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Abstract

This dissertation presents the applications of state-of-the-art computation tech-

niques and data analysis algorithms in three physical and biological problems: assem-

bling DNA pieces, optimizing self-assembly yield, and identifying correlations from

large multivariate datasets. In the first topic, in-depth analysis of using Sequencing by

Hybridization (SBH) to reconstruct target DNA sequences shows that a modified re-

construction algorithm can overcome the theoretical boundary without the need for

different types of biochemical assays and is robust to error. In the second topic, consis-

tent with theoretical predictions, simulations using Graphics Processing Unit (GPU)

demonstrate how controlling the short-ranged interactions between particles and con-

trolling the concentrations optimize the self-assembly yield of a desired structure, and

nonequilibrium behavior when optimizing concentrations is also unveiled by leverag-

ing the computation capacity of GPUs. In the last topic, a methodology to incorporate

existing categorization information into the search process to efficiently reconstruct

the optimal true correlation matrix for multivariate datasets is introduced. Simulations

on both synthetic and real financial datasets show that the algorithm is able to detect

signals below the Random Matrix Theory (RMT) threshold. These three problems

are representatives of using massive computation techniques and data analysis algo-

rithms to tackle optimization problems, and outperform theoretical boundary when

incorporating prior information into the computation.
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Things don’t have to change the world to be important.

Steve Jobs

0
Introduction

Scientific computing60,46 is ubiquitous in physical 36,17, biological48,63 and engineering

sciences 58,78. Recent advances in High Performance Computing (HPC)42,99 open new

opportunities to tackle analytically complicated scientific problems, such as those in

astrophysics and turbulence65,44, with modern computation techniques. Due to the

proliferation of data collection in almost every area of science, the enormous datasets

now routinely encountered in sciences, or the so-called Big Data66, provide another
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incentive to rely on computations, as well as its marriage with data analysis algorithms,

to synthesize, interpret and give meaning to the data in the context of its scientific set-

ting. In this dissertation, I present the applications of state-of-the-art computation

techniques and data analysis algorithms in three representative physical and biologi-

cal problems: assembling DNA pieces, optimizing self-assembly yield, and identifying

correlations from multivariate datasets.

Chapter 1 is about the reconstruction algorithm in Sequencing by Hybridization

(SBH) 13,30,29,57. SBH uses the binding characteristics of a library of short DNA probes,

or oligonucleotides, to reconstruct a target DNA sequence. Traditionally, SBH has been

carried out using microarrays27,41, but recent advances in microfluidics have created

the possibility of carrying out the hybridization reactions inside small droplets in

high throughput6,5,gnu. This creates new opportunities for using SBH creatively for

sequencing. The reconstruction algorithm after collecting data from hybridization

experiment is a critical part of SBH. Existing Algorithms 33,18,22 have been focusing on

accommodating biochemical errors. However, in these approaches, the length n of a

uniformly random sequence that can be unambiguously reconstructed with probes of

length l is limited to n = O(2l) due to repetitive subsequences causing reconstruction

degeneracies 31,11, while increasing the probe length exponentially increases the probe

library size, and so forth the sequencing cost. This degeneracy essentially dims SBH

from the fast growing sequencing industry. In our research, we however discover that

although ambiguity emerges when sequencing long targets, there are finite number of

possible reconstructed sequences which can be exhaustively enumerated, and incor-

porating some existing information later can identify the unique solution from a can-

didate solution set. Taking advantage of this discovery, this chapter presents a swarm

intelligence 23 based SBH reconstruction algorithm 87 that overcomes the theoretical
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boundary without increasing the probe length or the need for different types of bio-

chemical assays, and is robust to error. It opens the potential to sequence long DNAs

with SBH.

Chapter 2 discusses optimizations in self-assembly 100,101,102, a process where sim-

ple building blocks spontaneously assemble into structures of higher complexity.

Recent experimental advances have opened up the possibility of equilibrium self-

assembly of functionalized nanoblocks with a high degree of controllable specific in-

teractions 88,39,81,96. In recent years, researchers have been actively searching for design

methods to optimize the assembly yield of specific structures 50,43,68, with the hope that

one day we can manufacture large structures in batch with self-assembly. In this chap-

ter, in light of examples from colloidal engineering where particles interact in short

range69, I explore two self-assembly optimization methods using massive Dissipative

Particle Dynamics (DPD)49,40 simulation: controlling the short-ranged interactions

between particles 50, or coloring, and controlling the concentrations of different types

of particles in the system. In particular, a state-of-the-art parallel computing technique,

the General-Purpose Graphics Processing Unit (GPU)75,79,80,24, is applied to achieve

efficient computation when simulating particle systems with numerous particles. As a

result, a large particle system reaches equilibrium in significantly shorter computation

time than its serial counterpart. Results show that the yield optimization are consis-

tent with theoretical predictions 50,70. Leveraging the enormous computation capacity

of GPUs, we are also able to uncover the nonequilibrium, or finite time behavior of

a particle system when optimizing concentrations. This is achieved by simulating a

large number of independent particle systems in parallel and aggregating data from all

systems.

Chapter 3 presents an effort of identifying correlations from large multivariate
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datasets. Technological advances enable the measurement of an ever increasing number

of variables during an experiment. In biological settings this occurs, for example, when

measuring the expression levels of all genes in a cell at different time points or when

comparing gene expression levels between individuals 85,7,47. Examples from other fields

include the time series of stock prices 86,61, weather patterns90, and the study of net-

works71,72. In these settings, the number of variables p is comparable to, or even larger

than the number of samples n. A critical question when analyzing such multivariate

datasets is to understand the correlations between variables, and their clustering so

forth. A common technique for identifying true correlations from sample correlation

matrix is the Principal Component Analysis (PCA) 54,53, where the largest eigenvalues

of the sample correlation matrix are assumed to correspond to true correlations be-

tween sets of variables rather than spurious correlations caused by sampling noise. The

Random Matrix Theory (RMT) 12,32,52, on the other hand, provides a set of methodolo-

gies to facilitate interpretations of these eigenvalues, including determining a thresh-

old to seperate informative eigenvalues and noise. This chapter presents an algorithm

based on simulated annealing 59,97 to efficiently traverse the likelihood landscape and

search for the optimal true correlation matrix of a particular pattern. Further compari-

son shows that its signal detection power is equivalent to RMT’s; however, when some

existing information is incorporated into the algorithm, it is capable to identify signals

below the RMT threshold. The efficacy of the algorithm is tested on both synthetic

and real financial datasets.

The above mentioned three topics are superficially independent, yet intrinsically

they share the same spirit of leveraging computation and data analysis techniques to

tackle optimization problems, and outperform theoretical boundary when incorpo-

rating prior knowledge into the computation. The next three chapters elaborate these
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three problems one by one. Chapter 4 Concludes the dissertation.
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Learn from yesterday, live for today, hope for tomorrow.

The important thing is not to stop questioning.

Albert Einstein

1
Breaking the Boundary of

Sequencing by Hybridization

Sequencing by Hybridization (SBH) 13,30,29,57 reconstructs an n-long target DNA se-

quence from its biochemically determined l-long subsequences. In the standard ap-

proach 84, the length of a uniformly random sequence that can be unambiguously

reconstructed is limited to n = O(2l) due to repetitive subsequences causing recon-
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struction degeneracies 31,11. In this chapter, I present a modified sequencing method 87

that overcomes this limitation without the need for different types of biochemical as-

says and is robust to error.

The organization of the chapter is as follows. Section 1.1 gives an overview of SBH

and its experimental methods; Section 1.2 introduces the reconstruction degeneracy

of SBH; Section 1.3 presents the graph based reconstruction model which can accom-

modate moderate error rates; Section 1.4 thoroughly discusses the cause of the recon-

struction degeneracy; Section 1.5 presents a modified reconstruction algorithm that

overcomes the degeneracy; Section 1.6 shows simulation results on both random and

natural DNA sequences, and Section 1.7 summarizes the chapter.
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1.1 SBH Introduction

Figure 1.1 shows a schema of the SBH procedure. A single-strand target sequence is

tested with each probe in a probe library, all 3-mers as an example, for hybridization

possibilities. When a probe binds to the target, it means that its contrary exists as a sub-

sequence of the target. Then we collect all probes that bind to the target, denoted as

the spectrum, and use their overlap characteristics to reconstruct the target. Figure 1.2

shows two methods to carry out the SBH. Classically, SBH is carried out on microar-

ray 27, where hybridization reactions between the target and different probes are per-

formed at many microscopic DNA spots. Recent works in microfluidics, however,

open the possibilities to wrap the target and probes inside microdroplets, and the hy-

bridization reactions are triggered when two droplets coalescence6,5,gnu. This technol-

ogy could revolutionize SBH, and even the DNA sequencing industry, as the its cost

to perform sequencing is dramatically lower than classical methods. Therefore, it is

valuable to revisit the reconstruction algorithm of SBH.
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Figure 1.1: A schema of the SBH procedure. A single-strand target sequence is tested with each probe

in a probe library, all 3-mers as an example, for hybridization possibilities. When a probe binds to the

target, it means that its contrary exists as a subsequence of the target. Thenwe collect all probes that

bind to the target, denoted as the spectrum, and use their overlap characteristics to reconstruct the

target.
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Figure 1.2: Twomethods to carried out SBH: themicroarraymethod (A) and themicrofluidic method

(B). In themicroarraymethod, hybridization reactions between the target and different probes are

performed at manymicroscopic DNA spots. In themicrofluidic method, target and probes are wrapped

insidemicrodroplets, and the hybridization reactions are triggeredwhen two droplets coalescence.

Themicrofluidic method is significantly more efficient and economic than themicroarraymethod. It

opens the opportunities to revolutionize the DNA sequencing industry.

1.2 SBH Limitations

A fundamental limit to the length n of the target sequence that can be sequenced by

probes of length l follows from an information theoretic bound: since there are 4l

probes in a standard probe library, each of which may or may not bind to a subse-

quence of the target, the probe library can give 24l possible measurements; comparing

this with the 4n possible target sequences implies that for a unique measurement to be

associated with every possible target sequence, we need 24l ≥ 4n, or n ≤ 4l/2. Hence,

for probes of length l = 7, the maximum target sequence length is n = 47/2 = 8192.

In fact, the maximum length of the target that can be sequenced is much below the

above threshold due to repetitive subsequences. If, for example, two oligonucleotides

in the spectrum, b and c, have their (l− 1)-mer prefixes both identical to the (l− 1)-mer

suffix of a third oligonucleotide a, then there are two possible target sequences, with

either b or c as the successor of a, that are consistent with the probe binding character-
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istics. Analysis of uniformly random target sequences shows that this results in an SBH

reconstruction boundary n ≤ 2l 31,11, reducing the maximum length of a target that can

be sequenced with probes of length 7 to 128. The dramatic decrease in the length of se-

quenceable targets has severely limited the efficacy of SBH 84. To increase the length of

sequenceable targets while fixing the size of the probe library, theoretical concepts have

previously revolved around using optimized probe patterns involving non-specifically

binding universal bases instead of standard oligonucleotide probes 37, which have been

proven hard to implement.
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1.3 Biochemical Errors and Graph Based Reconstruction

An additional challenge is biochemical errors in measuring the probe spectrum, includ-

ing positive errors and negative errors. A common approach to accommodate moderate

error rates is to model the SBH reconstruction as an optimization problem in a com-

pletely connected directed graph 19. As a simple example, suppose we sequence a target

sequence

t = ACTGACTC (1.1)

with probes of length l = 3. The ideal spectrum is

Si = {ACT,CTG,TGA,GAC,ACT,CTC}. (1.2)

Since we can only read out a set of yes-or-no answers in the experiment, we will miss

the duplicatedACT. Besides, suppose there is a positive error TAA and a negative

error CTG, then the actual spectrum from the experiment is

Sa = {ACT,TGA,GAC,CTC,TAA}. (1.3)

We can build a completely connected directed graph based on the actual spectrum,

where vertices represent probes in Sa, and weights of the directed edges are the number

of overlapping bases between the suffix of the starting probe and the prefix of the end-

ing probe, as Figure 1.3A shows. The reconstruction of the target is then equivalent to

seeking an optimal path p∗ in the graph:

p∗ = argmaxp[ len(p) ], s. t. len[ r(p) ] = l× len(p)−
len(p)−1∑

i=1

opipi+1 ≤ n, (1.4)

12
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Figure 1.3: Graph based reconstruction. SBH reconstruction is modeled as an optimization problem in

a completely connected directed graph, where vertices represent probes in the actual spectrum, and

weights of the directed edges are the number of overlapping bases between the suffix of the starting

probe and the prefix of the ending probe. A shows an example graphwhen reconstructing a target

ACTGACTCwith 3-mers, and there is one positive errorTAA and one negative errorCTG in the

actual spectrum. Color red highlights the optimal path of the graph obtained by the optimization (1.4).

B shows the reconstruction using the overlap characteristics of probes in the optimal path.

where p is a path in the graph; len(p) is the number of vertices in the path; len[ r(p) ]

is the length of the reconstructed sequence; pi is the ith vertex of p; n is the target se-

quence length; l is the probe length, and oij is the number of overlapping bases from

vertex i to j. We can algorithmically determine the starting vertex of the path follow-

ing a two-step procedure: first, find a set of vertices Sbs ⊆ Sa, such that the highest-

weighted outgoing edge of each vertex in Sbs is greater than or equal to the highest-

weighted outgoing edges of all other vertices in Sa; second, find a set Swp ⊆ Sbs, such

that the highest-weighted incoming edge of each vertex in Swp is less than or equal to

the highest-weighted incoming edges of all other vertices in Sbs. The vertex in Swp is

used as the starting point of the path. If there are more than one vertex in Swp, one of

them is chosen randomly. In Figure 1.3A, color red highlights the optimal path of the

graph obtained by the above optimization (1.4). Figure 1.3B shows the reconstruction

using the overlap characteristics of probes in the optimal path.

13



It has been proved that SBH with errors is NP-hard 21. Therefore, when the number

of vertices becomes large, it is unpractical to solve the above optimization problem with

exhaustive search. A number of heuristic algorithms has been developed 33,18,22. The

simplest heuristics is the greedy algorithm, which always follows the outgoing highest-

weighted edge in each searching step after the first vertex is determined. However, this

method is frail to biochemical error, and moreover, it will certainly encounter ambi-

guity at the search step where the number of outgoing highest-weighted edges is more

than one. In later simulations, we use a more intelligent heuristics, the Ant Colony Op-

timization (ACO) algorithm 22. It can overcome moderate positive and negative errors

and perform close to the intrinsic reconstruction boundary, or n = 2l.

The ACO imitates the mechanism of a swarm of ants searching for food. Ants de-

posit pheromone on the path they pass to guide successive fellow ants. Eventually, the

swarm of ants will converge to the shortest path between the nest and the food source,

as the amount of pheromone on this path grows to become the largest. In ACO, the

algorithm searches path in the graph for many iterations, indexed by x. The edge from

vertex i to j is not only weighted by the directed overlap oij, but also by a pheromone

value τij(x). The pheromone values of all edges are initialized to the same value τij(0).

The algorithm then keep updating τij in each iteration according to a specified rule.

The weighting function μij on edge from i to j is given by

μij = (
oij
l− 1

)5τij(x). (1.5)

The algorithm uses an nondeterministic strategy in each search step: for a user-specified

probability q ∈ [0, 1), the next edge is chosen to be the highest-weighted outgo-

ing edge; otherwise the next edge is randomly chosen from a candidate list of a user-

14



specified number of top-weighted outgoing edges. This strategy gives the search oppor-

tunities to switch from the highest-weighted but incorrect edge to less-weighted but

correct edge. Therefore, the ACO is relatively robust to error and ambiguity.

In this chapter, we present a methodology that overcomes the problem of degener-

acy due to multiple repeats, is robust to errors and only requires the use of standard

oligonucleotide probes. The idea is to use the fact that although repeats cause the

probe binding characteristics to correspond to multiple possible target sequences, the

set of possibilities for a target sequence can be completely enumerated. By randomly

fragmenting multiple copies of the target sequence the resulting probe binding data of

the fragments can be combined to uniquely identify the target sequence. Numerical

simulations demonstrate that this sequencing method outperforms the classical n = 2l

boundary for random sequences, has excellent performance on natural sequences, and

is robust to error.
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1.4 A Closer Look at Failures Due to Subsequence Repeats

Reconstructing a target sequence from its subsequences in the presence of errors is a

computationally complex problem 21, requiring the use of heuristic search algorithms

which randomly find one of the possibly multiple solutions. We implement a recon-

struction algorithm based on the ant colony optimization (ACO)22, and demonstrate

that the failure of the classical SBH method is indeed correlated with the structure of

subsequence repeats.

Using the l = 10-mer spectrum, we simulate the reconstruction of natural DNA

sequences of length n = 509, taken from a benchmark library 20*. Figure 1.4 shows 10

independent simulated reconstruction attempts of three representative instances of the

benchmark with random 1% positive and 1% negative errors added to each spectrum.

Visualizing the repeat structure of the target DNA demonstrates that the existence of

multiple solutions with degenerate spectra requires at least two pairs of 9-mer repeats,

i.e. repeats one base shorter than the probes, arranged in an appropriate configuration.

As a result, the single pair of 9-mer repeats in Figure 1.4A does not lead to any recon-

struction errors, nor does the double pair of 9-mer repeats in Figure 1.4B, where the

second pair of repeats directly follows the first. In contrast, Figure 1.4C shows that if

the 9-mer repeats interlace each other, half of the reconstructions have significant re-

construction error of the same pattern right after a 9-mer repeat, but switches back to

the correct solution exactly at the beginning of a second 9-mer repeat. This ‘wrong’

reconstruction is actually a second solution compatible with the same spectrum. These

rules persist in our reconstructions of the entire benchmark library (see the online ap-

pletvis and instructions in the supporting information).

*The library that contains 10-mer repeats.
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A symbolic representation further demonstrates that both the number of (l−1)-mer

repeats and their aligning pattern are part and parcel for the non-uniqueness of solu-

tions. Suppose we have a sequence with two pairs of (l − 1)-mer repeats, with subse-

quences denoted byA1 andA2, respectively. If the target sequence is BA1CA2DA1EA2F,

with B,C,D,E and F arbitrary (nonrepeating) subsequences, then another possible

reconstruction of this sequence is BA1EA2DA1CA2F. Note that this second recon-

struction, which switches the subsequenceA1CA2 withA1EA2, has exactly the same

spectrum as the target sequence. In contrast, if two pairs of repeats are arranged in the

target sequence as BA1CA1DA2EA2F, then there is no rearrangement of the subse-

quences that leads to a reconstructed sequence with the same spectrum as the target.

In general, given repeatsAi andAj, if there exist two subsequences of the target se-

quence of the formAiBAj andAiCAj, then interchanging these subsequences leads to

a reconstruction with a consistent spectrum. In the case of a triple repeat, i.e. a target

sequence of the form BA1EA1DA1C, a second sequence which matches the spectrum is

BA1DA1EA1C.

17



1.5 Methods

Although a target sequence with a repeat structure that leads to multiple reconstruc-

tions cannot be uniquely identified with a single round of SBH, the set of target se-

quences compatible with the spectrum is finite. We now show that fragmenting mul-

tiple copies of a long target sequence and enumerating the complete sets of possible

sequences for each fragment allows the unique identification of the target. Since all

fragments have to be compatible with the same long target DNA, there is sufficient ad-

ditional information to break the degeneracy, choose a specific fragment sequence and

uniquely reconstruct a uniformly random target for n > 2l. The proposed method is

summarized in Figure 1.5.

1.5.1 Solution enumeration

To enumerate all possible fragment sequences consistent with a given probe spectrum,

we first determine one solution using a standard reconstruction algorithm. Figure 1.6

shows how the enumeration is done for a sequence containing a triple (l − 1)-mer

repeat. After detecting the locations of the repeats, the algorithm starts from the begin-

ning of the known solution and enumerates all possible extensions after the first repeat.

Continuing along the sequence, the process of enumerating all possible extensions and

permuting parts of the sequence accordingly is iterated. The search is terminated when

it reaches the end of the known solution, and we discard any search that does not cover

the full length. Since an exhaustive search over all possible permutations of the (l − 1)-

mer repeats is performed, the set of solutions is complete.

18



1.5.2 Unique reconstruction

Since all fragments stem from the same sequence, we can uniquely determine the target

by choosing specific solutions for the individual fragments. In order to find a target

sequence consistent with all the candidate sets we use a variant of ACO, which starts by

randomly selecting the solution sets of some fragments. For each candidate in these

sets, the algorithm iteratively determines its left or right successors by heuristically

choosing a candidate from one of the remaining candidate sets. The optimum is the

reconstruction of the target sequence.
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1.6 Simulation Results

1.6.1 Testing the method on random sequences

To test the method, we carry out simulations on 20 randomly generated 5000-mers,

and attempt to sequence them using probes of length 7. We replicate each 5000-mer

8 times, randomly separate each replica into fragments of length 180 ≤ n ≤ 220,

whose locations in the target are unknown, and include 5% positive and 5% negative

errors into the spectrum of each fragment. Therefore, roughly 5000/200 × 8 = 200

fragments need to be sequenced for each 5000-mer. Note that by choosing an aver-

age fragment length of 200 we are well above the traditional boundary for SBH, since

27 = 128. In the assembly, we begin with 8 randomly selected solution sets. Figure 1.7A

shows the performance comparison between the proposed method (blue circles) with a

control method (red squares). The proposed method has an average similarity score of

94.4% over the 20 trials, including 2 accidental drops which are presumably due to er-

rors in the spectra, whereas the control method has an average similarity score of 33.7%.

In contrast, Figure 1.7B shows that only about half (45.3% on average) of the fragments

are correctly reconstructed. Figure 1.7C and Figure 1.7D illustrate the number of can-

didate solutions for fragments used in the assembly. The average number of solutions

ranges from 2 to 10, whereas the maximum exceeds 300. Despite these degeneracies, the

accuracy of the reconstruction of the entire 5000-mer is nearly perfect.

1.6.2 Testing the method on natural sequences

The repeat distribution of natural sequences is not random, and hence, when sequenc-

ing with probes of length l, the expected length of a fragment for non-unique solu-
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tions will be different than 2l. The present method will be useful when the fragment

length is sufficiently long to have multiple interlacing repeats in the sequence, but not

too long that prohibitively many replicas are needed to be analyzed to break the de-

generacy. Unlike the case of random sequences, we do not know this length a priori,

therefore we need to find it as part of the reconstruction procedure.

To verify this, we carry out simulations on the 5000-mer prefix of three natural

sequences from human RNA and bacterial DNA respectively (GenBank accession

numbers JA638618, AEQT01000438 and AFZZ01000001). In the absence of detailed

information about the statistics of their repeats as a priori, we empirically change the

fragment length n by drawing it randomly from intervals ranging from [90, 110] to

[190, 210], i.e. from [100− 10, 100+ 10] to [200− 10, 200+ 10], with step 10†. We repli-

cate each target 10 times, and sequence them with 7-mers. 5% positive and 5% negative

errors are added to the spectrum of each fragment. Figure 1.8A, B and C respectively

shows the average similarity score over ten independent reconstruction attempts, us-

ing both the proposed method (blue circles) and the control method (red squares), as a

function of the fragment length for the three 5000-mers. Figure 1.8D shows the average

number of fragments need to be sequenced for different fragment length. With error

bars representing the standard deviation, we can infer that the optimal fragment length

for the sequences in Figure 1.8A and B are roughly 150 and 170, respectively, where se-

quencing 350 and 310 fragments give the proposed method larger than 95% in similarity

scores, which significantly outperforms the control method. Note that the optimal

fragment length increases when sequencing with more replicas. For the sequence in

Figure 1.8C, the optimal fragment length is unclear when sequencing with 10 replicas;

†From then on we will use the center of the interval as a representative when describing
fragment length.
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however, we can still see the significant performance gain for the proposed method.

Since different natural sequences have different optimal fragment length when separat-

ing replicas of the target, the optimal length of a target must be determined adaptively‡.

The computation time varies over sequences, since it depends on both the number and

the aligning pattern of (l − 1)-mer repeats in the target sequence at hand. For n = 150,

the average MATLAB computation time for the three 5000-mers are 1459s, 690s and

736s respectively on a Mac Pro with two 2.26GHz Quad-Core Intel Xeon processors.

The visualization in Figure 1.9 further demonstrates the efficacy of our sequencing

method. It illustrates one simulation attempt of the human RNA sequence (JA638618)

when using the optimal fragment length (n = 150) to separate replicas. Each row rep-

resents one replica of the 5000-mer. Although only 40.5% fragments are correctly re-

constructed before solution enumeration (green bars), fragments that are not correctly

reconstructed but have the correct solution in their candidate solution sets (blue bars)

help to bridge gaps in the final assembly step, leading to near-perfect reconstruction.

‡For example, we can sequentially separate one replica, analyze its repeat pattern, and
adaptively determine a better fragment length to separate the next replica.
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1.7 Summary

To summarize, this chapter has demonstrated how a variant of the classical SBH algo-

rithm can significantly extend the length of target that can be sequenced with standard

oligonucleotide probes. The simulations indicate that both random and natural se-

quences of length 5000 can be accurately sequenced with standard 7-mer probes, even

in the presence of 5% positive and negative errors. This is significantly longer than the

theoretical boundary of SBH. The proposed algorithm creates new opportunities to

use SBH along with the state-of-the-art microfluidic technology in the next generation

sequencing.
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Figure 1.5: Schematic of the proposed sequencingmethod. The target sequenceX is replicatedmulti-

ple times (A) and the different replicasXi = Xwith i = 1, 2 are randomly separated into fragments

Xij (B). Sequencing each fragment using classical SBH yields one possible ‘candidate’A1,B1, . . . for
each fragment’s sequence (C). Using the repeat structure of the candidate, the complete set of possible

fragment sequences is constructed (D). Aligning the candidates allows to uniquely determine the target

sequence and choose one element of each candidate set (E). Themethod is robust against erroneous

candidate sets resulting from errors in the determined probe spectra of fragments, indicated as grey

bars in (D).
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Figure 1.7: Performance of themethod for random sequences. 20 randomly generated 5000-mers

are sequenced using 7-mer probes assuming 5% positive and 5% negative random errors in the probe

spectrum. Each target is replicated 8 times and separated into fragments of length randomly within

[180, 220]. (A) Similarity score comparison between the proposedmethod (blue circles) and a control

method (red squares). The control method does not generate complete sets of possible sequences for

fragments, i.e. each candidate solution set contains exactly one candidate. (B) In contrast, due to recon-

struction degeneracy and biochemical errors, the proportion of correctly reconstructed fragments is

less than one half on average. (C), (D) The average andmaximum number of candidates of fragments

used in the assembly. The proposedmethod significantly outperforms the control method and allows

to uniquely choose one out of up to 300 degenerate solutions of a fragment.
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Figure 1.8: Performance of themethod on natural sequences. The average similarity score over ten

independent simulation runs on the 5000-mer prefix of three natural sequences (GenBank accession

numbers JA638618 (A), AEQT01000438 (B) and AFZZ01000001 (C)), as a function of the fragment

length n used to separate replicas. The results of both the proposedmethod (blue circles) and a con-

trol method (red squares) without generating a complete set of possible sequences for each fragment

are shown. Error bars represent the standard deviation. Each 5000-mer is replicated 10 times and

sequencedwith 7-mers. 5% positive and 5% negative errors are included in the spectrum of each frag-

ment. (D) shows the average number of fragments need to be sequenced as a function of the fragment

length n.
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We keep moving forward, opening new doors, and doing

new things, because we’re curious and curiosity keeps

leading us down new paths.

Walt Disney

2
Self-Assembly Optimization Method

Studies Using GPU Computing

Self-assembly 100,101,102 is a process where simple building blocks spontaneously assem-

ble into structures of higher complexity. In this chapter, in light of examples from col-

loidal engineering where particles interact in short range69, I explore two self-assembly

optimization methods with GPU computing75,79,80,24: controlling the short-ranged
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interactions between particles 50, and controlling the concentration of different types of

particles in the system70. The first method is simulated in canonical ensemble, and the

second method in both canonical and grand canonical ensembles. Simulation results

are consistent with theoretical predictions in both cases. When optimizing concentra-

tions, the nonequilibrium behavior of the particle system is also unveiled thanks to the

enormous computation capacity of GPUs.

The structure of the chapter is as follows. Section 2.1 presents the physical model

of the simulation, including equations of forces, the Verlet integration algorithm, and

the valence and crosstalk model. Section 2.2 gives an overview of the GPU comput-

ing technique, and elaborates two parallelization methods applied in the simulation.

Section 2.3 discusses the calibration of the particle system. Section Section 2.4 and Sec-

tion 2.5 present results of applying GPU computing to simulate two self-assembly

optimization methods. Particularly, Section 2.4 discusses the method of controlling the

interactions between particles, while Section 2.5 presents the method of controlling the

concentrations of different types particles. Section 2.6 summarizes the chapter.
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2.1 The Physical Model

The physical model of the simulation is inspired by an example in colloid engineer-

ing69, where a particle system is composed of colloid and solvent particles, and the

interaction between particles are short-ranged. If colloid particles are not charged, their

Brownian motion does not depend on the molecular details of the solvent, but only

on its temperature, density and viscosity. Therefore, we use Dissipative Particle Dy-

namics (DPD), a method usually used to simulate the dynamics of simple and complex

fluids49,40, to simulate the particle interactions. DPD is a coarse-grained Molecular Dy-

namics (MD) method, where solvent particles represent clusters of solvent molecules

and interact with others through pair-wise forces. DPD resembles the Brownian Dy-

namics (BD) method. The main difference is that in BD, frictional and random forces

do not conserve momentum, whereas in DPD they do. Figure 2.1A illustrates a schema

of the DPD method, and Figure 2.1B shows a snapshot of our simulation where the

system is composed of 6 identical colloid particles and∼ 400 solvent particles.

2.1.1 Newton motion

In DPD, the evolution of interacting particles is governed by Newton’s equations of

motion
dri
dt = vi, mdvi

dt = fi, (2.1)

where particle i could be either colloid or solvent particle. To simplify the model, the

mass of all colloid and solvent particles are set equal (= m) in the simulation. The force
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Colloid par�cle

Solvent par�cle

Solvent molecule

A

B

Figure 2.1: A illustrates the Dissipative Particle Dynamics (DPD). DPD is a coarse-grainedMolecular

Dynamics (MD)method, where solvent particles (green) represent clusters of solvent molecules (red)

and interact with others through pair-wise forces. In the schema, colloid particles (blue) assembles as

a result of the random kicks of the surrounding solvent particles. Note that colloid particles could also

be clusters of some smaller elements. B is a snapshot of the actual DPD simulation, where the system

contains 6 identical colloid particles (red) and∼ 400 solvent particles (transparent gray).

33



exerted on particle i is composed of three parts:

fi =
∑
dC

fC +
∑
dD

fD +
∑
dR

fR, (2.2)

where fC, fD and fR are conservative force, dissipative force and random force respec-

tively, and the summations are over particles inside cutoff distances, dC, dD and dR

respectively, centered by particle i. Since each particle is surrounded by both colloid

and solvent particles, depending on the identity of particle i (colloid or solvent), the

above formula can be expanded to

fci =
∑
dccC

fccC +
∑
dcsC

fcsC +
∑
dccD

fccD +
∑
dcsD

fcsD +
∑
dccR

fccR +
∑
dcsR

fcsR (2.3)

and

fsi =
∑
dssC

fssC +
∑
dcsC

fcsC +
∑
dssD

fssD +
∑
dcsD

fcsD +
∑
dssR

fssR +
∑
dcsR

fcsR , (2.4)

where c and s superscripts represent colloid and solvent respectively.

2.1.2 Conservative force

When two colloid particles are identical, we use a steep 96-48 Lennard-Jones potential 55

to model the binding energy Vij between them:

Vij =


εa
[(

rm
rij

)96
− 2

(
rm
rij

)48]
if rij < dcc

C

0 otherwise

(2.5)

where rij = |rij| = |ri − rj| is the distance between centers of particle i and j, rm is

the distance between two particle centers at which the potential reaches its minimum,
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Figure 2.2: The potential energies between colloid particles. When two colloid particles are identical,

or coated with attracted DNA strands, we use the Lennard-Jones potential (green curve) tomodel their

binding energy. The distance rm where the potential reaches its minimum is set to 1, and the depth

of the potential well εa = 1. When the colloid particles are coatedwith repelled DNA strands, we

use the repulsion part (red curve) of the Lennard-Jones potential to model the energy. The repelling

strength εr is set to 1 in the plot. The purple dashed line shows the cutoff distance dcc
C = 1.05 used in

the simulation.

and εa is the depth of the potential well, or the attracting strength. The green curve

in Figure 2.2 shows the Lennard-Jones potential. In the simulation, without loss of

generality, we set rm = 1. The conservative force between two identical colloid particles

is then calculated by taking the first derivative of the potential:

fccC,ij = −
dVij
drij

=


96εa
r49ij

(
1
r48ij
− 1

)
eij if rij < dcc

C

0 otherwise

(2.6)

where eij = rij/rij is the unit vector pointing from j to i.

Technology is rapidly evolving to allow colored colloid particles, e.g. particles coated

with DNA strands 16, in the self-assembly so that their interactions are highly control-

lable. When two colloid particles are coated with attracting DNA strands, we use the

same potential (2.5) and force (2.6) to model their interaction. On the other hand,
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when two colloid particles are coated with repelled DNA strands, we use the repulsion

part of (2.5) to model their potential energy:

Vij =


εr
(
rm
rij

)96
if rij < dcc

C

0 otherwise

(2.7)

where εr is the repelling strength. The conservative force is then calculated as

fccC,ij = −
dVij
drij

=


96εr
r97ij

eij if rij < dcc
C

0 otherwise

(2.8)

The colloid-solvent and solvent-solvent conservative forces are simple elastic force:

fcsC,ij =


kcs
(
1−

rij
dcs
C

)
eij if rij < dcs

C

0 otherwise
(2.9)

fssC,ij =


kss
(
1−

rij
dss
C

)
eij if rij < dss

C

0 otherwise
(2.10)

where kcs and kss are the elastic constants.

2.1.3 Dissipative and random forces

Dissipative and random forces together forms the thermostat of DPD. Dissipative

force is the frictional force due to viscous resistance within the fluid. It reduces the

relative velocity of particle pairs. On the other hand, random force represents the

stochastic part of the dynamics. It compensates the eliminated degree of freedom due
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to coarse-graining.

In the simulation, we set the range of dissipative and random force equal, denoted as

dDR = dD = dR. The dissipative and random forces between two colloid particles are

fccD,ij =


−γωD,ij(vij •eij)eij if rij < dcc

DR

0 otherwise
(2.11)

and

fccR,ij =


1√
Δt

σωR,ijξijeij if rij < dcc
DR

0 otherwise
(2.12)

In the above formulas, Δt is the integraion time step, and ξij is a diagonal 3-by-3 ma-

trix whose diagonal elements are independent random numbers uniformly distributed

in (−√3,√3). The magnitude relation between the dissipative and random forces is

determined by the Fluctuation Dissipation Theorem77:

σ2 = 2γkBT, ωD,ij = (ωR,ij)
2, (2.13)

where kB is the Boltzman constant, T is the absolute temperature. The kinetic tempera-

ture kBT can be calculated from the mean kinetic energy of all particles in the system:

3
2
kBT =

1
2
mv2. (2.14)

In the rest of this chapter, we use temperature to represent the kinetic temperature for

simplicity. ωR,ij is a linear function of the distance between particle i and j:

ωR,ij = 1−
rij
dDR

. (2.15)
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The colloid-solvent and solvent-solvent dissipative and random forces have the same

forms, except switching dcc
DR to dcs

DR, dss
DR, and the integration time step Δt to a larger

time step ΔT (more on this in the next section).

2.1.4 Verlet integration

Verlet integration98 is a numerical method used to integrate Newton’s equations of

motion. It is frequently used to calculate trajectories of particles in molecular dynam-

ics simulations and computer graphics. To integrate our system of colloid and solvent

particles forward, we use a variant of the Velocity Verlet algorithm94. In particular,

to simulate the detailed motions of colloid particles while not significantly increase

the computation complexity due to the large amount of solvent particles, we intro-

duce two integration time steps: a small time step Δt for colloid and a large time step

ΔT ≫ Δt for solvent. The integration steps of colloid is the standard Velocity Verlet

algorithm:

1. rc(t+ Δt) = rc(t) + vc(t)Δt+
1
2
ac(t)Δt2;

2. vc(t+
1
2
Δt) = vc(t) +

1
2
ac(t)Δt;

3. Derive ac(t+ Δt) using rc(t+ Δt) and vc(t+
1
2
Δt);

4. vc(t+ Δt) = vc(t+
1
2
Δt) + 1

2
ac(t+ Δt)Δt. (2.16)

In the above steps, rc, vc and ac respectively represent positions, velocities and acceler-

ations of colloid particles. When deriving ac, we only use forces between colloid parti-

cles, i.e. fccC , fccD and fccR .
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The complete integration steps of both colloid and solvent particles are:

1. vall(t+
1
2
ΔT) = vall(t) +

1
2
aall(t)ΔT;

2. Iterate the above colloid integration cycle (2.16) ΔT/Δt times;

3. rs(t+ ΔT) = rs(t) + vs(t)ΔT;

4. Derive aall(t+ ΔT) using rall(t+ ΔT) and v′all(t+
1
2
ΔT);

5. vall(t+ ΔT) = v′all(t+
1
2
ΔT) + 1

2
aall(t+ ΔT)ΔT. (2.17)

rall, vall and aall are positions, velocities and accelerations of all particles respectively,

including colloid and solvent particles. When deriving aall, we use forces fcsC, fssC, fcsD,

fssD and fcsR , fssR, excluding fccC , fccD and fccR . v′all(t + 1
2ΔT) in step 4 and 5 is different from

vall(t + 1
2ΔT) in step 1 in that the velocities of colloid particles have been changed in

step 2.

To summarize, the above integration algorithm makes solvent particles move in a

large time step ΔT, while features a ‘slow motion’ of colloid particles with a smaller

time step Δt, i.e. step 2 in (2.17). This effectively simulates the interactions between

all particles in the system, while prevents the simulation from being computationally

complex due to large number of solvent particles. In the simulation, we set ΔT/Δt =

70.

2.1.5 Other settings

While most parameters in the simulation are user-defined, some parameters are inferred

from others to ensure the physical correctness of the system.

39



Particle radiuses

The radius of colloid particle is set so that when two colloid particles i and j touch each

other exactly, the Lennard-Jones potential reaches minimum, or rij = rm = 1. There-

fore, the radius of colloid particle is

rc =
rm
2

= 0.5. (2.18)

The radius of solvent particle is set so that when two colloid particles are closed and

start exerting dissipative and random forces on each other, one solvent particle can still

fit between them. Therefore, the radius of solvent particle is

rs =
dcc
DR − 2rc

2
. (2.19)

Force ranges

Depending on particle and force types, interactions happen either when particles are

sufficiently closed, or only when they touch each other. The cutoff distances of conser-

vative forces are set as follows:

dcc
C = 2.1rc, dcs

C = rc + rs, dss
C = 2rs. (2.20)

The cutoff distances of dissipative and random forces are

dcc
DR = 3rc, dcs

DR = 0.5dcc
DR + rs, dss

C = 2rs. (2.21)
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Box size and number of solvent particles

In the simulation, all particles are inside a cubic box. The number of colloid particles nc

and the volume fraction φ are user defined. The volume of the box V is calculated as

V =

4
3πr3cnc

φ . (2.22)

The side length of the box is then b = V1/3. We also predefine the solvent density as ρ.

Then the number of solvent particles is

ns =
Vρ
m . (2.23)

Boundary condition

To prevent the boundary of the box from interfering the self-assembly, we use periodic

boundary condition in the simulation. Assuming the center of the box is the origin,

when any of the three coordinates of particle i, rix, riy or riz, is outside the box, it is

added a multiple of the box side length b to set it back into the box:

If |ri{x,y,z}| >
b
2
, ri{x,y,z} ← ri{x,y,z} + kb (k ∈ Z) s.t. |ri{x,y,z}| ≤

b
2
. (2.24)

2.1.6 Canonical and grand canonical ensembles

In statistical mechanics, a canonical ensemble is the statistical ensemble that is used to

represent the possible states of a mechanical system of particles, which is in thermal

equilibrium with a heat bath 38. The system can only exchange energy with the heat

bath, while its composition, volume and shape are kept constant. To simulate a such
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system, we can simply keep the number of particles unchanged, and the heat transfer is

fulfilled through dissipative force.

A grand canonical ensemble is the statistical ensemble that is used to represent the

possible states of a mechanical system of particles maintained in both thermal and

chemical equilibrium with a reservoir 38. The system can exchange both energy and par-

ticles with the reservoir, so that various possible states of the system can differ in both

their total energy and total number of particles, while the volume and shape of the

system are kept unchanged in all possible states. Computation on grand canonical en-

semble is highly expensive as the reservoir is assumed to be significantly larger than the

system itself and therefore requires the coexistence of huge amount of particles in the

simulation. To approximate the grand canonical ensemble, for every tadd time steps, we

add new colloid particles into the system to keep the concentrations of different types

ofmonomers, or colloid particles without binding, roughly constant, while removing

a fraction of all colloid particles from the system every tremove time steps to prevent the

total mass of the system from growing. To ensure the removing is uniformly across all

colloid particles, we implement a Breath-First Search (BFS) algorithm62 to identify all

assembled structures and monomers currently in the system, and remove a fraction of

them from the system according to a constant probability premove.

2.1.7 Valence and crosstalking interaction

Except for the binding preference induced by DNA coating, other local binding laws,

such as binding sites 56 and valence, could also exist. Valence is the maximum number

of bonds a particle can form. If two particles with attracted colors come closed but any

of them already reaches its valence, they will repel each other. In addition to strict at-

traction and repulsion, low-energy non-specific bindings 51, or crosstalking interactions,
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Figure 2.3: A simple example of the valence and crosstalk model. There are three types of particles. A

(blue) and C (red) has valence 1, while B (green) has valence 2. A shows the adjacencymatrix. Strong

bonds with energyE can form between A, B and B, C, while weak bondwith energy ε ≪ E can form

between A and C due to crosstalk. Particles of the same type repel each other. B shows all structures

that can be formedwith these three particle types. Solid lines represent strong bonds, and dashed lines

are weak bonds. In our model, when B binds to two particles of the same type, the second bond is weak.

ubiquitously exist between self-assembly components in both natural and synthetic

systems. For example, weak bonds inevitably form between different types of proteins

due to protein structure constraints. As a result, an exponential number of undesired

structures could form in the system, which poses a challenge of assembling a specific

structure.

In the simulation of controlling particle concentrations to optimize yield, we use

a model where particles have both valence and crosstalking interactions. Figure 2.3

shows a simple example of a such model. There are three types of particles, denoted

as A (blue), B (green) and C (red). A and C has valence 1, while B has valence 2. Fig-

ure 2.3A shows the adjacency matrix. Strong bonds with energy E can form between

A, B and B, C, while weak bond with energy ε ≪ E can form between type A and C

due to crosstalk. Particles of the same type repel each other. Figure 2.3B enumerates all

structures that can be formed in this model. Note that when B binds to two particles of

the same type, the second bond is weak.
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2.2 GPU Computing

Graphics Processing Unit (GPU) is a processor dedicated to 3D graphics rendering

through its specialized multiprocessor architecture. It have been grown to become

extremely powerful and significantly exceed Central Processing Unit (CPU) in raw

computing power. In the 1999–2000 timeframe, scientists from various fields started

using GPUs to accelerate a range of scientific applications, subject to the constraints of

programming through graphics APIs. In November 2006, NVIDIA introduced the

CUDA architecture74,89, which includes new components designed strictly for GPU

computing and aimed to alleviate many of the limitations that prevented previous

graphics processors from being legitimately useful for general-purpose computing. It

makes GPU fully programmable, and offers seamless experience for developers with

familiar languages such as C, C++, and Fortran. Today, GPU computing momen-

tum is growing faster than ever before. It has been applied to computational fluid dy-

namics 25,26, medical imaging93,91, molecular dynamics92,8 and many other fields. Users

achieves unprecedented performance by switching to GPUs, over 100x speedup com-

pared to CPUs in some cases. All simulation results in this chapter are produced on a

small server with three GPUs: two NVIDIA Tesla C2075 and one NVIDIA Quadro

6000.

The rest of this section presents two examples on how we use GPU parallelization to

achieve fast DPD simulation. The first example elaborates how we efficiently perform

computation over an ensemble of independent particle systems. The second example

presents a simple GPU-specific solution for each particle to only iterate through its

surrounding particles within a short range when computing the forces.
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2.2.1 Computation on particle system ensemble

To statistically study the self-assembly of colloid, we sometimes need to collect data

from an ensemble of independent particle systems, or configurations. More specifi-

cally, in the simulation, we have many particle systems started from different and inde-

pendent random states, where particles are assigned uniformly random positions and

normally random velocities. We let all systems run for the same number of time steps,

then snapshoot and collect their final states. This also resembles the experiment69,

where colloid particles are placed in independent microwells to self-assemble. With

data from many independent particle systems, we can statistically study e.g. under a

certain temperature, what is the probability that the colloid particles assemble into a

specific ground state structure. Figure 2.4 shows a schema of the strategy.

Notice that there are two layers of parallelization in the computation. On a large

scale, all configurations are independent and embarassingly parallel. On a small scale,

in the Verlet integration process of each system, each particle independently iterates

through its surrounding particles to calculate its resultant force, and moves forward

using its own position, velocity and force information. We parallelize both of them to

leverage the massive parallel architecture of GPU.

Our parallel force calculation strategy is illustrated in Figure 2.5. Particle data (po-

sitions, velocities and forces) are stored in consecutive memory. Particularly, colloid

and solvent data are separated into two parts of the memory (the blue and orange bar).

Since Δt ≪ ΔT, the integration is in the colloid cycle (2.16) most of the time, where

each colloid particle iterates through other colloid particles in the same configuration

to calculate its force (step 3 of (2.16)). This is illustrated as the black arrow in the figure.

When the simulation reaches step 4 of the solvent cycle (2.17), as the red arrows show,
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Figure 2.4: Schema of computation over independent particle systems. Red spheres represent colloid

particles. Solvent particles are not shown for visual purpose. In the simulation, we havemany particle

systems, or configurations, started from different and independent random states (first row), where

particles are assigned uniformly random positions and normally random velocities. We let all systems

run for the same number of time steps, then snapshoot and collect their final states (second row).

With data frommany independent particle systems, we can statistically study e.g. under a certain

temperature, what is the probability that the colloid particles assemble into a specific ground state

structure.
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Configura�on 1 colloid
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Configura�on 1 solvent

Configura�on 2 solvent
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Itera�on in colloid cycle
Itera�on in solvent cycle

Figure 2.5: Parallel force calculation for particle system ensemble. Particle data (positions, velocities

and forces) are stored in consecutivememory (the vertical bar). More specifically, colloid (blue) and

solvent (orange) data are separated into two parts. The simulation is in the colloid cycle (2.16) most of

the time, where each colloid particle iterates through other colloid particles in the same configuration

to calculate its force (black arrow). When the simulation reaches step 4 of the solvent cycle (2.17), to

calculate the forces, each colloid particle needs to iterate through solvent particles in the same config-

uration, while each solvent particle should iterate though both colloid and solvent particles in the same

configuration (red arrows).

each colloid particle needs to iterate through solvent particles in the same configuration

to calculate its force, while each solvent particle should iterate though both colloid and

solvent particles in the same configuration. In other steps of the integration, particles

are completely parallel from each other – they simply use their own position, velocity

and force information to move forward.
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2.2.2 Spatial subdivision

If each particle must examine all other particles to calculate the forces, the time com-

plexity of a serial DPD simulation isO(n2), andO(n) for a parallel DPD, where n is

the total number of particles in a system. Since all forces in our simulation are short-

ranged, we can use a spatial subdivision strategy to further reduce the time complex-

ity toO(k̂), where k̂ is the average number of surrounding particles of each particle.

When the volume fraction φ is low so that k̂ ≪ n, applying spatial subdivision can

achieve significant speedup.

Figure 2.6 illustrates our spatial subdivision strategy in 2D. We use a uniform grid 34

to subdivide the box into a grid of equal-side cells. The side length of the cell is equal

to the longest force range, which is dcc
DR in our case. In each time step, we determine the

cell each particle is located. Then, when calculating the forces, each particle only need

to examine particles in its own and neighboring cells to determine which particles are

inside the force ranges. The number of cells each particle needs to examine is 3× 3 = 9

in 2D and 3 × 3 × 3 = 27 in 3D. For example, when calculating the dissipative and

random forces exerted on particle 3 in the figure, we notice that it is in cell 5, therefore,

we should iterate through particles in cell 0, 4, 8, 1, 5, 9, 2, 6 and 10 to determine if there

is any particle within the cutoff distance dcc
DR from particle 3 (particle 4 and 5 inside

the red dashed circle in the example). Note that the algorithm should take the peri-

odic boundary condition into account. For example, particles in cell 3 should examine

particles in cell 2, 6, 3, 7, as well as cell 0, 4, 12, 14, 15.

To implement this algorithm on GPU, a simple approach is to take advantage of

the atomic operations 76, supported on GPUs with compute capability greater than or

equal to 1.1. Atomic operations allow multiple GPU threads to update the same value
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Figure 2.6: The spatial subdivision strategy in 2D.We subdivide the box into a grid of equal-side cells,

whose side length is equal to the longest force range, dcc
DR in our case. When calculating the forces,

each particle only need to examine particles in its own and neighboring cells to determine which par-

ticles are inside the force ranges. For example, when calculating the dissipative and random forces ex-

erted on particle 3 in the figure, particles in cell 0, 4, 8, 1, 5, 9, 2, 6 and 10 should be examined through,

and eventually particle 4 and 5within the cutoff distance dcc
DR (red dashed circle) will be found.
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in global memory simultaneously without conflicts. As Table 2.1 shows, we use two

containers in the implementation: a counter array (2nd column) to store the number of

particles in each cell so far, and an index array (3rd column) to store the particle indices

of each cell. Note that when two particles happen to penetrate each other, the steep

Lennard-Jones potential will force them apart. Therefore, we can empirically deter-

mine the maximum number of particles in each cell and preallocate sufficient memory

for the index array. Both containers are updated in each time step. Specifically, the

counter array is initialized to zero at the start of each time step. The simulation runs

with one thread per particle. Each particle calculated which cell it is in, and uses the

atomicAdd function76 to atomically increment the counter of this cell. It then writes

its index into the index array at the corresponding position using a scattered global

write.

There are other more efficient methods to perform spatial subdivision. We choose

this approach mainly for its simplicity. Admittedly, the atomic operation is considered

relatively expensive in GPU computing, as when multiple threads attempt to write to

the same memory unit, the operations will be serialized. Therefore, we only use this

algorithm when there are large number of particles and the volume fraction φ is low.

When the volume fraction is high, the speedup gain from applying spatial subdivision

is comparable to the extra time in refreshing the counter and index arrays. In this case,

we choose to iterate though all particles when calculating the forces.

50



Cell index Particle Count Particle index
0 0
1 1 1
2 0
3 0
4 1 0
5 1 3
6 2 4, 5
7 1 7
8 0
9 0
10 1 6
11 0
12 0
13 1 2
14 0
15 0

Table 2.1: In the implementation of spatial subdivision, we use two containers: a counter array (2nd

column) to store the number of particles in each cell so far, and an index array (3rd column) to store the

particle indices of each cell. Numbers in this table come from Figure 2.6. The counter array is initialized

to zero at the start of each time step. The simulation runs with one thread per particle. Each thread

computes which cell its particle is in, and uses the atomicAdd function 76 to atomically increment the

counter of this cell. It thenwrites its index into the index array at the corresponding position using a

scattered global write.
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2.3 Calibration

Before proceeding to simulate various self-assembly optmization methods, it is impor-

tant to verify that our GPU program produces physically correct results. This section

presents various data collected through both canonical and grand canonical ensemble

simulations to prove the physical correctness of our program.

2.3.1 Canonical ensemble

To set the particle system to a specified temperature kBT, we randomly initialize the ve-

locities of all particles (colloid and solvent) according to standard normal distribution,

and rescale these velocities so that

1
2
mv2 = 3

2
kBT, (2.25)

where 1
2mv2 is the mean kinetic energy of all particles. Initial positions of particles are

uniformly random, subject to the constraint that colloid particles do not penetrate each

other. Since we do not have constraints on the initial positions of solvent particles, it is

possible that some solvent particles penetrate other particles at the starting, which re-

sults in strong repulsions and accelerations. Therefore, the temperature of the system is

expected to increase drastically when the simulation starts. On the other hand, what we

should confirm is that after this initial temperature pulse, whether the system is capable

to cool down itself back to the predefined temperature, instead of keep diverging.

To verify this, we set up a canonical ensemble particle system with 100 identical

colloid particles. The volume fraction is set to φ = 0.02* and the input temperature

*In the rest of this chapter, we use φ = 0.02 unless otherwise indicated.
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Figure 2.7: The system temperature of a canonical ensemble particle system as a function of simulation

time. There are 100 identical, or uncolored, colloid particles in the system. The volume fractionφ is

set to 0.02, and the number of solvent particles is 7853 calculated from (2.22) and (2.23). The input

temperature is set to 0.15 (red dashed line). After the initial temperature pulse, the system cools down

towards the input temperature instead of keep diverging.

is 0.15. Figure 2.7 shows the system temperature as a function of the simulation time.

It shows that after the initial temperature pulse, the system cools down towards the

input temperature. Because of the finite integration time step, the system temperature

never goes back exactly to the input temperature, but converges to a value (∼ 0.164)

acceptably higher than the input.

We also need to confirm whether the bond breaking time is consistent with thermo-

dynamics. In thermodynamics, under a certain temperature kBT, the probability that

a system jumps out from an energy well of depth εa, or the probability for the bond

between two colloid particles to break is

pbreak ∼ exp
(
− εa
kBT

)
. (2.26)
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Since the bond breaking frequency is

fbreak =
1

tbreak
∼ pbreak, (2.27)

where tbreak is the bond breaking time, we have

ln
(

1
tbreak

)
∼ −εa

(
1

kBT

)
, (2.28)

or ln (1/tbreak) is a linear function of 1/kBTwith slope−εa. To verify this, we initialize

a system with 100 dimer (two-particle structure) and set the depth of the potential

well to εa = 1. We let the system run for 104 time steps and monitor the time these

dimers break at various temperature. Figure 2.8A shows the average dimer breaking

time as a function of the temperature. Notice that when the temperature is smaller

than∼ 0.18, the bond breaking time increases drastically. The curve becomes flat again

at low temperature as the 104 time steps is not sufficient for the bond to break at those

temperatures. Figure 2.8B aims to confirm (2.28). The red dashed line has slope -1.

Except for the low temperature points, data from the simulation is consistent with

(2.28).

2.3.2 Grand canonical ensemble

We also examine the physical properties of the grand canonical ensemble simulation.

We use a valence and crosstalk model composed of three types of particles A, B and C,
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Figure 2.8:We initialize a systemwith 100 dimer (two-particle structure) and set εa = 1. The system
runs for 104 time steps under various temperatures. A shows the average dimer breaking time as a

function of the temperature. B plots the average ln(1/tbreak) as a function of 1/kBT (green curve), with

error bars representing the standard deviation. The red dashed line has slope -1. Except for the low

temperature points where 104 time steps is not sufficient to capture the bond breaking time, data from

the simulation is consistent with (2.28).
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with valence 1, 2 and 3 respectively. The adjacency matrix is


0 1 0.02

1 0 1

0.02 1 0

 , (2.29)

i.e. strong bond with energy E = 1 can be formed between A, B and B, C. The crosstalk-

ing interaction has energy ε = 0.02, and the repelling strength is set to εr = 1.5.

The system starts with 100 colloid particles, including 50 As, 30 Bs and 20 Cs. To ap-

proximate the grand canonical ensemble, we add new monomers into the system at

random positions every tadd = 300 time steps to maintain the concentrations of dif-

ferent types of monomers in the system roughly constant, while uniformly remove

assembled structures and monomers from the system with probability premove = 0.15

every tremove = 300 time steps. We run the system at temperature kBT = 0.15. Fig-

ure 2.9 again plots the system temperature as a function of the simulation time. It

shows that the grand canonical ensemble particle system is also capable to cool down

itself towards the input temperature. The system temperature eventually stays at a tem-

perature acceptably higher than the input temperature due to the fact that the newly

added monomers are set to random positions in the box, which might penetrate some

solvents and result in strong repulsions. Figure 2.10 presents the composition of the

system during the simulation process when particles are frequently added and removed

from the box. Specifically, Figure 2.10A shows that the total mass of colloid in the sys-

tem eventually reaches equilibrium at∼ 150 without keep increasing, and Figure 2.10B

shows that the concentrations of different types of monomers are kept roughly con-

stant. These verify that our simulated grand canonical ensemble is physically correct.
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Figure 2.9: The system temperature (green curve) of the grand canonical ensemble particle system as a

function of the simulation time. The simulated grand canonical ensemble particle system is also capable

to cool down itself towards the input temperature (red dashed line).

A

B

Figure 2.10: The composition of the simulated grand canonical ensemble particle system. A shows the

total mass of colloid in the system (green curve), comparing to the original colloid mass 100 (red dashed

line). Themass of colloid in the system eventually equilibrates at∼ 150. In B, the dashed lines repre-
sent the input, or desired concentrations of A (green), B (red) and C (purple) monomers, and the solid

curves are their actual concentrations in the simulation. Since we frequently add in newmonomers into

the system, their concentrations aremaintained as desired.
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2.4 Optimization Method I: Control the Interactions

To assemble a desired structure, one method is to choose the short-ranged interac-

tions between neighbor components, so that the desired structure becomes the only

ground state. Analytical elaboration 50 points out that to maximize the yield of a de-

sired structure, it is advantageous to use more component types, or larger alphabet,

than strictly required by local rules. In this chapter, we further demonstrate this with

GPU-simulated particle system ensemble. Particularly, we simulate the assembly of

colloid clusters with 6 particles.

2.4.1 Identical particle simulation

A rigid cluster of nc identical colloid particles has degeneracy of the ground state when

6 ≤ nc ≤ 1069,10,9, so that the equilibrium yield of different ground state clusters

is determined by entropy. For nc = 6, there are two ground states with 12 contacts:

asymmetric polytetrahedron and symmetric octahedron, as Figure 2.11 shows. The rota-

tional entropy strongly suppresses the yield of the symmetric octahedron. Theoretical

calculation predicts that the yield of octahedron and polytetrahedron is 4% and 96%

respectively 10,9. This is confirmed by experiment69.

We set the binding energy between particles to εa = 1, and run the GPU simulation

from temperature 0.002 to 0.202 with step 0.002. For each temperature, an ensemble

of 1000 independent particle systems are simulated simultaneously, and the states of

the systems at 2 × 104 time steps are stored. Figure 2.12A shows the absolute yields

of various structures as a function of the temperature. Figure 2.12B shows the relative

yields of octahedron and polytetrahedron. It proves that our simulation result is con-

sistent with the 96%− 4% theoretical prediction.
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A B

Figure 2.11: The two ground states of 6-particle rigid cluster: asymmetric polytetrahedron (A) and

symmetric octahedron (B). Although they have the same potential energy as both of them have 12

particle-particle contacts, the rotational entropy strongly suppresses the yield of the octahedron.

Theoretical calculation predicts that the yield of octahedron and polytetrahedron is 4% and 96% re-

spectively.

A

B

Figure 2.12: The yields of various structures as a function of the temperature for the 6-particle cluster

assembly. In the simulation, we set εa = 1, and simultaneously simulate an ensemble of 1000 inde-

pendent particle systemswith 6 colloid particles. The states of the systems at 2 × 104 time steps are

stored. A shows the absolute yields, or the probability that the final states of the systems is a specific

structure. B shows the relative yields of octahedron and polytetrahedron. At temperature roughly be-

tween 0.11 and 0.16, the system reaches equilibrium, where the simulated yields are consistent with

the theoretical predictions (dashed lines).
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2.4.2 Colored particle simulation

When using colored colloid particles, interactions between particles can be carefully

designed so that the ground state degeneracy is eliminated and only the desired confor-

mation is allowed. For a specific structure, there exists a minimum number of colors,

or letters, strictly required to break the degeneracy. Figure 2.13 shows all alphabets for

the 6-particle clusters. The interaction matrix represents the attracting (1) and repelling

(0) interactions between colors, while the adjacency matrix extends the interaction ma-

trix to characterize the attraction (1) and repulsion (0) between all particle pairs in the

structure. There is one alphabet favoring the octahedron, and two alphabets, one with

3 letters and the other with 5 letters, favoring the polytetrahedron.

Figure 2.14 shows the yield of various structures as a function of the temperature

when using the octahedron alphabet. The attracting and repelling strength are εa = 1

and εr = 1.5 respectively. Since the octahedron is the only ground state, the yield of

the polytetrahedron is suppressed to zero. Figure 2.15 shows the yield-temperature plots

when using the 3-letter and 5-letter polytetrahedron alphabets. As expected, the yield of

octahedron is suppressed to zero. Particularly, the polytetrahedron yield is higher when

using 5-letter alphabet than 3-letter alphabet, as Figure 2.15C shows. This is consistent

with the theoretical prediction 50 that using more component types increases the yield.
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3D structure Adjacency matrixInterac�on matrix

Figure 2.13: All alphabets for 6-particle clusters. The 1st column shows the colored 3D structure of the

clusters. The 2nd column are the interactionmatrices. They represent the attracting (1) and repelling

(0) interactions between colors. The 3rd column shows the corresponding adjacencymatrices. They

are extended from the interactionmatrix to characterize the interaction between all particle pairs in

the structure. There is one alphabet favoring the octahedron (1st row), and two alphabets, one with 3

letters (2nd row) and the other with 5 letters (3rd row), favoring the polytetrahedron.

Figure 2.14: The absolute yield of various structures as a function of the temperature when using the

octahedron alphabet. After applying the alphabet, the octahedron becomes the only ground state,

therefore the yield of the polytetrahedron is suppressed to zero.
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Figure 2.15: The absolute yield of various structures as a function of the temperature when using 3-

letter (A) and 5-letter (B) polytetrahedron alphabets. The yield of octahedron is suppressed to zero

since polytetrahedron is the only ground state cluster. C compares the yields of two alphabets. Con-

sistent with the theoretical prediction, the 5-letter alphabet is more advantageous than the 3-letter

alphabet.
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2.5 Optimization Method II: Control the Concentrations

In the previous example, the self-assembly is performed in a system with the exact

number of colloid particles in the desired structure. This is usually not the case as self-

assembly often happens in a pool of large numbers of different components, and many

structures are assembled in parallel in the same system. Therefore, an exponential num-

ber of partial and incorrect structures can form and compete with the desired struc-

ture. Analyses70 conclude that the equilibrium yield of the desired structure can be

improved by tuning the concentrations of different components, and the optimal con-

centration profile is highly non-uniform. Specifically, the authors analytically proves

this using a 1D model where components have directional binding sites, and crosstalk-

ing interactions exist between all components. In this chapter, under a valence and

crosstalk model, we demonstrate that the method of optimizing yield by tuning con-

centrations persists in 3D.

2.5.1 5-mer linear chain

We first demonstrate the concentration optimization by assembling a 5-mer chain.

Figure 2.16A and B respectively shows the desired structure and the corresponding

adjacency matrix used in the simulation. There are 5 types of colored particle in the

structure. The valence of A and E is 1, while B, C and D have valence 2. Each type can

only form strong bond(s) with its neighboring type(s), and crosstalking weak bonds

can be formed between all types of particles, except particles of the same type.

The stoichiometry of the desired structure gives us the wrong intuition that the

concentrations of different types of particles should be set equal in order to maximize

its yield. In fact, the optimal concentration should take the particle consumptions in
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Figure 2.16: A shows the 5-mer chain andB shows the corresponding adjacencymatrix used in the

simulation. There are 5 types of particles. The valence of A and E is 1, and the rest particle types have

valence 2. Strong bond(s) with the same energy 1 can be formed between neighboring types, andweak

bonds with energy 0.25 due to crosstalking interactions can be formed between all different types of

particles. C shows the uniform and the optimized U-shape concentration profile used in the simula-

tion. The U-shape profile is derived from the reasoning that when a particle type is usedmore often in

competing structures, its concentration should be suppressed to optimize the yield.

all competing structures, including partial and incorrect structures, into account. For

example, if B is used more often in all competing structures than A, then A should

have higher concentration than B in the optimal concentration profile. Consider an

ideal case where there is no crosstalking interactions, by enumerating all structures that

can be formed using the 5 particle types†, A and E are used 4 times, B and C are used 7

times, and C is used 8 times in these structures. Therefore, the optimal concentration

profile should be U-shape, where concentrations gradually decrease from the endpoints

of the chain to the middle. Rigorous analysis for the U-shape optimal concentration

profile can be found in the manuscript70, where both partial structures and incorrect

structures due to crosstalk are considered. Figure 2.16C shows the uniform and opti-

mized concentration profiles we use in simulations.

†Without crosstalk, all possible structures are A-B, A-B-C, A-B-C-D, A-B-C-D-E, B-C,
B-C-D, B-C-D-E, C-D, C-D-E and D-E.
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Simulation on canonical ensemble

We first simulate the assembly using two canonical ensemble particle systems with 100

colloid particles. The composition of the systems are set according to the uniform and

U-shape concentration respectively. The systems are simulated at temperature 0.13.

We choose a relatively high temperature so that the system can sufficiently explore the

energy landscape in the given simulation time. Snapshots of the system are taken ev-

ery 103 time steps. Figure 2.17 shows the average yields of all structures at snapshots

from 0.5 × 106 to 2 × 106 time steps, with color green representing partial struc-

tures, including the desired structure, and red representing incorrect structures due

to crosstalking interaction. The tick labels of the vertical axis represent the composition

of structures, but not necessarily the actual particle order. The U-shape concentration

effectively suppresses the yields of BC and CD, and makes the yields of ABC, BCD,

and CDE roughly equal. Because of the high temperature, the yields of large structures

are small. However, if we zoom in to only examine the relative yields of 5-mer chain,

the effect of the optimal concentration is obvious. As Figure 2.18 shows, the U-shape

concentration significantly reduces the yields of competing 5-mer structures, and as a

consequence, the yield of the desired structure stands out. As a more compact view,

Figure 2.19 shows the number of structure types (left) and the average yields of the de-

sired structure (right). The U-shape concentration effectively suppresses the emergence

of competing types. The average yield of the desired structure is 4.15 × 10−4 under the

U-shape concentration, comparing to 2.76× 10−4 under the uniform concentration.
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Figure 2.17: At temperature 0.13, the average yields of all structures in two canonical ensemble parti-

cle systemswith 100 colloid particles, where concentrations of different types of particles are uniform

(A) and U-shape (B) respectively. The average is taken over snapshots from 0.5 × 106 to 2 × 106 time

steps, with 103 as step. The tick labels of the vertical axis represent the composition of structures, but

not necessarily the actual particle order. Green bars represent partial structures, including the desired

structure, whereas red bars represent incorrect structures as a result of the crosstalking interac-

tion. The U-shape concentration effectively suppresses the yields of dimer BC and CD, andmakes the

yields trimer ABC, BCD, and CDE roughly equal. Because of the high temperature, the yields of large

structures are small. The average yield of the desired structure is 0.000415when using the U-shape

concentration, comparing to 0.000276 for the uniform concentration
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Figure 2.18: Relative yields of 5-mer structures in canonical ensemble particle systems, where con-

centrations of different types of particles are uniform (A) and U-shape (B) respectively. Green bars

represent the desired structure, whereas red bars represent incorrect structures due to crosstalking

interaction. The U-shape concentration effectively suppresses the yields of undesired structures, and

makes the yield of the desired structure (green ABCDE) stand out.

Figure 2.19: The number of structure types (left) and the average yields of the desired structure (right)

when simulating the 5-mer chain assembly with canonical ensemble particle systems. The U-shape

concentration effectively suppresses the emergence of competing types. The average yield of the

desired structure is 4.15 × 10−4 under the U-shape concentration, comparing to 2.76 × 10−4 under

the uniform concentration.
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Simulation on grand canonical ensemble

We then simulate the assembly using grand canonical ensemble particle systems with

100 colloid particles. We add new monomers into the system every tadd = 200 time

steps to maintain the monomer concentrations as desired, and remove structures from

the system with probability premove = 0.15 every tremove = 800 time steps. The sys-

tem again runs at temperature 0.13. Figure 2.20 shows the yields of structures removed

from the systems between 0.5 × 106 and 106 time steps, and Figure 2.21 shows the rela-

tive yields of 5-mer structures. The effect of the U-shape concentration is similar to the

canonical ensemble case: the yields of partial and incorrect structures are significantly

suppressed, and the yield of the desired structure stands out. Figure 2.22 shows the

number of structure types (left) and the average yields of the desired structure (right).

Similarly, the number of competing structure types appear less when using the opti-

mized concentration. The average yield of the desired structure is 8.17 × 10−4 when

using the U-shape concentration, comparing to 1.85× 10−4 for the uniform concentra-

tion.

2.5.2 Protein complex

We also simulate the assembly of a real protein complex. Figure 2.23A and B respec-

tively shows its 3D and 2D structure. It is a transferase composed of 6 components 82.

They are approximated by round particles in our simulation. We set the valence of A, B

and C to 3, and the valence of D, E and F to 1. Figure 2.23C shows the adjacency matrix.

The binding energies of strong bonds used in the simulation are proportional to the

actual binding energy in Figure 2.23B, and the energy of the crosstalking interactions

is set to 0.1. Figure 2.23D shows the uniform and the optimized concentrations we use
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Figure 2.20: At temperature 0.13, the average yields of all structures in two grand canonical ensemble

particle systemswith 100 initial colloid particles, whose concentrations of different types of particles

aremaintained at uniform (A) and U-shape (B) respectively by frequently adding newmonomers into

the systems. Green bars represent partial structures, including the desired structure, whereas red bars

represent incorrect structures as a result of the crosstalking interaction. The U-shape concentration

effectively suppresses the yields of dimer BC and CD, andmakes the yields trimer ABC, BCD, and CDE

roughly equal.
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Figure 2.21: Relative yields of 5-mer structures in grand canonical ensemble particle systemswhere

concentrations of different types of particles aremaintained at uniform (A) and U-shape (B). Green

bars represent the desired structure, whereas red bars represent incorrect structures due to crosstalk-

ing interaction. The U-shape concentration significantly suppresses the yields of incorrect structures,

andmakes the yield of the desired structure (green ABCDE) stand out.

Figure 2.22: The number of structure types (left) and the average yields of the desired structure (right)

when simulating the 5-mer chain assembly with grand canonical ensemble particle systems. The U-

shape concentration effectively suppresses the emergence of competing types. The average yield of

the desired structure is 8.17× 10−4 under the U-shape concentration, comparing to 1.85× 10−4 under

the uniform concentration.
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in the simulation. The optimized concentration suppresses the concentrations of the

inner particles (A, B and C) and enlarges the concentrations of the branching particles

(D, E and F). In the canonical ensemble simulation, snapshots of the systems are taken

every 1000 time steps between 0.5× 106 to 2× 106 time steps. Figure 2.24 shows the av-

erage relative yields of all 6-mer structures in two canonical ensemble systems with 120

colloid particles, whose concentrations of different particle types are uniform and op-

timized respectively. When using the optimized concentration, in total there are only

10 types of 6-mer structures appearing in the snapshots, comparing to 32 types of 6-mer

structures for the uniform concentration. Particularly, structures containing 2 As, 2

Bs and 2 Cs are dominant under the uniform concentration, whereas when using the

optimized concentration, they are significantly suppressed, and the yield of the desired

structure (green ABCDEF) is much larger. Figure 2.25 shows the number of structure

types (left) and the average yields of the desired structure (right). The optimized con-

centration effectively suppresses the emergence of competing types. The average yield

of the desired structure is 1.61 × 10−4 when using the optimized concentration, com-

paring to 0.616× 10−4 under the uniform concentration.

2.5.3 Finite time behavior

All previous analyses focus on the equilibrial behavior of a self-assembly system. On

the other hand, since equilibrium is not guaranteed in some cases, it is also important

to study the impact of the concentration, optimized for equilibrial yield, on finite time

yield of the system. For this purpose, we simulate an ensemble of particle systems that

self-assemble the the 6-particle protein complex (Figure 2.23).

Figure 2.26 shows the average yields of partial and desired structures, taken over

200 independent canonical ensemble particle systems, as a function of time. Each sys-
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Figure 2.23: Snapshots of the transferase protein with 6 components. A shows the 3D folding structure

taken from the RCSB Protein Data Bank 15. B shows its 2D structure, reflecting schema on the 3DCom-

plex website 64, along with the strengths of the bonds. C is the adjacencymatrix. The binding energies

of strong bonds used in the simulation are proportional to the actual binding energy inB.D shows the

uniform and the optimized concentrations used in the simulation. The optimized concentration sup-

presses the concentrations of the inner particles A, B and C, while enlarging the concentrations of the

branching particles D, E and F.
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Figure 2.24: The average relative yields of all 6-mer structures in two canonical ensemble systemswith

120 colloid particles, whose concentrations of different particle types are uniform (A) and optimized

(B) respectively. Green bars represent the desired structure, while red bars are undesired structure

due to crosstalk. When using the optimized concentration, in total there are only 10 types of 6-mer

structures appearing in the snapshots, comparing to 32 types of 6-mer structures for the uniform

concentration. Particularly, structures containing 2 As, 2 Bs and 2 Cs are dominant under the uniform

concentration, whereas under the optimized concentration, they are strongly suppressed, and the yield

of the desired structure (green ABCDEF) is much larger.

Figure 2.25: The number of structure types (left) and the average yields of the desired structure

(right) when simulating the protein complex assembly with canonical ensemble particle systems.

The optimized concentration effectively suppresses the emergence of competing types. The aver-

age yield of the desired structure is 1.61× 10−4 when using the optimized concentration, comparing to

0.616× 10−4 under the uniform concentration.
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tem has 1200 particles. Snapshots of the systems are taken every 500 time steps, and

the yield is calculated as the number of a particular structure divided by the number

of all structures, excluding monomers, at the snapshot. Dots represent the average

yield at snapshots, while solid curves are moving averages over a window of 10 snap-

shots, or 5000 time steps. As we can see, yields of different structures gradually increase

over time, and fix at certain levels after equilibrium. Systems with uniform concen-

tration reach equilibrium at∼ 40000 time steps, faster than systems with optimized

concentration, which take∼ 60000 time steps to reach equilibrium. Since the opti-

mized concentration suppresses the concentrations of the inner particles A, B and C,

the yield of the triangle ABC is∼ 2.5 times lower after concentration optimization, as

Figure 2.26A shows. Figure 2.26B shows that although the yield of a 4-mer structure,

composed of the inner triangle and a branching particle D, is lower in systems with

optimized concentration than those with uniform concentration, their gap is smaller

compare to Figure 2.26A. Figure 2.26C shows that before∼ 40000 time steps, the

yield of a 5-mer structure, composed of the inner triangle and two branching particles,

is lower in systems with optimized concentration, but slightly surpasses its uniform

counterpart after that. Figure 2.26D shows the yields of the desired structure. Before

∼ 40000 time steps, both concentration profiles produce similar yield, but systems

with optimized concentration eventually achieve significantly higher yield when they

reach equilibrium. To summarize, the optimized concentration enhances the yield of

the desired structure by suppressing the yields of smaller partial structures, while en-

larging the yields of larger partial structures.
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Figure 2.26: The average yields of partial and desired structures, taken over 200 independent canoni-

cal ensemble particle systems, as a function of time. Each system has 1200 particles. Snapshots of the

systems are taken every 500 time steps, and the yield is calculated as the number of a particular struc-

ture divided by the number of all structures, excludingmonomers, at the snapshot. Dots represent the

average yield at snapshots, while solid curves aremoving averages over a window of 10 snapshots, or

5000 time steps. Yields of different structures gradually increase over time, and fix at certain levels af-

ter equilibrium. Systemswith uniform concentration reach equilibrium at∼ 40000 time steps, faster

than systemswith optimized concentration, which take∼ 60000 time steps to reach equilibrium.

The optimized concentration enhances the yield of the desired structure by suppressing the yields of

smaller partial structures, while enlarging the yields of larger partial structures.
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2.6 Summary

This chapter presents simulation results of two self-assembly optimization methods

using GPU computing. Both results are consistent with theoretical predictions. When

controlling the short-ranged interactions between particles, it is advantageous to use

more particle types than strictly required by local rules. When controlling the concen-

trations of monomers, counterintuitive nonuniform concentrations enhance the yield

of the desired structure. Particularly, nonequilibrium simulation shows that parti-

cle system with optimized concentration reaches equilibrium slower than its uniform

counterpart, and the optimized concentration enhances the yield of the desired struc-

ture by suppressing the yields of smaller partial structures, while enlarging the yields of

larger structures.

Since long integration time and numerous data are necessary to ensure equilibrium

and accurate statistics, GPU computing is a natural and powerful choice to study self-

assembly optimization problems given the parallel nature of the Verlet integration

steps. As the GPU computing momentum continues to grow exponentially fast, it will

certainly play an increasingly important, if not essential, role in self-assembly and many

other fields in the near future.
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I have not failed. I’ve just found 10000 ways that won’t

work.

Thomas Edison

3
Signal Detection below the Random

Matrix Theory Threshold

A critical question when analyzing multivariate datasets is to understand the cor-

relations between variables, and their clustering so forth. Random Matrix Theory

(RMT) 12,32,52 is an efficient set of methodologies to separate correlation signal from

noise by analyzing eigenvalues and eigenvectors of the sample correlation matrix. In
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this chapter, using RMT as a benchmark, I explore the detection power of a more gen-

eral criterion, the likelihood function. More specifically, an algorithm based on sim-

ulated annealing 59,97 is proposed to efficiently traverse the likelihood landscape and

search for the optimal true correlation matrix with blocks. Further analysis shows that

the algorithm is capable to detect signals below the RMT threshold after incorporat-

ing some existing information into the search process. The efficacy of the algorithm

is tested on both synthetic and real financial datasets. A homogeneous model is also

proposed to explain the phenomenon.

The structure of the chapter is as follows. Section 3.1 gives an overview of the Ran-

dom Matrix Theory and its application in signal detection. Section 3.2 elaborates the

proposed signal detection algorithm. Section 3.3 presents simulation results on syn-

thetic datasets with various signal patterns. Section 3.4 introduces the methodology of

incorporating prior information into the algorithm to enable detections below the

RMT threshold. Section 3.5 shows the results of applying the algorithm on real fi-

nancial dataset. Section 3.6 presents a homogeneous model to quantify the detection

power of the algorithm. Section 3.7 summarizes the chapter.
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3.1 Random Matrix Theory

RMT is a set of methodologies that have been applied to various fields for signal detec-

tion, such as finance61,86, bioinformatics 28 and communications95. In this section, we

review its two important conclusions.

3.1.1 The Marčenko-Pastur law

One of the most important theories in RMT is the Marčenko-Pastur (M-P) law67. It

characterizes the eigenvalue distribution, or the spectrum, of the sample correlation

matrix of a multivariate dataset. Suppose there are p variables, each measured by n

samples. We can gather the data into a normalized p-by-n data matrix X, whose rows

represent variables and columns represent samples. Each row of X is normalized to

mean 0 and standard deviation 1. The sample correlation matrix is then calculated as

S =
XXT

n . (3.1)

Denote the sorted eigenvalues of S as {λi | i = 1, 2, . . . , p, λ1 > λ2 > · · · > λp}. The

M-P law states that when all variables are independent, identically distributed (i.i.d.)

with variance 1 and fourth moment of orderO(1), in the limit of

p, n→ +∞,
p
n → β < +∞, (3.2)

the limiting distribution of λ is

fλ(x) =
(
1− 1

β

)+

δ(x) +
√
(x− λmin)+(λmax − x)+

2πβx , (3.3)

79



where λmin = (1−
√
β)2, λmax = (1 +

√
β)2, δ(x) is the Dirac delta function, and the

notation x+ = max(x, 0).

3.1.2 Gaussian eigenvectors

RMT also characterizes eigenvectors of the sample correlation matrix. Suppose each

eigenvector is normalized to norm 1. Since the dataset does not contain correlation

information, in the limit (3.2), the limiting distribution of eigenvector components

follow the maximum entropy distribution, i.e. the normal distribution, with mean

zero and standard deviation 1/√p :

f(x) =
√

p
2π exp

(
−px2

2

)
. (3.4)

3.1.3 RMT based signal detection

Although most RMT theorems hold asymptotically in the limit (3.2), they are almost

always applicable to finite p and n. As a demonstration, we generate a random Gaus-

sian dataset with p = 300 variables and n = 400 samples and compute its sample

correlation matrix. Figure 3.1 shows the spectrum and the distribution of components

of the 1st eigenvector. The spectrum is consistent with the M-P law, and the eigenvec-

tor components are Gaussian.

When there are correlated variables in the dataset, the M-P law can be used as a null

hypothesis to separate nontrivial eigenvalues from trivial eigenvalues, and the actual

signals can be identified from the corresponding eigenvectors. Figure 3.2 illustrates the

RMT based signal detection procedure. It shows a case where there are two blocks of

correlated variables in a Gaussian dataset with p = 300 variables and n = 400 sam-

80



A B

Figure 3.1: Spectrum (A) and the 1st eigenvector components (B) of the sample correlationmatrix of a

randomGaussian dataset with p = 300 variables and n = 400 samples. InA, the spectrum (green

bars) is consistent with theM-P law (red curve). Specifically, all eigenvalues are inside the edges (λmin
andλmax in (3.3)) of theM-P law. B shows that components of the 1st eigenvector (green bars) are

consistent with normal distribution (red curve).

ples. Figure 3.2A and B visualizes the true and sample correlation matrix respectively.

Figure 3.2C plots the spectrum (green bars) and the M-P law (red curve). There are two

eigenvalues above the upper edge of the M-P law, indicating two blocks of correlated

variables. The actual clusters can be identified by examining eigenvectors associated to

nontrivial eigenvalues. As Figure 3.2D shows, the 1st and 2nd eigenvectors significantly

deviate from Gaussian. Specifically, each of them has an obvious clusters of compo-

nents, corresponding to the two blocks of correlated variables.
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Figure 3.2: The RMT based signal detection procedure. We generate a Gaussian dataset with 300

variables, 400 samples. There are two blocks of correlated variables. A and B visualizes the true and

sample correlationmatrices respectively. C plots the spectrum of the sample correlationmatrix. There

are two signal eigenvalues above the upper edge of theM-P law, indicating two blocks of correlated

variables. D shows the top three eigenvectors. Each of the 1st and 2nd eigenvector has an obvious

cluster, respectively corresponding to the two blocks of correlated variables. Components of the 3rd

eigenvector distribute as Gaussian, inferring that there is no information left from this eigenvector.
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3.2 Likelihood Based Signal Detection

Since we are interested in the optimal correlation matrix C giving rise to the p-by-n

data matrix X, a natural choice is to evaluate the likelihood functionL of C, and search

for the correlation matrix C∗ with themaximum likelihood, given the data matrix and

other prior information:

C∗ = argmaxC L(C |X, prior information). (3.5)

The prior information could be the underlying distribution of the variables, as well as

structural knowledge of C. Though not necessary, analyses in this chapter are restricted

to multivariate normal distribution.

3.2.1 Likelihood function of multivariate normal distribution

The likelihood function of multivariate normal distribution is

L = (2π)−
pn
2 det(C)−

n
2 exp

(
− 1

2

n∑
i

xTi Cxi

)
, (3.6)

where xi is the i-th realization of the variables, or the i-th column of X. Logarithm of

the likelihood, or the log-likelihood, is often considered for algebraic simplicity. The

log-likelihood of multivariate normal distribution is

ln(L) = −pn
2

ln(2π)− n
2
ln(det(C))− 1

2

n∑
i=1

xTi C
−1xi. (3.7)

Without other information, it is widely known that the sample correlation matrix S
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maximizes the likelihood:

C∗ = argmaxC L(C |X,Gaussian variables) = S. (3.8)

However, pattern usually does not surface in the sample correlation matrix, especially

when the signal is weak. If given some prior structural information of the correlation

matrix, cleaner correlation pattern could be extracted.

3.2.2 Correlation matrix with blocks

Correlation matrix with blocks attracts practical interests, as it indicates clusters of

correlated variables, or categorization of the population. In particular, we consider

correlation matrices with independent blocks, and correlations within each block are

uniform:

C =



C1 · · · 0 0
... . . . ...

...

0 · · · Ck 0

0 · · · 0 I


, (3.9)

where Ci (i = 1, . . . , k) represents a submatrix with 1 on the diagonal and a uniform

value for all off-diagonal components. The matrix in Figure 3.2A is an example of k =

2.

Incorporating the block correlation structure as prior information, the problem

becomes searching for

C∗ = argmaxC L(C |X,Gaussian variables, C has block structure). (3.10)

84



If the number of blocks is not given a priori, there could be at most p blocks in the

correlation matrix, and each variable could belong to any of them. As a result, the size

of the search space isO(pp). It is unpractical to exhaustively scan over this gigantic

space. Hence, a more intelligent search algorithm is necessary.

3.2.3 The search algorithm

Efficient computation of the log-likelihood

The nominal computation complexity of the log-likelihood (3.7) isO(p3). However,

we can take advantage of the low dimensional structure of C to efficiently compute the

determinant and inverse in (3.7).

Lemma 1. The determinant of a matrix with block structure equals the product of the

determinants of the blocks; the inverse of a matrix with block structure is another ma-

trix with block structure, whose blocks are the inverse of the corresponding blocks in the

original matrix:

det



C1 0 · · · 0

0 C2 · · · 0
...

... . . . ...

0 0 · · · Ck


=

k∏
i=1

det(Ci); (3.11)



C1 0 · · · 0

0 C2 · · · 0
...

... . . . ...

0 0 · · · Ck



−1

=



C−1
1 0 · · · 0

0 C−1
2 · · · 0

...
... . . . ...

0 0 · · · C−1
k


. (3.12)
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Since each block has 1 on the diagonal and the off-diagonal components are a uni-

form constant, we can calculate its determinant and inverse in constant time according

to the following lemma.

Lemma 2. The determinant and inverse of an h-by-h matrix with 1 on the diagonal and

α on the off-diagonal can be calculated in constant time:

det



1 α · · · α

α 1 · · · α
...

... . . . ...

α α · · · 1


= (1− α)h−1[(h− 1)α+ 1]; (3.13)



1 α · · · α

α 1 · · · α
...

... . . . ...

α α · · · 1



−1

=



β γ · · · γ

γ β · · · γ
...

... . . . ...

γ γ · · · β


, (3.14)

where

β =
(2− h)α− 1

[(h− 1)α+ 1](α− 1)
, γ =

α
[(h− 1)α+ 1](α− 1)

.

With Lemma 1 and 2, we can algebraically factorize the log-likelihood (3.7) into a

block-wise summation:

ln(L) = −pn
2

ln(2π)− n
2

k∑
i=1

{ hi + (1− αi)
hi−1[(hi − 1)αi + 1] }, (3.15)

where k is the number of blocks in C, hi and αi are the width and off-diagonal value
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of Ci respectively. In the simulation, αi is approximated by the average sample cor-

relations within reconstructed block. The computation complexity of (3.15) isO(k),

much smaller than the nominal complexityO(p3). In line with the convention of opti-

mization problems, we further transform (3.15) by removing the constant term and the

negative coefficient to define an energy

E =
k∑

i=1

Ei =
k∑

i=1

{ hi + (1− αi)
hi−1[(hi − 1)αi + 1] }, (3.16)

where Ei is the energy of the i-th block. Maximizing the log-likelihood is equivalent to

minimizing E.

Simulated annealing

We use simulated annealing 59 to execute the search. In the search process, we randomly

transform the correlation matrix, then accept or reject the transformation according to

theMetropolis acceptance rule. Specifically, the probability of accepting a transforma-

tion from a correlation matrix with energy Et to another with Et+1 is

Pr =


exp(−ΔE/T) if ΔE > 0

1 if ΔE ≤ 0
(3.17)

where ΔE = Et+1 − Et, and T is an artificial temperature, which is gradually decreased

during the search process. This formula was superficially justified by analogy with the

transitions of a physical system: it corresponds to theMetropolis-Hastings algorithm45,

in the case where the proposal distribution of Metropolis-Hastings is symmetric. For

large Ts, the algorithm scans widely on the energy landscape and accepts more unfavor-
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able moves (ΔE > 0), whereas for small Ts, the algorithm searches locally and rejects

most unfavorable moves.

Correlation matrix transformation

The last missing piece of the algorithm is the random transformation of the correlation

matrix. We randomly generate a correlation matrix with block structure as the initial

guess. Later on the algorithm executes the following three transformation methods one

by one in the search:

1. Shuffling. Change the block each variable currently belongs to to another ran-

domly chosen block.

2. Merging. Merge two randomly chosen blocks.

3. Splitting. Split a randomly chosen block into two blocks at a random dividing

point.

Note that in all of the above transformation methods, the algorithm only change the

compositions of two blocks. Since the energy of the whole correlation matrix is the

summation of energies of all blocks (3.16), we only need to calculate the energy changes

of these two blocks in order to calculate the energy change of the whole correlation ma-

trix, leading to a further optimization of the computation efficiency. In the following

text, we denote a set of these three transformations one by one, with the Metropolis ac-

ceptance rule applied to each transformation, as an iteration of matrix transformation.
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3.3 Simulation Results

Our algorithm is programmed in C++ to leverage its high speed. In the simulations, we

gradually decrease the temperature T from 0.025 to 0.00625. 4×105 iterations of matrix

transformations are executed for each temperature. The goal is to obtain quality recon-

structions of the compositions of blocks. To precisely evaluate the reconstruction, we

introduce an overlap score. Specifically, let B and B′ be an original block and a recon-

structed block respectively. They are sets of variable indices. We define their overlap

score as

overlap score =
2|B ∩ B′|
|B|+ |B′|

. (3.18)

This is a score between 0 and 1, with 0 representing zero overlap and 1 perfect overlap.

Since it is unclear which original block a reconstructed block corresponds to, for each

reconstructed block, we calculate its overlap scores with all original blocks, and use the

best score to represent its quality. We test our algorithm in three scenarios.

3.3.1 Uniform blocks with strong signal

We first construct a Gaussian data matrix with p = 300 variables and n = 400 samples,

whose underlying 300-by-300 true correlation matrix has three independent, uniform

and blocks with high correlations, as Figure 3.3A illustrates. Figure 3.3B shows the spec-

trum. The top three eigenvalues, corresponding to the three signal blocks, are signif-

icantly above the upper edge of the M-P law. Therefore, signals can be reconstructed

using RMT. Figure 3.3C is the correlation matrix reconstructed by our method. Com-

paring to Figure 3.3A, both the sizes and strengths of the blocks are reconstructed al-

most perfectly. Figure 3.3D shows the best overlap scores of the reconstructed blocks.
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Figure 3.3: Simulation on a synthetic 300-by-400Gaussian datamatrix, whose underlying true cor-

relationmatrix has three uniform and strong blocks. A visualizes the true correlationmatrix. B shows

the eigenvalue distribution of the sample correlationmatrix. Its top three eigenvalues are significantly

above the upper edge of theM-P law. C shows the reconstructed correlationmatrix by ourmethod.

Both sizes and strengths of the blocks are reconstructed almost perfectly. D plots the best overlap

score of the reconstructed blocks. Three reconstructed blocks have perfect overlap scores (= 1), while
others have near-zero scores, indicating that the algorithm effectively detects the signals.

Three reconstructed blocks have perfect overlap scores (= 1), while others have near-

zero scores, indicating that the algorithm effectively separates signals from noise.

3.3.2 Nonuniform blocks with strong signal

We then test a scenario more similar to practical data analysis, where simplified models

are fitted to datasets with a more complicated underlying distribution. We construct

a Gaussian data matrix with p = 300 variables and n = 400 samples, whose true

correlation matrix is visualized in Figure 3.4A. It contains 7 independent blocks, and

correlations within each block are uniformly random in [0, 0.3]. Figure 3.4B shows the

spectrum of the sample correlation matrix. There are 7 nontrivial eigenvalues above

the upper edge of the M-P law, corresponding to the 7 blocks. Despite the underlying
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Figure 3.4: Simulation on a synthetic 300-by-400Gaussian datamatrix, whose underlying true correla-

tionmatrix has 7 nonuniform blocks. Correlations within each blocks are uniformly random in [0, 0.3],
asA shows. B shows the spectrum of the sample correlationmatrix. There are 7 nontrivial eigenvalues

above the upper edge of theM-P law. C shows the reconstructed correlationmatrix, which is obtained

by applying our algorithm assuming uniform blocks to the dataset. D shows the best overlap scores of

the reconstructed blocks. Although the algorithm cannot unveil the structures of the original blocks,

compositions of the blocks are almost perfectly reconstructed.

nonuniform block structure, we still use our method, which assumes uniform blocks,

to perform the reconstruction. Figure 3.4C shows the reconstructed correlation ma-

trix, where blocks are uniform, and Figure 3.4D shows the scores of the reconstructed

blocks. They show that although the algorithm is uninformed of the structures of the

original blocks, it almost perfectly identifies the compositions of the blocks.

3.3.3 Uniform blocks with weak signal

Figure 3.5 presents another case where signals are weak. Figure 3.5A shows that there

are 7 weak uniform blocks in the true correlation matrix, but only three sample eigen-

values are slightly above the upper edge of the M-P law, as Figure 3.5B shows. Since

the top sample eigenvalues deviate in a range characterized by the Tracy-Widom (T-

91



True Correlation Matrix

 

 

50 100 150 200 250 300

50

100

150

200

250

300 0

0.2

0.4

0.6

0.8

1

Reconstructed Correlation Matrix

 

 

50 100 150 200 250 300

50

100

150

200

250

300 −0.2

0

0.2

0.4

0.6

0.8

−1 0 1 2 3 4 5
0

0.5

1

1.5

 

 

Sample eigenvalues

M−P law

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Reconstructed block index

B
e

s
t 
o

v
e

rl
a

p
 s

c
o

re

A B

C D

Figure 3.5: Simulation on a synthetic 300-by-400Gaussian datamatrix, whose underlying true correla-

tionmatrix has 7 uniform blocks of weak correlations. A shows the true correlationmatrix. B shows the

spectrum of the sample correlationmatrix. Its top three eigenvalues are significantly above the upper

edge of theM-P law. C andD respectively shows the reconstructed correlationmatrix and the best

overlap scores of the reconstructed blocks. Among the reconstructed blocks, two havemedium sizes,

with∼ 0.5 best overlap scores; others are tiny with best overlap scores lower than 0.3.

W) distribution 52, we adopt the eigenanalysismethod 83 to further justify the statisti-

cal significance of the sample eigenvalues. The method computes a statistics for each

eigenvalue, which indicates its probability of being trivial. Table 3.1 lists these proba-

bilities. It shows that the top three eigenvalues are informative, while others are trivial.

This is consistent with the conclusion from the M-P law. However, three nontrivial

eigenvalues do not necessarily mean that the algorithm can reconstruct three blocks

perfectly, as signals partially mix with the noise when they are weak. As Figure 3.5C and

D shows, the quality of the reconstruction is low. Specifically, only two reconstructed

blocks have∼ 0.5 best overlap scores; others have best overlap scores lower than 0.3.

Although more iterations and longer runtime could potentially enhance the recon-

struction, a more efficient method is necessary.

92



Eigenvector Index Probability of being trivial
1 10−8

2 10−8

3 0.0042
4 0.9171
5 0.9996
6 1
7 1
...

...

Table 3.1: The probabilities of sample eigenvalues being trivial. They are calculated using the Eigenanal-

ysismethod 83.

3.4 Weak Signal Detection with Prior Information

At the failure of reconstructing weak signal, an intuitive question is whether we can in-

corporate prior information into the algorithm to enhance the detection. Since we aim

to reconstruct correlation matrix with block structure, an example of prior information

is the maximum number of blocks. Practically, the maximum number of blocks can

be estimated in datasets where variables have been pre-categorized. Figure 3.6 shows

two example datasets with variable pre-categorization. They are snippets of a yeast

microarray dataset and a financial dataset. Many genes in the microarray dataset have

annotations inferred from experiments, which reflect their basic functionalities. We

can use the number of unique annotations in the dataset, or a larger number for safety,

to estimate the maximum number of clusters in the dataset. Similarly, in the financial

dataset, we can use the number of unique sectors or specialized industries to estimate

the maximum number of clusters. Note that although the number of pre-defined cate-

gories reflects the number of factors in the dataset, both the gene annotation and com-

pany sector information might not represent the true classification of the variables.
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Figure 3.6: Snippets of a yeast microarray dataset and a financial dataset. Although pre-categorization

information, i.e. gene annotations in themicroarray dataset and sector information in the financial

dataset, do not necessarily reflect the genuine classifications of the variables, we can use them to

estimate themaximum number of blocks.

For example, in the financial dataset, Amazon is pre-categorized as a consumer service

company, while further analysis shows that its stock price is in fact correlated with the

technology sector. Therefore, despite the pre-categorization, using a signal reconstruc-

tion algorithm to analyze the dataset is necessary.

When knowing the maximum number of blocks k a priori, the object of the algo-

rithm becomes searching for C∗ such that

C∗ = argmaxC L(C |X,Gaussian variables, C has at most k blocks). (3.19)

Since k ≪ p in most problems, the search space of the algorithm becomes significantly

smaller, and therefore it is easier for the algorithm to detect nontrivial signals.

We use two examples to demonstrate the efficacy of weak signal reconstruction after

incorporating prior information. In the first example, we use the same synthetic dataset

in Figure 3.5, where the true correlation matrix contains 7 weak uniform blocks. Fig-

ure 3.7A and B again show the true correlation matrix and spectrum. Without prior
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Figure 3.7: Signal reconstruction, with prior information incorporated in the search process, on dataset

with weak uniform blocks. This is the same synthetic dataset used in Figure 3.5. A shows the true

correlationmatrix with seven uniform andweak blocks. B shows the spectrum of the dataset. There

are only three nontrivial eigenvalues slightly above the upper edge of theM-P law. Themaximum

number of blocks is constrained to 8 in the search process. C andD show the reconstructed correlation

matrix and the best overlap scores of the reconstructed blocks. The quality of the reconstruction is

significantly improved comparing to Figure 3.5D. Particularly, the 4th and 5th blocks identify 60% of

original blocks not identifiable by RMT.

information, the algorithm should search in a space where the correlation matrix could

contain at most p = 300 blocks. However, if we know that the correlation matrix con-

tains at most 7 nontrivial blocks a priori, we could constrain the search in a space where

the correlation matrix contain at most 7 + 1 = 8 blocks. The one extra block repre-

sent the group of uncorrelated variables. In the simulation, the algorithm executes the

same number of iterations as before, and the results are presented in Figure 3.7C and D.

The overlap scores of the reconstructed blocks are much higher than those identified

without prior information. Particularly, the first three reconstructed blocks almost suc-

cessfully identify the three nontrivial original blocks, and the 4th and 5th reconstructed

blocks identify 60% of original blocks not identifiable by RMT.

In the second example, correlations within each of the 7 blocks are uniformly ran-
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Figure 3.8: Signal reconstruction, with prior information incorporated in the search process, on dataset

with weak nonuniform blocks. A shows the true correlationmatrix. Correlations within blocks are

uniformly random in [0, 0.07]. B shows the spectrum of the dataset. There are three nontrivial eigen-

values slightly above the upper edge of theM-P law. C presents the reconstruction results of the algo-

rithmwith andwithout prior information. It shows that incorporating prior information in the search

significantly enhance the signal identification.

dom within [0, 0.07]. Figure 3.8A and B respectively shows the true correlation matrix

and the spectrum. The maximum number of blocks is again constrained to 8 in the

search process. Figure 3.8C shows that incorporating prior information in the algo-

rithm significantly enhance the signal identification. Particularly, with a priori knowl-

edge of the maximum number of blocks, the best overlap score of the 4th block, identi-

fied as trivial by the RMT, is more than 70%. This is another proof that incorporating

prior information is an efficient method to detect signal below the RMT threshold.
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3.5 Simulation on Financial Data

We also test the algorithm on real financial data to further demonstrate the method.

The dataset consists of daily stock returns of p = 486 companies with the largest mar-

ket capitals on NASDAQ and NYSE, in n = 417 trading days from Jan. 4, 2012 to Aug.

30, 2013. The stock lists are downloaded from the NASDAQ websitenas, which con-

tain various information such as sector, specialized industry and market capital of the

companies. The daily price data are fetched from Yahoo Finance yah. Figure 3.9 shows

the daily return distributions of four stocks (green bars). They are closed to normal

distribution (red curves), which is consistent with the efficient-market hypothesis 35. On

the other hand, due to extreme events, stock return distributions usually have heavier

tail than normal distribution. People sometimes use Student’s t-distribution and its

skewed version as alternatives to model stock returns with heavy tail 14. In our work

however, we model the return series by normal distribution for simplicity.

Figure 3.10A shows the sample correlation matrix of the original dataset, where

stocks are randomly ordered. Figure 3.10B is the sample correlation matrix after order-

ing the variables according to the clustering inferred by the algorithm. As we can see,

clean cluster patterns surface in this reordered matrix. Figure 3.10C shows the recon-

structed correlation matrix. Companies within small and strong blocks mostly belong

to the same sector. For example, the 6th reconstructed block is composed of major

banks, and the 8th block contains mostly semiconductor makers. This indicates that

correlations between daily stock returns reflect specialized fields of the companies.

The clustering also produces several large blocks with weak average correlations. We

can apply the algorithm again on these blocks to obtain fine-grained clustering. As an

example, we use the return series of the 136 companies in the 1st reconstructed block as
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Figure 3.9: Green bars show the distributions of daily stock returns of Apple (AAPL), Microsoft (MSFT),

ExxonMobil (XOM) and Costco (COST). Red curves are normal distributions with the samemean and

standard deviation as the returns. Stock returns are closed to Gaussian, consistent with the efficient-

market hypothesis 35.

A B C

Major banks

Semiconductor makers

Figure 3.10: A shows the sample correlationmatrix of the original dataset, where stocks are randomly

ordered. B shows the sample correlationmatrix where variables are ordered according to the cluster-

ing inferred by the algorithm. C shows the reconstructed correlationmatrix. Companies within small

and strong blocksmostly specialized in the same field. For example, the 6th reconstructed block is

composed of major banks, and companies in the 8th block aremostly semiconductor makers.
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a new dataset for reclustering. Figure 3.11A shows the sample correlation matrix with

random variable order, and Figure 3.11B shows the spectrum of the new dataset. There

are three eigenvalues above the upper edge of the M-P law, indicating that there are

only three significant blocks in the dataset. Figure 3.11C and D respectively shows the

algorithmic-reordered sample correlation matrix and the reconstructed correlation ma-

trix, where the algorithm does not incorporate any prior information, or the search is

unsupervised. They show that the algorithm is only able to detect three mini blocks,

each has less than 5 companies. This is consistent with the RMT inference. Note that

the 136 companies in this dataset belong to 58 unique industries. We therefore exe-

cute the algorithm again by constraining the maximum number of blocks to 58, or the

search is supervised. Figure 3.12 shows the result. A major block is identified after incor-

porating prior information. Companies within this block are mostly pharmaceutical

and biotech companies, reflecting the genuineness of this cluster. This adds a real-data

example demonstrating that incorporating prior information is an efficient method to

identify weak signals.
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Figure 3.11: Unsupervised reclustering result on the 136 companies in the 1st reconstructed block

of the initial clustering. A shows the sample correlationmatrix. B shows the spectrum of the dataset,

where three significant eigenvalues are above the upper edge of theM-P law. C andD respectively

shows the reordered sample correlationmatrix and the reconstructed correlationmatrix. The algo-

rithm detect threemini blocks, each has less than five companies. This is consistent with the RMT

inference.

A B

Biotech companies

Figure 3.12: Supervised reclustering result on the 136 companies in the 1st reconstructed block of the

initial clustering. Themaximum number of blocks is constrained to 58, which is the number of unique

industries these companies belong to. A shows the sample correlationmatrix where variables are or-

dered according to the clustering inferred by the algorithm. B shows the reconstructed correlation

matrix. In the same number of iterations, the algorithm identifies an extra block composed of pharma-

ceutical and biotech companies.
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Figure 3.13: Schema of the homogeneousmodel when the number of blocks k = 3. A shows the true

correlationmatrix, in which each variable belongs to one of the 3 uniform blocks. All of them have size

h and correlationα. B shows the composition of a reconstructed block. In the homogeneousmodel,

since k ≪ p, the size h of each reconstructed block is approximately p/k; variables belonging to a
specific original block take the dominant fraction x ∈ [0, 1] of this block, while variables belonging to
other original blocks equally share the rest.

3.6 Quantify Prior Information

In this section, we use a homogeneous model to quantify to what extent the prior

knowledge of maximum number of blocks enhances signal detection. In this model,

we assume that a) each variable belong to one of the k uniform blocks, where k ≪ p,

and b) blocks have equal size h and strength α. Figure 3.13A shows the true correlation

matrix of such a model when k = 3. Under these homogeneous assumptions, when

the number of blocks k is known a priori, each reconstructed block during the search

process has size h ≈ p/k; variables belonging to a specific original block take the dom-

inant fraction of this reconstructed block, while variables belonging to other original

blocks equally share the rest of the block. Figure 3.13B shows a schema of the composi-

tion of a reconstructed block when k = 3, where x ∈ [0, 1] represents the fraction of

the variables belonging to a specific original block.

Since all original blocks are equivalent to each other, and assuming k is known a

priori, we can conveniently study the energyU of an individual reconstructed block as
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a representative of the energy of the whole reconstructed correlation matrix:

U = h+ (1− α)h−1[(h− 1)α+ 1]

≈ p
k + (1− α)p/k−1[(

p
k − 1)α+ 1], (3.20)

where α is approximated by the average correlation within the reconstructed block.

When n→∞ and p/n→ 0, α is an analytical function of x:

α(x) = pα(k− 2)
(k− 1)(p− k)x

2 +
α(p+ k− k2)
(k− 1)(p− k) , (3.21)

so thatU is also an analytical function of x. Figure 3.14A shows the energyU as a func-

tion of xwhen k = 5, α = 0.1, p = 500 and n → ∞. It shows that the energy reaches

its minimum when x = 1, or the block can be perfectly reconstructed. When the num-

ber of samples n is finite,U is no longer an analytical function of x. In this case, we can

depictU as a function of x by generating synthetic dataset according to the true corre-

lation matrix and randomly selecting variables into the reconstructed block for a series

of x. Figure 3.14B and C respectively showsU as a function of x for α = 0.1 and 0.005,

when k = 5, p = 500 and n = 200. As expected, they show that the energy landscape

is rougher when the signal becomes weaker. Since theoretically the simulated anneal-

ing algorithm is able to locate the minimum given sufficient time, if argminx(U) = 1,

the block can be perfectly reconstructed no matter how rough the energy landscape is.

Therefore, one way to quantify the detection power of knowing k a priori is to investi-

gate how small α could be while the equation argminx(U) = 1 still holds.

The green curve in Figure 3.15A shows an average of argminx(U) over 100 simula-

tions as a function of αwhen k = 5, p = 500 and n = 200. Solid curves in Figure 3.15B
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Figure 3.14: The energyU of a single reconstructed block as a function of x ∈ [0, 1] for k = 5,
p = 500. A shows the curve whenα = 0.1 and n = ∞. In this case,U is an analytical function of x,
and argminx(U) = 1 as expected. B andC show two finite sample cases when n = 200, andα = 0.1
and 0.005 respectively. The energy landscape is rougher when the signalα becomes weaker. Oneway

to quantify the detection power of knowing k a priori is to investigate how smallα could bewhile the

equation argminx(U) = 1 still holds.
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Figure 3.15: A shows an average of argminx(U) over 100 simulations as a function ofαwhen k = 5,
p = 500 and n = 200. B shows the average top five eigenvalues of the sample correlationmatrix in

solid curves, as well as the upper edge of theM-P law in dashed line. Although information gradually

loses in the gray transition area, where eigenvalues vanish into the bulk of theM-P law one by one,

argminx(U) stays at 1. This infers that when the RMT based detection partially fails, signals can still be

fully reconstructed given the prior knowledge of k. On the left hand side of the transition area where
all nontrivial eigenvalues vanish, there is a region where argminx(U) is equal or closed to 1, which
indicates that it is still possible to reconstruct all signals when the whole dataset is determined to be

trivial by RMT.

shows the corresponding average top five eigenvalues. These five eigenvalues vanish

into the bulk of the M-P law one by one in the gray transition area, which reflects in-

creasing information loss; meanwhile argminx(U) stays at 1, indicating potential per-

fect signal identification if knowing the exact number of blocks k = 5 a priori. On the

left hand side of the transition area where all nontrivial eigenvalues vanish, there is a

region where argminx(U) is equal or closed to 1. These infer that when knowing the

exact number of blocks a priori, all signals can be theoretically reconstructed when the

RMT based detection partially or completely fails.
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3.7 Summary

To summarize, this chapter presents a methodology based on simulated annealing to

efficiently reconstruct the optimal true correlation matrix of a particular pattern for

multivariate datasets. The algorithm is superior in that it is natural to incorporate prior

knowledge into the search process, so that signals below the Random Matrix Theory

threshold become detectable. Simulations on both synthetic and real financial datasets

demonstrate the efficacy of the method. A homogeneous model is also proposed to ex-

plain the dramatic increase in signal detection accuracy when incorporating the knowl-

edge of the number of blocks.
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Your work is going to fill a large part of your life, and the

only way to be truly satisfied is to do what you believe is

great work. And the only way to do great work is to love

what you do. If you haven’t found it yet, keep looking.

Don’t settle. As with all matters of the heart, you’ll

know when you find it.

Steve Jobs

4
Conclusion

This dissertation elaborates the applications of state-of-the-art computation techniques

and data analysis algorithms in three representative physical and biological problems:

assembling DNA pieces, optimizing self-assembly yield and identifying correlations

from multivariate datasets. In-depth study of Sequencing by Hybridization algo-

rithm demonstrates how a variant of the classical reconstruction algorithm can signifi-

cantly extend the length of target that can be sequenced with standard oligonucleotide
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probes, which creates new opportunities to use SBH along with microfluidic technol-

ogy in the next generation sequencing. Simulations using GPU computing show how

controlling the short-ranged interactions between particles and controlling the con-

centrations optimize the self-assembly yield of a desired structure, and nonequilibrium

behavior when optimizing concentrations is uncovered by leveraging the enormous

computation capacity of GPUs. At last, a methodology to incorporate existing cate-

gorization information into the search process to efficiently reconstruct the optimal

true correlation matrix for multivariate datasets is introduced. Simulations on both

synthetic and real financial datasets show that it is capable to detect signals below the

Random Matrix Theory threshold.

As I point out at the beginning, although these three problems are superficially

independent, intrinsically they share the same spirit of leveraging computation and

data analysis techniques to tackle optimization problems, and outperform theoretical

boundary when incorporating prior information into the computation. As the data

collection momentum continues to grow exponentially fast, it is predictable that in the

near future massive computation techniques and data analysis algorithms will become

an essential tool to tackle analytically complicated scientific problems.
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