology;
16,17

 the dehydration that leads to the 

formation of sickle cells increases the rate of the polymerization of hemoglobin S.  Dehydration 

increases the density of the cell by reducing the volume and increasing the ratio of dense protein 

to less dense water in the cell.  Although many of the cells with the highest density are also 

sickled, some may also have irregular shapes variously described as a holly leaf or wreath 

shape.
18–20

  For simplicity, we refer to the entire class of high density cells characteristic of SCD 

as "dense, SCD cells." 

This paper describes two rapid tests for the two most prevalent forms of SCD (Hb SS and 

Hb SC) based on a sensitive but convenient measurement of the density (ρ, g/cm
3
) of red blood 

cells using aqueous multiphase systems (AMPSs)—mixtures of polymers in water that form 

immiscible phases.
21

   AMPSs provide a method of separating particles by density;
21

 the 

discrimination between particles of different density using an AMPS can be high (Δρ < 0.001 

g/cm
3
).

21
  Each phase of an AMPS is separated by an interface that defines a step in density.  

AMPSs are thermodynamically stable and re-form if disturbed by stirring or shaking.  AMPSs 

can be designed to be biocompatible, and have been used to separate mammalian cells by surface 

interactions.
22,23

   

Our tests use AMPSs to separate erythrocytes into multiple bins of density; the presence 

or absence of erythrocytes in the bins distinguishes individuals with the most prevalent forms of 

SCD from individuals with either normal hemoglobin (Hb AA) or sickle-cell trait (Hb AS).  The 

simpler test, SCD-AMPS-2, uses two phases; the higher resolution test, SCD-AMPS-3, uses 

three phases. We evaluated our tests both visually and digitally in a population of 59 subjects (33 
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negative—Hb AA or Hb AS, 26 positive—Hb SS, Hb or SC).  Both tests diagnosed SCD 

positive samples with a sensitivity > 90% and a specificity > 88%.   

SCD-AMPS-3 is further able to distinguish between the two main forms of SCD: i) Hb 

SS, which accounts for the majority (~ 75%) of SCD,
3
 and ii) Hb SC, which constitutes most of 

the remaining cases of SCD (~20%).
3
  These two variants of SCD have important differences in 

pathophysiology; Hb SC comes with a higher risk for retinal vascular damage and otological 

disorders, whereas Hb SS  is generally more severe and comes with a higher risk of stroke and 

acute chest syndrome.
24–26

 Effective diagnosis of the genotype would enable management to be 

tailored to the appropriate risks.   

Results 

Bins of density provide a specific test for SCD that can distinguish sub-types. The 

number of sub-populations of erythrocytes of interest determines the number of phases that 

should be used (see Appendix II).  An AMPS with three fluid phases provides enough 

interfaces—two liquid-liquid interfaces and a liquid-container interface—to separate the three 

populations of erythrocytes required in a test for SCD that can distinguish subtypes of the disease 

(Figure 4.1). An AMPS with two phases provides two well-defined interfaces: one liquid-liquid 

interface between the phases, and one liquid-container interface.  These interfaces are sufficient 

to separate dense, SCD cells  from cells in the normal range of densities of erythrocytes, and to 

provide a test for SCD. Like the three-phase system depicted in Figure 4.1, the presence of red 

cells at the bottom of the tube indicates a positive test for SCD.  The simplicity of interpreting 

only two phases comes at the cost of the inability of this test to distinguish subtypes (Hb SS and 

Hb SC) of SCD. 
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Figure 4.1. Schematic representations for the four most important outcomes of a density-based 

rapid test for sickle-cell disease.  Upon centrifugation, erythrocytes move through the top (T), 

middle (M), and bottom (B) phases of the AMPS and collect at some combination of the three 

lower interfaces (two liquid/liquid interfaces, T/M and M/B, and one liquid/container interface, 

B/S).  The distribution of cells between these interfaces will depend on the genotype; non-sickle 

hemoglobins (Hb AA, Hb AS, and Hb CC) are distinct from sickle hemoglobins (Hb SS and Hb 

SC).  In all cases, the presence of red at B/S indicates sickle cell disease. Three interfaces allow 

further discrimination; a majority of erythrocytes at M/B indicates Hb SC or Hb CC.   
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The densities of the sub-populations of erythrocytes determine the desired densities of the 

phases of these AMPSs (see Appendix II).  Although the density distribution of erythrocytes in 

SCD has been studied extensively, commonly used methods of separating cells by density are 

not suitable for use in field settings (see Appendix II). Methods that separate multiple 

populations require tediously layered gradient systems that are destroyed by agitation or mixing, 

and simple systems can only separate a single population. Centrifugation through AMPSs allows 

the separation of multiple populations in a thermodynamically stable (and, thus, simple to use) 

system. AMPS agitated by vigorous shaking readily reform quickly (minutes) under 

centrifugation, or more slowly (hours) under gravity.
21

 

When designing an AMPS, we first seek systems whose phases are separated by the same 

differences in density as our target sub-populations of erythrocytes.  We then use other additives 

to tune the overall density to the necessary levels.   

An AMPS formed by mixing 7.0% (w/v) poly(ethylene glycol) (PEG) with a molecular 

weight (MW) of ~20 kD and 10.3% (w/v) Ficoll with a MW of ~400 kD provided phases with 

densities separated by the values required for a two-phase system useful in the diagnosis of SCD.  

An AMPS comprising 3% (w/v) PEG with a MW of ~20 kD, 10% (w/v) dextran with a MW of 

~500 kD, and 5% (w/v)  polymer of partially hydrolyzed poly(vinyl acetate) (containing 75% -

OH and 25% -OCOCH3 groups) with a MW of ~3 kD, provided phases separated by differences 

in density of the values required for our three-phase assay.  

We added NaCl to make the system isotonic (as measured by vapor pressure osmometry) 

with blood.  The pH of each system was adjusted to 7.40 ± 0.02 by the addition of concentrated 

(1-10 M) NaOH or HCl.  We used a low-osmolality, high-density additive (Nycodenz, Accurate 

Chemical), to increase the density of each system to the proper range, and measured the density 
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of each phase using an oscillatory U-tube densitometer. SCD-AMPS-2 contained 9.1% (w/v) 

Nycodenz and had phases with densities ρtop = 1.078 g/cm
3
 and ρbot = 1.129 g/cm

3
. SCD-AMPS-

3 contained 8.7% (w/v) Nycodenz and had phases with densities ρtop = 1.077 g/cm
3
, ρmid = 1.108 

g/cm
3
, and ρbot = 1.120 g/cm

3
.  

A point-of-care test imposes cost and time constraints on the assay design.  To 

demonstrate the potential use of our tests in point-of-care settings, we designed them to use  

~5 µL of blood (a volume easily obtained from a finger stick).  This blood was added to a plastic 

capillary that had been preloaded with 14 µL of the SCD-AMPS-3 or SCD-AMPS-2 (Figure 

4.2).  We sealed the capillaries with either white clay sealant—for ease of visual detection—or 

epoxy—for clarity when imaging tubes by transmission-mode in a scanner.  Volumes were 

dictated by the capacity of the capillaries (see Appendix II).  The total cost of reagents and 

materials per test is ~$0.20 at this scale; when fabrication costs and packaging materials are 

accounted for, the cost per test is ~$0.50 (Appendix II; Table II.1).   

In rural settings, patients may travel for a day to seek medical care, and follow-up is 

challenging.  Tests that can be coupled to actionable information and counseling must be rapid 

(ideally under 30 minutes). To meet this condition, we used a microhematocrit centrifuge 

(CritSpin, Iris Sample Processing) to centrifuge samples at 13,000 g; this centrifuge can perform 

12 tests at a time and, with a simple, DC-to-DC converter can be powered by a car battery.  We 

could distinguish blood of individuals with SCD from normal blood after six minutes; additional 

time in centrifugation enhanced the signal (Appendix II; Figure II.1).  We chose to use ten 

minutes for our test to ensure a strong positive response, while keeping the test rapid.  The rest of 

the procedure, including the finger-stick, sample loading, and test interpretation, took less than 

two minutes. By comparison, the gold standard for analysis of SCD, hemoglobin electrophoresis,  
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Figure 4.2. Example of an SCD-AMPS-3 rapid test loaded before and after centrifugation of 

blood from a sample without sickle cell disease.  Blood wicks just past the hole in the side of the 

tube that is then covered with the silicone sleeve. After centrifugation, the cells separate from the 

plasma and pack between the phases of the AMPS.  The test shown would be classified SCD 

positive because there is red below the bottom phase and above the seal.   
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requires more than three hours to prepare samples, run electrophoresis, stain, and wash.  

Laboratories often batch samples to run on a single gel and report results several days later.   

In addition, ease-of-use is a critical component of a point-of-care test.
27

 Capillary action 

provides a simple mechanism to load blood. Designing a test to diagnose SCD from a finger-

stick required a method to load blood into a capillary pre-loaded with SCD-AMPS and sealed on 

one end.  Without modification, capillaries with closed ends will not wick additional fluid due  

to air trapped between the fluid and the sealed end.  We used a “hole-in-tube” method to load 

blood into the capillary; puncturing a small hole in the side of the polycarbonate capillary at a 

specific distance from one end allowed a standard volume of blood (~5 µL) to wick into the tube 

(Appendix II; Figure II.2).   

Centrifugation of blood through the SCD-AMPS provides a visual separation of 

sickled cells.  Over the course of ten minutes of centrifugation at 13,000 g, blood moved out of 

the loading zone and through the AMPS, and formed separated layers at the interfaces (Figure 

4.2). In most cases, the boundary between the top phase and the plasma was not distinguishable.  

The total packed volume between each interface provides an estimate of the hematocrit 

(Appendix II; Figure II.3): this estimate also provides a simple, if crude, method to identify 

severe anemia concurrently 
28

.  With a diagnostic accuracy of over 90%, we could distinguish 

samples from individuals with SCD from normal samples; a layer of red cells sat below the 

bottom phase of both SCD-AMPSs, and packed against the seal of the capillary (Figure 4.3); 

this layer was dominated by sickled and dehydrated cells (Appendix II; Figure II.6).  By 

comparing the volume of the packed cells at the seal, to the volume of cells at the other 

interfaces, we could estimate the percentage of dense cells (Appendix II; Table II.2).  
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Figure 4.3. Representative examples of positive and negative tests in the SCD-AMPS-3 (ρtop = 

1.077 g/cm
3
, ρmid = 1.108 g/cm

3
, ρbot = 1.120 g/cm

3
) and the SCD-AMPS-2 (ρtop = 1.078 g/cm

3
, 

ρbot = 1.129 g/cm
3
), show a clear distinction between subjects with SCD (Hb SS and Hb SC) and 

those without SCD (Hb AA and Hb AS).  In non-SCD blood in the SCD-AMPS-2 system, all 

cells pack at the liquid interface (T/B). In the SCD-AMPS-3 system, most cells have normal 

morphologies and densities (normocytes) and pack at the upper liquid interface (T/M), the 

densest normal shaped cells (dense normocytes) collect at the lower liquid interface (M/B), and 

some aggregated platelets are present at the bottom of the tube (gray) (B/S). Erythrocytes from a 

subject with SCD display greater heterogeneity at high densities.   Dense, SCD cells form a layer 

below the bottom phase of both SCD-AMPS on top of the sealant (B/S). In the SCD-AMPS-3 

test, the distribution of cells between the liquid interfaces (T/M and M/B) differentiates Hb SS 

from Hb SC.  The difference in the total packed volume of the cells demonstrates the difference 

in the hematocrit between the normal subject and the anemic subject with SCD. 
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Figure 4.2 (Continued). 
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In the SCD-AMPS-3, most erythrocytes within the normal density range sat at the upper 

liquid/liquid interface.   The densest normal erythrocytes (~1–5% of erythrocytes) collected at 

the lower liquid/liquid interface.  In both SCD-AMPS-2 and SCD-AMPS-3, blood from 

individuals with sickle-cell trait appeared the same as that from normal individuals; our method 

does not differentiate between Hb AS and Hb AA genotypes. Although a small amount of 

sickled cells may exist in blood from an individual with Hb AS, the amount is below our 

estimated limit of detection of 2.8% dense cells (Appendix II; Figure II.7). 

The presence of cells with a high density correlates with the presence of SCD. 

Samples that had a visible red band at the bottom of the AMPS correlated strongly with the 

presence of SCD.  Conversely, samples negative for SCD rarely had red cells visibly present at  

the bottom of the AMPS (Appendix II; Table II.3).  The SCD-AMPS-2 had a true positive rate 

(sensitivity) of 90% with a Jeffreys 95% confidence interval (C.I.) of 73%–98% and a true 

negative rate (specificity) of 97% (C.I. = 86%–100%).  The SCD-AMPS-3 had a sensitivity of 

91% (C.I. = 78%–98%), and a specificity of 88% (C.I. = 74%–98%).  Admittedly, visual 

inspection allows room for bias in a diagnostic test.  To reduce biased evaluation, each test was 

evaluated independently by at least two people (see Appendix II for more details).  Samples 

negative for SCD included both Hb AA (n = 26 for SCD-AMPS-3, n = 24 for SCD-AMPS-2) 

and Hb AS (n = 7).  Samples positive for SCD included Hb SS (n = 20 for SCD-AMPS-3, n = 15 

for SCD-AMPS-2) and Hb SC (n = 6). The formulation of SCD-AMPS-2 was finalized after 

testing had begun on SCD-AMPS-3 and, thus, the former system was tested on fewer samples. 

In about half of all tests where a clear red band was not present at the bottom of the tube, 

visual inspection showed a thin layer of white, yellow or pink material.  Evaluation of these 

layers by microscopy revealed that platelets had clumped together to form large aggregates 
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(Appendix II; Figure II.5). In some cases, these aggregates appeared to have captured a small 

number of both red and white blood cells.  In samples without SCD, we believe these aggregates 

may occasionally capture enough red blood cells to create a false positive.     

 We also evaluated scanned images of the capillaries digitally.  Varying the thresholds for 

the intensity of the red color at the bottom of the tube produced a receiver operating 

characteristic (ROC) curve (Figure 4.4) (see Appendix II).  Our sensitivity and specificity from 

visual evaluation matched the ROC curve for both tests; this finding suggests two interrelated 

procedures: i) with proper training, the visual reading of the tests by health workers could match 

(and be checked by) the performance of the digital analysis; or ii) with higher-technology 

phones, digital analysis could replace training of readers.  The fact that these two methods of 

reading give equivalent results suggest that reading the test will not be a major source of error.     

The least dense red blood cells in Hb SC  have a slightly higher density than the least 

dense red blood cells in Hb SS 
29

.  In SCD-AMPS-3, blood from most individuals with Hb SC 

had distributions of red cells distinct from those with Hb SS.  In half the cases, a thick band of 

red cells formed at the lower liquid interface whose height was comparable to or greater than that 

of the band of red cells at the upper interface (Figure 4.3).  In some cases, an hour-glass shape of 

red cells connected the packed cells at the two interfaces (Appendix II; Figure II.8).  By 

contrast, blood from samples with Hb SS had two distinct bands of red with a clear majority of 

red cells at the upper liquid interface.  These differences in the distribution of cells allowed us to 

distinguish visually between Hb SC (n = 6) and Hb SS (n = 20), the two most prevalent forms of 

SCD with a sensitivity of 67% (C.I. = 29%–92%) and a specificity of 100% (C.I. = 88%–100%).  

Centrifugation for an additional 10 minutes increased the sensitivity to 83% (C.I. = 44%–98%).   
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Figure 4.4. The receiver operating characteristic (ROC) curve (solid line) for the digital 

evaluation of the presence of a red layer at the bottom of the SCD-AMPS demonstrates good 

diagnostic performance.  Both curves are far from the gray line that indicates no ability to detect 

an event.  Visual evaluation of the rapid tests matched the sensitivity and specificity of the digital 

analysis.  
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In Figure 4.3, the red and pink, in the lower phases, indicated either that the dense cells 

had not all reached their equilibrium position, or that some cells had the same density as one of 

these phases.  Additional centrifugation time (a total of 30 minutes) allowed these cells to 

sediment further and increased the thickness of the layer of red at the bottom of the tube 

(Appendix II; Figure II.1 & II.4), but required more time. For a diagnostic test, however, we 

do not need all the cells to reach their equilibrium positions as long as the difference between 

positive and negative tests is clear.   

Discussion 

An AMPS-based test for SCD is appropriate for use at the point-of-care.  The World 

Health Organization (WHO) has defined the ASSURED criteria as guidelines for the 

development of point-of-care devices.
27

  Devices should be affordable, sensitive, specific, user-

friendly, reliable, equipment-free, and deliverable to those in need.   AMPS-based tests for SCD 

have the characteristics of sensitivity, affordability, and ease-of-use required for them to have an 

impact at the POC. 

The “hole-in-tube” method allows blood to fill the tube automatically. Unlike tests that 

require lysing and incubating blood in a solution (e.g., Sickledex), whole blood is tested directly.  

Minimal handling of the sample reduces errors and risks to health workers performing the test. 

We estimate the cost of materials and manufacturing per test to be $0.50 (see Appendix II). The 

centrifuge (CritSpin, Iris Sample Processing) we use in this study costs approximately $1,600, 

but we have verified that our system performs similarly on a basic centrifuge (SpinCrit, 

www.spincritcentrifuge.com) that costs $150, is portable, and runs on four AA batteries; this 

centrifuge can perform six tests at a time and standard AA batteries allow three separate 10 

minutes spins per charge.  Simple centrifuges, such as those that use mechanical actuation, solar 
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power, or batteries, should allow this test to reach rural and mobile clinics;
30

 slower centrifuges, 

however, would require longer times for the tests.   

Even with simplicity and low cost, AMPS-based tests still attain a sensitivity and 

specificity near 90%.  Although they do not distinguish between Hb AS and Hb AA, they can 

distinguish between Hb AS and both Hb SS and Hb SC. SCD-AMPS-3 has the added ability to 

distinguish Hb SC from Hb SS, albeit with a lower sensitivity than that with which the test 

identifies SCD—the sensitivity to identify Hb SC may be improved with a slightly different 

density of the middle phase. In addition to providing diagnostic information, these tests measure 

a biophysical indicator that may help identify patients more likely to experience certain 

complication of the disease; the fraction of erythrocytes that have a high density correlates with 

certain clinical manifestations of SCD (e.g., skin ulcers, priapism, and renal disfunction).
31

  

Monitoring the distribution of the density of cells could also provides a way to assess sickle 

crises.
32

   

 The density of cells can be used as a diagnostic marker. The use of density as a tool 

for point-of-care diagnostics dates back to the spun hematocrit, in which the density difference 

between cells and plasma enables the measurement of the volume ratio of packed cells in blood.  

This measure has been helpful in the diagnosis of anemia.
28

  Modifications on the spun 

hematocrit concept have led to systems for measuring white blood cell counts and other 

parameters.
33

 The company Zyomyx has developed a technique to tag CD4+ cells with 

proprietary, high-density beads so that these cells can be separated from whole blood and 

quantified.
34

  The measurement of the density of individual cells demonstrates that density can 

provide a high quality measure of cellular properties.
35
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 Fractionating red blood cells by density in step-gradients generated using AMPSs 

provides a new method to identify SCD.  The presence of dense cells correlates with the 

presence of SCD;
16

 AMPSs provide a self-assembling step-gradient in density that makes the 

identification of dense cells accessible in low-resource settings.  Further testing will be required 

to verify the performance of the SCD-AMPS on larger population with more genetic variation 

and concurrent conditions, but this work demonstrates that density has the potential to be a 

sensitive and specific biophysical marker for diagnosing SCD.   

 One limitation of density-based methods is that density is a colligative property; density 

depends on the sum of the elements (solutes, proteins) contained in a cell rather than on a 

specific biochemical marker.  Factors that can affect the density of red blood cells, such as 

clotting or other genetic diseases, must be carefully assessed to develop a POC diagnostic based 

on density.  The densities of SCD-AMPS described here should discriminate between Hb CC 

and SCD; if, however, dense cells in Hb CC do provide false positives, an additional low-density 

band to isolate reticulocytes could discriminate Hb CC from Hb SC and Hb SS.
29

  Other genetic 

disorders that may increase density, such as hereditary spherocytosis, have little geographic 

overlap with SCD.
36,37

   

 Density-based tests, also, will not be sensitive when dense cells are not present.  At birth, 

children with SCD have predominantly Hb F, and generally begin to express appreciable 

amounts of Hb S between six months and one year of age. The presence of dense, SCD cells 

relies on some amount of dehydration or sickling,of cells and, hence, on the presence of large 

amounts of Hb S; we expect a density-based test, therefore, to have significantly lower 

sensitivity in newborns than in one-year olds.  Only one of our Hb SS samples came from a child 

under one year old, and it appeared negative on both digital and visual inspection.   Developing 
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an accessible and affordable screening test for newborns remains a critical, unmet challenge.  

Rapid diagnostics that rely on the presence of sickled cells, such as ours, can play an important 

role in reducing child mortality if screenings are done near a child’s first birthday; such 

diagnostic efforts could be carried out simultaneously with vaccination campaigns (e.g. measles) 

that target children between nine months and one year old.   

An AMPS-based test for SCD can fill a gap in global health. With progress against 

infectious diseases around the world, the burden of morbidity and mortality due to 

hemoglobinopathies, such as SCD, will rise.
3
  Standard diagnostic techniques in well-equipped 

laboratories, such as HE and HPLC, are too expensive and require more infrastructure than is 

available in many countries with high burdens of SCD, especially in rural areas.
38

  

Currently, the most used, microscope-free methods for screening for sickle-cell disease in 

low-resource settings are solubility tests, such as Sickledex.
39

 In these tests a solution lyses and 

deoxygenates the blood; the polymerization of deoxyhemoglobin S causes the hemoglobin to 

form a nematic liquid crystal and makes the solution turbid.
40,41

  These tests can detect the 

presence of Hb S, but cannot distinguish between Hb SS and Hb AS without the use of 

additional, expensive equipment (i.e., a turbidimeter); this difference is non-trivial, as the former 

is a life-threatening condition, and the latter is, largely, benign.  

 Even when testing for the presence of Hb S and not specifically for SCD, solubility tests 

offer a sensitivity of 45% and a specificity of 85%.
39

  This low sensitivity is not enough to 

effectively screen for sickle cell.  In response to the outstanding need for rapid tests for SCD 

appropriate for the POC, a Request for Applications by the NIH in 2013 solicited the creation of 

tests for SCD with a sensitivity of at least 60%  (RFA-HL-14-010).  The AMPS-based tests 

described here have a sensitivity of over 87%.  
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 Compared to currently available techniques, the density-based tests using AMPS 

combine four desirable properties: i) fieldability—they are amenable to use at the point-of-care,  

ii) performance—they can distinguish Hb SC and Hb SS from Hb AA or Hb AS, iii) biophysical 

information—by quantifying the percentage of dense, SCD cells, and iv) low cost.  The AMPS-

based method also compares favorably in ease-of-use to other technologies that have been 

developed recently to diagnose SCD (Appendix II; Table II.4). 

  The high sensitivity and specificity of SCD-AMPS in identifying SCD in tests in a 

laboratory described here demonstrates that a density-based approach may provide a valuable 

screening tool. Further testing on different genotypes and concurrent conditions will determine 

whether such a test is appropriate as a point-of-care diagnostic for SCD.  Even if the 

performance is reduced, the densities could be adjusted to provide a higher sensitivity test (with 

lower specificity) to be used as a screening method; such a test would allow interventions where 

the cost-to-treat is low. 

 By combining simplicity and rapidity to measure a biophysical parameter (i.e., density), 

the density-based test using AMPSs could play an important role in diagnosing SCD at the point-

of-care.   Measuring the fraction of dense cells at the bottom of an SCD-AMPS could also have 

use beyond the diagnosis of SCD, and possibly aid in the management of the disease, but such 

uses will require clinical validation. More generally, density-based diagnostics illustrate how 

biophysical markers, such as density, and simple separation methods, such as centrifugation 

through AMPS, can combine to provide simple and low-cost health solutions; AMPS-based 

separations of blood should enable hematology at the point-of-care.  

Materials and Methods 
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 Appendix II includes detailed descriptions of all chemicals and materials used, methods 

for obtaining blood samples, the preparation and characterization of the AMPS, estimations of 

the cost per rapid test (Appendix II; Table II.1), analysis of test performance with different 

centrifugation times (Appendix II; Figure II.1 and II.4), experimental and rapid test design 

(Appendix II; Figure II.2), estimation of hematocrit and fraction of dense cells (Appendix II; 

Figure II.3 and Table II.2), analysis of separated fractions of cells (Appendix II; Figure II.5 

and II.6), comparison of methods to identify SCD (Appendix II; Table II.4), estimation of the 

limit of detection using cells treated with Nystatin as a model for dense, sickled cells (Appendix 

II; Figure II.7), and detailed results on clinical samples (Appendix II; Table II.3 and Figure 

II.8).   
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Abstract 

Although simple and low-cost interventions for sickle cell disease (SCD) exist in many 

developing countries, child mortality associated with SCD remains high, in part, because of the 

lack of access to diagnostic tests for SCD.  A density-based test using aqueous multiphase 

systems (SCD-AMPS) showed promise as a candidate for a low-cost, point-of-care diagnostic 

for SCD.  In this chapter, the field evaluation of SCD-AMPS in a large clinical trial in Zambia is 

described.  Of the two variations of the SCD-AMP used, the best system (SCD-AMPS-2) 

demonstrated a sensitivity of 87%  (82-90%) and a specificity of 60% (53-67%). Analysis 

identified potential sources of false positives to include clotting, variation between batches of 

SCD-AMPS, and shipping conditions.  Interestingly, SCD-AMPS-2 remained over 80% 

sensitive in detecting sickle cell disease in children between 6 months and 1 year old. In addition 

to an evaluation of performance, an assessment of end-user operability was done with health 

workers in rural clinics in Zambia.  Health workers in these settings rated the SCD-AMPS tests 

to be as simple to use as lateral flow tests for malaria and HIV.  
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Introduction 

Timely diagnosis of sickle cell disease (SCD) is essential for the implementation of life-

saving interventions.  The lack of effective diagnostics in low-resource settings, however, means 

that over half of the more than 300,000 children born each year with SCD die before five years 

of age.
1,2

  Detecting the presence of dense cells could provide a sensitive and specific diagnostic 

of SCD.  Density is a particularly relevant biophysical characteristic of sickle cell disease.  The 

dehydration associated with the sickling of cells causes an increase in the density of an 

erythrocyte, from approximately 1.095 g/cm
3
 to over 1.120 g/cm

3
.
3,4

  The density of sickled cells 

is higher than the densest cells in the natural distribution of the density of erythrocytes.  

We previously described the use of aqueous multiphase systems (AMPSs)—mixtures of 

polymers in water that form immiscible, liquid phases—to separate erythrocytes by density and 

provide a rapid visual diagnostic for SCD (Chapter 4). Four characteristics make AMPSs suitable 

for density-based separations at the point-of-care: i) Thermodynamic Stability.  Step-gradients 

can be made centrally and will reform after disturbances from transportation. ii) Fine Resolution 

in Density.  The interface between the liquid phases of AMPSs provide a molecularly sharp step 

in density between phases with differences in density as low as 0.001 g/cm
3
. 

5
  iii) Scalability.  

Reproducible step gradients can be made by making large batches (> 1 L) of AMPS and then 

distributing them into capillary tubes appropriate for separating microliters of blood obtained 

from a fingerprick, and iv) Low Cost. Using commercially available polymers, the cost of 

reagents, packaging, and labor per test is ~$0.50 (Appendix II).    

Although previous use of AMPS as a density-based diagnostic for sickle cell disease 

(SCD-AMPS)  in a laboratory showed both sensitivity and specificity near or over 90%, 

implementing the test in point-of-care settings introduces several variables that may affect 
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performance, such as quality control, packaging methods, storage and shipping conditions, shelf-

life, and end-user variability.  To understand how these issues might affect the SCD-AMPSs 

tests, we undertook a 505 subject case-control study at the University Teaching Hospital (UTH) 

in Lusaka, Zambia.  Within this cohort, we evaluated the performance of the test on three 

subsets: 1) children between 6 months to 1 year of age, 2) sickle cell patients who recently 

experienced a crisis, and 3) patients identified as having microcytic hypochromic anemia by 

complete blood count (CBC).   

We tested two prototypes, both of which demonstrated the ability to identify SCD with a 

diagnostic accuracy over 69%.  Based on the results of this study, we identified three key issues 

that could be addressed to improve the performance of future prototypes: 1) variability in the 

density of the bottom phase between batches, 2) conditions of shipping and storage, and 3) 

clotting of blood samples.  We also performed surveys of health workers in two rural health 

centers in a part of Zambia estimated to have a high prevalence of SCD.
6
  The surveys captured 

current knowledge of the disease, experience with other rapid tests, and feedback on the design 

of the proposed rapid test for SCD. 

Experimental Design 

Rapid Test Design. We evaluated two different density-based tests: a system with two 

phases, SCD-AMPS-2, and a system with three phases, SCD-AMPS-3 (Figure 5.1).  Although 

SCD-AMPS-2 allows for a simpler interpretation, SCD-AMPS-3 provides a richer set of 

information about the distribution of densities of erythrocytes that can help distinguish between 

the two main genotypes of SCD: Hb SS and Hb SC (Chapter 4). We evaluated both tests in the 

clinical trial to see if the simplicity of the two-phase test conferred a distinguishable advantage in 

clinical performance. 
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Figure 5.1. Both versions of the SCD-AMPS are designed to separate dense, sickled red blood 

cells from whole blood.  Blood passes through the phases—T and B for SCD-AMPS-2 and T, M, 

and B for SCD-AMPS-3—upon centrifugation.  If sickled cells are present, they collect at the 

B/S interface, providing a visual readout for the presence of SCD.  In SCD-AMPS-3, the 

additional phase allows the discrimination of Hb SS from Hb SC by evaluating the distribution 

of red cells at the upper interfaces (T/M and M/B). 
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We used the design of the rapid test described previously (Chapter 4) with some 

additional modifications to enable rapid assembly of tests and improved durability for shipping 

and storage (Appendix III; Figure III.1).   A mixture of 7.0% (w/v) poly(ethylene glycol) 

(PEG) with a molecular weight (MW) of ~20 kD, 10.3% (w/v) Ficoll with a MW of ~400 kD, 

and 9.1% (w/v) Nycodenz formed SCD-AMPS-2 (ρtop = 1.078 g/cm
3
 and ρbot = 1.129 g/cm

3
).  

Similarly, a mixture of 3% (w/v) PEG with a MW of ~20 kD, 10% (w/v) dextran with a MW of 

~500 kD, 5% (w/v)  polymer of partially hydrolyzed poly(vinyl acetate) (containing 75% -OH 

and 25% -OCOCH3 groups) with a MW of ~3 kD, and 8.7% (w/v) Nycodenz, formed SCD-

AMPS-3 (ρtop = 1.077 g/cm
3
, ρmid = 1.108 g/cm

3
, and ρbot = 1.120 g/cm

3
). We buffered the 

systems and used NaOH and HCl to adjust the pH of the solutions and NaCl to adjust the 

osmolality (see Appendix III).   

Appendix III; Figure III.2 outlines the process to perform a rapid test for an end-user.  

The self-forming steps gradient in density allows the end-user to use the AMPS out of a packet 

without needing to mix reagents or pipette solutions. Whole blood wicks directly into the 

capillary; no further handling of blood is necessary.  Preparative steps common to other 

techniques, such as lysis or exposure to reagents to deoxygenate hemoglobin,
7,8

 are not needed.  

These characteristics of the test reduce risks for biohazards and user error.  The polycarbonate 

capillary tubes that house the rapid test are preloaded with AMPS and sealed on one end with 

white clay.  The white seal provides an effective background to contrast with the red cells.  A 

volume of ~5 µL of blood enters the rapid test via capillary action as a result of the pre-punched 

hole in the side of the capillary.  Sliding a silicone sleeve over the hole prevents the blood from 

leaking, and centrifugation accelerates the density-based separation of red blood cells over the 

AMPS.  We used a 3D printed mold and a pushpin to make repeatable holes; this standardization 
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allowed us to load a reproducible volume of blood with a coefficient of variance (CV) of 4% 

(Appendix III).  After 10 minutes of centrifugation at 13,700 g, evaluating the interfaces of 

AMPS for the visible presence of red cells provides a means to identify SCD and, in the case of 

SCD-AMPS-3, to distinguish between the two main genotypes of SCD (Figure 5.1).    

Development of methods to pack, store, and ship SCD-AMPS tests. We performed a 

series of accelerated storage tests using various packaging materials and methods (see Appendix 

III). We found that foil-lined pouches partially filled with water and then sealed with an impulse 

sealer minimized evaporation of the AMPS in the tubes.  To minimize variables for this clinical 

trial, we refrigerated the rapid tests after packaging at 4-8 °C and shipped them on ice to Zambia.  

On arrival in Zambia, the staff at UTH stored the samples at 4 °C.  We brought the tests to room 

temperature on the day of use.   Each batch of packaged tests was used within two months of the 

packaging date.  Future work will need to focus on shelf-life and storage stability at ambient 

temperatures. 

Characteristics of Population for the Clinical Study. The initial study in Zambia 

included 505 children that were seen as out-patients or in-patients during the period of the study 

in the Department of Paediatrics and Child Health and the out-patient haematology clinic for 

SCD patients.  We used the broad inclusion and exclusion criteria found in Table 5.1, with 

further criteria for specific subsets of the study population: Subset 1)  children fitting the 

inclusion criteria with the additional inclusion criteria of being over 1 year old and confirmed as 

SCD positive, Subset 2) children fitting the inclusion criteria above with the additional inclusion 

criterion of not having SCD, Subset 3) children fitting the inclsusion criteria with the additional 

inclusion criteria of being below 1 year old and confirmed as SCD positive, and Subset 4) 

children fitting inclusion criteria with the exception of the first exclusion criteria who were over  



134 
 

 

 

 

 

 

 

 

 

 

Table 5.1. Inclusion and Exclusion Criteria for Study  

Inclusion Criteria Exclusion Criteria 

 Children aged 6 months up to, but not 

including 18 years 

 Children with clinical indication for a blood 

draw 

 Children whose parents give a written informed 

consent to be part of the study 

 Children whose parent consent to have blood 

draw for clinical purposes and for the study 

 Children who have had a sickling crisis one 

month prior to the blood draw (except for the 

subset specified below) 

 Children who have been treated with 

hydroxyurea in the last four months 
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1 year old, confirmed as SCD positive, and had undergone a sickling crisis within the last 48 

hours. 

The first two subsets were recruited to achieve a population with roughly 50% SCD 

positive participants. These participants provide the main population of interest in the study. The 

last two subsets were of interest to test potential confounding factors for a field diagnostic.  

Before achieving 1 year of age, infants may still have a large proportion of fetal hemaglobin, 

HbF, in their blood. This hemoglobin could reduce the percent of the cells present that are dense, 

and reduce the sensitivity of a density-based assay for this subset.  An evaluation of this subset 

allowed us to determine whether there was a difference between the predictive value of the SCD-

AMPS test for children below 1 year of age and children above 1 year of age.  Similarly, 

participants who have SCD and have recently experienced a sickle crisis may have cleared all 

dense cells in their blood.
9
  Table 5.2 details the the final populations used in the study. 

Evaluation of samples by standard methods. Hemoglobin electrophoresis (HE) and 

CBCs were performed on all the samples.  The rapid tests and confirmatory tests occurred at 

different laboratories and were performed by separate personnel to ensure proper blinding of the 

results.  During the pilot phase of the study, we established the maximum time between sample 

collection and testing for each type of analysis, as well as other criteria to deem samples 

unusable (e.g. visible clots forming) (Appendix III; Table III.1). Results from HE and CBC 

allowed us to classify subjects as SCD, sickle cell trait, or non-SCD based on detecting the 

presence and quantity of Hb S as well as evaluation of the red blood cell indices (see Appendix 

III). 

Visual inspection and validation. After a one day training, readers were instructed to 

evaluate each test by classifying the amount of red color that was visible at each interface using  
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Table 5.2. Basic Characteristics of the Study Population 

Population 
Zambia 

 Subjects   

Positive (HbSS) 322 

 

 
≥ 1 yr, non-crisis 270 

 

 
< 1 yr, non-crisis 19 

 

 
>1 yr, crisis 33 

 
    Negative 183 

 

 
HbAA 136 

 

 
HbAS 47 

 
    TOTAL 505 
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the following five criteria: 1) no red cells detectable, 2) less than half a layer of red cells, 3) over 

half layer of red cells, 4) full layer of red cells, or 5) majority of red cells (Appendix III; Figure 

III.3).  We chose to use these five classifications rather than a simple binary reading in order to 

understand how different cut-offs could affect test performance.  Although the five levels add 

complexity to interpretation, they allow a greater resolution of the potential differences in the 

densities of cells.   

Field visits to obtain feedback from end-users. We performed demonstrations of the 

rapid test and gathered feedback on the use of the test from the clinical staff at two rural health 

centers (RHCs) in the Luwingu District of Northern Province, Luena RHC and Ipusukilo RHC. 

The Northern Province is estimated to have a high prevalence of SCD.
6
  We selected the two 

centers in the Northern Province for their remote location with no access to grid electricity or 

paved roads.  At each site, over the course of two days, study staff members provided an 

information session about sickle cell disease and management for the clinical staff and the 

community, as well as an information session and demonstration of the SCD-AMPS-2 rapid test.  

Following these sessions, a survey of the staff members assessed their familiarity with other 

rapid tests, and their thoughts on the SCD-AMPS-2 rapid test. 

Results and Discussion 

The packaging method prevented the evaporation of samples.  All rapid tests were 

evaluated for modes of failure before use, and the result of this inspection was logged for the vast 

majority of the tests used (n = 624).  We found two modes of failure of the rapid test after 

packaging, shipping, and storing.  In 3.8% of the tests, the plug from the removable rubber cap 

on the tube snapped, leaving the capillary plugged and unusable.  1.5% of the rapid tests had 

incorrect liquid levels; 1.0% were under-filled and 0.5% were over-filled.  The discrepancy may 
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have been due to improper coverage with the silicone seal allowing water to either enter or leave 

the capillary tube.  Notably, all tests formed the correct number of phases as verified by visual 

inspection.  The total failure rate for the packaging of the rapid tests was 5.3%. 

Performance of SCD-AMPS. We calculated the sensitivity and specificity of SCD-

AMPS-2 and SCD-AMPS-3 using each of the five classifications for the level of red cells below 

the bottom interface.  We constructed receiver operating characteristic curves using these 

calculations (Figure 5.2). The area under the curve (AUC) for SCD-AMPS-2 was 0.73 and for 

SCD-AMPS-3 was 0.70.  This indicates an ability to discriminate sickle cell disease, but is lower 

than previous estimates of performance for these systems using digital analysis (AUC > 0.95) 

(Chapter 4).   

We used the threshold at which the product of the sensitivity and specificity was highest 

to use as the evaluation threshold for each of the two SCD-AMPS.  For SCD-AMPS-2, this level 

was “less than half a red layer” at the bottom of the tube or higher to be considered positive 

(Level 2).  For SCD-AMPS-2, the cutoff was a “full layer of red” at the bottom of the tube or 

higher (Level 4).  Using these thresholds, visual readings of SCD-AMPS-2 provided a sensitivity 

of 87% with a 95% confidence interval (CI) of 82-90%, a specificity of 60% (CI 53-67%), and 

an overall diagnostic accuracy of 77% (CI 73-81%); and SCD-AMPS-3 had a sensitivity of 75% 

(CI 70-79%), a specificity of 60% (CI 53-67%), and an overall diagnostic accuracy of 69% (CI 

65-73%).  

Part of the reduced specificity could be attributed to the bias of the readers at UTH to 

read samples with a higher level of redness compared to the expert reader (Appendix III).  The 

use of a cell phone camera or portable scanner to analyze the rapid tests would eliminate the 

subjectivity associated with human readers.  
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Figure 5.2. Receiver Operating Characteristic (ROC) curve of SCD-AMPS-2 and SCD-AMPS-3 

including all data from Zambia shows fair discriminative ability. The amount of red cells below 

the bottom phase of each test was evaluated by eye and classified on a five point scale. Both tests 

showed an ability to discriminate sickle cell disease form non-disease.  In general, the specificity 

was found to be lower than the sensitivity of the tests.   
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The trial in Zambia introduced several other variables that may have played a role in the 

lower performance, and are potential areas for improvement for development of a point-of-care 

diagnostic.  These variables include: variability in batches of AMPS (Appendix III; Figure 

III.4, Table III.2), variability in manufacturing of the rapid tests, shipping and storage 

conditions, and clotting of blood samples. We analyzed each of these variables and concluded 

that three of them were the most probably causes of the reduced performance: 1) storage and 

shipping conditions, 2) variability in the density of the bottom phase between batches, and 3) 

clotting (see Appendix III). 

Five batches of SCD-AMPS tests were made at Harvard and shipped to UTH during the 

course of the study.  Slight variations in the density of the bottom phase of each batch may have 

impacted the performance of the tests; this issue could be addressed by implementing tighter 

quality control at the site of production and by developing density standard beads for the tests. 

All batches were shipped with ice packs and insulation via FedEx, generally arriving at UTH five 

days after dispatch from Harvard.  The third batch, however, was delayed in transit due to a fire 

at the Nairobi International Airport that disrupted travel and shipping throughout sub-Saharan 

Africa.  This batch took ten days to arrive at UTH.  The SCD-AMPS-2 from Batch 3 had the 

second lowest diagnostic accuracy of the batches, and the SCD-AMPS-3 tests from that batch 

had the lowest diagnostic accuracy of all batches (Appendix III; Figure III.4).  Without data 

loggers for temperature and humidity, we can only speculate about whether the additional transit 

time resulted in an extreme condition, and, thus, we have included the results of tests from the 

third batch in the overall analysis.  Notably, performance improves when these results are 

excluded; SCD-AMPS-2 improves to a sensitivity of 90% (85-93%) and a specificity of 64% 
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(55-72%), and SCD-AMPS-3 improves to a sensitivity of 79% (73-83%) and a specificity of 

70% (62-78%).   

Variability in the total blood drawn from each subject may have led to samples receiving 

different concentrations of EDTA.  We found that both under treatment and over treatment with 

EDTA could lead to false positives as a result of clotting or dehydration from high levels of 

EDTA (Appendix III; Figure III.5).  The heparin coating on the capillary tubes had a negligible 

effect. The eventual use of SCD-AMPS directly from fingerprick samples necessitates future 

work to incorporate effective anti-coagulants into the blood collection aspect of the SCD-AMPS 

tests. 

Based on our previous work (Chapter 4), we set 48 hours after blood was drawn as a 

cutoff for inclusion in the study.  To test the effect of time after collection to running tests, we 

also collected samples to run after 48 hours.  Binning test results based on whether they were run 

in the first, second, or third 24 hour time period after collection demonstrated a clear decline in 

specificity over time (Figure 5.3).  Both SCD-AMPS-2 and SCD-AMPS-3 showed significant 

(p-value = 0.0019 and 0.012) decline between samples run within 24 hours and those run after 48 

hours.  Although sensitivity also showed variation between times (Figure 5.3), for both systems 

the only significant (p-value = 0.012 and 0.016) difference was a decline between samples 

collected between 24 to 48 hours and those over 48 hours old. 

Future work on the development of SCD-AMPS as a rapid test should focus on quality 

control to reduce batch to batch variations in density, evaluation of shelf-life and stability in 

various shipping conditions, and effectiveness when used on fresh blood samples from finger 

pricks rather than venous blood that has been stored at 4° C.  
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Figure 5.3. The sensitivity and specificity of SCD-AMPS as a function of the amount of time 

between collecting samples and running tests.  The specificity shows a decline over each 24 

hour increment. 
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Performance on Subpopulations. We evaluated several subpopulations of interest to 

determine whether the SCD-AMPS tests would be suitable for general screening (Table 5.3). 

One concern with a diagnostic test based on the dense cells present in SCD is that other 

concurrent conditions may lead to a decrease in the number of dense cells in circulation and 

compromise the sensitivity of the diagnostic.   

The high levels of HbF in very young children (below 1 year old) has a protective effect 

in SCD.
10,11

  To test whether this effect would reduce sensitivity, we evaluated a subpopulation 

of subjects with SCD that were between 6 months and 1 year of age, as well as a subpopulation 

of subjects with SCD that had HbF > 20%. High levels of HbF resulted in significantly decreased 

sensitivity in both SCD-AMPS-2 and SCD-AMPS-3 (p-value < 0.005). Interestingly, SCD-

AMPS-2 showed a sensitivity for those between 6 months and 1 year of age (84%) similar to that 

in the general population (87%).  

The occurrence of a recent vaso-occlusive crisis has been shown to reduce the percent of 

dense cells present in SCD;
9
 we tested a subpopulation of those with SCD who self-reported to 

have experienced a crisis in the last 48 hours.  In both SCD-AMPS-2 and SCD-AMPS-3, the 

sensitivity was the same or higher for this subset compared to the general population.  

Severe anemia (defined as a hemoglobin concentration below 8 g/dL for children over 5 

years of age and 7 g/dL for children under 5 years old)
12

 is common among patients with SCD.  

Anemia can also result from other genetic disorders (e.g., alpha-thalassemia) or nutritional 

deficiencies (e.g., iron deficiency), which could result in a reduction in the density of red blood 

cells.  In both SCD-AMPS systems, however, those with both SCD and severe anemia were 

detected with high sensitivity (> 85%). 

 



144 
 

 

 

 

 

 

 

Table 5.3. Sensitivity of SCD-AMPS tests on specific subpopulations 

 

 

 

 

 

 

 

 

 

 

 

 

[a] Self-reported to have experienced body pain or vaso-occlusive crisis within previous 48 hours. 

[b] Micro. Hypo. – Microcytic & hypochromic anemia defined as patients with a mean corpuscular volume below 

80 fL, a mean corpuscular hemoglobin below 26 pg/cell and a hemoglobin concentration below 13.5 g/dL for males 

or below 21.0 g/dL for females. 

[c] Sev. Anem. – Severe anemia defined as a hemoglobin concentration below 8 g/dL for those over 5 years old, and 

7 g/dL for those under 5 years old. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
SCD 

Subjects 

SCD-AMPS-2 SCD-AMPS-3 

Population Sensitivity CI Sensitivity CI 

All 322 

 

87% (82,90) 75% (70,79) 

       6-12 months 19 

 

84% (62,94) 52% (31,73) 

Recent Crisis
[a]

 33 

 

93% (80,98) 88% (73,95) 

HbF > 20% 36 

 

58% (42,70) 39% (25,55) 

Micro. Hypo.
[b]

 89 

 

80% (70,87) 62% (51,71) 

Sev. Anem.
[c]

 89  93% (87,96) 86%  
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On both tests, specificity was similar for subjects with HbAA and HbAS; sickle cell trait 

was not a major factor in creating false positives (Appendix III; Table III.3).  This 

characteristic sets density-based tests apart from solubility tests like Sickledex. 

Although the reduction in performance due to high HbF merits some caution, the high 

sensitivity for children between 6 months to 1 year of age, patients with a recent vaso-occlusive 

crisis, and those with severe anemia suggests that the SCD-AMPS-2 test could be useful as a 

screening or diagnostic tool for children as young as 6 months old. Similarly, SCD-AMPS-3 

could be useful if used on children over 1 year of age.  

Capabilities of Rural Health Centers. A point-of-care diagnostic provides benefit when 

it is coupled to effective interventions.  Simple interventions (e.g., pneumococcal vaccine and 

prophylactic antibiotics) for sickle cell disease exist, and we sought to assess whether rural 

health centers in Zambia had the capabilities to perform an SCD-AMPS test and provide 

appropriate interventions.  

Working with the U.S. Peace Corps in Zambia, we identified two Rural Health Centers—

Luena RHC and Ipusukilo RHC—in Northern Province to carry out a demonstration of the rapid 

test and an assessment of capabilities to care for patients with SCD.  Our survey indicated that 

the clinical staff at both RHCs was well acquainted with rapid tests for malaria, HIV, and 

syphilis and had a supply of these tests.  Neither clinic had a microscope or capabilities to 

diagnose SCD.  Although both clinics lacked the infrastructure to perform transfusions and did 

not have morphine, they did have the ability to provide several other interventions that have been 

shown to reduce mortality and ease symptoms of sickle cell disease, including folic acid 

supplements, intravenous fluids, antibiotics, antimalarials, and pneumococcal vaccine (PCV) 

(Appendix III; Table III.4).
13–15
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Feedback on SCD-AMPS from end-users. The SCD-AMPS tests were designed to use 

minimal equipment in order to be used in low-level clinics.  Apart from the SCD-AMPS tests 

themselves, the only other equipment necessary to perform a test is a microhematocrit centrifuge. 

We used a centrifuge (CritSpin, Iris Sample Processing) with a custom adapter to run off of a car 

battery.  The tests, supplies to safely perform a finger-prick, the centrifuge, and the battery all fit 

into a backpack (Figure 5.4) and were transported from Lusaka to the RHCs by bus, shared 

taxis, and hitch-hiking.     

We assessed the ability of the clinical staff to perform SCD-AMPS test by presenting an 

education session and a demonstration of the rapid test with a focus on four steps: i) checking 

rapid tests for defects, ii) loading blood, iii) centrifugation of tests, and iv) interpretation of rapid 

test results. The staff was able to handle the rapid test and ask questions about the protocol and 

interpretation.  Afterwards, participants were surveyed to assess their comfort with each of the 

four steps.  Their familiarity and comfort with common lateral flow rapid tests was also assessed 

as a benchmark for usability.  Participants rated tests using a five point scale with 1 being “very 

difficult to use”, 3 being “okay to use”, and 5 being “very easy to use.”  The clinical staff rated 

the ease of use of lateral flow tests, such a rapid diagnostic test for malaria, as 3.4. 

Evaluation of the rapid test was broken into four sections: Step 1) initial setup, Step 2) 

loading blood, Step 3) running tests (centrifugation), and Step 4) reading results.  Each step was 

rated for ease on the same 5 point scale.  The initial set up was given an average rating of 3.3. 

The loading step was given an average rating of 3.4.  Running the tests was given an average 

rating of 3.3. Reading results was given an average rating of 3.3.  Every step was, thus, 

comparable to the ease of use of existing rapid tests.  
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Figure 5.4. All the equipment necessary to run the rapid test in a rural clinic fits inside a 

backpack and were evaluated at rural health centers in Zambia. 
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Conclusions 

A density-based diagnostic for sickle cell disease using AMPS has the potential to fill a 

critical healthcare gap in low-resource settings.  Although sensitivity and specificity are not as 

high as those of gold standard methods like HPLC and IEF, these tests could provide actionable 

information when coupled with patient history and clinical presentation.  Many clinics, such as 

those visited in Zambia, do not have the infrastructure to support the equipment needed for gold 

standard methods, but could run SCD-AMPS tests.  Solubility tests, such as SickledexTM, are 

often used to screen for SCD in clinics in India and sub-Saharan Africa, but they cannot 

differentiate between the non-disease, carrier sickle cell trait and SCD.  Although SCD-AMPSs 

do not distinguish HbAA from sickle cell trait, SCD-AMPSs do discriminate between SCD and 

sickle cell trait.  

The diagnostic ability of the SCD-AMPS depends on the presence of dense, sickled cells 

in the blood.  These cells will not be present in newborns, and hence SCD-AMPS would not be 

appropriate for neonatal screening.  After 6 months, however, the amount of dense cells present 

is sufficient to allow use of SCD-AMPS-2.  Coupled with vaccination programs, screening 

children for SCD with an SCD-AMPS test could provide useful information on prevalence. 

SCD-AMPS are also simple to use; Initial demonstrations with staff at rural clinics in 

Zambia indicate that SCD-AMPS tests are comparable to standard rapid diagnostic tests for 

malaria in ease-of-use.  The capability to diagnose sickle cell disease at primary health centers 

and rural health centers in places like Zambia would allow the targeted use of appropriate 

interventions (e.g., vaccines, prophylactic penicillin, and supplements for folate and iron).  These 

interventions could reduce child mortality and improve the quality of life for those that live with 

undiagnosed sickle cell disease.   
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Materials and Methods 

Materials. We purchased the following polymers: poly(ethylene glycol) (Sigma-Aldrich; 

MW = 20000 Da), Ficoll (Sigma-Aldrich; MW = 70000 Da and 400000 Da), dextran (Spectrum 

Chemical; 500000 Da), and poly(vinyl alcohol) (Polysciences; MW = 3000 Da).  We purchased 

phosphate-buffered saline (Lonza) at 10× concentration and diluted it to 1× using distilled, 

deionized water from a Milli-Q water purification system (Millipore).  For stains, we used New 

Methylene Blue for slides and ReticONE (acridine orange) for flow cytometry. We used all 

reagents without further purification. We purchased Lymphoprep from Accurate Chemical, 

fluorescein isothiocyanate from Thermo Scientific, and Percoll from GE healthcare. For the 

parasite culture media, we purchased RPMI, hypoxanthine and sodium bicarbonate from Sigma, 

HEPES from EMD Biosciences, and Albumax from Invitrogen.  

We purchased human whole blood, collected over sodium heparin as an anticoagulant, 

from single healthy donors (vendor certified syphilis
–
, HTLV

–
, HIV

–
, HepB

–
, and HepC

–
) from 

Research Blood Components (Boston, MA). Whole blood units (approximately 500 mL in 

volume) collected from hemochromatosis patients undergoing therapeutic phlebotomy were 

obtained from the blood donor center at Brigham and Women’s Hospital, Boston, MA. 

The H Strain of Plasmodium knowlesi was obtained from the Biomedical Primate Research 

Center (Rijswijk, The Netherlands). The 3D7 Strain of Plasmodium falciparum was obtained 

from the Harvard School of Public Health (Boston, MA, USA).  

Formation and Analysis of AMPSs. The system C1 that was used for the invasion 

assays was created in the following way: 1) measure 12% (w/v) Ficoll and 12% dextran (w/v) 

into a volumetric flask (i.e. 12 grams of each into a 100 mL flask), 2) add 5 mM disodium 

ethylenediaminetetraacetic acid (EDTA) to prevent coagulation, 3) add 5 mM of sodium 
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phosphate monobasic and 5 mM of sodium phosphate dibasic to buffer the system, 4) add 

deionized water (MilliQ) to dissolve all the components and attain the final volume, 5) mix the 

solution well, measure the pH (Orion Star, Thermo Scientific), and adjust to 7.40 ± 0.02 by 

titrating with concentrated (1-10 M) NaOH and HCl, 6) remove a small aliquot (100 µL) of the 

mixture and centrifuge to separate phases, 7) measure the osmolality by vapor pressure 

osmometry (Vapro 5600, Wescor), 8) add solid NaCl to adjust osmolality to the desired level (1 

M of NaCl ~ 2 Osm/kg), 9) check and adjust pH again.  After these steps, we centrifuged 4 mL 

of the solution in a polycarbonate conical tube and separated the phases using a pipette to remove 

the top phase and a syringe to puncture the bottom of the tube and remove the bottom phase.  We 

then characterized the pH, osmolality, and density of each phase.  An oscillating U-tube 

densitometry (Anton Paar DM35N) measured the density of each phase.   

For initial screening of different AMPS, we followed the same steps above to prepare 

stock solutions of AMPS at concentrations higher (15% (w/v) of each polymer) and lower (5% 

(w/v) of each polymer) than those used in applications of aqueous multiphase systems (AMPSs). 

We then mixed these solutions in different ratios to attain a series of AMPS with different 

densities.   

 Measurements of density characterized stock solutions and to ensure uniformity across 

multiple preparations of each solution. To prepare AMPSs, we added solutions of polymers 

(either at stock concentrations or a dilution) into a container (e.g., conical tubes), thoroughly 

mixed the solutions by vortex for 30 seconds, and accelerated phase separation by centrifugation. 

Phase separation in AMPSs due to gravity alone may occur inconveniently slowly (hours) 

because the difference in density between layers of an AMPS can be small (∆ ≈ 0.001–0.100 
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g/cm
3
).  Centrifugation (2 – 30 minutes at 2000 g) increased the rate of separation of phases in 

AMPSs.  

Separations of Blood with AMPS. We performed separation experiments within one 

week of the blood being drawn.  Blood was stored at 4 °C and brought to room temperature 

before use.  We introduced the blood to the top phase of the AMPS as a layer in all of our 

experiments.  Samples were spun at 4000 g for one hour at a temperature of 32 °C.   

DC-Percoll Separations. To compare our enrichment method to a standard technique, 

we used a standard density separation with Percoll.  Centrifugation of blood in 50 mL tubes at 

4000 g for one hour packed cells.  After removing the serum, the top 4 mL of packed blood was 

collected and resuspended in the previously collected serum at ~50% hematocrit. We layered 5 

mL of this blood on top of 6 mL of 70% isotonic Percoll.  Centrifugation for 15 minutes at 1200 

g at 30 °C in a swinging bucket rotor (SX4750A, Beckman Coulter) left a band of erythrocytes 

above the Percoll and a pellet of erythrocytes at the bottom.  A pipette collected the band from 

above the Percoll.  Washing the collected samples with PBS three times removed excess Percoll 

before analysis and the introduction of parasites.  

Characteristics of blood samples used.  We used blood from two sources: a commercial 

supplier (Research Blood Components) and a hematology clinic (Brigham and Women’s 

Hospital, Boston).  The blood from the commercial supplier was collected with an anti-coagulant 

from normal, healthy individuals. The blood from the hematology clinic came from 

hemochromatosis patients undergoing treatment. Despite the hemochromatosis, the blood from 

many of these patients did not reveal a level of reticulocytes that was significantly higher than 

normal.  In this work, all the blood that was used contained the clinically normal range of 0.5–

2.5% reticulocytes before enrichment.
1
  Blood from hemochromatosis patients was used only in 
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the work to screen different AMPS.  All experiments with parasites were done with normal 

human blood.  White blood cells were removed from the blood prior to use by passage through a 

leukocyte filtration device (Sepacell R-500).  The removal of white blood cells is necessary for 

the cultivation of Plasmodium parasites.   

Extraction of Fractions of Cells after Separation. For separations on whole blood 

performed in conical tubes with AMPS, blood enriched for reticulcoytes concentrated at the 

liquid/liquid interface.  After blunting a pipette, we removed the clumps of packed red cells that 

could be seen by eye at this interface.   Depending on the yield and the tube used, the total 

volume extracted ranged from 100 L to 1 mL.  5 L of packed cells from the pellet at the 

bottom of the tube were also collected for analysis.   

For screening experiments, washing extracted cells in roughly a five-fold volume of 

isotonic PBS a total of three times removed excess polymers for analysis (i.e., microscopy on 

thin smears or flow cytometry).  During each wash, we suspended the cells gently with a pipette 

and then spun the cells to a pellet at 1,500 g for 6 minutes.  After the supernatant was removed, 

the cells were suspended again until all washes were completed.  For invasion experiments, 

increasing the volume of PBS to be 20-fold the volume of the sample provided a more thorough 

washing to remove excess polymers.   

Analysis of the Fractions of Blood. We counted reticulocytes by flow cytometry 

(MACS Quant).  Reticulocytes were stained with acridine orange (Retic ONE) following the 

manufacturer’s protocol.  Using known volumes of sample, we counted cells and also quantified 

the fraction of all cells that were reticulocytes.   Comparing samples before and after enrichment 

allowed us to estimate the total number of reticulocytes that were added to each AMPS, and the 
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total number of reticulocytes recovered.  The fraction of these two numbers provided a measure 

of the yield of reticulocytes.   

We also made thin smears stained with New Methylene Blue (Retic Stain) and quantified 

reticulocytemia by microscopy.  To analyze other cell parameters, we used a hematology 

analyzer (Advia 2120, Siemens).      

Statistical Methods. We used a paired, two-sided Student’s T-test to test for significant 

differences between the logarithms of the parasitized erythrocyte multiplication rates (PEMRs) to 

compare blood from donors with different treatments.    For reticulocytemias and yields of 

reticulocytes from different donors enriched over several AMPS (Chapter 3; Table 3.1), we 

provide the median, minimum, and maximum for biological replicates to provide a clearer 

representation of the actual experimental data than means and standard deviations would provide 

with four biological replicates. Results from technical replicates are reported as means of the 

technical replicates. 

 

Experimental Details 

Selection of AMPSs. The dextran–Ficoll AMPS exhibited a small difference in density 

between the top and bottom phases.  Without additives, dextran–Ficoll AMPSs prepared in 

distilled, deionized water that are in the density range of blood cells are acidic and hypotonic.  

We titrated the pH to 7.40 with NaOH and HCl. We added NaCl to the solutions to reach a final 

osmolality of 295 ± 15 mOsm/kg (i.e., isotonic). 

The small step in density in the dextran–Ficoll AMPS allowed us to create a bottom 

phase with a low enough density to allow mature erythrocytes to pass through it, and a top phase 

dense enough to prevent the blood from mixing instantaneously after being layered over the 
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AMPS.  We explored two other systems—a poly(ethylene glycol)–Ficoll AMPS and a 

poly(ethylene glycol)–dextran AMPS—as alternative systems.   

The poly(ethylene glycol)–Ficoll AMPS exhibited differences in density between phases 

that were greater than 0.030 g/cm
3
.  We could not produce a top phase with a density 

significantly greater than that of plasma ( = 1.026 g/cm
3
) while keeping the osmolality of the 

phases isotonic; this AMPS was, thus, not suitable for blood separations.   

The poly(ethylene glycol)–dextran AMPS had similar characteristics to the poly(ethylene 

glycol)–Ficoll AMPS. The poly(vinyl alcohol)–poly(ethylene glycol) AMPS could not produce a 

bottom phase that was dense enough to separate most reticulocytes from mature erythrocytes in 

the range of osmolality that is required for the separation of cells.  

Centrifugation Parameters. Our separations used swinging-bucket rotors for 

centrifugation to avoid smearing cells along the walls of centrifuge tubes during sedimentation.  

Centrifugation at a relative centrifugal force (RCF) of 4000 g for one hour provided a clear 

separation between blood cells at the liquid/liquid interface of the two-phase AMPS and cells 

below the bottom phase for a sedimentation distance of 40 mm (e.g., 4 mL of AMPS in a 15 mL 

conical tube) (Chapter 3; Figure 3.1).  Experiments with a greater distance for sedimentation 

(e.g., 60 mm for 25 mL blood over 25 mL AMPS in a 50 mL conical tube) required additional 

centrifugation time.  For larger volumes that had up to a 50% increase in the sedimentation 

distance (i.e., 25 mL of AMPS in a 50 mL conical tube) the centrifugation time was increased to 

90 minutes.  The limitation of a long period of centrifugation can be overcome by using a 

centrifuge that operates at higher relative centrifugal forces. 

Detailed Results from Enrichment of Reticulocytes from Whole Blood.  Table I.1 

details the parameters of the different AMPS that were screened as well as the results from 
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Table I.1. The enrichment of reticulocytes at the interface of dextran–Ficoll AMPSs with varying 

density and osmolality. 

 Concentration  

(% w/v) Tonicity Density (g/cm
3
) AMPS Interface  

Initial 

ID Ficoll dextran (mOsm/kg) Top Bottom Retic
[a]

 S.D.
[b]

 Retic
[a]

 

Isotonic Systems (295 ± 15 mOsm)  

A1 12.0 12.0 299 1.089 1.092      1.1 0.4 1.1 

A2 11.4 11.4 295 1.084 1.087      2.1 0.7 1.1 

A3 11.1 11.1 306 1.082 1.085 21 5.2 1.8 

A4 10.8 10.8 301 1.080 1.083 24 4.1 1.8 

A5 10.3 10.3 289 1.076 1.080 28  10       1.8 

         

Hypotonic Systems (260 ± 10 mOsm)  

B1 10.5 10.5 250 1.079 1.083      2.0 1.0 1.1 

B2 10.0 10.0 252 1.074 1.078      4.7 1.5 1.1 

B3   9.5   9.5 252 1.071 1.075 19 1.6 1.1 

B4   9.3   9.3 269 1.068 1.072 55 8.4 1.8 

B5   9.0   9.0 264 1.067 1.071 43 5.1 1.8 

         

Hypertonic Systems (330 ± 10 mOsm)  

C1 12.0 12.0 327 1.089 1.092 12 0.7 2.4 

C2 11.6 11.6 340 1.086 1.089 27 3.1 2.4 

C3 11.4 11.4 336 1.084 1.088 43 4.7 2.4 

C4 11.0 11.0 332 1.081 1.085 50 1.5 2.4 

C5 10.6 10.6 328 1.078 1.082 31 2.8 2.4 

C6 10.1 10.1 329 1.075 1.079 21 2.4 2.4 

[a] Mean reticulocyte count per 100 erythrocytes (n = 3 technical replicates) 

[b] Standard deviation of the replicates 

b.f. System with the highest level of enrichment 

 

 

 



159 
 

enrichments of reticulocytes.  We performed additional enrichments using the hypertonic 

systems (C1-C6) with different loading volumes (Figure I.1). From this we found multiple 

systems that were capable of attaining enrichments to reticulocytemias over 50%.   Table I.2 

details the enrichments for different donors with four different AMPS. 

The volume ratio of blood to AMPSs affects both yield and purity of enrichments. 

We expected that the performance of hypertonic and hypotonic AMPSs would be dependent on 

the volume ratio of blood and AMPSs. In an isotonic system, we anticipated that this dependence 

would be negligible since water exchange between polymers and blood cells would be minimal.  

We found, however, that the volume ratio of blood and AMPSs did affect performance in an 

isotonic system. A range of volumes of blood (1 mL, 4 mL, and 8 mL) were loaded onto 4 mL of 

the hypertonic AMPS (C1-C6) (Figure I.1).   

Dispersal of Plasma Proteins into AMPS. We hypothesized the dependence of 

enrichments on the volume ratio of blood to AMPS might be due to a slight amount of mixing of 

plasma which would dilute the phases and would depend on the volume ratio of blood to 

polymer. We checked the density of the phases after a separation to see if there was a change in 

the phases.  When 2 mL of blood was layered on top of 4 mL of A5, the density of both phases 

decreased (Δρtop = -0.013 g/cm
3
, Δρbottom = -0.016 g/cm

3
); we used isotonic A5 rather than 

hypertonic AMPS to avoid changes in volume that would result from the cells shrinking or 

swelling. 

If a boundary layer of plasma were to penetrate the top phase with the cells and then 

mixes with the phase, we would expect to see plasma proteins dispersed in the top phase.  To 

visualize the dispersal of plasma proteins into an AMPS during an experiment—layering blood, 

introduction into a centrifuge, fractionation by centrifugation, and removal from a centrifuge— 
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Figure I.1. The enrichment of reticulocytes in hypertonic systems changes with different volume 

ratios (vol. blood (mL):vol. AMPS (mL)) of blood to AMPS. Both the reticulocytemia and yield 

show changes. A 4:4 ratio provides the best yield.  Several systems provide enrichment to 

reticulocytemias over 50%. 
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Table I.2. Performance of AMPS over different individuals. 

  Initial   C1 (%)   C2 (%)   B3 (%)   A5 (%) 

Donor Retic.   Retic. Yield   Retic. Yield   Retic. Yield   Retic. Yield 

A 0.80  19 0.24  28 0.11  35 0.013  35 0.0086 

B 0.85  21 0.75  30 0.095  49 0.053  45 0.013 

C 1.3  18 2.4  32 1.7  38 0.011  45 0.00079 

D 0.83  15 6.0  15 1.7  18 0.0065  15 0.0036 

  

 

  

 

  

 

  

 

  Median 0.84  19 1.6  29 0.89  36 0.012  40 0.0061 

Min. 0.80  15 0.24  15 0.095  18 0.0065  15 0.00079 

Max. 1.3   21 6.0   32 1.7   49 0.053   45 0.013 
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we added a fluorescent protein into whole blood as a marker.  We prepared fluorescein-labeled 

bovine serum albumin (FITC-BSA) by following the Thermo Scientific protocol for coupling 

reactions using fluorescein isothiocyanate.  After dialysis against isotonic PBS, the final 

concentration of FITC-BSA was ~ 7 mg mL
-1

.  We mixed this solution with whole blood at a 

ratio of 1:9 to create an experimental sample.  A control sample was made by mixing PBS with 

blood at a ratio of 1:9.  The blood samples were each layered over dextran–Ficoll AMPS (1 mL 

blood over 3 mL AMPS).  The samples were sedimented by centrifugation at an RCF of 2000 g 

for 100 minutes at 25 °C in an Allegra-6R swinging bucket centrifuge.   

We imaged the systems after fractionation using a combination of brightfield and 

fluorescent techniques (Figure I.2).  For the fluorescence images, the tubes were kept in a dark 

box, illuminated with longwave UV light (= 365 nm), and imaged using a bandpass filter (500 

– 600 nm) in front of the camera.  Although the fluorescence intensity is highest in the plasma 

layer, we observe that some FITC-BSA is present in the top phase of the AMPS.  The diffusion 

length of serum albumin in whole blood over the course of a 100-minute experiment is 

approximately 5 mm (Df ~ 2.1 × 10
-10

 m
2 
s

-1
).

2
  The distance between the plasma/top phase 

boundary and the AMPS interface is 14 mm.  Diffusion alone, therefore, cannot account for the 

presence of FITC-BSA in the top phase of the AMPS.  Dilution of the top phase from the mixing 

of the boundary layer of cells would change the equilibrium of the AMPS, shift the water and 

polymer contents of the bottom phase, and reduce the bottom phase density.  Additional studies 

could further elucidate the connection between sample volumes and enrichment, but were 

beyond the scope of this work.    

Reticulocyte enrichments scale to 25 mL of blood without a loss in purity. The purity 

and yield of reticulocytes remain fairly constant as volumes are increased provided that the 
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Figure I.2. Dispersion of protein from plasma into AMPS. Brightfield images of whole blood 

after fractionation by AMPS without (A) and with (B) the addition of 700 µg/mL fluorescein-

labeled BSA. A fluorescence image (C) of the tube in (B) after illumination with longwave UV 

light. 
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volume ratio of AMPS to blood remains constant (Figure I.3). Using the same isotonic dextran–

Ficoll AMPS as used in the volume ratio experiments, we performed a series of enrichments on 

blood from a single donor with volumes of blood ranging from 2 mL to 25 mL.   In all cases, a 

volume ratio of 1:1 between blood and AMPS was used; this ratio provided the best combination 

of yield and enrichment (Figures I.1 & I.4).  Both 15 mL and 50 mL conical tubes were used.  

Interestingly, the yield initially decreased as volume increased.  At 6 mL, the results were similar 

for both the types of tubes used.  Above this volume, however, yield and reticulocytemia 

remained relatively constant.    

Pre-enrichment increases the purity of the final enrichment. When using differential 

centrifugation, naturally pre-enriched blood has a higher final enrichment than normal blood.
3,4

  

Similarly, we expected that blood pre-enriched for reticulocytes by density would have a higher 

final enrichment after centrifugation through an AMPS.  

Using blood from a single donor with an initial reticulocytemia of 2.2%, we pre-enriched 

reticulocytes from 100 mL of blood with two different methods: a) differential centrifugation, 

and b) centrifugation through AMPS C1.  The enriched fractions collected had a reticulocytemia 

of 4.7% and 14%, respectively.  The total amount of cells recovered differed as well.  We 

recovered approximately 8 mL of packed cells from differential centrifugation and resuspended 

them in a volume of 16 mL using homologous plasma recovered from the centrifugation.  We 

only recovered ca. 100 L of packed cells from AMPS C1.  After washing these cells three times 

in PBS, we resuspended them in a final volume of 3 mL.  For the final enrichment, we split each 

suspension into thirds and layered them over 4 mL of AMPS C1. After centrifugation, we 

recovered cells from the AMPS interface and washed them three times in PBS.  Using flow 

cytometry, we measured the reticulocytemia of the final enrichments.  The results were similar 
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Figure I.3. Reticulocyte enrichment over AMPS C2 was comparable over multiple scales of 

volume.  For both reticulocyte yield (A.) and reticulocytemia (B.), only one datum fell outside 

one standard deviation of the mean over all volumes, and all data were within two standard 

deviations of the mean. 
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Figure I.4. A 1:1 volume ratio of blood to a hypertonic AMPS provided the maximum 

enrichment of reticulocytes.  Using system C3, we attained a reticulocytemia of 64 ± 3% as 

measured by flow cytometry.  The gray, filled curve shows the blood before enrichment, which 

had a reticulocytemia of 2.2%.  After centrifugation through AMPS, the fraction of cells at the 

interface is dominated by reticulocytes (orange curve). Acridine orange (AO) preferentially 

stains the RNA in the reticulocytes, and causes the shift to the right.   
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for the fraction pre-enriched by differential centrifugation and that pre-enriched by centrifugation 

through AMPS.  Final reticulocytemia was 20% and 21%, respectively.   

Osmotic effects on reticulocyte enrichment by density.  As discussed in Chapter 3, 

systems with different osmolalities achieved different yields when final reticulocytemias were 

similar.  Also, different osmolalities had maximum enrichments for different densities of AMPS 

(Chapter 3; Figure 3.2).  The effect of osmolality on the density of the cell populations of 

interest—reticulocytes and mature erythrocytes—may explain the difference in yields.   

A cell at osmotic equilibrium with a system has a concentration of solutes,  , and a volume,  .  

Both the cell and the surrounding environment have a osmolarity:   
 

 
.  If the cell is now 

placed into a hypertonic environment with osmolarity,        , where     , then the 

volume of the cell will change to compensate by losing water. We assume that the concentration 

of solutes remains fairly constant due to the presence of ion pumps to maintain internal ion 

concentrations.  Although there still may be some solute exchange between the cell and 

environment, we assume that at least, 
  

 
 

  

 
.   With this assumption then, the cell volume 

changes to   , given by Equation 1: 

 
   

 

  
  
 

 
 (Equation S1) 

This change in volume shifts the density of a cell (   
  

  
) by changing both the mass and 

volume. The mass can be split into both dry mass and water mass,           . The 

density then shifts as follows: 
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(Equation S2) 

 

  
       

  

 
   

  

 
    (Equation S3) 

 

  
        

  

 
         (Equation S4) 

Two different cells (e.g., a reticulocyte and a mature erythrocyte) with a density different of 

         , will have a new density difference of    =      
  

 
 .  On a population scale, 

this means that the distance between the two peaks of the density distribution of cells will scale 

with the osmolality.   

Morphology of Cells after Centrifugation through AMPSs. Washing cells was an 

important step to restore morphology and remove excess polymer.  Dextran adsorbs to the 

surface of cells.
5–7

 Repeated washing removes some, but not all of the dextran.
6
  Washing cells in 

an isotonic buffer such as PBS appeared to return them to their physiological volumes; that is, 

unwashed cells from hypotonic systems appeared swollen when observed by microscopy.  After 

extracting and washing cells from the interface of the AMPSs, we found that both mature 

erythrocytes and reticulocyte had a similar morphology to fresh blood on thin blood smears 

(Figure I.5).  

We compared the mean corpuscular volume (MCV) and the mean corpuscular 

hemoglobin (MCH) of RBCs isolated from five random donors before and after separations by 

AMPS (Table I.3).  These quantitative results support the hypothesis that sedimentation through 

the AMPS does not drastically affect the morphology or the contents of cells. Evaluation of the 

percentage of cells that were hypochromic, hyperchromic, microcytic, and macrocytic revealed 
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Figure I.5. Morphology of cells after separation using an AMPS. Representative micrographs of 

mature erythrocytes and reticulocytes before and after centrifugation in an AMPS demonstrate no 

significant morphological change as a result density-based separation.  The blue stained clumps 

of RNA identify the reticulocytes in the right hand micrographs. 
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Table I.3. Hematological indices of the size and contents of erythrocytes (RBCs) pre- and post-

exposure to an AMPS.   

    MCV
[a]

 (fL)   MCH
[b]

 (pg)   % Macro
[c]   % Micro

[d]   % Hypo
[e]   % Hyper

[f] 

Donor   Pre Post   Pre Post   Pre Post   Pre Post   Pre Post   Pre Post 

A 
 

82 84 
 

27 26 
 

0.0 0.1 
 

1.2 0.8 
 

4.8 12         
 

0.2 0.1 

B 
 

92 93 
 

31 30 
 

0.7 0.7 
 

0.2 0.1 
 

0.3   0.4 
 

0.5 0.0 

C 
 

90 91 
 

30 30 
 

0.4 0.4 
 

0.3 0.2 
 

1.0   1.5 
 

0.3 0.0 

D 
 

94 95 
 

31 31 
 

1.3 1.5 
 

0.3 0.3 
 

0.4   0.7 
 

0.4 0.4 

E   85 86   27 26   0.1 0.1   0.9 0.7   7.6 15   0.1 0.0 

[a] mean corpuscular volume 

[b] mean corpuscular hemoglobin 

[c] percentage of erythrocytes that are macrocytic 

[d] percentage of erythrocytes that are microcytic 

[e] percentage of erythrocytes that are hypochromic 

[f] percentage of erythrocytes that are hyperchromic 
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very little change between the original blood and the cells from the bottom fraction of the AMPS 

for the latter three indices.  There was a slight increase in the percent of hypochromic cells and 

decrease in the percentage of hyperchromic cells that indicates minor swelling, but the effect is 

small and could be further reduced by increasing the salt content of the AMPS. Donors A and E 

had the lowest mean cellular hemoglobin concentration (MCHC) and, hence, had potentially 

more cells near the threshold of being hypochromic; the effect of a slight swelling would be 

more pronounced in these two samples.  

Parasite Culture. Parasites were maintained in vitro in rhesus blood (purchased from the 

New England Primate Research Center, Southborough, MA) at 2% hematocrit, in RPMI-1640 

supplemented with 25mM HEPES, sodium bicarbonate, 50mg/L hypoxanthine, and 0.5% 

Albumax. Parasitemia of cultures are determined by microscopy. Reticulocytemias for each 

enriched sample are given in Table I.4. 

Invasion Assays. For invasion assays, late stage P. knowlesi H parasites were purified 

through magnet columns (MACS Miltenyi Biotec). They were plated at a final parasitemia of 

0.5-1% in 150 µl cultures at 2% hematocrit in a 96 well plates. Normal human blood and rhesus 

blood were used as controls. Each red blood cell type was plated in triplicate. Parasites were 

incubated overnight to allow re-invasion. Parasitized erythrocyte multiplication rate (PEMR) was 

calculated by dividing the parasitemia after re-invasion to the initial parasitemia seeded.  

Invasion of P. falciparum. Even if parasites can invade erythrocytes, mechanical stress 

from centrifugation or polymers on the surface of cells might reduce the infection rate of 

erythrocytes. P. falciparum 3D7 strain should have a similar invasion rate of erythrocytes 

regardless of the reticulocyte content.  Invasion assays using P. falciparum provide an additional 

control to see whether density centrifugation through AMPS obstructs the invasion of malaria 
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Table I.4. Reticulocytemia of samples used for invasion assays.  

 

Matched Reticulocytemia (%)
*
 

Donor AMPS
[a]

 DC-Percoll
[b]

 

1   9.2   9.2 

2 21 19 

3 21 20 

4   5.0 11 

5   7.0   7.1 

6   5.6   3.5 

7 16 20 
[a] blood enriched by aqueous multiphase systems (AMPSs) 

[b] blood enriched by differential centrifugation followed by centrifugation over layered Percoll  

* reticulocytemia was matched by diluting the system with a greater reticulycemia with normal blood 
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parasites compared to normal human blood.  Enrichment by AMPS did not affect the PEMR for 

P. falciparum.  Parasites invaded cells at rates similar to those in normal blood (Figure I.6).  

 

Additional Background  

Direct growth of reticulocytes and labeled methods to enrich reticulocytes are not 

practical for the routine cultivation of malaria.  Reticulocytes may be obtained directly from 

the in vitro culture of hematopoietic stem cells (HSCs).
8
  This method has been used to culture P. 

vivax at a parasitemia below 0.0013%; access to HSCs remains expensive, and asynchronous 

erythropoiesis limits reticulocytemia.
9
  Blood can be enriched highly for reticulocytes (>90% 

measured by microscopy) using antibodies that differentiate reticulocytes from mature 

erythrocytes based on characteristic surface proteins.
10

 Recovering undamaged reticulocytes 

from affinity-based separations is difficult, however, and is expensive for routine use.
11

  As a 

result, attempts to enrich reticulocytes for the cultivation of malaria parasites have focused on 

label-free methods using the physical properties of these cells (e.g., size and density).
3,4,12

 

Density provides a label-free parameter to enrich reticulocytes.  Reticulocytes are 

generally larger in volume than mature erythrocytes and they contain ribosomal RNA; the 

average density of reticulocytes, thus, is slightly lower than that of mature erythrocytes (Δρ ≈ 

0.009 g/cm
3
).

13,14
  The reported values of the densities of these two populations differs with the 

study and the method, but most studies agree that the reticulocyte population is concentrated in 

the least dense quarter of the distribution of density of erythrocytes.
14,15

  Differential 

centrifugation and centrifugation through a gradient in density are the most common methods to 

separate these types of cells by density.
3,4,11
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Figure I.6. P. falciparum 3D7 strain grows in blood enriched for reticulocytes by AMPS at a rate 

similar to that at which it grows in normal blood.  Blood from a rhesus monkey provides a 

negative control to demonstrate that the parasite requires suitable host cells for invasion. Open 

circles depict data from different donors (n = 2) and horizontal bars indicate the mean parasitized 

erythrocyte multiplication rate (PEMR). 

 

 

 

 

 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

Human AMPS Monkey 

P
E

M
R

 

Type of Blood 



175 
 

In differential centrifugation, erythrocytes sediment and pack at the bottom of a 

container; the erythrocytes located at the top of the packed cells have a lower density than those 

below.  As a result, the top quarter of the packed cells contain relatively more reticulocytes than 

the lower three quarters. Starting with whole blood from normal subjects, differential 

centrifugation results in an average enrichment of reticulocytes of 2.6%.
4
  Using sources of blood 

with elevated reticulocyte counts (e.g., blood from umbilical cords
16

 or from patients with 

hemochromatosis
3
) can increase the final enrichment obtained from differential centrifugation.  

Use of these sources is a barrier to the routine use of this method. Cord blood is prohibitively 

expensive, and the total volume of blood that can be harvested from each cord is limited to an 

average of 75 mL.
17

   

Gradients in density improve the enrichment of reticulocytes by separating reticulocyte-

rich fractions and reticulocyte-poor fractions of erythrocytes into visible bands.  Percoll—a 

suspension of colloidal silica stabilized by polyvinylpyrrolidone (PVP)—will form a time-

dependent gradient in a centrifuge with an angled rotor. Separations are highly dependent on the 

centrifugation parameters (e.g., rotor angle, applied relative centrifugal force, acceleration, and 

time).  As a result, reproducibility suffers; initial reports of fractionation of reticulocytes over 

Percoll gradients achieved a maximum of 78% reticulocytemia in enriched fractions of blood, 

while average reticulocytemias %.
4,18

  

Layered gradients—manually assembled by carefully layering decreasing concentrations 

of aqueous solutions of a dense solute (e.g., sucrose or arabinogalactan)
11,19

—provide a means to 

tune the resolution of separations at multiple densities.  The boundary between layers provides a 

location at which cells of specific densities will collect.  Such gradients achieve 68% 
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reticulocytemia in some subjects, but they are time-consuming to assemble and susceptible to 

mixing and destruction without careful handling.
11
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Materials and Methods 

 Chemicals. We purchased the following polymers: poly(ethylene glycol) (Sigma-

Aldrich; MW = 20000 Da), Ficoll (Sigma-Aldrich; MW = 70000 Da and 400000 Da), dextran 

(Spectrum Chemical; 500000 Da), and poly(vinyl alcohol) (PVA) (Polysciences; MW = 3000 

Da)—formed by hydrolyzing 75% of poly(vinyl acetate).  Solutions of AMPS contained the 

following chemicals: ethylenediaminetetra-acetic acid disodium salt (EDTA) (Sigma-Aldrich), 

potassium phosphate monobasic (EMD), sodium phosphate dibasic (Mallinkrodt AR), sodium 

chloride (EMD), MgCl2  (USB), and Nycodenz (Axis-Shield PoC).  We used a Hemacolor Stain 

Kit (Harelco) to stain slides of thin smears of blood.  For the nystatin treatment, we purchased 

the following additional chemicals: nystatin (Streptomyces noursei, Calbiochem), choline 

chloride (Sigma-Aldrich), tris (hydroxymethyl) aminomethane hydrochloride (Tris HCL, 

Bethesda Research Laboratories), 3-(N-morpholino) propane-sulfonic acid (MOPS, EM 

Science), potassium chloride (EMD), sucrose (EMD), glucose (Sigma-Aldrich), albumin from 

bovine serum (Sigma-Aldrich), and sodium phosphate monobasic (Mallinkrodt Chemicals).    

Blood Samples.  Children’s Hospital Boston (CHB) and the Sickle Cell Center of 

Southern Louisiana (SCCSL) (New Orleans) provided de-identified blood samples with known 

hemoglobin genotypes.  We tested our system on a variety of blood samples that were Hb AA, 

Hb AS, Hb SS, Hb SC, and Hb Sβ
+
.  The Hb SS samples varied in their Hb F content and their 

proportion of dense sickled cells.  We used de-identified blood from Research Blood 

Components in Boston for our model sickle blood systems. 

At the SCCSL, blood samples were collected into 4 mL Vacutainer tubes (K2EDTA, BD, 

Franklin Lakes, NJ) during routine blood draws from patients with informed consent, according 

to a protocol approved by Tulane University Biomedical IRB.  At CHB, blood samples were 



180 
 

collected when clinically indicated and discarded samples were used according to a protocol 

approved by Children’s Hospital Boston IRB. 

Three normal controls were obtained from consented volunteers at Harvard University 

under a protocol approved by the Committee on the Use of Human Subjects at Harvard 

University. 

Materials for Rapid Tests.  We purchased the following materials to make our rapid 

tests: heparinized, polycarbonate microhematocrit tubes (Iris Sample Processing), clay seals 

(Critoseal, Leica), silicone rubber tubing with an inner diameter of 1.02 mm and an outer 

diameter of 2.06 mm (Helix Mark, Helix Medical), and five-minute epoxy. 

Preparation of AMPS. To prepare each AMPS, we added polymers, buffer salts, and 

other additives (i.e., Nycodenz and EDTA) in volumetric flasks and added deionized water to 

attain the final volume.  Adjustments to pH and osmolality were made as described in Chapter 4.  

A vortexer or magnetic stir bar mixed solutions thoroughly.  

In our AMPS, we include 5 mM EDTA and 1 mM MgCl2 to help preserve the blood and 

prevent coagulation.  The tubes are also heparinized.  We have varied the amount of these 

additives but we have been unable to completely eliminate the clotting platelets.   

 Characterization. We measured density with a density meter (DM50, Anton Paar), 

osmolality with a vapor pressure osmometer (Vapro 5600, Wescor), and pH with a pH meter 

(Orion 2 Star, Thermo Scientific).  Complete blood counts were done on a hematology analyzer 

(ADVIA 2120, Siemens). 

Rapid Test Fabrication. We used a 3D printer (Fortus 250mc, Stratasys) to print a 

holder to punch reproducible holes in the sides of the microhematocrit tubes.  The holder was 

designed with AutoCAD (AutoDesk).  We load each holder with microhematocrit tubes and use 
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standard metal pushpins (Staples) to punch holes in the sides of the tubes at the prescribed 

length. We also used fine tipped markers to mark a fixed point on the length of the tubes as fill 

lines to hold the prescribed volume of the AMPS.  After removing the tubes from the holder, we 

blew out any loose plastic with an air gun.  We cut small lengths of silicone tubing (3-5 mm) and 

slid them over the tubes to cover the holes in their sides.  While an AMPS was being stirred by a 

magnetic stir plate, we used a micropipettor to fill the marked tubes up to the fill lines and then 

sealed them with either white sealing clay or epoxy.  The completed tests were then used on 

blood samples as described in Chapter 4.   

For larger productions, we estimated the costs necessary to cap and more permanently 

seal the tubes with glue as well as labor, equipment, and packaging costs (Table II.1).  Time 

estimates were based on current manufacturing procedures in the laboratory and materials costs 

were based on the volumes at which we currently purchased materials and chemicals.  With these 

parameters, the cost per test is $0.50.  Production in a market with lower labor costs and with 

bulk chemical prices should reduce this cost.     

Nystatin Treatment for Model Sickle System. We created dehydrated erythrocytes 

using the nystatin loading procedure developed by Canessa.
1
  When nystatin is present, the 

membrane of erythrocytes becomes permeable and the volume of the cell can be set by adjusting 

the osmolality of the solution with additives like sucrose.  Washing to remove the nystatin 

returns cells to a less permeable membrane while retaining the adjusted volume.  Cells were 

washed five times in a choline wash solution of 150 mM choline chloride, 1 mM MgCl2, and 10 

mM Tris HCl and MOPS with a pH adjusted to 7.4 at 4° C.  We then exposed the cells to 

nystatin in a nystatin loading solution containing 10 mM NaCl, 130 mM KCl, and 200 mM 

sucrose for 20 minutes at 4° C. This solution was spun down and the supernatant removed.  We  
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Table II.1. Itemized cost per test estimated for production. 

Item Unit Cost 

Polycarbonate capillary tube  $   0.1000  

Critoseal  $   0.0027  

Critocaps  $   0.0415  

Silicone sleeve  $   0.0079  

Glue (Krazy Glue)  $   0.0033  

Polymer solutions  $   0.0032  

Foil-lined Pouch (12 devices/pack)  $   0.0625  

Total Consumable  $   0.2211  

Total Manufacturing Equipment & Personnel  $   0.2756  

Total Cost  $   0.4967  
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incubated the cells in loading solution (without nystatin) for 10 minutes at 37° C followed by 

four washes with the loading solution at the same temperature.  Finally, we washed the cells five 

times in the choline wash solution at 4° C.  We suspended packed cells in homologous plasma at 

the same hematocrit as the original blood and made serial dilutions to attain a range of 

percentages of dense cells of blood from each donor.   

Visual Evaluation of Rapid Tests.  Samples from either Children’s Hospital Boston or 

the Sickle Cell Center of Southern Louisiana were coded before being sent for evaluation by the 

rapid test at Harvard University.  The samples were run on both SCD-AMPS-2 and SCD-AMPS-

3 in duplicate and evaluated independently by two readers who had been trained on previous 

prototypes to read tests as positive when a full layer of red cells were present at the bottom of the 

microhematocrit tube.  In instances where the duplicate samples gave different results, a third 

test was run with the same sample.  In instances when the two readers disagreed on a result, a 

third trained reader evaluated the test independently.  The two readers were in accordance on 

97% of tests with SCD-AMPS-2 and 86% of tests with SCD-AMPS-3. Tests where the two 

original readers did not agree did not correlate to false positives or false negatives. 

Digital Evaluation of Rapid Tests. To capture comparable digital images of all our 

rapid tests, we used a digital scanner in transmission mode (Epson Perfection V330 Photo) to 

record images of up to 12 tubes at a time placed in a plastic grid.  We then used custom written 

Matlab code to process and analyze the images through several steps: i) scanned images were 

matched to a key image file using image registration and cropped to a standard size, ii) the 

matched images were cropped at twelve positions into separate image files for each tube, iii) 

images were converted into the Lab colorspace, iv) the region of interest that contained the 

bottom of the tube was selected, v) each pixel was evaluated for the intensity of the red color 
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through a combination of intensity and distance in the Lab space from a training set of red, vi) 

the scores for all pixels were summed to give a single score for each tube, and vii) the calculated 

values for each tube were written to a file for further analysis and comparison. 

The Lab colorspace is designed to approximate human vision so we chose to use this 

colorspace over other schemes, such as RGB and CMYK.  We then defined a range of acceptable 

red colors using a training set of sickle cell positive samples and using a weighting scheme to 

evaluate the distance in the colorspace from the learned red color.  We used the “L” component, 

or lightness, to weight the density of the packed red cells so that darker packed red would count 

more strongly than a light red that was present when cells were not packed.  

 Statistical methods. Sensitivity is defined as (# true positives)/(# true positives + # false 

negatives). Specificity is defined as (# true negatives)/(# true negatives + # false positives).  We 

chose to use Jeffreys confidence intervals because our values were near the upper bounds of 

100% sensitivity or specificity. 

Experimental Details 

AMPS phases for separations. An AMPS with n phases has a total of n+1 interfaces 

(AMPS/container, n-1 AMPS phase/phase, and AMPS/air) at which to separate objects.  For 

practical applications where blood is layered on top of an AMPS, and centrifugation is used to 

separate cells at the interfaces between the phases of the AMPS, the top (AMPS/serum) interface 

is diffuse and not useful for separations in this application; there are, therefore, n sharp interfaces 

that can concentrate cells.   

Erythrocytes have a distribution of densities that is specific to sickle-cell disease. 

Dense cells present in SCD have a mass density (ρ ~ 1.12 g/cm
3
) that is higher than the most 
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dense erythrocytes in healthy individuals (ρmax ~ 1.10 g/cm
3
);

2–5,a
  the difference in density 

between these cells makes SCD a strong candidate for a density-based diagnostic test. Not all 

high density cells in SCD have a sickled shape and some sickled cells may not have a very high 

density. Nevertheless, the presence of red blood cells with a high density is a well documented 

characteristic of SCD.
3,6

 We refer to this class of dense cells as dense, SCD cells. 

The percentage of dense, SCD cells in the blood varies among individuals.  Under most 

conditions, however, the blood of individuals with SCD has 13% (S.D. 8%) dense cells.
7
 A 

notable exception comprises individuals that express a significant amount of fetal hemoglobin 

(Hb F); in these individuals, sickled cells comprise a smaller proportion of erythrocytes and 

clinical symptoms are normally milder than others with SCD.
8,9

 The lower number of sickled 

cells may correspond to less dense, SCD cells in these individuals. 

Hemoglobin C disease (Hb CC)—much more rare and geographically isolated than 

SCD
10–13

—also increases the mass density of erythrocytes,
14

 and constitutes a potentially 

confounding interpretation.  In Hb CC, the entire distribution of densities of erythrocytes shifts to 

a slightly higher density; reticulocytes in Hb CC are more dense than those in Hb AA, but the 

high-density erythrocytes in Hb CC are less dense than the densest cells in Hb SS.
3
  In sickle-cell 

disease, erythrocytes that are not sickled remain at normal densities, and the erythrocytes exist in 

two populations: a high-density, often sickled, population (~10% of cells) and a lower-density, 

predominantly normocyte, population, which also comprises reticulocytes and the youngest 

erythrocytes.
2,4

   

                                                           
a
 Specific values of density vary in the literature and may be dependent on the media (e.g., 

Percoll, stractan or phthalate esters).  The values cited here were found to be consistent in 

AMPS. 
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Densities of erythrocytes determine the densities of the phases. A bottom phase, with 

a density of ρ ≥ 1.120 g/cm
3
, should permit dense, SCD cells (ρ ≥ 1.12 g/cm

3
) to sediment, while 

creating a barrier to the dense cells of Hb CC blood (ρmax ~ 1.11 g/cm
3
).

14
  Although we were 

unable to test blood with Hb CC due to the rarity of this blood type in the hemoglobinopathy 

clinics we worked with, we designed both systems with sufficiently dense bottom phases that 

future work with Hb CC could be done in areas (e.g., West Africa) with a higher prevalence of 

this genotype.  The top phase must be less dense than low-density erythrocytes, such as 

reticulocytes (ρ = 1.085 g/cm
3
), to ensure that all the erythrocytes pack at a well-defined 

interface.  In a three-phase system, a middle phase with a density of ρ = 1.110 g/cm
3
 will 

separate the main population of normal erythrocytes from the high-density tail of the distribution 

of cells.  The middle phase of the three-phase system allows us to distinguish subtypes.  In the 

case of Hb AA and Hb SS, we expected the majority of red cells to collect between the top and 

middle phase.  In the case of Hb SC and Hb CC, however, the shift in the density of the 

population is seen by a dense band of red cells between the middle and bottom phase.  Red cells 

are present below the bottom phase in both Hb SS and Hb SC.  The pattern of the red bands at 

each interface distinguishes these different hemoglobin types (Chapter 4; Figure 4.1).  

 Several other factors could influence density in a way that could affect the performance 

of our AMPS-based tests.  Patients suffering from sickle-cell disease with alpha thalassemia trait 

and alpha thalassemia may have fewer dense cells;
5
 one of our Hb SS samples had alpha 

thalassemia and it was distinguishable both visually and digitally as Hb SS in our test.  Iron 

deficiency often leads to hypochromic, microcytic anemia;
15

 a patient with SCD and iron 

deficiency anemia may have a more complex distribution of densities of erythrocytes. Testing on  
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Figure II.1.  The intensity of the red color at the bottom interface of the SCD-AMPS-3 system 

increases with centrifugation time. We evaluated a set of six replicates digitally from samples of 

Hb AA (AA, n = 4), Hb SS (SS, n = 2), and Hb SC (SC, n = 3) at two minute increments of 

centrifugation.  Error bars depict the average deviation from the mean value of the intensity of 

the red color from the different subjects.  After six minutes, the signal from SCD postive samples 

(SS and SC) are distinguishable from SCD negative samples (Hb AA).  The separation, in 

general, increases over time. Notably, blood with Hb SS has a significantly higher signal than Hb 

SC over time.    
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a larger population that might include patients with these and other concomitant conditions 

would determine the generality of density as a diagnostic for SCD.   

Co-solutes tune the osmolality and density of an AMPS to physiological levels. Any 

swelling or dehydration of erythrocytes that reduces the separation between the three sub-

populations of interest may compromise a diagnostic test based on density.  To maintain 

physiological conditions and prevent changes in volume of the cells, we wanted to maintain an 

osmolality that was isotonic with blood (~295 mOsm).
16

   

Achieving the densities necessary to separate dense cells in SCD with polymers alone is 

difficult.  High concentrations of polymer create viscous and hypertonic environments.  For 

example, a solution of 30% (w/v) dextran (MW = 500 kD) in a phosphate buffered solution has a 

density of 1.122 g/cm
3
 and an osmolality of 336 mOsm.  This system would dehydrate normal 

erythrocytes and could increase their density to be indistinguishable from dense cells from SCD.   

To generate phases with high density that are isotonic with blood, co-solutes with high densities 

can be used to increase the density of an AMPS.
17

 

Separation over Time.  In order to choose the time of centrifugation for our rapid test, 

we performed a time series experiment with the SCD-AMPS-3 system.  Six replicates of the 

rapid test were loaded with blood (n = 2 with Hb SS, n = 3 with Hb SC, and n = 4 with Hb AA).  

The tests were subjected to centrifugation for two minutes and then scanned in repeated 

iterations for a total centrifugation time of 30 minutes. The scanned images were then analyzed 

for the intensity of the red color at the bottom of each test (Figure II.1).  After six minutes, both 

the Hb SS and Hb SC blood begin to collect significantly more red color at the bottom of the 

tube than the Hb AA blood. This difference gradually increases over time.  To take advantage of 
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this signal amplification without compromising the rapidity of our test, we chose to centrifuge 

our test for 10 minutes. 

 Rapid Test Capillary Tube Design. We created two methods to load blood into a sealed 

tube that was preloaded with AMPS (Chapter 4; Figure 4.2).  We have described the “hole-in-

tube” method in the main text.  Briefly, we use a pushpin in a custom-made alignment mold to 

puncture the side of the plastic capillary tubes at a specific point along the length of the tube to 

ensure a repeatable volume is added to all tubes. Air, which would otherwise be trapped and 

block capillary action, escapes through the hole. To prevent blood from escaping through the 

puncture during centrifugation, we slid a sleeve of silicone rubber over the hole.   

 The other method, tube-in-tube, relies on the use of a smaller glass capillary tube that fits 

within the larger, preloaded polycarbonate capillary (Figure II.2A). We used the smaller 

capillary to wick blood into a controlled volume and then introduced the smaller capillary 

directly into the larger capillary.   A small ring of epoxy on the upper portion of the small 

capillary prevents the small capillary from entering the SCD-AMPS upon centrifugation. This 

method is fast, but requires some manual dexterity to load the smaller capillary into the larger 

one.   

The tubes hold ~24 µL of liquid in addition to the seal.  This provided a constraint to 

design the volume of our test.  Double the volume of blood per test is reserved for loading the 

sample and then ensuring that once the sample passes into the AMPS, the combined volume is 

not higher than the hole in the side of the tube—we found that liquid above this level would 

occasionally leak out, and, if blood was being used, would present a biohazard.  Early screening 

of AMPSs for the sickle test had used a volume ratio of blood to AMPS of 1:3.  As we scaled  
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Figure II.2. Two designs to load blood samples into a capillary that has been preloaded with 

SCD-AMPS-3 and sealed.  In the “tube-in-tube” method (A), a small capillary with a ring of 

epoxy around it fills with blood by capillary action.  This small tube can then be loaded into the 

larger capillary.  In the “hole-in-tube” method (B), a small hole allows blood to wick into the 

prefilled tube.  A silicone sleeve prevents the blood from leaking during centrifugation.   
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down to the rapid test format, we needed to maintain this ratio to maintain a similar performance.  

Using 14 µL of AMPS and loading 4.7 µL of blood allowed us to satisfy all our constraints.   

Fabrication. We used calibrated micropipettors to fill tubes with the specific volume and 

then used the fill line to measure the distance we used. We used a custom built hole puncher to 

make repeatable holes (see Materials and Methods). By eye and by pipette the volumes filled 

were similar. From scans, we estimated the distance between the end of the capillary and the far 

end of the hole to have a coefficient of variance (CV) of less than 2%. 

 Hematocrit and Packing of Cells. By comparing the volume that the cells occupied in 

these three regions to the volume of blood loaded, we can estimate hematocrit (Figure II.3).  We 

measured the height of the packed cells in each area digitally (ImageJ) and compared it to the 

length from the hole in the side of the tube to the top of the tube.  The low volume of blood used 

and slight variations in the volumes of the blood and AMPS only allow, however, for a coarse 

measure of hematocrit (± 10 %). In general, the hematocrit after 10 minutes in the AMPS was an 

overestimate of the real hematocrit.  Additional centrifugation time improved the packing of the 

cells (Figure II.4) and could improve the hematocrit estimation.  

 Aggregates in Negative Samples.  To investigate the white or pink layer that 

occasionally formed at the bottom of negative samples, we examined the material by optical 

microscopy. We identified the samples to investigate by using the smaller rapid test format, but 

we could not extract enough material from these systems to identify the objects under a 

microscope.  We, thus, scaled up the separation to a 1.5 mL Eppendorf tube, while maintaining 

the same ratio of blood to AMPS and comparable centrifugation parameters. After separation, we 

used a micropipettor to extract the layer of material below the bottom phase of the AMPS and 

stained a thin smear of the sample on a glass slide (Figure II.5). 
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Figure II.3. The hematocrit measured in AMPSs provides an estimate of the spun hematocrit.  A 

range of hematocrits was made by mixing packed cells with homologous plasma.  The estimated 

hematocrit from AMPS is generally a slight overestimate of the real hematocrit because at 10 

minutes, the cells are not completely packed.   
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Figure II.4. Additional centrifugation time results in clearer separation of the cells.  Some 

isodense cells remain unchanged after 30 minutes (Hb SS).  Hb SC is easily distinguished from 

Hb SS after 20 minutes.  The pack of cells above the white clay seal (dark gray in transmission 

imaging) increases over time (Hb SS and Hb SC). 
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Figure II.5.  Example of white pellet found at the bottom of some of the samples from Hb AA 

subjects.  A tube-in-tube version of the SCD-AMPS-3 test is negative for SCD (a.). Although the 

bottom is not red, there is a substantial gray layer above the above the white clay seal (dark gray 

in transmission imaging) (B/S) (d.).  Micrographs (b. and c.) reveal a large number of platelets 

and cell aggregates.   
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After centrifugation, we extracted and washed the cells from each interface of the AMPS.  We 

made thin smears stained with Hemacolor (Harelco) to evaluate the morphological distribution of 

erythrocytes.   

Using bright field microscopy we captured a series of images, which we then analyzed 

with CellProfiler
TM

 (Broad Institute) to quantify the percentage of erythrocytes that were sickled 

in each interface.  We classified a cell as sickled if the aspect ratio of the major axis length over 

the minor axis length was greater than 2.  We found this measure to correlate well with sickled 

morphologies over several fields of view that we evaluated by eye (Figure II.6).  

  When using blood from a patient with Hb SS with a very low level of sickled cells 

(0.7%), we were able to visualize the presence of dense cells at the bottom of the SCD-AMPS in 

both the capillary tubes and the microcentrifuge tubes. The fraction of cells at the bottom 

phase/seal interface contained 7.3% sickled cells. Over half of the remaining cells appeared 

crenated and dehydrated, similar to the “holly wreaths” or "holly leaf shapes" that result from 

deoxygenation of cells with Hb SS.
18–20

  Upon entering the SCD-AMPS, the erythrocytes may 

have deoxygenated.  Rapid deoxygenation in Hb SS causes the formation of crenated cells and 

“holly-wreaths” or "holly leaf shapes" instead of the classic sickle shape.
18–20

  Normal 

erythrocytes in the smears from the bottom fraction may be either cells that have been 

oxygenated during the washing step and returned to a normal morphology or normal cells that 

became engulfed by a mass of dense cells and trapped at the bottom of the tube. Interestingly, the 

cells at the upper and lower liquid/liquid interfaces had 4.4% and 4.7% sickled cells, 

respectively.  These layers, however, did not contain crenated, dehydrated cells.  The existence 

of cells with a high aspect ratio may have been a result of smearing cells from the polymer  
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Figure II.6. Micrographs of blood from the different fractions of a sample with Hb SS run on 

SCD-AMPS-3 test is evaluated digitally to quantify sickling.  Identified cells are classified as 

normocytes (blue) or sickled (red).  The cells at the bottom interface (bottom/seal) are markedly 

more sickled and dehydrated.   
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solutions, but the higher proportion of cells with high aspect ratios in the bottom layer suggests 

that there was a higher amount of sickled cells in the bottom population.  

Quantification of Dense Cells. To quantify the percentage of dense cells, we evaluated 

the digital images of the results from the SCD-AMPS-2 tests.  Using digital analysis (ImageJ) we 

measured the height of the packed cells above the seal and the height of the packed cells at the 

liquid interface.  We then calculated the percentage of dense cells for all the samples that had 

SCD (both Hb SS and Hb SC) (Table II.2).  Note that in two cases of Hb SS, we did not visually 

identify a band of red cells at the bottom and the calculated percentage of dense cells in these 

cases was zero.   Of the 21 SCD samples that were tested on SCD-AMPS-2, the average 

percentage of dense cells was 10%.  

Results by Genotype.  The sensitivity and specificity values described in Chapter 4 were 

based on binning all positives (Hb SS and Hb SC) together and all negatives (Hb AA and Hb 

AS) together.  Table II.3 details the results of visual evaluation of all four genotypes in this 

study.  Five of the six Hb SC samples could be distinguished from Hb SS after evaluating the 

distribution of cells between the two liquid interfaces in SCD-AMPS-3.  All Hb SS samples 

appeared as expected in Chapter 4; Figure 4.1; none of the Hb SS samples appeared with a 

majority of the red cells at the lower liquid interface.   

Nystatin provides a means to create model SCD blood.  Testing the diagnostic 

capabilities of the SCD-AMPS required samples of blood from SCD patients that had not been 

recently transfused (transfusion reduces the number of dense cells present in a patient’s blood). 

To characterize the limit of detection of our system in a quantitative way we needed model dense 

cells whose behavior was less subject to change than sickle cells, we created dense erythrocytes  
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Table II.2. Quantification of the dense cells from the SCD-AMPS-2. 

Donor Genotype 

Visual 

Reading 

Dense 

Cells 

1 SS Positive 21% 

2 SS Positive 15% 

3 SS Positive 8% 

4 SS Positive 16% 

5 SS Positive 14% 

6 SS Positive 10% 

7 SS Positive 12% 

8 SS Positive 12% 

9 SS Positive 15% 

10 SS Positive 11% 

11 SS Positive 8% 

12 SS Positive 13% 

13 SS Positive 10% 

14 SS Negative 0% 

15 SS Negative 0% 

16 SC Positive 8% 

17 SC Positive 8% 

18 SC Positive 10% 

19 SC Positive 4% 

20 SC Positive 9% 

21 SC Positive 8% 

Average -- -- 10% 
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Table II.3. Visual evaluation of the SCD-AMPS for sample sizes of N. 

 SCD-AMPS-3 SCD-AMPS-2 

Sample N Positive Rate
[a]

 Negative Rate N Positive Rate
[a]

 Negative Rate 

Hb SS 20 0.90 0.10 15 0.87 0.13 

Hb SC 6 1.00 0.00 6 1.00 0.00 

Hb AA 26 0.15 0.85 24 0.04 0.96 

Hb AS 7 0.00 1.00 7 0.00 1.00 

[a] Rates were calculated by comparing the results from the AMPS test to the known status of 

the subjects as measured by a gold standard (either Hb electrophoresis or HPLC).   
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by treating blood with nystatin, and exposing them to hypertonic media.
1
  This creates dense, 

dehydrated cells;
21

 we used these cells as a model of dense cells.   

We mixed known volumes of these dense cells with untreated blood to simulate SCD 

blood. The model blood contained small (cell volume < 60 fL) cells (microcytic) with high 

concentrations of hemoglobin (hyperchromic), similar to sickled cells in SCD; after treatment, 

the erythrocytes from three blood samples had a mean corpuscular volume ranging from 67.3–

71.5 fL, and mean corpuscular hemoglobin content ranging from 39.9–41.5 g dL
-1

.  When we 

mixed 5% of the treated cells with the original blood, the model samples had a mean corpuscular 

volume ranging from 81.9–83.9 fL, a mean corpuscular hemoglobin content ranging from 32.4–

34.8 g dL
-1

, and the percent of microcytic erythrocytes ranged from 2.6–3.8%. 

Determination of the Limit of Detection Using a Model System for SCD. Using 

normal blood (n = 3) spiked with dense cells created by the nystatin treatment, we evaluated the 

bottom of the SCD-AMPS-3 for the presence of red color after 10 minutes of centrifugation.   By 

eye, we could detect the presence of dense cells in normal blood at a concentration of 2% about 

half the time.  At a concentration of 5%, a layer of red covered the bottom of the capillary.  Most 

SCD patients have over 13% dense, SCD cells.
7
   

We also imaged the results of each test with a flatbed scanner in transmission mode 

(Perfection Photo V550, Epson). Image processing in Matlab evaluated the amount of red that 

had collected at the bottom of each capillary.  Figure II.7 depicts the measured value of the 

“intensity of red color” in arbitrary units (AU) for the different concentrations of dense cells that 

were added to the normal blood.  We found a good linear fit (R
2
 > 0.995) to the data with an 

intercept set at 0.  For the digital analysis, we found the limit of detection to be 2.8% dense cells 

by finding the value of the linear fit that provided a signal that was three standard deviations  
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Figure II.7. Measuring the intensity of red color at the bottom of the SCD-AMPS-3 can detect 

dense erythrocytes in whole blood at a concentration of 5%.  Erythrocytes from three donors (A–

C) were treated with nystatin to be dense and dehydrated, and then spiked into untreated blood at 

known concentrations.  After centrifugation in a tube containing the SCD-AMPS-3, the tests 

were scanned and analyzed to quantify the presence of dark red bands below the bottom phase. 

The limit of detection (dashed line) was established as three standard deviations above the mean 

measured on normal blood (n = 7). 
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above the signal from normal blood (n = 7). Below this concentration, it is possible for the digital 

analysis to confuse results from normal blood and SCD blood; this limit provides the false 

positives and false negatives that were observed in Chapter 4; Figure 4.4. 

 Alternative Methods to Diagnose SCD at the Point-of-Care. Miligan et al. have 

proposed monitoring hemolysis in non-electrolyte solutions as a means to diagnose sickle-cell 

disease.
22

  Quantifying hemolysis allows them to distinguish some genotypes and may provide a 

means to monitor certain clinical effects of SCD (Table II.4).  This test requires an hour of 

incubation, the use of an expensive tonometer, and optical density measurements; meeting these 

requirements in a point-of-care setting may be challenging.   

The recent development of a paper-based test for SCD may provide an alternative low-

cost diagnostic test.
23

 This test distinguishes Hb AA, Hb AS, and Hb SS visually by evaluating 

blood stains on paper after lysing and deoxygenating the hemoglobin (using a method similar to 

a solubility test).  The visual signal can be analyzed by a scanner and correlates to the 

concentration of Hb S present.  Even with the use of the digital analysis, the test is, however, less 

accurate than the AMPS-based tests at distinguishing individuals with Hb AS (non-disease) and 

Hb SC (disease);  the Hb S concentration in these two genotypes can be very similar. In a person 

with Hb SC, the presence of Hb C leads to dehydration that induces sickling at a significant level 

that would not take place in a person with similar levels of Hb S, but with Hb AS.
24

   

Distinguishing between Hb SC and Hb AS is clinically important, especially in West 

Africa where both genes are common.  In settings where Hb C is rare, such as eastern and 

southern Africa, this test could be a quick and inexpensive way to identify and distinguish 

between sickle-cell trait and disease.   
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Table II.4. Comparison of methods to detect SCD.  

Ref. Method 
Time 

(min) 

Differentiation 
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Instrument 

Cost 

Unit 

Cost 
AS

/SS 

AS 

/SC 

SC 

/SS 

AA 

/AS 

This 

work 
AMPS 12    

[a]       $150-1,600 $0.50 

22
 Hemolysis > 60        

[b]   ~$10,000 NA 
23

 Paper 20  
[c]        $300-500 $0.07

[d] 

† Solubility 5         $0 $3.00 

† HPLC* > 120          >$60,000 $10.00 

† HE* > 180          >$10,000 $3.00 

† Genetic >180          >$20,000 $1.00 

[a] specifically, SCD-AMPS-3 

[b] under investigation 

[c] except in cases where hemoglobin S levels are close 

[d] based on cost estimates for a similar paper test 
25

 

† based on market prices and product literature 

* gold standard method 
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Conventional techniques of separation by density are not suitable for use in field 

settings. Sequentially layering solutions with decreasing concentrations of a dense solute (e.g., 

sucrose, Percoll, arabinogalactan) creates a layered gradient in density.
26

   These gradients can 

separate blood into multiple subpopulations of cells of different densities.  Layered gradients in 

density are not practical for use in a point-of-care test for several reasons: i) diffusion-driven 

homogenization of layers limits the long-term storage of a layered gradient, ii) agitation or 

mixing destroys a layered gradient, and iii) assembly of a gradient requires careful and tedious 

layering, and a high level of technical competence. 

Centrifugation of blood over mixtures of phthalate esters provides a simpler method to 

characterize the density profile of blood.
4,27

   Mixtures of phthalate esters provide a range 

of single-density media.   Upon centrifugation, blood cells either sink or float in a phthalate 

solution based on the difference in density between the cells and the solution.  The immiscibility 

of the phthalates and water ensures that cells at the top of the phthalate are packed at an interface 

 (i.e., a water/phthalate interface); cells layered over an aqueous medium would collect in a 

diffuse boundary between the plasma and the medium.  Packing cells is an important 

characteristic for a separation to provide quantitative information.  Comparison of the volume of 

packed cells above and below a phthalate provides a measure of the distribution of the density of 

cells.  Although simpler to use than layered gradients, phthalate esters are unsuitable for point-

of-care use for two reasons: i) they require a temperature-controlled centrifuge,
28

 and ii) they 

cannot distinguish more than two subpopulations of cells in a single system—a necessary ability 

to differentiate sub-types of SCD by density.   

AMPSs combines the best aspects of layered gradients and phthalate esters, while 

overcoming the principal drawbacks of each.  Like layered gradients, AMPSs allow multiple 
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sub-populations to be separated in a single system.  Like phthalate esters, AMPSs concentrate 

cells at well-defined interfaces and are easy to use.  Together, these characteristics allow 

centrifugation through AMPSs to distinguish blood from patients with SCD from normal blood 

by density and classify the two main subtypes of the disease. 
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Figure II.8. Examples of the patterns of red cells at the liquid interfaces for Hb SC and Hb SS in 

the SCD-AMPS-3 system.  Four representative examples of the layers of red blood cells from 

samples with Hb SS show the characteristic pattern of the majority of cells packed at the upper 

liquid/liquid interface with a thin packed band at the lower liquid/liquid interface.  All six 

samples with Hb SC are shown after 10 minutes of centrifugation.  Samples Hb SC-4, 5, and 6 

all have red bands at the lower liquid interface that are comparable to or greater than the bands at 

the upper liquid interface.  Sample Hb SC-3 has a significant pack of cells at the lower liquid 

interface an hour glass shape of red cells between the two liquid interfaces.  Sample Hb SC-2 

packed to a pattern more similar to Hb SC-3 and 4 after 20 total minutes of centrifugation. 
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Materials and Methods 

Chemicals. We used the following polymers: poly(ethylene glycol) (Sigma-Aldrich; MW 

= 20000 Da), Ficoll (Sigma-Aldrich; MW = 70000 Da and 400000 Da), dextran (Spectrum 

Chemical; 500000 Da), and poly(vinyl alcohol) (PVA) (Polysciences; MW = 3000 Da)—formed 

by hydrolyzing 75% of poly(vinyl acetate).  Solutions of AMPS contained the following 

chemicals: ethylenediaminetetra-acetic acid disodium salt (EDTA) (Sigma-Aldrich), potassium 

phosphate monobasic (EMD), sodium phosphate dibasic (Mallinkrodt AR), sodium chloride 

(EMD), MgCl2  (USB), and Nycodenz (Axis-Shield PoC). 

Components.  We purchased the following components to assemble our rapid tests: 

heparinized, polycarbonate microhematocrit tubes (Iris Sample Processing), clay seals (Critoseal, 

Leica), silicone rubber tubing with an inner diameter of 1.02 mm and an outer diameter of 2.06 

mm (Helix Mark, Helix Medical), glue (Krazy Glue), rubber caps (Critocaps, Leica), foil-lined 

pouches (Vapor-Flex VF48, LPS Industries), and shipping labels (5163, Avery). Templates to 

punch holes in capillary tubes and meter the volume of polymer to fill were printed in 

acrylonitrile butadiene styrene (ABS) using a 3D printer (Fortus 400mc, Dimension). 

Blood collection used vacutainers (Becton Dickinson) coated with K2EDTA for 2 mL.  

Aliquots of the collected blood were transferred to vacutainers with no coating (Becton 

Dickinson). 

Fabrication.  Figure III.1 outlines the fabrication of a single test. We puncture a hole in 

the side of a polycarbonate capillary tube at a prescribed height using a customized holder and 

push-pin (Figure III.1).  A silicone sleeve slides over the tube to open or close the hole.  Using a 

pipette, we load a pre-mixed solution of an SCD-MuPS solution into the tube from one end and 

then seal that end with white sealing clay (Critoseal, Leica).  
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Figure III.1. Schematic of the fabrication of SCD-AMPS tests. Plastic microhematocrit tubes 

(A) insert into a holder (B) and can then be punctured with a pushpin (C) and metered with a 

marker (D). After blowing out debris with an airgun, we add a silicone sleeve to cover  the hole 

in the side of the tube (E).  We then added a well mixed AMPS solution (F) and seal the bottom 

of the tube with putty (G). After a quick spin (H), the initial metering mark is removed (I) and 

replaced with a line to mark the level of the volume of the test (J).  We then seal the bottom of 

the test with glue (K) and cover the open end with a rubber cap (L). A dozen completed tests fit 

into a foil lined pouch (M).  We add 4 mL of water (N) and seal the package (O). 
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To ensure the sealing clay does not fail during shipping or storage, we dipped the sealed 

end of the tube in Krazy Glue and allowed the glue to set.  After two minutes of centrifugation at 

13,000 g, the phases of the SCD-MuPS system separated.  We used a marker to indicate the 

highest level of the liquid in the tube at the time of fabrication as a quality control measure that 

could be checked before use. To reversibly seal the open end of the capillary, we used white 

rubber capillary covers (Critocaps, Leica).   

AMPS were made by weighing out the specified weight of polymer and Nycodenz into a 

volumetric flask.  In this volume, we added a total concentration of 5 mM of Na2EDTA, 2.96 

mM of KH2PO4 and 9.36 mM of Na2HPO4.  We added de-ionized water (MilliQ) to dissolve the 

solutes and bring the solution to the final volume.  We then transferred the solutions to bottles 

and adjusted the pH using small volumes (less than 0.5% of the total volume) of concentrated 

NaOH and HCl to a final pH of 7.40 ± 0.02 (Orion 2 Star pH meter, Thermo Scientific). We 

added solid NaCl to the solution to adjust the osmolality to a 295 ± 15 mOsm/kg using a vapor 

pressure osmometer (Vapro 5600, Wescor). Solutions of AMPS were stored in sealed bottles at 4 

°C until the day of use to create rapid tests.  We used a U-tube oscillator to measure density 

(DMA 35A, Anton Paar). All parameters (density, osmolality, and pH) were measured and tested 

and adjusted to the target ranges before adding the solution to the rapid tests. 

Evaluation of Fabrication Variability.  Metering a precise volume of blood into the 

rapid tests is potentially important to create reproducible results.  In order to evaluate the 

effectiveness of our hole in the side of the tube, we scanned (V550, Epson)  48 tubes and used 

ImageJ to evaluate the distance between the top of the tube and the bottom of the hole that was 

punched.  The coefficient of variance (standard deviation/mean) of the distance was 2%.  We 

then wicked blood into each tube and measured the distance between the top and bottom of the 
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column of blood using a digital scanner.  The coefficient of variance of the volume of blood that 

was loaded was 4%.   

Storage Tests.  We tested various methods to seal and package the rapid tests.  For a 

method to seal the open end of the capillary we tried parafilm, tape, various wax seals, and 

rubber caps (CritoCaps, Leica).  Tubes were filled with water and sealed on one end with white 

putty (CritoSeal, Leica). The other end was then sealed with one of the above-mentioned 

methods.  The mass and volume of the tests were measured and then the tests were put into an 

oven at 50 °C.  Each day for one week, the tests were removed and measured again.  At the end 

of the week, the tubes with the rubber caps had the least loss of volume and were the easiest to 

remove.  We noted moisture and evaporation on the end of the tube that had been sealed with 

putty.  Coating this seal with glue (Krazy Glue) minimized evaporation from this end.     

We tested several packaging methods to store the sealed rapid tests.  Using an impulse 

sealer (PFS-200), we sealed tests in plastic pouches modified from freezer bags (ZipLoc), foil-

lined modified from food packaging (Lays), and foil-lined pouches from a vendor (LPS 

Industries).  After adding rapid tests to each pouch and sealing them, we weighed the packages 

and added them to an oven at 50 °C.  The pouches were weighed every day for one week.  Only 

the foil lined pouches showed no measureable loss of mass.  We chose the pouches from LPS 

Industries because of cost and availability.  Opening the pouches revealed that even though water 

had not escaped the packaging, it had come out of the rapid tests; a small drop of water was 

generally found inside the pouch near the tubes.  Based on the location, we found that either the 

glued end had broken or the caps had come off, potentially because of the build-up of pressure.    

By adding water to the packaging along with the rapid tests, we created a moist 

environment. Performing similar stability tests as before revealed no measureable loss of volume 
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in each of the individual rapid tests stored in the packaging with water.  For packages containing 

12 rapid tests, we added 4 mL of water. 

In order to estimate the effects of long term storage on the SCD-AMPS tests,  we 

packaged 300 rapid tests of SCD-AMPS-2 and SCD-AMPS-3 and stored them at 50 °C for one 

month.  After this time, we let each package equilibrate to room temperature and then removed 

each rapid test.  We removed the cap and used a razor blade to cut the putty seal off of the 

bottom of the test. Using a micropipette, we then removed the liquid from each of the tests and 

combined the samples of SCD-AMPS-2 and SCD-AMPS-3 in two separate conical tubes. The 

solutions were mixed with a vortex mixer and then centrifuged to separate the phases.  Aliquots 

of the top and bottom phase of each system were removed and we measured density, osmolality, 

and pH.  In each of the systems, the osmolality of the systems increased by ~10%.  Density in 

each phase also increased by roughly 0.004 g/cm
3
. The pH of SCD-AMPS-2 increased from 7.40 

to 7.56 while the pH of SCD-AMPS-3 was fairly stable, changing from 7.39 to 7.42. Some error 

may have been introduced into this method due to the difficulty in removing the entire polymer 

solution from the capillary.  A method to assess the density in the rapid tests without removing 

the sample could provide a more accurate measure of density.   

The observed increase in both osmolality and density may be the result of a loss of water 

during long term storage at high temperature.  Also, some water may have evaporated inside the 

rapid test and coated the upper part of the capillary, leaving a more concentrated solution at the 

bottom of the tube that would have been removed. Centrifuging the tests before use to ensure 

that all the water has been added back to the solution could reduce this concentration.  Increasing 

the length of the silicone sleeve could also reduce the potential for loss of volume in the tests.  

Additionally, the sodium heparin coating the capillary tubes may have increased the density and 
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osmolality of the systems. Although these tests demonstrate the need for further improvement, 

the observed changes in density are less than the difference in density of normocytes and sickled 

erythrocytes.  With further improvements, SCD-AMPS could provide stable tests stored at room 

temperature for several months.   

Classification of Subjects Based on Results from Hemoglobin Electrophoresis. Most 

subjects were easily classified based on the results from hemoglobin electrophoresis.  No HbC 

was detected in any of the subjects.  Subjects with no detectable HbS were classified as HbAA.  

Subjects with HbA > 50% and HbS < 50% were classified as HbAS.  Patients with no detectable 

HbA and with detectable HbS were classified as HbSS.  HbF was quantified for all subjects 

where it was detected.  Of the over 500 subjects tested, we were then left with 12 subjects that 

had HbS > 50% but also had detectable HbA.  We classified these subjects as positive for SCD 

for the purposes of the study. All had either elevated reticulocyte counts or low hemoglobin 

concentrations.  HbS concentrations ranged from 54-78%.  Based on the CBC results from these 

subjects, three of the subjects had a microcytic and hypochromic anemia. These 12 subjects may 

may be SCD patients with HbSβ+ or they may have been transfused.  The study was designed to 

exclude those who had recently been transfused, but due to occasional missing health records 

and missing information on health records, we relied on self-reporting for patients to identify 

whether they had received a transfusion in the last four months. 

Statistics. Statistical analysis was done using R  (http://www.r-project.org). We used 

Bayesian confidence intervals (Jeffreys prior) for the binary data that was used to make point 

estimates of sensitivity and specificity.  We used two-sided t-tests to test for significant 

differences between performance of different batches and performance on samples stored for 

different time intervals.    
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Human Subjects Research. The Committee on the Use of Human Subjects (CUHS) at 

Harvard University and the ERES Converge Committee in Lusaka, Zambia each provided IRB 

approval for the testing of SCD-AMPS at UTH.  The survey of rural health workers in Zambia 

was deemed exempt by CUHS and underwent full IRB review and approval by ERES. 

Experimental Details 

Detailed Protocol.  All subjects were recruited from patients who were already indicated 

to have a venipuncture.  During the clinically indicated venipuncture, an additional 2 mL of 

blood was collected in an EDTA coated vacutainer and labeled with a study ID number. Nurses 

interviewed subjects and guardians to fill out a short survey to capture demographic data and 

patient history.  These surveys were used to identify whether subjects should be excluded or 

included based on the recruitment criteria (see Chapter 5; Table 5.1 and Chapter 5 for details).   

Blood samples were stored in an insulated container with ice packs and transported to the 

reference laboratory running CBCs and HE.  The laboratory technician then checked each 

sample to ensure it was properly labeled and to see if visible clots had formed. Samples with 

visible clots were noted and excluded from the study.  The laboratory technician aliquoted 

samples of blood to untreated vacutainers labeled with the same study number and a study staff 

member then transported these samples to the pediatric laboratory where the rapid tests were run 

by a second laboratory technician.  The laboratory technician running the rapid tests performed 

the procedure outlined in Figure III.2, and made an initial reading using the evaluation levels 

depicted in Figure III.3.  A nurse from the study then performed an independent reading. In 

cases of conflicting readings, a second nurse read the rapid tests.  All blood was tested within the 

amount of time specified by Table III.1 (i.e., the times specified by the manufacturer of the tests  

 



217 
 

 

 

 

 

 

 

Figure III.2. Process to perform a rapid test for SCD with SCD-AMPS.  The user opens a packet 

and pour out the water (A) to retrieve the rapid tests (B).  She then removes the rubber cap and 

centrifuges the test for 2 minutes (C). After checking that the phases have formed and the proper 

volume of liquid is present (D), the user slides down the silicone sleeve to reveal the punched 

hole (E) and wicks blood into the test until it reaches the hole (F).  The user then slides the sleeve 

back over the hole (G) and centrifuges the test for 10 minutes (H).  The test can then be read by 

eye (I).   
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Figure III.3. Schematic representation of the five levels of evaluation of the bottom of an SCD-

AMPS test.  Levels 1 through 5 correspond to increasing levels of accumulation of red cells at 

the bottom of the test.  
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Table III.1. Time cutoffs for testing samples in the study.  

Test Method 
Maximum Time 

Before Testing 

SCD-AMPS-2; SCD-AMPS-3 48 hours 

Hemoglobin Electrophoresis 1 week 

Complete Blood Count 4 hours 
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and equipment).  Tests run after the times specified were marked as invalid and excluded from 

the analysis. 

Each laboratory had a form to fill in values for each sample they received including the 

study number.  The original questionnaire and these laboratory forms were collected at the end of 

each week and entered into a database using a user interface designed with Epi Info (CDC).  The 

database was stored as an encrypted file and transferred to the Harvard team at the end of the 

study.  

Pilot Study.  For a pilot study, we recruited 20 participants fitting Subset 1, 11 

participants fitting Subset 2, and 6 participants fitting Subset 4. Data from these participants was 

used to evaluate the recruitment and testing process and is presented separately from the main 

trial data.   

Evaluation of variability in reading tests between expert reader and trained readers. 

One of the researchers who developed the SCD-AMPS at Harvard University trained a primary 

reader and three secondary readers at UTH.  After an initial one day training, the readers at UTH 

shadowed the Harvard researcher in interpreting tests during the pilot phase of the study. 

Halfway through the study, the researcher from Harvard returned and 100 rapid tests (51 

SCD-AMPS-3 and 49 SCD-AMPS-2) were run on anonymous samples.  The expert reader, as 

well as three of the UTH staff, independently read the results of each tests and compared 

responses.  The three UTH staff readings were identical to the expert reader on 82% of the SCD-

AMPS-3 and 60% of the SCD-AMPS-2.   The difference in reading was generally only one level 

of redness off (e.g., “full layer of red” vs. “half layer of red”).   On average, the UTH readers 

read tests with slightly higher levels of redness than the readings by the expert reader. This bias 
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could cause an increase in false positives or decrease false negatives compared to results 

previously obtained for the SCD-AMPS test (Chapter 4).  

Variability in Performance by Batch.  During the six months of the study, a total of 5 

batches each of SCD-AMPS-2 and SCD-AMPS-3 rapid tests were manufactured at Harvard 

University and shipped to UTH on ice.  Batch 3 took approximately 5 days longer to arrive at 

UTH after being shipped from Harvard because a fire in the Nairobi airport disrupted 

international shipping routes.  The conditions under which Batch 3 was stored while being held 

are unknown and, thus, we could not justify exclusion of data from this batch.  The divergence in 

performance of Batch 3 from the other batches, however, does provide some insight into the role 

that shipping and storage could play in performance.  When analyzing the performance of each 

test as a function of batch, we found large variations (Chapter 5; Figure 5.4). Batch 1 showed 

best discriminative ability with diagnostic accuracies near or above 0.8 for both systems (n = 

150). The density of the bottom phases of Batch 1 and 5 for both systems were ~0.002 g/cm
3
 less 

dense than they were for Batches 2-4.  Table III.2 and Figure III.4 details the characteristics 

and performance of each batch.  

Evaluation of Potentially Confounding Factors. 

Clotting: Blood samples in Zambia were collected in EDTA coated tubes.  Variability in 

the total volume of blood drawn may have resulted in some samples receiving more or less than 

the recommended concentration of EDTA (~5 mM).  To test what effect this variation might 

have, we collected blood from a healthy donor and treated it with different concentrations of 

EDTA (0 mM, 2.5 mM, 5 mM, and 10 mM).  Replicates (n = 3) of each of the treatments were 

loaded into SCD-AMPS-2 and SCD-AMPS-3 tests and centrifuged for 10 minutes.  After 

centrifugation, we scanned each tube using a transmission scanner (Epson V550) and analyzed  
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Table III.2. Characterization of each batch of SCD-AMPS used in the study. 

  
Top Phase  Bottom Phase   

Batch 
SCD-

AMPS 
Density 

(g/cm
3
) 

Osmolality 

(mOsm/kg) 
pH  

Density 
(g/cm

3
) 

Osmolality 

(mOsm/kg) 
pH 

Diagnostic 

Accuracy 
95% CI 

1 2 1.0776 292 7.37  1.1287 295 7.38 86% (80,91) 

1 3 1.0754 293 7.36  1.1184 305 7.39 81% (75,87) 

2 2 1.0790 293 7.35  1.1310 305 7.35 77% (69,84) 

2 3 1.0787 297 7.44  1.1213 304 7.49 72% (64,80) 

3 2 1.0782 299 7.39  1.1303 NA NA 69% (61,76) 

3 3 1.0776 301 7.39  1.1208 NA NA 55% (47,62) 

4 2 1.0788 306 7.40  1.1306 303 NA 66% (53,78) 

4 3 1.0788 294 7.39  1.1204 297 NA 70% (51,83) 

5 2 1.0786 303 7.40  1.1291 305 NA 92% (80,99) 

5 3 1.0771 301 7.40  1.1184 304 NA 68% (51,83) 
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Figure III.4. The performance of the rapid test varied between batches shipped to Zambia. The 

diagnostic accuracy was calculated for each of the five batches of rapid tests  evaluated in 

Zambia show significant variation for both SCD-AMPS-2 (white) and SCD-AMPS-3 (light 

gray).  Both the combined results (All) and individual batch results (1-5) are shown.  Batch 1 

showed the good discriminative ability with a diagnostic accuracy over 0.8 (80%) for both tests.  

Error bars indicate 95% confidence intervals. 
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the intensity of the red at the bottom of the tube using a method previously described (Chapter 

4).  The signal from the blood treated with the standard concentration of EDTA (5 mM) was 

lowest (Figure III.5); exposure of blood samples to either too much or too little EDTA could 

result in some false positives. 

Sickle Cell Trait: In solubility tests, people with sickle cell trait (HbAS) are difficult to 

distinguish from those with SCD (HbSS, HbSC, and other variations).  Interestingly, the 

specificity of SCD-AMPS-2 and SCD-AMPS-3 was similar between those with HbAA and those 

with HbAS; sickle cell trait is not a major source of false positives for the SCD-AMPS tests 

(Table III.3).  If improvements to the quality control of batches and anticoagulants used leads to 

improved performance, the ability to discriminate HbAS from HbSS could be a significant 

advantage for SCD-AMPS as way to screen for SCD. 

Assets in Rural Health Centers. Sickle cell disease can be managed with the resources 

available in the two rural health centers that were visited in the Northern Province (Table III.4) 

 

 

 

 

  



225 
 

 

 

Figure III.5. Digital analysis of the red intensity at the bottom of the SCD-AMPS tests for a 

normal subject whose blood was treated with different concentrations of anticoagulant (EDTA). 

Samples were run in standard SCD-AMPS tubes treated with heparin (treated capillary) as well 

as SCD-AMPS loaded in tubes without any coating (untreated capillary).  In all cases, the 

samples collected in the standard concentration of EDTA (5 mM) showed the least amount of red 

at the bottom of the tube.  Variability in the concentration of anticoagulant during blood 

collection could be a source of false positives. Error bars represent standard error of the mean of 

triplicate experiments. 
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Table III.3. Specificity of SCD-AMPS on HbAA and HbAS (negative samples). 

Genotype Specificity C.I. 

 
SCD-AMPS-2  

HbAA 60% (52,68) 

HbAS 60% (45,72) 

 
SCD-AMPS-3  

HbAA 58% (50,66) 

HbAS 66% (52,78) 

 

 

 

 

 

 

 

 

 

 



227 
 

 

 

 

 

 

 

 

 

Table III.4: Assets at Rural Health Centers to treat SCD. 

Interventions for SCD Luena Ipusukilo 

Ward with beds   

Non-opiate pain killers   

Opiates   

Ferrous   

Folic acid   

Antibiotics   

Antimalarials   

PCV Vaccine   

IV fluids   

Transfusions   
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Aqueous Multiphase Systems of Polymers and Surfactants Provide Self-Assembling Step-

Gradients in Density 
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ABSTRACT 

 This article describes an inexpensive, hand-held device that couples the most common forms 

of electrochemical analysis directly to “the cloud” using any mobile phone, for use in resource-

limited settings. The device is designed to operate with a wide range of electrode formats, can 

perform on-board mixing of samples by vibration, and transmits data over voice using audio—an 

approach that guarantees broad compatibility with any available mobile phone (from low-end phones 

to smartphones) or cellular network (2, 3, or 4G). The electrochemical methods that we demonstrate 

enable quantitative, broadly applicable, and inexpensive sensing with flexibility based on a wide 

variety of important electroanalytical techniques (chronoamperometry, cyclic voltammetry, 

differential pulse voltammetry, square-wave voltammetry, and potentiometry), each with different 

uses. Four applications demonstrate the analytical performance of the device: these involve the 

detection of i) glucose in blood for personal health, ii) trace heavy metals—lead, cadmium, and 

zinc—in water for in-field environmental monitoring, iii) sodium in urine for clinical analysis, and 

iv) a malarial antigen, Plasmodium falciparum histidine-rich protein 2 (PfHRP2), for clinical 

research. The combination of these electrochemical capabilities in an affordable, hand-held format 

that is compatible with any mobile phone or network worldwide guarantees that sophisticated 

diagnostic testing can be performed by users with a broad spectrum of needs, resources, and levels of 

technical expertise. 
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SIGNIFICANCE STATEMENT 

 The ability to perform electrochemical testing in the field, and in resource-limited 

environments, and to transmit data automatically to “the cloud” can enable a broad spectrum of 

analyses useful for personal and public health, clinical analysis, food safety, and environmental 

monitoring. Although the developed world has many options for analysis and web connection, 

the developing world, however, does not have broad access to either the expensive equipment 

necessary to perform these tests, or the advanced technologies required for network connectivity. 

To overcome these limitations, we have developed a simple, affordable, handheld device that can 

perform all the most common electrochemical analyses, and transmit the results of testing to the 

cloud with any phone, over any network, anywhere in the world.  
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INTRODUCTION 

 Electrochemistry provides a broad array of quantitative methods for detecting important 

analytes (e.g. proteins, nucleic acids, metabolites, metals) for personal and public health, clinical 

analysis, food and water quality, and environmental monitoring (1, 2). Although useful in a 

variety of settings, these methods—with the very important exception of glucometers for 

monitoring blood glucose (3, 4)—are generally limited to well-resourced laboratories run by 

skilled personnel. If simplified and made inexpensive, however, these versatile methods could 

become broadly applicable tools in the hands of healthcare workers, clinicians, farmers, and 

military personnel who need accurate and quantitative results in the field, especially in resource-

limited settings. Furthermore, if results of testing were directly linked to “the cloud” through 

available mobile technology, expertise (and archiving of information) could be geographically 

decoupled from the site of testing. To enable electrochemical measurements to be performed and 

communicated in any setting, a useful technology must be: i) able to perform complete 

electrochemical analyses while remaining low in cost, simple to operate, and as independent of 

infrastructure as possible, and ii) compatible with any generation of mobile telecommunications 

technology, including the low-end phones and 2G networks that continue to dominate 

communications in much of the developing world. 

 The parallel development of two successful technologies—mobile health (mHealth) and 

point-of-care (POC) diagnostics—is broadly agreed to provide two convergent paths towards a 

potential solution, although, practically, technical and conceptual connections between them are 

weak (5, 6). mHealth is the general term given to medical and health-related information 

technologies that depend on mobile wireless communication for connectivity. Although these 

networks and devices can capture information relevant to health (and other problems involving 



313 
 

chemical and biological sensing) and transmit it globally over the web, they typically do not have 

the capability to collect data directly, and rely, instead, on (error-prone) entry of data by the user, 

either alphanumerically or through images. Conversely, while POC diagnostics (e.g. lateral flow 

immunoassays, urinalysis dipsticks, and hand-held glucometers) provide examples of simple, 

inexpensive devices that enable minimally trained users to perform chemical testing, these 

devices are typically limited in function and cannot connect easily to networks for mHealth. 

 Many devices are now being explored that attempt to connect mHealth with POC testing. 

Because these systems have been developed in, and often implicitly targeted towards, the developed 

world, they typically require: i) smartphones; ii) custom applications (“apps"); iii) third or fourth 

generation (3G/4G) data networks; iv) proprietary connectors for sophisticated sensors that interface 

with diagnostic tests; and v), in some cases, a substantial level of technical sophistication (7-12). As 

such, these first-generation hybrid mHealth/POC devices are often too expensive, too restricted to a 

single type of phone, too limited in function, and too reliant on advanced mobile telecommunication 

technology to be practically applicable in resource-limited settings where 3G/4G networks and 

smartphones are still not widely used. Although mobile connectivity has spread rapidly across the 

world, low-end mobile phones and second-generation (2G) networks dominate the 

telecommunications infrastructure (especially in rural areas) in the developing world (7, 13-16), and 

will continue to do so for the foreseeable future (Figure VII.S5). This lack of advanced mobile 

technologies in much of the developing world, coupled with myriad operating systems, generations 

of software, and types of connecting ports amongst all mobile phones presents a major challenge to 

any device that requires a specific phone or application to communicate the results of testing.  

 To provide a system that combines broad flexibility in electrochemical capability with 

connectivity to the web through widely available technology, we have developed a low-cost (~$25), 
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handheld device that i) performs all of the most common electrochemical methods; ii) interfaces with 

a variety of commercially available electrodes; iii) provides on-board vibration to mix samples when 

necessary; and iv) is simple to operate. For communication of data, we have exploited the ubiquity of 

the hands-free audio port, a nearly universal interface to mobile phones, and designed a protocol to 

transmit digital data over a live voice connection. This approach guarantees that i) any phone can 

function as a modem to link the results of testing to a remote facility through any available mobile 

network (2, 3, or 4G), and that ii) the device does not require any specific software application, 

operating system, or connector (beyond an audio cable). 

We refer to our device as a universal-mobile-electrochemical-detector (uMED) because of i) 

its universal compatibility with mobile technology, ii) the broad range of electrochemical techniques 

that it can perform, including various forms of amperometry, coulometry, voltammetry (e.g. cyclic, 

differential-pulse, square-wave), and potentiometry, and iii) its broad compatibility with different 

commercial available and paper-based electrodes. Figures VII.1a-b shows the uMED connected to a 

low-end mobile phone, and sketches the flow of information that links an in-field measurement to a 

remote facility.  

We demonstrate the electrochemical capabilities of the uMED by first comparing the 

performance of each implemented mode of sensing to a commercial electrochemical analyzer. We 

then test the uMED in four representative applications: i) as a personal diagnostic device for the 

detection of glucose in blood, ii) for in-field testing of water quality by detection of heavy metals, 

and iii) as a low-cost, clinical analyzer for detection of electrolytes, and iv) to perform an 

electrochemical enzyme-linked immunosorbant assay (ELISA) for the detection of an antigen 

diagnostic of malaria. We also demonstrate the transmission of POC data by audio through a low-end 

mobile phone to a remote computer.  
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Figure VII.1: Details of the physical and network connections to and design of the uMED. (A) An 

image of the uMED interfaced to a commercial test-strip for data acquisition, and to a low-end 

mobile phone through a standard audio cable for transmission of data over voice. (B) A schematic of 

the connections and flow of data from the electrodes, through the uMED, to the remote medical back 

end. (C) A block diagram of the hardware and interconnections of the device. (D) The circuit design 

for the reconfigurable potentiostat. 
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EXPERIMENTAL DESIGN 

Design of the uMED 

Briefly, the device includes: i) a custom-made, three-electrode potentiostat, formed from two 

operational amplifiers, to perform electrochemical measurements; ii) three digital switches to 

reconFigure VII.the potentiostat between two- and three- electrode operation and between 

amperometric or potentiometric measurement, iii) a small vibration motor to mix fluid samples; iv) a 

dual-channel, 16-bit, digital-to-analog (DAC) converter to set the potentials of the reference electrode 

(RE) and working electrode (WE); v) a single-channel, 16-bit analog-to-digital (ADC) converter to 

sample data at high resolution; vi) a pair of sockets to interface with various electrodes; vii) a liquid 

crystal display (LCD) and three buttons to interface with the user; viii) an audio port to communicate 

data; ix) a microcontroller to operate the device; x) a serial port to program the microcontroller; xi) a 

3.7-V lithium polymer battery to supply power to the device; and xii) a pair of 3.3-V voltage 

regulators to supply voltage independently to the digital (microprocessor) and analog (potentiostat 

and DAC) portions of the circuit. We chose the Atmega328 (Atmel) 8-bit microcontroller for its 

compatibility with the popular Arduino development environment and its many, programmable 

channels for input and output. We used a common 2.5-mm, 4-conductor audio cable to connect to the 

audio port of a mobile phone. Figure VII.1 shows a block diagram and circuit schematic that 

describes the electronic design of the device. We include part numbers and further technical details in 

the SI. 

Modes of Electrochemical Detection 

We designed the uMED to mimic the simplicity of a glucometer (whose acceptance by 

users worldwide is well tested) and the versatility of a bench-top potentiostat. The uMED can 
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perform (but is not limited to) the following five important types of electroanalytical techniques: i) 

cyclic voltammetry (CV), ii) chronoamperometry, iii) differential pulse voltammetry (DPV), iv) 

square wave voltammetry (SWV), and v) potentiometry. Each pulse sequence is stored in the device; 

when the user selects the appropriate mode using a button, the uMED acquires and computes data 

automatically without further input from the user. Depending on the selected mode, the 

microcontroller sets the potentiostat to measure current in a two-electrode (chronoamperometry) or 

three-electrode (CV, SWV, DPV) configuration, or voltage (potentiometry) in a two-electrode 

configuration. Figure VII.2 shows the time and voltage sequences implemented for the different 

types of measurements, and, when appropriate, the expected transient behavior of the measured 

current.  

 For CV (Figure VII.2a), the uMED sweeps the potential   applied between the RE and WE 

linearly from    to    (and back again), and measures the current   consumed by the electrochemical 

cell. Steps in voltage      , each held for a duration      , form a staircase ramp with a scan-rate 

           . 

 For chronoamperometry, the uMED applies a potential   between the counter electrode 

(CE) and WE for a fixed duration and measures the transient current  . Figure VII.2b shows an 

example of this pulse sequence in context of a specific application (glucometry). To improve the 

signal-to-noise ratio, the uMED i) begins the measurement at the point where the Faradaic current is 

dominant to reduce the effect of the initially large, non-Faradaic, capacitive current that is not related 

to the concentration of the analyte, and then ii) averages   over a fixed length of time    to decrease 

the influence of noise (which arises primarily from electrochemical and thermal fluctuations) by a 

factor of    .  
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Figure VII.2: Examples of the timed sequence of applied potentials and measurement for a sample 

of possible pulse sequences. (A) Cyclic voltammetry. (B) Chronoamperometry in the context of 

glucometery. (C) SWV and DPV in the context of ASV. 
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 For DPV and SWV, the uMED measures the current generated in the electrochemical cell 

during a series of regular voltage pulses applied between the RE and WE. Figure VII.2c shows an 

example of these pulse sequences used in context of a specific application (anodic stripping 

voltammetry, ASV). This pulse train has a peak-to-peak height   , frequency          
   

(where    is the pulse duration and    is the time between pulses), and is superimposed on a linear 

sweep from    to   . In these differential techniques, the device records the currents    and    

immediately before a change in the applied voltage (i.e. at end of the pulse). 

For potentiometry, the uMED measures the constant voltage E generated by the 

electrochemical species. To prevent destabilization of E, the uMED incorporates operational 

amplifiers with a high input impedance (~10
12

 Ω) that limit the current flowing during measurement 

to < 0.1 pA. 

Electrochemical Characterization 

To compare the performance of the uMED to that of a commercial, bench top 

electrochemical analyzer we used both devices to perform a series of five test measurements for each 

type of pulse sequence; i) CV on a solution of ferricyanide/ferrocyanide redox couple (linear sweep 

from           to          with              and a scan-rate of 50 mV/s); ii) 

chronoamperometry on a solution of ferrocyanide ions (                 ; iii) SWV (   

                                               and iv) DPV              

                                     on solutions of 1-naphthol, which we adapted 

from previous literature (2, 17, 18); and iv) potentiometry on solutions of sodium and potassium 

ions. 

Electrochemical Applications  
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We used the device in four real applications that involve the detection of: i) glucose in blood 

by chronoamperometry ii) heavy metals in water by square wave ASV (SWASV), iii) sodium in 

urine by potentiometry, and iv) the malarial antigen Plasmodium falciparum histidine-rich protein 2 

(PfHRP2) through a sandwich, electrochemical ELISA using chronoamperometry for the detection 

step.  

For these measurements, we used commercial glucose test strips, screen-printed electrodes 

(SPEs), and ion-selective electrodes (ISEs) to evaluate the performance of our device, ensure proper 

calibration, and determine the limits of detection in all modes of measurement. These electrodes are 

readily available, and guarantee that the device is immediately applicable to real-world testing. For 

cost-sensitive applications in the developing world, we would also expect to use inexpensive test 

strips made of paper of other materials (5, 6, 19-22). 

 Detection of Glucose in Blood. For the detection of blood glucose by chronoamperometry, 

we used glucose test strips (TrueTrak, CVS) and real blood samples (Meter Trax Control, Biorad). 

For each measurement, we selected glucometry from the uMED menu, inserted the test strip, and 

applied a droplet of blood (~5 µL, a volume easily obtained from a fingerprick) to the test strip. 

Application of the sample triggered the chronoamperometry sequence (Figure VII.2b), which began 

with an incubation period of 5 s at     followed by a measurement period of 10 s at        . 

The uMED sampled the output signal at 8 Hz and digitally averaged the transient signal over the last 

      of the measurement. 

 Detection of Heavy Metals in Water. For the detection of heavy metals (Zn(II), Cd(II) and 

Pb(II) by SWASV we used SPEs (DRP110-CNT, DropSens) that had three electrodes: i) a WE 

consisting of carbon ink modified by carbon nanotubes (23), ii) a CE consisting of carbon ink, and 

iii) a RE consisting of Ag/AgCl ink. This procedure requires a four-step pulse sequence (Figure 
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VII.2c) that we adapted from Nie et al. (7, 13-16, 19): i) Cleaning: A positive potential (       

             applied to the WE oxidizes any impurities from the electrode surface in order to 

prepare it for the measurement: ii) Deposition: A negative potential (                  applied to 

the WE causes metal ions in solution to reduce onto the electrode surface, if the potential is more 

negative than the reduction potential of the metal. The solution must be agitated during this step so 

that the rate of deposition is not limited by the rate of diffusion: iii) Equilibration: The potential 

maintained at    with no agitation for a short time (30 s) ensures equilibration of the solution: iv) 

Measurement: SWASV (SWV sequence from    to          , at                

            ) causes the metals deposited on the electrode surface to re-oxidize and re-dissolve 

into the solution. The re-oxidation occurs when the potential at the WE matches the oxidation 

potential of the metal, so that the measured current exhibits a different peak for each metal species.  

In ASV, agitation is necessary to facilitate the deposition of the ions onto the electrode. To 

eliminate the need for magnetic stirring in an electrochemical cell (a configuration that would add 

cost and complexity) we, instead, incorporated a small vibration motor (similar to one found in a 

mobile phone) into the uMED to mix the droplet on the SPE and enhance the depositions of ions 

onto the WE during the cleaning and deposition phases. The uMED applies 3.3 V to the motor to 

vibrate the sample at 530 Hz. This approach enabled us to perform a full measurement by: i) mixing 

an 80-μL droplet of aqueous sample containing the metal ions with a 20-μL droplet of the reagent 

solution, on top of the SPE, and then ii) activating the uMED to execute the fully automatic SWASV 

sequence in which the uMED mixes the sample, applies the pulse sequence, extracts the peak heights 

of all elements found, and displays the extracted data to the user.  

 Detection of Sodium in Urine. To detect sodium in urine by potentiometry, we used an ion-

selective electrode (ISE, K27504-30, Cole-Palmer). We prepared a series of urine samples with 
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different levels of sodium from standard urine samples (Liquicheck Urine Chemistry Control, 

Biorad) that adjusted to pH ~ 9.5 using 4-M NH4OH. To perform the measurement, we dipped the 

ISE into each sample, and recorded the potential difference between the RE and the WE. This 

voltage typically stabilized over a period of 0.5 – 10 min, with longer times required for lower 

concentrations.  

 Detection of Malaria. To perform a malaria immunoassay, we used chronoamperometry to 

measure the concentration of PfHRP2 through a sandwich ELISA that we augmented for 

electrochemical detection (7, 13-16). The detecting antibody was conjugated to horseradish 

peroxidase (HRP), which oxidized 3,3',5,5'-tetramethylbenzidine (TMB), a widely used 

chromogenic substrate. We performed this reaction in a 96-well-plate and then pipetted a drop of 

solution onto a commercial SPE (DRP110-CNT, DropSens). The uMED detected the oxidized 

product by performing chronoamperometry for 20 s at         , and sampling the output signal 

at 20 Hz, digitally averaged the transient signal over the last t = 8 s of the measurement. We include 

more details for all measurements in the Supporting Information. 

Acquisition and Transmission of Data  

 Local Acquisition. The uMED contains enough memory (32 kilobytes) to store 

approximately ten different pulse sequences, the code that operates other functions of the device, and 

approximately 500 16-bit data points for on-board analysis. The device can, therefore, automatically 

perform the basic analysis and baseline corrections that are necessary to extract the concentration of 

an analyte from the raw data, display the measured concentration on the screen, and, if necessary, 

(using the method described in the next section) upload the information to a remote facility, without 

user intervention. To analyze the raw data directly, we interfaced a personal computer to the serial 
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port of the uMED through a serial-to-USB converter (FT232RL, FTDI) and used a custom 

application in MATLAB (Mathworks) to acquire and display the received data.  

 Telecommunication. The cellular voice-channel is particularly susceptible to signal 

interruption by burst noise and distortion by voice codecs that render analog modulation 

inappropriate for transmission of numeric data, such as concentrations of analytes or patient 

identification numbers. It is, therefore, simpler to transmit these data by digital modulation that can 

be supplemented with error detection or correction. We implemented a basic frequency-shift keying 

(FSK) protocol to transmit digital data over the audio channel of a mobile phone during a live 

connection. Since mobile phones are designed to transmit audio frequency signals in the range of 

500 to 3300 Hz (24), we divided the available bandwidth in the voice channel into a band for the data 

(f = 500 to 1400 Hz) and a band for the header (f  > 1500 Hz). We further subdivided the data band 

into ten, 100-Hz intervals, each corresponding to a single transmitted integer (0 – 9). We also 

incorporated a 10-bit binary cyclic-redundancy check (CRC), which is an error-detecting code that 

allows the validation of uncorrupted data by the receiving computer and is particularly effective at 

detecting the kinds of burst errors associated with the mobile voice channel (7, 14).   

 A pair of standard, 3.5-mm TRRS stereo connectors and a corresponding four-conductor 

audio cable provided an interface between the uMED and the audio port of a mobile phone. For our 

experiments, we chose a low-end phone from the Nokia 1100 series (1112) as it is still among one of 

the most widely used in developing countries (8, 25, 26). We used the stereo and microphone 

channels of the mobile phone to transmit and receive FSK signals to and from the device. We 

developed a custom application in MATLAB to establish a live voice link, through the VoIP 

application Skype (Microsoft, Redmond WA), between the mobile phone and a remote personal 

computer. This application received and decoded the FSK-based data, and sent an SMS-message to 
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back the mobile phone with contents relevant to the data it had received. Figure VII.S3 shows the 

flow of data in this network. 

RESULTS 

Device Overview.  

 The bill of materials for uMED was ~$25 (Table VII.S2), and the range of electrochemical 

measurements that we could perform were primarily limited by: i) the practical range of applied 

voltages (±2 V); ii) the sample-rate of the ADC (800 Hz); iii) the resolution of the DAC (0.05 mV); 

and iv) the electronic noise floor (          . Within these limitations, the uMED can perform the 

most common electrochemical measurements.  

Device Performance.  

 To test the performance of the device, we compared the results obtained using our device to 

those obtained by a commercial electrochemical analyzer. Figure VII.3 shows the five types of 

electrochemical measurements that we implemented. For CV (Figure VII.3a), 

ferricyanide/ferrocyanide provided a well-understood model electroactive system, as it is the most 

common redox couple used for probing the performance of modified electrodes. For 

chronoamperometry (Figure VII.3b), ferrocyanide provided a model electroactive compound for 

chronoamperometric detection, as it is one of the most common electrochemical mediators that can 

be detected by amperometric methods. For SWV and DPV (Figure VII.3c), 1-naphthol provided a 

common substrate used in electrochemical ELISA. For each measurement we performed the same 

analysis on the uMED and a commercial potentiostat (AutoLab PGSTAT12, Metrohm) using the 

same solutions and batches of test strips. For potentiometry, sodium and potassium ions are 

common, clinically relevant electrolytes that we compared to a commercial ion-selective electrode 

over their physiological range of concentrations.  



325 
 

 
Figure VII.3: (A) A cyclic voltammagram of 2.5-mM ferricyanide/ferrocyanide in 0.1-M KCl. (B) 

A plot of the measured current versus time for chronoamperometry performed on 1-mM ferrocyanide 

in 0.1-M KCl.  (C) Differential-pulse and square-wave voltammagrams of 1-mM 1-naphthol in 

100-mM tris, 100-mM NaCl. (D) Detection of [K
+
] and [Na

+
] with potentiometry in an ionic strength 

adjuster. 
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Detection of Glucose by Chronoamperometry 

Self-testing of blood glucose using a glucometer and disposable test strips is the most 

commonly performed point-of-care measurement globally. To test the performance of the uMED to 

function as a personal glucometer we used both a commercial glucometer (TrueTrak, CVS) and the 

uMED to measure the concentration of blood glucose in a series of real blood samples (Figure VII.4). 

Within the physiological range of 50 – 500 mg/dL, the uMED displayed a linear relationship relative 

to the values measured by the glucometer on the same samples. We also found that, that average 

relative standard deviation (5%) was better than most commercial glucometers (5–20%), and well 

within the performance criteria set out by the U.S. Food and Drug Administration (3). 

Detection of heavy metals in water by SWASV 

 Lead and cadmium are among the most common toxic heavy metals found in water supplies, 

and zinc is an essential micronutrient. These metal ions can be simultaneously detected by ASV. We 

chose SWASV to detect Zn(II), Cd(II) and Pb(II) in water samples because this method provides 

higher sensitivity than, and better discrimination between, metals with similar redox potentials than 

DPV or linear sweep voltammetry. We implemented a three-electrode SWASV measurement 

sequence for detection of heavy metals following the timing previously described. To calculate the 

concentration of analyte, the uMED performed a baseline correction, calculated the difference 

between the maximum and minimum current measured, and subtracted the value of the blank 

(measured on the same SPE). Figure VII.4b shows a calibration plot for detection of lead, performed 

with commercial SPEs. Based on these data, we determined a detection limit of 4.0 μg/L, which is 

less than the minimum of 10 μg/L imposed by the World Health Organization (WHO) (27). We also 

verified the ability of the device to detect Cd, Zn, and Pb simultaneously. Figure VII.4b shows the  
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Figure VII.4: (A) A calibration plot of current versus concentration of glucose in assayed samples of 

human blood measured by chronoamperometry. Inset: A plot of the transient current for five 

representative concentrations of glucose (107, 150, 215, 298, and 408 mg/dL). (B) A calibration plot 

of the peak current versus the concentration of lead measured by SWASV. Upper Inset: The 

simultaneous detection of three heavy metals (Zn, Cd, and Pb) at three concentrations (5, 10, and 

20 μg/L). Lower Inset: A comparison of the peak height for a 10-ng/mL solution of lead with and 

without the use of vibration during deposition. (C) Detection of Na
+
 in assayed human urine control 

samples measured by potentiometry. (D) A calibration plot of the current versus the concentration of 

PfHRP2 in PBS (1x). In all cases, the error bars indicate the standard deviation of n = 7 independent 

measurements.  

 



328 
 

resolved current peaks for various concentrations of these metals; we performed an indepedant 

baseline correction on each peak. 

Detection of Sodium in Urine by Potentiometry 

 Sodium content in urine is often used to evaluate the amount of fluid within the blood 

vessels or the overall balance of electrolytes within the body (28) This test may be used when 

conditions such as hyponatremia (low sodium levels in the body) are suspected (29-31). We 

calibrated the potentiometric response of the uMED using standard solutions of sodium in an 

ionic strength adjustment buffer (4 M NH4Cl with 4 M NH4OH), and then applied that 

calibration to a series of urine control samples (Figure VII.4C). The systematic error of the 

measured concentrations (~8%) falls within the certified range of the assayed urine samples 

(±14%).  

Electrochemical ELISA for detection of Malaria 

 ELISA is a sensitive technique often used for the detection of specific proteins. Although 

quantification of the enzymatically amplified product in an ELISA generally relies on optical 

measurements of absorbance, this biological recognition process can also be measured 

electrochemically (32-35). To demonstrate the capability to perform electrochemical ELISA in a 

research or clinical setting, we measured the concentration of the malarial antigen PfHRP2 in a 

sandwich electrochemical ELISA. The quantification of PfHRP2 is important because the antigen 

correlates with the parasite load in the body (36). Chronoamperometric measurements performed 

by the uMED show a linear response for concentrations of PfHRP2 in the clinically relevant 

range of 0 – 150 ng/mL (37). In this proof-of-principle experiment, the limit of detection was 20 

ng/mL.  

Measurement and Remote Transmission of Results with a Low-End Mobile Phone 
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 We demonstrated the complete capabilities of our system by measuring the concentration 

of glucose in a sample of blood from a single user and reporting the result to a remote computer 

through a low-end mobile phone. Figure VII.5 shows the result of a typical reporting sequence. We 

also performed an analysis of the effect of noise and latency of the voice channel on the delivery of 

FSK-based packets (Fig S4). Briefly, we found that, with our algorithm, the optimal tone length is 

~34 ms (29 symbols per second), which allows the successful delivery of ~1.4 data packets per 

second at an effective throughput of 31 bits per second. We believe that this data rate is sufficient for 

the transmission of the results of POC testing (it requires, on average, only 2 s to send a value and 

receive an acknowledgement of receipt. 
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Figure VII.5: A demonstration of the uMED network in operation. (A, B) The local user made a 

blood-glucose measurement with the uMED. (C) Upon completion, the device automatically began 

to transmit repeated packets of data (series of tones) corresponding to value of the measurement. (D) 

The user then connected the device to a mobile phone and placed a call to a remote Skype-in number. 

(E, F) The remote user recorded the data packet, onto a laptop computer, as a stream of audio 

received through Skype, to a Matlab-based application for data acquisition. This application 

automatically: (i) extracted the data from the recorded audio; (ii) verified that the received data was 

uncorrupted;  (iii) displayed the data to the user; (iv) sent a tone of acknowledgement signifying the 

receipt of an uncorrupted packet of data; and (v) sent an SMS message to the local user containing a 

diagnosis. (G) The local user's uMED received the acknowledgement, which triggered the device to 

cease transmission and to update the displayed text from "SENDING.." to "SENT". (H) Finally, the 

local user received an SMS message to their mobile phone signifying that the measured 

concentration of blood-glucose was "low". In principle, this upload process can also be performed on 

a batch of data collected throughout the day. 
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DISCUSSION 

Electrochemical detection is a very attractive method to perform simple, in-field testing for 

many reasons. i) In contrast to technologies based on optical sensing, the signal measured by the 

electrochemical test is not affected by the color of the sample, the lighting conditions, or the presence 

of particulate matter. ii) The measured current or voltage can be transformed into a numeric output 

by simple electronics and the results of testing can be made “user-blind” in order to eliminate user 

bias, or provide security if privacy is a concern. iii) Electrochemical sensors can be used to detect a 

range of important analytes using different pulse-sequences, while the required electronics can be 

assembled at low cost without sacrificing this versatility.  

 The popularity and applicability of hand-held glucometers demonstrates the advantages of 

electrochemical detection in POC setting. We and others have demonstrated that glucometers can 

quantify analytes other than glucose—such as lactate, cholesterol and ethanol (20), cocaine, 

adenosine, and uranium (38) or a specific DNA aptamer (39). It is, however, impractical to adapt 

a commercial hand-held glucometer for the detection of a broader range of analytes because it is 

engineered to perform a single task, is not designed to be particularly sensitive, and cannot 

perform scanning or multi-step measurements, such as voltammetry. 

 To perform a broad variety of electrochemical measurements requires the design of a 

custom potentiostat. Recently, Rowe et al. (40) demonstrated that a low-cost (~$80) potentiostat 

can be assembled from off-the-shelf components and programmed to perform a variety of 

electrochemical pulse sequences. This device, however, is designed for bench top applications: it 

requires a personal computer and USB connection for operation, full-size expensive electrodes to 

perform measurements, a magnetic stirrer for mixing of samples, and glassware to handle a large 

sample volume. In another paper, Lillehoj et al. (10) demonstrated a similar type of potentiostat 
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coupled to a smartphone, although it could only perform chronoamperometry, and required a 

sophisticated microfluidic device to handle the sample. 

Here, we aim to solve a greater challenge: can a low-cost device provide a nearly “universal 

solution” by overcoming the challenges of performing field-based electrochemical analyses in any 

resource-limited setting. To qualify as a “universal solution”, we have designed the uMED to be, i) 

capable of performing a variety of complete and accurate analyses, ii) simple enough to be used by 

untrained users, iii) require a minimum of resources, iv) be able to acquire, process, display, and 

transmit data automatically, v) be reprogrammable to accommodate new assays, sequences, or 

standards, vi) be applicable in the field using available technology, and most importantly, and v) be 

compatible with any phone and network. 

 The variety of important pulse sequences that the uMED can perform—including 

amperometry, coulometry, voltammetry, and potentiometry—is comparable to an expensive ($1k – 

$50k), commercial, bench-top potentiostat; for all pulse sequences the performance of the uMED 

matched that of the commercial comparison. Differences between the commercial device and 

uMED were primarily caused by variations between test strips and electrochemical fluctuations 

during measurements, and not by differences in the performance of the electronics. 

 These common electrochemical pulse sequences enable a broad range of quantitative 

applications. CV, for example, is the most widely used technique for acquiring information about  

electrochemical properties (e.g. redox potentials) of the species in the reaction mixture and of the 

electrode surface (41, 42) or, in some cases, to is used to assay analytes (43). Chronoamperometry is 

one of most common techniques for monitoring an enzymatic reaction that produces a redox-active 

species, such that the measured current correlates to the concentration of the redox species. This 

technique can be used for the determination of metabolites (20), proteins, or other biomolecules 
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when coupled with electrochemical ELISA (2, 35). DPV and SWV are more sensitive than CV and 

chronoamperometry because they use differential sampling to reduce the influence of non-Faradaic 

currents, and are therefore used when low limits of detection are required. They are also the primary 

techniques used to detect trace amounts of heavy metals (44), and can also be used for 

immunoassays in which a tracer antibody is labeled with an enzyme (e.g. electrochemical ELISA), 

metal nanoparticle, or quantum dot (2, 44). Potentiometry with ion-selective electrodes is widely 

used for the detection of electrolytes (e.g., Na
+
, K

+
, Cl

-
, and NH4

+
) (45). Potentiometry is also used 

to detect biomarkers for liver function, such as blood urea nitrogen (BUN) and creatinine, by 

converting urea and creatinine into ammonium ions that can be detected by an ammonium-

selective electrode (46). 

 We have also demonstrated the applicability of the uMED in a variety of important 

applications and contexts. The uMED detected blood glucose in real blood samples with a linearity 

and precision equivalent to that of a commercial hand-held glucometer. In water samples, the uMED 

provided a comparable limit of detection to other portable electrochemical detectors for heavy 

metals (47); this result indicated that this device can enable a broad spectrum of users—from 

concerned citizens to budget-constrained municipalities—to perform in-field agricultural or 

environmental monitoring of water quality. The uMED also measured the sodium content in 

urine samples with acceptable accuracy over the clinically relevant range - an indication that this 

device can be used for commonly performed clinical tests for electrolytes. The vast and fast-

growing field of ion-selective electrodes also provides many opportunities to couple new 

electrodes with the uMED device to measure diverse analytes (48). The use of the uMED device 

for electrochemical ELISAs could benefit researchers studying diseases such as malaria, as well 

as aid in the development of high sensitivity diagnostics. The approach can also be generalized to 
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many other assays without significant modification of the protocol because we selected the 

commonly used substrate TMB for HRP-based systems.   

The use of commercially available screen-printed electrodes and test strips ensures 

reproducibility, guarantees that the device is useful immediately, and reduces the required-sample 

volume to a single droplet. In principle, the device is also compatible with other low cost 

technologies that can give comparable performance, such as electrochemical microfluidic paper 

analytic devices (EµPADs) that we and others have developed, (19-21, 49, 50).  

 The compatibility of the uMED with the popular Arduino development environment makes 

it extremely simple to reprogram the device to alter or add pulse sequences, and may extend the use 

of the device to educational contexts as well. The voltage range, sensitivity, accuracy, and speed (e.g. 

for dielectric spectroscopy) can all be improved with simple modifications to the system and without 

significantly affecting the design or cost of the device. The addition of an optical detector and/or 

source, in principle, would enable electro-chemiluminesence, fluorometry, spectrophotometry, etc. 

While the throughput of audio data over voice that we achieved was acceptable for low data-rate 

POC applications, if necessary, it can be increased substantially by implementing more sophisticated 

error correction and adding a dedicated tone generator (51). 

 Mobile phone and network compatibility remains a challenge for all current hybrid 

mHealth/POC devices because each is typically developed to operate with a specific smartphone that 

requires custom applications. Nearly 2.8 billion people however, continue to use low-end phones 

(62% of worldwide users of mobile phones), and, although the use of smartphones is rising rapidly, it 

is projected that by 2017 nearly 2.6 billion mobile subscribers will remain without a smartphone 

(52). A majority of these low-end phones are, and will be, used in low- to middle- income countries 

such as those found in Sub-Saharan Africa as well as Brazil, Russia, India, China, and Indonesia. 
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These regions alone will account for nearly two billion of the users of low-end phones by 2017 

(Figure VII.S5). Furthermore, although some non-smartphones (feature-phones) may have limited 

Internet access via 3G, it is impractical to develop compatibility with all the hundreds of variations of 

software applications, operating systems, types of data ports, and cellular networks. It is clear that 

compatibility with low-end phones and 2G networks, especially in resource-limited applications, will 

be a requirement for years to come. 

We have designed the uMED to perform electrochemical analyses entirely in a handheld, 

stand-alone format (that is, without a mobile phone), and to require only a mobile phone to transmit 

data. There are a number of benefits to this approach: i) the uMED does not depend on the mobile 

phone for power, and can last for months to years on a single battery charge (smartphones, by 

contrast, have notoriously short battery lives); ii) the uMED can be used by someone who does not 

own a mobile phone to collect data; and iii) the uMED does not depend on any particular type of 

phone. Our approach to transmit diagnostic data by audio-based frequency shift keying i) is 

compatible with any phone (from low-end phones to smartphones); ii) is compatible with all 

generations of cellular networks (2G-4G); iii) does not require any phone-based applications to 

operate; and iii) guarantees, in combination with our choice of error-detecting code, that uncorrupted 

data can be uploaded to "the cloud". 

CONCLUSION 

 The uMED is an inexpensive, versatile tool that links all the most common electrochemical 

methods with the telecommunication technology most widely available across the globe. The unique 

combination of capabilities of the uMED enables sensitive and quantitative analysis in resource 

limited settings by: i) eliminating the need for expensive laboratory equipment (such as a commercial 

potentiostat, pH meter, glassware, or a magnetic stirrer); ii) reducing the need for expensive or 



336 
 

limited resources (such as reagents or blood samples) by reducing the sample volume to a single 

droplet (~10 – 100 μL, depending on the application) on a test strip or SPE; iii) enabling remote 

expertise, monitoring, or archiving to be provided using any available mobile technology; and iv) 

minimizing the training required to perform sophisticated electrochemical analyses by using 

appropriate design to make the system as simple as possible. All that is required is to insert the strip, 

select the test, apply the sample, and place a phone call.  
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EXPERIMENTAL  

Device Design and fabrication 

 We used the microcontroller to sample and compute data acquired from the potentiostat, to 

encode and decode frequency-modulated data, and to display a graphical user interface (GUI) on the 

LCD. We configured six digital input/output channels to operate the external DAC, ADC, and LCD 

over a serial peripheral interface (SPI) protocol, and one digital output channel to transmit data over 

audio by frequency shift keying (FSK). We configured four analog input channels to sample the 

voltages associated with the potentiostat, one analog input channel to receive data over audio, and 

three digital input channels to detect the states of the buttons. 

Device Fabrication 

 We mounted these electronics on a custom-made printed circuit board (Advanced Circuits) 

and housed all components in a plastic case that we fabricated by 3D-printing (Fortus 250mc, 

Stratasys). The assembled device measured 56 mm x 106 mm x 18mm and weighed 63 g. The bill of 

materials was $25 (not counting the case, and assuming a purchase volume of at least 1000 

components each). We show the circuit schematic in Figure VII.S1 and the bill of materials in Table 

VII.S2. 

Design of the Potentiostat 

Together with a feedback resistor   , the op-amp controlling the working electrode formed a 

transimpedance amplifier (TIA), converting the current   into an output voltage           

while maintaining the working electrode at   , set by the DAC. The feedback resistance    set the 

sensitivity of the system. We chose         for all measurements, and suitable DC offsets for all 

electrodes in order to place the desired measurements in the range of the potentiostat.  
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Figure VII.S1: Full Circuit Diagram for uMED. 
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Description Part No Quant. Price Ea. Total Vendor 

JST Right-Angle Connector 455-1719-ND 
 

1 $0.07 $0.07 Digikey 

Polymer Li-Ion Cell (3.7V, 210mAh) PL-651628-2C 
 

1 $2.65 $2.65 BatterySpace 

IC LDO Regulator (3.3V, SOT23-5) 576-1259-1-ND 
 

2 $0.39 $0.78 Digikey 

Microcontroller (ATMEGA328P) 455-1719-ND 
 

1 $1.77 $1.77 Digikey 

2.5 mm 4 Conn Audio Jack (SMD) CP1-42534SJTR-ND 
 

1 $0.39 $0.39 Digikey 

AD8608 Quad R-R Opamp AD8608ARUZ-ND 
 

1 $1.96 $1.96 Digikey 

DAC8552 16-bit DAC (Dual Channel) 296-20676-1-ND 
 

1 $3.99 $3.99 Digikey 

LTC2470 16-bit ADC (Single Channel) 52R9827 
 

1 $2.37 $2.37 Newark 

Graphic LCD 84x48 - Nokia 5110 SKU091069 
 

1 $2.83 $2.83 Banggood 

Resonator 8.00 MHz Ceramic (SMD) 490-1195-1-ND 
 

1 $0.25 $0.25 Digikey 

Resistor: 0603 n/a 11 $0.00 $0.02 Digikey 

Capacitor: 0402 (<= 0.1 uF) Ceramic n/a 18 $0.00 $0.03 Digikey 

Capacitor 0402 (1uF) Ceramic 587-1231-1-ND 
 

1 $0.01 $0.01 Digikey 

Capacitor 0805 (10uF) Ceramic 587-1300-1-ND 
 

4 $0.01 $0.06 Digikey 

Capacitor 1206 (10uF) Tantalum 495-2174-1-ND 
 

2 $0.04 $0.08 Digikey 

Analog Switch SPST (Dual Channel)  MAX4643 1 $1.01 $1.01 Mouser 

Analog Switch SPDT (Single Channel)  MAX4644 1 $0.86 $0.86 Mouser 

Vibration Motor, Flat Coin 28821-ND 
 

1 $3.99 $3.99 Digikey 

PCB custom 1 $1.03 $1.03 4PCB 

  
TOTAL $24.15 

 
 

Table VII.S2: Bill of Materials for the uMED. For the price, we quote for >1000 units. 
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To set    and   , we chose a two-channel, 16-bit DAC (DAC8552, Texas Instruments) 

programmed by the popular 3-wire SPI protocol. The smallest potential step required in our 

applications was ~5 mV, and since the nonlinearity of most DACs is within a few least-significant 

bits (LSB), the 16-bit resolution provided us with sufficient voltage resolution (3.3 V / 2
16

 ~ 0.05 

mV) to ensure that any non-idealities in the voltage generation were at most a few percent of the 

smallest voltage steps. We updated the output of the DAC at a rate ~2 kHz although, in principle, the 

system could support rates up to ~20 kHz if necessary. To sample the output signal with high 

resolution, we also incorporated a 16-bit ADC. With its required 1.25-V reference, this ADC 

provided us with a resolution of 1.25 V / 2
16

 ~ 20 µV, although the practical minimum voltage that 

we could resolve was limited by the voltage noise of           , as measured by the ADC, which 

for        , corresponded to a current resolution of         .  For most measurements, however, 

we averaged the signal over 5 seconds (100 consecutive data points) to reduce the electronic noise to 

          . We found, in all cases, that the electrochemical noise was substantially (10 – 100x) 

greater than the electronic noise. Therefore, for all pulse sequences, we also configured the uMED to 

apply a 30-point smoothing function on all traces automatically to reduce the electrochemical noise. 

After the uMED performed these various forms of signal averaging automatically, it then extracted a 

concentration by comparing to a saved calibration or sent the acquired values to a PC for further 

analysis. 

Acquisition of Data 

To evaluate the performance of the device, however, we needed to extract the raw data from 

the device. We interfaced with and collected raw data from the uMED by connecting a personal 

computer to the serial port of the uMED through a serial-to-USB converter (FT232RL, FTDI). We 

developed a custom application in MATLAB (Mathworks, Natick MA) to acquire, convert, and 
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display raw data received over USB from the uMED. Once we calibrated the uMED for 

chronoamperometry, SWASV, and potentiometry, we programmed the microcontroller to perform 

these measurements (e.g. signal averaging, baseline correction, peak extraction) automatically, 

without an external computer. 

Network Connection, Packet Structure, and Error Correction 

 Figure VII.S3 shows a flow of data from a POC measurement to a remote facility. We 

employed a simple packet structure with two sections: i) a header to identify the type of measurement 

being transmitted (glucose, lead, sodium, or malaria) and ii) a body to store the numeric data, 

modified by the CRC. The header contained a single 50-ms tone that identified whether the data 

being transmitted corresponded to glucose (f  = 1600 Hz), lead (f  = 1700 Hz), sodium (f  = 1800 

Hz), or malaria (f  = 1900 Hz). The body contained an integer-valued, base-10 representation of the 

concentration of a single measured analyte, encoded with the CRC. We encoded each integer in the 

sequence by a 50-ms tone at a frequency corresponding to the integer value. Since the ATmega328 

can only output digital signals, we represented data as a sequence of square wave tones and passed 

the output through a passive, low-pass filter to attenuate all but the lowest-order, sinusoidal 

harmonic. In our implementation, we used a 10-bit CRC (0b1000000001) that enables detection of 

errors for sent values up to 2
10

 = 1024. For larger values, it would be necessary to use a longer CRC 

for to reliably detect errors. 

Power Consumption 

 The total number of measurements   the uMED can perform on a single battery charge 

can be calculated by  

    
     

       
,  (1) 
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Figure VII.S3: A flow chart describing the sequence of operations involved establishing error-free 

communication over a mobile voice network between the uMED and a remote computer. We 

developed a custom application in MATLAB to i) sample the audio stream received by VoIP,  ii) 

analyze and identify the frequency content of each packet, iii) convert the sequence of tones into a 

corresponding sequence of integers, iv) identify the type of measurement, v) verify the integrity of 

the received data with a CRC, and if error-free, vi) log and display the data to the remote user, vi) 

play an acknowledgement (ACK) tone (5 s, 500 Hz) to the VoIP application, and vii) send the 

decoded value, or a diagnostic interpretation, to the local user's mobile phone in the form of a text 

message over short messaging service (SMS), sent through the web-portal of the chosen mobile 

carrier (here, AT&T). We configured the uMED to send packets continuously until it received an 

ACK from the remote computer and, upon receipt, to cease the transmission of data packets and 

display a message informing the user.  
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where       is the battery lifetime,     is the average current consumption, and   is the total 

time spent in operation. The rechargeable, 3.7-V lithium-polymer battery (PL-651628-2C, AA 

Portable Power Corp) that we used had a lifetime              . The uMED consumed 

              during standby (no measurement). The current consumption during 

measurements ranged from               for glucometry (          ) to              

for ASV (          ), for which the power consumption was dominated by the vibration 

motor used for mixing. For an initially fully charged battery, these values indicate that the uMED 

can perform a maximum of             glucose measurements or           ASV 

measurements before depletion. Depending on which measurements are performed and the 

frequency of use, the uMED can, therefore, last from one to several months before needing to be 

recharged. 

MATERIALS AND METHODS 

Chemical Reagents 

 All chemicals were used without further purification. For evaluating the performance of the 

different electrochemical pulse sequences we used potassium ferrocyanide, potassium ferricyanide, 

1-napthol, sodium chloride, and potassium chloride purchased from Sigma-Aldrich. For detection of 

heavy metals we used sodium chloride (NaCl, 99.999%), sodium acetate Trace SELECTA 

(99.999%), water trace SELECT Ultra (AGS reagent), bismuth standard for AAS (999 ± 4 mg/L), 

cadmium standard for ICP (1000 ± 2 mg/L), zinc standard for ICP (1000 ± 2 mg/L), and lead 

standard solution for ICP/OCP (10.127 ppm) purchased from Sigma-Aldrich. For detection of 

recombinant PfHRP2 (PIP001 from AbD Serotec) we used 96-well plates (Costar 3590) from 

Corning, anti-Plasmodium falciparum antibody (ab9206) and anti-Plasmodium falciparum 

horseradish peroxidase conjugate detection antibody (ab30384) from Abcam, bovine serum 
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albumin (BSA), and Tween-20 from Sigma-Aldrich, and Ultra TMB-ELISA from 

ThermoScientific. For the determination of glucose in assayed blood samples and the 

determination of sodium in assayed urine samples we used the Liquicheck Urine Chemistry 

Control Levels 1 and 2 (LOT 64360) and Trilevel minipole control Meter Trax Control (LOT 92510) 

from BioRad. 

Materials and Instrumentation 

 For evaluation of chronoamperometry, cyclic voltammetry, SWV, and DPV we used 

unmodified screen-printed carbon electrodes (DRP110) from DropSens. For potentiometry we 

used ion-selective electrodes for sodium (K27504-30) and potassium (WU-27504-26) purchased 

from Cole-Palmer. For detection of glucose we used commercial test strips (TRUEtrack, Nipro 

Diagnostics). For SWASV and chronoamperometric detection of PfHRP2 we used carbon 

nanotube-modified SPEs (DRP110-CNT) from DropSens, for enhanced sensitivity.  

Measurement Procedure 

 For measurement of glucose we used a new test strip for each measurement. For detection of 

heavy metals, we measured the entire dilution series (6 samples, including the blank) on a single SPE 

in order of increasing concentration. We performed seven replicates of this series of measurements, 

each with a new SPE. We conditioned each new SPE by first performing a full sequence on a sample 

with no metal ions to ensure the electrode was free of any contaminants that could be removed by 

sampling conditions. After the cleaning step of each measurement, we rinsed the electrode with 

ultrapure DI water and dried with N2. For detection of malaria, we measured the entire dilution series 

(5 samples, including the blank) on a single SPE in order of increasing concentration. We performed 

seven replicates of this series of measurements, each with a new SPE. Before taking measurements 

with a new electrode, we performed chronoamperometry at         for 40 s on a solution of 



350 
 

PBS to ensure the electrode was free of any contaminants that could be removed by sampling 

conditions. Each SPE was rinsed with PBS and dried with N2 between each measurement. 

 

Glucometry 

 The glucose test strips that we use have a pair of electrodes (WE and CE) defined by carbon 

ink, and all of the necessary reagents (e.g., enzymes and electrochemical mediator) pre-stored on the 

test strip. A typical hand-held glucometer uses a two-electrode (counter and working) potentiostat to 

apply a simple voltage sequence that consists of an incubation period at zero applied voltage, 

followed by a measurement period at a fixed applied voltage (typically        ). The glucose 

oxidase (an enzyme) present in the test strip converts glucose (the analyte) and potassium 

ferricyanide (an electrochemical mediator) to gluconic acid and potassium ferrocyanide, the 

oxidation of which can be measured by chronoamperometry. We adapted this type of sequence and 

programmed the uMED to first apply         to test for the presence of the sample in the reaction 

zone (Figure VII.2b). With the test strip inserted, but no sample present, there were no mobile ions to 

carry charge (current) between the electrodes. When we placed a sample on the test strip, the 

presence of ions in the solution gave sufficient conductivity to the test zone that it could be measured 

as current. 

Detection of Heavy Metals by SWASV 

To test the device for detection of metals (Zn(II), Cd(II) and Pb(II)) in water samples we first 

prepared a solution containing all the necessary reagents: 2 mg/L of bismuth ions as a co-deposition 

agent in a solution of 0.5-M acetic acid, 0.5-M sodium acetate, and 0.25-M sodium chloride. Next we 

prepared a series of sample solutions of Zn, Cd, and Pb ions (blank and 2 – 40 μg/L each) in water. 

To measure the concentration of these ions, we mixed 20 μL of the reagent solution with 80 μL of 
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the sample solution on the top of the SPE and activated the uMED to perform the SWASV sequence 

automatically.  

 

Malaria Immunoassay by with Chronoamperometric Detection 

 Preparation of the 96-well plates was performed following the procedure by Noedl et al. 

(1-3). We coated high-binding 96 well plates with 100 µl of 1.0-μg/mL solution of anti-

Plasmodium falciparum antibody in PBS (1x). The plates were sealed and incubated overnight at 

4 °C after which the supernatant was discarded and the wells were incubated with 200 μL/well of 

2% bovine serum album (BSA) in PBS for 2 hrs.  After washing three times in 0.05% Tween-20 

PBS, the plates were sealed and stored at -20 °C until use. Recombinant PfHRP-2 was diluted in 

PBS to the desired concentration (0 - 200 ng/ml) and 100 μL was added to each well followed by 

1 h incubation at RT. The wells were washed three times with PBS-Tween solution before the 

addition of 100 μL anti-Plasmodium falciparum horseradish peroxidase conjugate detection 

antibody at a concentration of 0.5 µg/ml in a solution of PBS with 2% BSA and 1% Tween-20. 

After 1 h incubation at RT, wells were washed in PBS-Tween solution three times. The final 

washing solution was left in the well until just before the addition of 100 μL of Ultra TMB-

ELISA. The TMB solution incubated at RT for 2 min. in the dark before the reaction was 

stopped with 50 μL of 10% sulfuric acid (v/v). A 75-μL drop was immediately placed on the 

SPE. Chronoamperometry was performed at E = 0.2 V for 20 s. The potential used for 

amperometry was selected by first performing at CV scan from E1 = 0 V to E2 = 0.7 V at a scan-

rate of 0.03 V/s step size of Estep = 2.5 mV. The position of the oxidation and reduction peaks is 

highly dependent of the pH of the system. We chose E = 0.2 V to ensure that reduction can be 

completed with minimal contribution from oxidation.  
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 We programmed the uMED to automatically check whether the output current followed 

the expected chronoamperometric sequence (monotonically increasing and reaching a stable 

plateau after ~ 20 s) by automatically discarding any sequences for which              

         (a value that we determined empirically) for any time  . This process is similar to the 

way a hand-held glucometer displays an error message when the chronoamperometric sequence 

yields data that is not consistent with the expected transient behavior. 

Verification of Packet Structure and Data Throughput 

It is important that physiological, medical, and environmental data received by a remote 

computer be correct. Our choice of CRC error detection guarantees that any three-digit value can be 

determined to be completely error free after transmission. This reliability, however, does not prevent 

corrupt data from arriving at the destination, effectively slowing down the transmission rate to the 

time it takes to deliver a correct packet of data. The rate at which packets are corrupted depends on 

the quality of the data channel and the method of decoding used. Figure VII.S4a-c shows a 

frequency-modulated packet with a randomly chosen value, its frequency spectrum, and its decoded 

value. We sent the data from the uMED, through a Nokia 1112, over the AT&T voice network, and 

received it with through a custom MATLAB application via Skype on a remote personal computer. 

We sampled the data at 44.1 kHz, and performed a rolling Fast Fourier Transform to analyze the 

frequency content of the packet and decode the sequence of integers. We characterized the effect of 

errors during transmission on the average throughput of data by determining the packet success rate 

(PSR) by 

      
                     

              
,  (1) 
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Figure VII.S4: An example of a successfully transmitted packet and an analysis data throughput 

versus symbol rate. We encoded the randomly chosen value 274 mg/dL of glucose (encoded as 2-8-

1-1-2-4-11 after CRC; the 11 corresponds to glucose) and transmitted it over an active voice 

connection. (A) The audio signal received by the DAQ application. (B) An FFT of the entire packet 

demonstrating the presence of seven distinct frequency signals and the values to which they 

correspond. (C) The decoded packet containing the sequence (read in reverse) 2-8-1-1-2-4-11, 

which, after removing the CRC value, decodes to the value 274-11, or 274 mg/dL of glucose. (D) 

The overall PSR versus the symbol rate. (E) The PR versus the symbol rate. (F) The EPR versus 

the symbol rate (           . The optimal EPR = 1.4 packets/s occurred at 29 symbols/s. 

The error bars in (D) signify the standard error of the mean       
          

 
, where   is the 

packet success rate, and      . The error bars in (B) are propagated from (A) by      

  
    

    
     

 

  
    

   
    

 

, where     is the measured standard deviation in PR. 
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and the effective packet rate (EPR) by           , where    is the raw packet rate (packets / 

s). The EPR quantifies the average rate at which correct packets are received, and signifies the 

average throughput of uncorrupted data.  

 Figure VII.S4d-f shows how the PSR and EPR depend on the symbol rate—the rate at which 

individual digits are transmitted. We characterized the PSR and its effect on the EPR by i) 

establishing a live connection to a remote computer through a mobile phone, ii) sending a sequence 

of packets containing random numeric data, encoded by CRC, from the uMED to the remote 

computer, and iii) comparing the received packets with the sent packets to determine the fraction of 

corrupted packets. We found that the PSR was constant around 98% at low symbol rates, but 

increased dramatically above 25 symbols/s, where the symbols begin to be too short to be properly 

identified with a simple FFT due to the distortion present in the voice channel. We found that the 

EPR is maximized at 29 symbols/s, indicating an optimal tradeoff between PER and the PR. Each 

packet consisted of average of six digits of CRC-encoded, numeric data (20 bits)— including three 

digits of underlying numeric data (10 bits)—and header (2 bits). At the maximal EPR (1.4 packets/s), 

the effective bitrate of CRC-encoded data and header was 31 bits per second (bps) and the effective 

bitrate of the underlying data and header was 17 bps. 

Although we used a binary header, there was enough bandwidth to signify up to 16 different 

identifiers (4 bits), which would increase the effective bit rates by 3 bps each. We never identified an 

instance where the CRC failed to properly discriminate between corrupted and uncorrupted packets 

of data. When receiving data from a user, the remote computer responds with an ACK as soon as it 

receives a single uncorrupted packet. The signal delay between the user and the remote computer can 

vary depending on signal strength and other factors, but is usually approximately 0.5 seconds. We 
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found that at the optimal EPR, the median time a user had to wait for an ACK after beginning to send 

data was 2.2 seconds.  

Mobile phone usage in the developing world 

 We compiled data on mobile phone usage for Brazil (1, 3-6), Russia (4-9), India (7-10), 

China (10, 11), Indonesia (11), SSA (2, 12) and present the data in Figure VII.S5. 
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Figure VII.S5: Comparison of relative usage of smartphones vs. non-smartphones (low-end phones) 

in Brazil, Russia, India, China, Indonesia, and Sub-Saharan Africa (SSA) in (A) 2014 and (B) 2016-

2017 (projected), and (C) combined. 
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