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ABSTRACT

The availability of large amounts of data generated by high-throughput comput-
ing and experimentation has generated interest in the application of machine learning
techniques to materials science.** Machine learning of materials behavior requires the
use of feature vectors that capture compositional or structural information influence
a target property. We present methods for assessing the similarity of compositions,
substructures, and crystal structures. Similarity measures are important for the clas-
sification and clustering of data points, allowing for the organization of data and the
prediction of materials properties.

The similarity functions between ions, compositions, substructures and crystal
structure are based upon a data-mined probability with which two ions will substi-
tute for each other within the same structure prototype. The composition similarity
is validated via the prediction of crystal structure prototypes for oxides from the In-
organic Crystal Structure Database. It performs particularly well on the quaternary
oxides, predicting the correct prototype within 5 guesses 90% of the time. The sustruc-
tural similarity is validated via the prediction of Li insertion sites in the oxides; it finds

all of the Li sites with less than 8 incorrect guesses 90% of the time.
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Introduction

GROWING MATERIALS DATABASES, computational power, and the availability of bet-
ter computational techniques have made it an exciting time in the computational study
of materials science. The Materials Project has published ab initio computations of
almost 50,000 compounds online, including over 20,000 band structures. ** The Inor-
ganic Crystal Structure Database now contains 161,030 entries.” Growing databases of
materials incur the necessity to develop methods with which to organize such knowl-
edge, and allow for the possibility of systematically mining this data for patterns.

This thesis is about quantifying, organizing, and extracting patterns from data. This
thesis provides a framework for analysis of structure, quantifying chemistry, the analy-
sis of substructures and void spaces within crystal structures, and the prediction of new
structures. The work in this thesis creates similarity functions between ions, composi-
tions, substructures and crystal structures, quantifying the relationships between ions,

compositions, substructures, and crystal structures. This thesis draws heavily upon



historic, heuristic methods of understanding crystal structure to build a quantitative
framework by which we can use modern computational tools to analyze modern mate-
rials databases.

We begin chapter 1 with a review of crystal structure prediction in which we cover
historic and modern methods of structure prediction. In chapter 2, we present a data
mined similarity function between ions that quantifies how likely ions are to substitute
for each other within the same crystal structure. In chapter 3, we extend the ionic sim-
ilarity function to define a similarity function between compositions, and show that
compounds with similar compositions are likely to have similar crystal structures. In
chapter 4, we define a substructure similarity function between atomic neighborhoods
that quantifies chemical and geometric similarity. We use the substructure similarity
function to search for Li ion insertion sites for Li ion battery cathodes. Finally, in chap-

ter s, we conclude with a few thoughts on future applications of this work.



Structure Prediction

“ONE OF THE CONTINUING SCANDALS IN THE PHYSICAL SCIENCES is that it remains
impossible to predict the structure of even the simplest crystalline solids from a knowl-
edge of their composition”%, said John Maddox in his 1988 Nature publication entitled
*Crystals from first principles.” The crystal structure of a material is a critical piece of
information from which many material properties may be computed prior to synthe-
sis. Indeed, large materials databases use crystal structure information to perform high
throughput computations on thousands of materials. +*

The websites that host such large databases regularly compute properties that in-
clude band gap, formation energy and magnetic moment, taking advantage of recent
advances in computational power to search for new materials. Application-specific ab
initio calculations include voltage, diffusion, and catalysis activity computations for Li-
ion battery cathodes, »%¢1°%29 T j-air batteries, 4 water splitting photocatalysis for solar

energy,?” and super ionic conductors 63,



While computational screening of thousands of materials has the power to greatly
accelerate materials design and discovery, computational methods rely heavily on the
knowledge of the crystal structure of the material at hand. For as yet unsynthesized
materials, such knowledge is not readily available. As Woodley and Catlow write in

their 2008 review paper, “structure prediction is not ... yet routine.”*

In this chapter,
we will present a brief overview of the state of crystal structure prediction. We begin
with an overview of traditional methods of structure and substructure prediction and
analysis, continue on to survey modern methods, and conclude with a discussion of

data-mining techniques.

1.1 TRADITIONAL METHODS

Historically, crystal structure prediction has been understood using a series of simple,
efficient rules based upon physical insights. These heuristic methods rely upon physi-
cal properties of the ions at hand, including ionic radius, charge state, and Mendeleev
number. A learned scientist searching for new materials would combine his experience
with known materials with his knowledge of these heuristics to make educated guesses
as to the structure of a new compound.

The Pauling Rules”7° for the structure of complex ionic crystals, published in 1929,
are perhaps the most well-known heuristic rules for crystal structure prediction. Paul-
ing describes the local environments of each cation, creating polyhedral building blocks
which he then packs into coherent crystal structures. Pauling begins by creating coordi-
nated polyhedra of anions about each cation. The ratio of cation radius to anion radius
determines both the cation-anion distance and the coordination of the central cation;
this rule is guided by the physical intuition that anions and cations attract, packing as
many anions about each cation as space allows. Pauling uses similar electrostatic argu-
ments to limit the number of polyhedra that share corners, edges, and faces. Finally,
Pauling ends with the thought-provoking statement that “the number of essentially
different kinds of constituents in a crystal will be small.””’ The Pauling rules take into
account both geometric, space-filling concepts and chemical concepts, using simple
electrostatic arguments to support geometric packing rules.

L.D. Brown published in 1981 the bond valence method, an extension of the Pauling

rules based on chemistry rather than geometry. 8 Fachionina crystal structure has a va-



lence equal to the number of electrons the ion uses for bonding. Additionally, Brown
assigns each bond in the crystal structure a valence equal to the number of electron
pairs forming the bond. The bond valence method is used to verify experimentally
determined crystal structures and to assess and improve the quality of randomly gener-
ated trial structures.?

One of the key concepts behind heuristic methods is that patterns arise when orga-
nizing crystal structure information via any number of physically motivated parame-
ters. Such structural information is often viewed in the form of a structure map, where
compounds are arranged against two axes based upon parameters such as ionic radius
mismatch, valence electron concentration, or electronegativity difference. Mooser and
Pearson realized in 1959 that organizing compounds by electronegativity difference,
ionicity, and average principle quantum number clusters together compounds of the
same crystal structure. ® Structural trends can also be found when organizing com-
pounds via parameters derived from pseudopotentials.?>*544# _ Villars®#% and
Muller and Roy ®® have created a number of structure maps based upon the parameters
mentioned above. Finally, Pettifor, frustrated by the limitations of the various param-
eters described above - which have varying degrees of success in separating crystal struc-
tures across different chemistries - created a phenomenological scale X that maps each
element to a single number along that scale.”*77 Using this phenomenological scale,
Pettifor created structure maps for multiple binary systems, achieving good structural
separation. A sample Pettifor map is shown in Figure r.1.

While the heuristic methods outlined above form the theoretical backdrop for this
thesis, their weakness lies in their lack of predictive capability. These methods are qual-
itative in nature, and it is unclear how to extrapolate the patterns found to predict the
structures of ternary or quaternary compounds.” The work in this thesis does not map
ions to a phenomenological scale X, but instead extracts a quantitative similarity func-
tion between ions. This quantitative similarity function does not rely upon Mendeleev
number, ionic radius, nor electronegativity; instead, it is mined directly from struc-
turally similar compounds. The ionic similarity function is extrapolated into a quanti-
tative similarity function between compositions, allowing for a systematic extension of
Pettifor’s structure maps that clusters together materials with similar crystal structures

across all stoichiometries.
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1.2 SUBSTRUCTURE

Substructural analysis, or analysis based upon atomic environments or coordination
polyhedra, also has a rich history in materials science. While the Pauling rules began
with coordination polyhedra in ionic crystals, Laves and Witte published in 1935 a set
of arguments pertaining to the crystal structures of metallic alloys, modeling them

as dense packings of hard spheres with differing radii. When the sizes of the metallic
atoms are favorably mismatched, certain crystal structures can be favored. Frank and
Kasper followed their work in 1958 with a geometric theory of topologically close-
packed phases. They begin by putting forth geometric arguments for a few commonly
found coordination polyhedra, and then discuss the geometric constraints imposed by
tiling space with these coordination polyhedra.

More recently, Daams and Villars have published an impressive survey of the atomic
environments in over 200,000 inorganic compounds.*>*° They define an ‘atomic envi-
ronment type’, a geometric construct that describes the positions of neighbors around
a central ion. They find that 80% of the crystal structures investigated can be described
with only the 20 most commonly found atomic environment types, whereas the re-
maining 20% of compounds requires adding so-70 rarely occurring atomic environ-
ments. The twenty most commonly found atomic environment types, shown in figure
1.2 are often highly symmetric.

The physical and geometric arguments given by Pauling, combined with the sur-
vey by Daams and Villars, support Pauling’s original statement that “the number of
essentially different kinds of constituents in a crystal will be small.””> We have reason
to believe that the number of different crystal substructures might not be intractably
large, which would yield a data set too sparse to data mine. For example, if there were
millions of differently shaped substructures, it would be difficult to find useful cor-
relations in a data set of only 5,000 crystal structures. In chapter 4, we explore the

possibility of data mining crystal substructures.

1.3 COORDINATE SEARCH

Maddox’s 1988 paper on crystals from first principles states, “one would have thought

that, by now, it should be possible to equip a sufficiently large computer with a suf-
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ficiently large program, type in the formula of the chemical and obtain, as output,
the atomic coordinates of the atoms in a unit cell.”*> Computationally solving for the
ground state crystal structure from first principles can be seen as a minimization prob-
lem; search through the space of possible crystal structures for the lowest energy struc-
ture. Armed with density functional theory, the energy of a crystal structure may be
accurately evaluated to within well-understood limitations. >***5%>79 However, given
that the size of the unit cell necessary to describe a crystal structure is unknown, the
search space is infinite. Even given the size of the unit cell, the size of the search space is
immense and has many local minima.”®*»7* In this section, we give a short overview of
two search algorithms that intelligently sample the search space.

Simulated annealing*® is a search method that mimics what happens in nature as
a metal cools from a liquid state. Beginning with a disordered state, random pertur-
bations are suggested, then accepted or rejected via a Monte Carlo algorithm. Pertur-
bations which increase the energy are accepted with low probability, whereas pertur-
bations which decrease the energy are accepted more frequently. As the simulation
progresses, the temperature is lowered, decreasing the probability with which energet-
ically unfavorable perturbations are accepted. If the annealing process is carried out
slowly enough, the ground state solution is probabilistically favored.

Simulated annealing has been used to validate experimental structures’#, to predict

the crystal structures of a few simple inorganic solids 83,81

, and to predict the structures
of several biomolecules.”* Simulated annealing can take a long time to converge because
the temperature must be lowered slowly, requiring hundreds or thousands of energy
evaluations. Another limitation of simulated annealing is that each run must begin
with a single point, which limits the breadth of the search space and it is thus possible
that not all low-energy areas will be found. 9%

Mellot-Draznieks et al. have published several interesting studies using simulated
annealing techniques to assemble “secondary building units.”**$*75° These secondary
building units are predefined inorganic building units in three-dimensional spaces.
Mellot-Draznieks uses empirical “glueing” rules*® to scan through potential packings
of these building units. Dyer et al. expanded upon this work in 2013, using larger mod-
ules to investigate perovskite-related materials. *>'* While the assembly methods used
by Draznieks and Dyer are extraordinarily promising, these structure prediction tech-

niques depend upon the user’s chemical intuition to select plausible secondary building



units or modules. The work in this thesis provides a framework for the systematic,
quantifiable identification of likely building blocks from existing data.

Genetic algorithms" search through configuration space by mimicking not the cool-
ing of metal from a liquid state, but rather Darwinian evolution. An initial population
of crystal structures is mated or mutated via a series of random operations that include
splicing, swapping ions, and random jonic displacements. After mutation, the popu-
lation is again evaluated, and the ‘fittest’ - i.e. the structures that are lowest in energy -
survive. The process is repeated. Over time, structures with lower energy features are
more likely to survive.

Genetic algorithms have many variations in implementation. Crossover routines
vary how to splice and join components from different crystal structures. Mutation
routines vary as well, and the rate of crossover versus mutation is variable. Further-
more, choosing which structural candidates survive for the next round has several dif-
ferent implementations. For example, the next population can consist of only the best
candidates from the previous mutation, or can also include some sub-optimal candi-

dates, 750354 4,96,1,102

Genetic algorithms have been successfully applied to metallic and alloy clusters, mi-

croporous oxide structures, and molecular crystal, +9%*"

among many other applica-
tions. Two notable successes of the genetic algorithm approach include the prediction
of previously unknown crystal structures LizRuO4 and a new phase of high-pressure
boron.™% The weaknesses of genetic algorithms lie in their significant computational
cost. Probert et al.” required more than 40 local optimizations to find the structure
of bulk silicon; Glass et al. *® required 390 energy relaxations to find the structure of
MgSiO,. Additionally, the many parameters that describe a particular genetic algo-
rithm are often varied from system to system; genetic algorithms are a powerful tool

that benefit greatly from user experience.

1.4 DaTa MINING

Growing materials databases and improving computational power in the era of *big
data’ have prompted the rise of a new method of structure prediction. Instead of rely-
ing upon either the human execution of a set of qualitative, heuristic rules, or b initio

calculations sampling configuration space, data mining approaches capture previously

10
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heuristic knowledge quantitatively. Curtarolo et al.” performed principal component
analysis on a set of 55 binary metallic alloys in 2003, calculating their energies over a
set of 114 different crystal structures and showing that the energies of differing crystal
structures were strongly correlated between different chemical systems.

Fischer et al. built upon this work by mining structural correlations from binary
crystal structures in the Pauling File.*#?»?° In an extraordinarily ambitious paper, Fis-
cher attempts to extract for all binary metallic systems, for all compositions, for each
crystal structure, the probability that a compound forms. Figure 1.3 depicts a schematic
of the prediction algorithm for the Ag-Mg system. Taking in the Pauling File, informa-
tion on the two compounds at hand, and the stoichiometries and crystal structures at
which they are known to form compounds, Fischer produces a probability that a given
compound will form in this system.

Over the binary systems investigated, Fischer had a 90% chance of guessing the cor-
rect crystal structure for a compound that forms within the first 5 guesses. Figure 1.4
shows aggregated performance data for Fischer’s algorithm. The blue line shows how
many guesses are necessary to find the correct crystal structure via Data Mined Struc-
ture Prediction versus probability; the green line shows the analogous result for ran-

dom structure guessing, and the red line shows the analogous result for guessing struc-
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tures based upon the frequency with which they appear.

Fischer’s pioneering work is impressive in scope. Unlike many structure prediction
algorithms, Fischer predicts not only the crystal structure but also whether or nota
compound will form. Additionally, the number of energy evaluations necessary to find
the ground state crystal structure is typically very low. However, Fischer’s algorithm
suffers from two weaknesses. Firstly, as a structure prediction algorithm, it functions
well on binary alloys but is not easily extended to to more complex structures. Fischer’s
algorithm suffers from data sparsity. As the complexity of the system at hand grows,

more data is necessary to fit the parameters of the cumulant expansion. Secondly, the
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crystal structures Fischer suggests are limited to the crystal structure prototypes that
have already been seen in the database at hand; Fischer cannot construct novel crystal
structures.

More recently, Hautier et al. have expanded upon Fischer’s work, applying the cu-
mulant expansion technique to the ternary oxides.”»*** Figure 1.5 depicts the quality
of Hautier’s results on the ternary oxides. The length of the crystal structure candidate
list needed to select the correct crystal structure is plotted versus the probability that
that the correct structure is in the candidate list for three different values of peompound-
A prediction with a low threshold for pcompound> shown in the blue line, recovers 100%
of the ternary oxides in the Inorganic Crystal Structure Database 2012; this prediction
performs more poorly, requiring more than 20 guesses to identify the correct crystal
structure at 95% accuracy. Predictions with higher thresholds for Pcompound recover
smaller percentages of the ternary oxides in the ICSD but predict crystal structures
with more confidence (shown in green and red). The accuracy with which the algo-
rithm predicts the correct crystal structure decreases as the percentage of recovered
ICSD oxides increases.

In his next paper, Hautier laid the groundwork for this thesis by data mining ionic
substitutions. Prompted by the data sparsity exhibited in the ternary oxides, Hautier’s
work searches for ionic substitutions that occur in binary and ternary oxides and uses
the commonly found substitutions to predict substitutions in quaternary compounds.
Hautier’s ionic substitution model is the starting point for this thesis, and is expanded
upon further in Chapter 2.

More recently, Rupp et al. have built a fast and promising model that quickly and
accurately predicts the atomisation energies of molecular crystals.*> Rupp extracted a
symmetric Coulomb matrix representation from molecules, shown in figure 5.2. Rupp
feeds the Coulomb matrix representations of molecules into a kernel ridge regression
model via a distance function defined as the Euclidean norm of their diagonalized
Coulomb matrices: d(M,M’) = d(e,€') = />, |er — €]|?, where € is the eigen-
value of the Coulomb matrix M. Rupp achieves extraordinarily good results on the
atomization energies of small organic molecules with up to seven “heavy” atoms that
contain C, N, O, or § and are saturated with hydrogen atoms. Rupp’s methods are cur-
rently being expanded and improved upon, and have recently been extended to learn

electronic transport properties of one-dimensional nanostructures. 31551564565

3
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This thesis provides a data mining framework for the study and prediction of crystal
structures. In chapter 2, a reconstruction and extension of Hautier’s ionic substitu-
tion model is presented. Strongly motivated by D.G Pettifor’s structure maps”*77 we
present in chapter 3 a similarity function between two compositions that preserves
correlations between composition and crystal structure. Drawing heavily upon the
ideas of Pauling, Laves and Witte, Frank and Kasper, and Daams and Villars,we present
in chapter 4 a definition of crystal substructure and a similarity function between
substructures that reflects geometric and chemical similarity. Finally, in chapter 5 we

discuss limitations and potential extensions of this work.
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Ionic Substitution Similarity

THE OVERARCHING GOAL of this thesis is to develop quantitative similarity functions
between compositions, substructures, and entire crystal structures that respect both
chemical and geometric similarity. Therefore we begin with a definition of chemical
similarity.

A chemical similarity function Simjen (i1, 1) should take two ions iy and i and re-
turns a number that is higher if those two ions are similar in a manner that is pertinent

to the data mining problem at hand. Such a function should also satisfy
+ 0 < Simjop(ig,1i2) < 1,and
. Simion(i1, 12) =1ifi; =1y

With respect to this thesis, the problem at hand is the prediction of crystal structure.

Therefore, the similarity function must also satisfy
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* Simyjop (i1, 12) should grow monotonically with the probability that i1 and i,

substitute for each other within a given prototype.

We use a similarity function developed by Hautier et al*® based upon the frequency
with which two ions will substitute for each other within the same structure prototype.
Hautier’s work allows a function derived from experimental data to quantify a scien-
tist’s understanding of ionic similarity. Like the periodic table, the similarity function
imparts structure upon the space of ionic species.

In this chapter, we present a reconstruction of this work. We begin by defining the
terminology used throughout this thesis, including what it means for two crystal struc-
tures to share the same prototype. We describe the model by Hautier that forms the ba-
sis for the Simjen function, the algorithm used to extract Simjoy from a given database,
and we discuss several parameters involved in tuning Simjey, for usage in specific ap-
plications. We discuss the use of similarity functions in general the Simjq, function in
particular, with respect to clustering and imposing a structure upon the space of ions.

Finally, we end with a few thoughts on possible extensions of this work.

2.1 TERMINOLOGY

We begin with some terminology that will be used throughout this thesis.

2.1.1 DEFINITIONS

The following definitions are widely used within the materials science community.

* A species is a specific chemical identity consisting of an element and its charge

state.
* A composition is a set of species and the ratios in which they appear.

* The Bravais lattice of a crystal structure is given by three fundamental transla-
tion vectors a1, a2, and a3. These lattice vectors must be such that the structure
is identical when translated by any vector t’ = r 4+ nja; + nya, + nzas, where

ny, ny, and n3 are all integers.
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* A basis is a description of the arrangement of ions within a particular unit cell
of a crystal structure. For each site within a basis a species is given as well as the

location within the unit cell.

* A crystal structure is an infinitely periodic, 3-dimensional arrangement of atoms
in space. A crystal structure can be described via a basis and a Bravais lattice. By

definition, the information given in a crystal structure includes its composition.

While the following terms are also commonly used within the scientific community,
their usage is not always clearly defined. For the sake of clarity, the following terms are

defined within the scope of this thesis:

* An affine mapping between crystal structures is one that preserves points, straight
lines, and planes. Affine transformations include translation, scaling, reflection,

rotation, and any combination of the above.

* The chemical equivalence class of a given site within a crystal structure is the set

of all sites of that crystal structure with the same species.

* A prototype describes a family of crystal structures that can be transformed into

each other via affine mappings that preserve chemical equivalence classes.

* A compound describes a particular, unique entry in a materials database. Two
entries with the same crystal structure are considered duplicates, and are thus
the same compound.

2.1.2 AN EXAMPLE

We illustrate the usage of these terms on the CsCl and Fe crystal structures, shown in

figure 2.1.

* The species that make up CsCl are Cstand Cl~.
* The composition of CsClis {Cs™ : 1, C1™ : 1}.
* The Bravais lattice of CsCl is cubic. a; = 1(0,0,1),a; = 1(0,1,0),

a; = 1(1,0,0), where the lattice constant | = 4.123 A. The Bravais lattice

18



Figure 2.1: The CsCl crystal structure is shown in figure A. The Fe crystal structure is shown in figure
B. Although the two structures can be mapped onto each other via an affine mapping, this mapping
does not preserve chemical equivalence class, therefore these two structures do not share the same
structure prototype.

of Fe is that of a body-centered cubic lattice, which can either be given as a cubic
conventional unit cella; = 1(0,0,1),a; =1(0,1,0),a; = 1(1,0,0), oras
primitive unit cell: a; = $(1,1,—1),a; = 1(1,-1,1),a; = (~1,1,1).
1 = 2.87Afor both cases.

* The basis accompanying the cubic CsCl crystal structure is given by {Cs™ at (o,
0,0), Cl™ at (%, %, %) }. The basis accompanying the conventional unit cell of
Fe requires a two ion description, given by {Fe at (0,0, 0), Feat (1, 3, 2)%
however, the primitive unit cell of Fe requires only a one-ion basis: {Fe at

(0,0,0)}.

+ Although the two lattice constants for CsCl and Fe are not equal, it is possible
to map all the ions of one crystal structure onto the ions of the other crystal

structure via an affine mapping.

* The chemical equivalence class of Cs™ in the CsCl crystal structure is the set of

all Cst ions; similarily, the equivalence class of Cl ™ is the set of all C1™ in that
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crystal structure. In this simple example, the chemical equivalence class of Fe in

the Fe crystal structure is also the set of all Fe atoms;

* Lastly, because it is impossible to map the equivalence class of Fe onto either

the equivalence class of Cs™ or Cl~ ions, Fe does not have the same prototype as

CsCL.

2.2 MODELING [ONIC SUBSTITUTION

The ionic substitution similarity model is based upon an algorithm that counts the
number of times one ion substitutes for another within the same prototype within a
given database. In this section, we derive the mathematical model that is used to com-
pute the similarity function, and we illustrate the substitution counting process with a

few examples.

2.2.1 DERIVATION

Hautier et al3® model the probability of two crystal structures, X and X/, taking the
same prototype as a function of the ion-ion substitutions i = (iy, i) required to map
the chemical equivalence classes of X onto those of X', given that an affine mapping

exists that will map the locations of the ions onto each other as appropriate.

SA(X,X)
Z

We recognize the form of the equation from statistical mechanics, where the proba-

p(prototype(X) = prototype(X')) = (2.1)

bility of a particular state is inversely proportional to the exponential of its energy.The

f;(X, X') are a series of binary indicator functions, given by

, 1, ifion 1y substitutes forion i,
fi(Xa X ) = (2"2‘>
0, else
The sum is taken over all pairs of ionic substitutions i = (i1, 12). The £;(X, X') in-
dicate whether or not a specific binary substitution i occurs between two crystal struc-
tures X and X'; if the binary substitution occurs, the indicator function evaluates to 1

and the probability of this occurrence is weighted by A;. Otherwise, indicator function
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evaluates to o and the term corresponding to the substitution 1 is neglected. Returning
to our analogy with statistical mechanics, A; can be thought of as the energetic bonus
or penalty associated with the substitution 1; commonly found substitutions will have a
larger bonus, whereas rarer substitutions will have a more negative bonus.

Finally, Z is a partition function which normalizes P(X, X) such that the sum of
all the probabilities is 1. Assuming that each binary substitution 1 is independent of the

others, we have

z=TJh+1) (23)

2.2.2 EXAMPLES

Counting substitutions has a number of nuances, which we will illustrate here with a

few examples:

ExAMPLE 1: A SIMPLE EXAMPLE

Suppose the database at hand consisted of two prototypes. The first prototype con-
tains the compounds S10; and GeO;, and the second prototype contains the com-
pound TiO;. The three crystal structures are shown in figure 2.2.

In this example, Si*t substitutes for Ge** in the first prototype. We do not count
substitutions of one O~ ion for itself; as self-similarity is defined to be 1. Lastly, the
third crystal structure TiO; cannot contribute to a substitution count, as it is the only

structure in its prototype.

ExAMPLE 2: CONCURRENT SUBSTITUTIONS

Suppose a prototype with two compounds contained Na,MnOy4 and Ca;S104 as
shown in figure 2.3. In this example we illustrate that multiple substitutions can oc-
cur concurrently. In this case the substitution count would be: { (Na*, Ca®™): 1,
(Si**T,Mn®*): 1}., Not only does this model allow for multiple substitutions, but it

also allows for charge-imbalanced substitutions.
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Figure 2.2: The Si0; and GeO;, crystal structures are shown in figures A and B; they share the same
prototype. The TiO; crystal structure is shown in figure C.

Figure 2.3: The Na, MnQOy and Ca; SiOy crystal structures are shown in figures A and B; they
share the same prototype. Note that multiple substitutions can occur simultaneously, which allows
for charge-imbalanced substitutions to occur.
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Table 2.1: Substitution Count for The Prototype Including Na; CrOy4

11 1 count
Nat Lit 3
Cr6+ Sé-i— 2

6+ 6+
Cr Fe I
S6+ Fe6+ 2

ExaMPLE 3: COUNTING SUBSTITUTIONS

Consider the case of a prototype with 4 compounds: Nap; CrOy4, NayFeOy, Li;SOq4,
and Na;S5O4. The four corresponding crystal structures are shown in figure 2.4, and
the substitution counts are given in table 2.1.

The substitution count for a given ion-ion pair 1 is given by the number of pairs
of compounds within the same prototype in which 1 occurs; although there are only
4 compounds in this example prototype, we record 5 possible substitutions for the
Crot equivalence class. There are 2 substitutions of Cro™ for ST, 2 substitutions of
Fe®* for S, and one substitution of Cré™ for Fe®*. Indeed, the number of sub-
stitutions that a prototype contributes to the count can grow very quickly with the
number of compounds in the prototype. In a worst-case scenario, a prototype with
n compounds could contribute O(n?) substitution counts per chemical equivalence
class. For this reason, we expect the substitution count to be dominated by the most

common chemistries occurring in the largest prototypes.

2.3 EXTRACTING IoNIC SUBSTITUTION SIMILARITY FROM DATA

Given the model defined above, we use a common algorithm in the data mining com-
munity called maximum likelibood; we extract the model parameters A; by maximizing
the probability of the database at hand occurring. The data sets used in this thesis are
described in Appendix ??. The probability of all the points in a data set D occurring is

given by the joint probability of each pair of compounds (X, X’) occurring in the same
prototype:
> )\ifi (Xa X/)
e 1
P X)epp= [ S (24)

(X,X")eD
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Figure 2.4: Four compounds in the same prototype are shown. Na, CrOy is shown in figure A; the
small red ions are Ozf,the large yellow ions are Na™, and the blue tetrahedra have Cr®™ centers. In
figures B and C, those tetrahedra have Febt and S¢™ centers. Figure D shows SO - centered tetrahe-
drain aframework of green Litcations. Counting substitutions in this prototype yields two instances
of S substituting for Cr®* and Fe®™, one instance of Cr®™ substituting for Fe®t, and three in-
stances of Na™ substituting for LiT.
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A commonly used algebraic trick is to maximize the probability by taking the log-
arithm of both sides. Assuming that each binary substitution i is independent of the
others, and thus the ); are independent, we take the derivative of the log likelihood and

set it equal to zero:

logP({(X,X) €D} = > |D Afi(X,X') —logZ
(X,X)eD L i
' i Aj
OlogP({(X,X’) e D}) SN X) - ;_f
o\ xxneb L e™M 4+ 1 (2-5)
A
—ASi—T Ae
e™M+1
=0

Here, S; is the number of substitutions i found in the data set, and T is the total
number of pair of compounds (X, X) occurring in the same prototype in the data set.
For those A; which correspond to unobserved substitutions, A; is arbitrarily set to the
low value of -10.

We can extract the probability P(i2]i1) of the ion iy substituting into a particular
site in a crystal structure, given that ion 1 is known to exist on that site. Letting X,

denote the n' site of compound X,

p(Xn =11, X, = 1ip)

_ i 1 (2.6)
1 + e)\i] 12 Z CAh b]
i 1+ C)\il’i

Finally, we define the ionic substitution similarity of two ions as:

Sitmio(is. i) = { max(P(iafi1), P(i1]in)), iy # i o)

1, else

The ionic substitution similarity function is defined to be the maximum of the two

conditional probabilities P(iz |i1) and P(i1]i2) to allow for sampling deficiencies in the

25



data set. For example, consider the scenario in which ion 17 is rare and appears in only
1% of the data set, ion 1 is common and appears in 50% of the data set, and for every
compound in which ion 11 appears, another compound appears in the same prototype
and composition, only with ion 15 substituted for ion 11. Choosing the minimum of
the two conditional probabilities penalizes the probability of substitution because
ion 1y is rare. In this implementation, in which we believe our data set features a large
number of underrepresented ions, we chose to err on the side of generosity and use the
maximum possible ionic substitution similarity.

We gratefully acknowledge the contributions of Stephen Dacek and Shyue-Ping

Ong, whose elegant code prototyped the data sets used in this thesis.

2.4 FITTING PARAMETERS FOR USAGE

Executing the above algorithm on an oxide data set (described in Chapter 3) results in
the ionic substitution similarity function shown in Figure 2.2. The resulting function
is heavily weighted towards zero, with the vast majority of our values occurring below
0.30.

Taking a logarithm of every value and re-scaling our similarity linearly such that all
values lie within the interval [1, o], we produce the logarithmic substitutional similarity
shown in Figure 2.4. This similarity function is given by Equation 2.8. Again, the log-
arithmic similarity function satisfies 0 < Simjogion(i1,12) < 1, and Simyogion (i1, i2)
grows monotonically with the probability that i; and i, substitute for each other
within the same prototype. However, the Simjg jo,, better utilizes the full range of

similarities from o to 1.

log Simion (i1, i2) — minlog Simien (j1,j2)
Simyggion (i1, 12) = — : .]17]2 — (2.8)
s min lOg Simjoy (] 15 ]2)
115)2

The ionic substitution similarity function shown in Figure 2.6 finds two areas of
high substitution rates consistent with intuition. The rare earths are clearly distin-
guished in the bright yellow lower left-hand corner, and the transition metals, roughly
in the center of the diagram, also substitute with each other with high probability.

Both the original similarity function and the logarithmic similarity functions were

tested in the development of the composition similarity function described in Chapter
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02-
Sbh3-
Si4+
Pb2+
Al3+
Zn2+
Mg2+
Ni3+
Ir5+
Co3+
Os5+
Ru5+
Fe3+
Mn4+
Re5+
Cr3+
W6+
Nb5+
Tid+
us+
La3+
Pr3+
Sm3+
Th3+
Dy3+
Er3+
Lu3+
Yb3+
Sr2+
Li+

Figure 2.5: The probability of ion 11 substituting for ion i, within the same structure prototype as given
by the maximum likelihood model applied to the oxides in the ICSD. The sixty most common species in
the data set are shown, ordered by Mendeleev number.
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Figure 2.6: The probability of ion 11 substituting for ion 1, within the same prototype, re-scaled to bet-

ter differentiate substitution probabilities. The sixty most common species in the data set are shown,
ordered by Mendeleev number.
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3, and the logarithmic similarity function was used to generate the superior results
shown throughout Chapter 3.

Finally, it is occasionally useful to further tune the sensitivity of the ionic similarity
function. In Chapters 4 and 5, we weigh ionic substitution similarity against geometric
similarity. In these cases, we tune the sensitivity of the logarithmic ionic substitution
similarity function by passing it through a sigmoid function; this sigmoid function

takes the form of an integrated Gaussian:

1 PR S
Sigmoida’u(x) = — /e 202 (2.9)

ovV2mo
Setting u sets the threshold above which ions are considered similar, and setting o
sets how sharply the function differentiates similar and dissimilar ions.
The tunable ionic substitutional similarity function used throughout Chapters 4
and s is given by:

Simg}* (i1, 1) = Sigmoid,; , (Simiegion (i1, i2)) (2.10)

2.5 CLUSTERING

The construction of a similarity function leads naturally to a few questions. With re-
spect to the Simje, function, we may ask which ions are the most similar, and how
similar are they? Can the ions be naturally grouped or clustered into families of sim-
ilar ions? How many such families are there? These questions relate to the topology
imparted on the space of ions by the Simjq, function. In this section, we discuss clus-
tering, a well-established problem within the computer science community. We will
outline the details of a hierarchical clustering algorithm, and as an example, we will
cluster the ions in our database using the ionic substitutional similarity.

The vast majority of clustering algorithms are based upon maximizing some mea-
sure of similarity within a cluster, or minimizing the parallel concept of distance.
Throughout this thesis, we develop a number of similarity functions on sets X, s: X X
X — R. These similarity functions s will all satisfy the following properties for all
X1,Xy € X:

+ 0 <s(x1,x2) < 1(non-negativity)
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* s(x1,x2) = lifand only if x; = X, (identity), and
* s(x1,Xx2) = s(x2,x1) (symmetry).

It is natural to use the following definition of distance:

distance = 1 — similarity (2.11)

It follows that our distance functions will satisfy the following criterion for all pairs

X1,X2 € X:
+ d(x,y) > 0 (non-negativity)
+ d(x1,x2) = Oifand only if x; = x, (identity)
* d(x1,x2) = d(x2,x1) (symmetry)
However, our distance functions do not satisfy the triangle inequality
+ d(xq,x3) < d(xq,x2) +d(x2,%3),

which notably reduces the number of available clustering algorithms, the majority
of which require the distance function at hand to be a metric satisfying the triangle
inequality.

Throughout this thesis, we will use hierarchical clustering to display similarity data.
Hierarchical clustering builds a hierarchy of clusters; the largest cluster contains the en-
tire set, whereas the smallest clusters consist of a single observation. Each smaller cluster
is fully contained in a larger cluster. Hierarchical clusters are displayed in dendrograms,
several examples of which are shown in Figure 2.7.

Hierarchical clustering algorithms can operate on semi-metrics, and require the
choice of a linkage function that determines the distance between sets of observations.
The selection of the linkage function can strongly affect the outcome. A few common

linkage functions between clusters A and B include:

- max{d(a,b): a € A,b € B}, known as complete linkage clustering

- min{d(a,b): a € A,b € B}, known as single linkage clustering, and
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7|A|1\B\ Y aca 2pep d(a, b), known as average linkage clustering.

For the purposes of this thesis, we use complete linkage clustering in our hierarchical
clustering algorithms. Complete linkage clustering guarantees that in every cluster A,
every pair of observations aj,ay € Asatisfy d(aj,az) < dyx for some maximal
distance. This strongest linkage criterion most severely limits the distances within a
cluster, yielding a more intuitive understanding of the space being clustered.

Hierarchical clustering algorithms fall into two categories, divise and agglomerative.
Divisive clustering algorithms, or top-down algorithms, begin with one cluster contain-
ing the entire space. However, exhaustive divisive clustering algorithms tend to operate
in O(2") time, making them computationally infeasible. Agglomerative clustering al-
gorithms start from the bottom up, with each element starting its own cluster; clusters
are iteratively merged together. Agglomerative clustering algorithms operate in O(n?)
time. For the relatively small data sets in this thesis, comprising at most 10,000 data
points, this is acceptable.

We gratefully acknowledge the SciPy.cluster package* for our implementation of
the hierarchical clustering algorithm.

Figure 2.7 depicts the results of hierarchical clustering by ionic substitution similar-
ity for the sixty most common ions in the data set in dendrogram form. The bracket
that connects each pair of ions forms at the distance dpmax at which these ions are clus-
tered together. Red brackets indicate clusters with large diameters dpay; blue brackets
indicate clusters of small diameter. Clusters of small diameter contain similar ions.

The effect of re-scaling the ionic substitution similarity is clearly observed. While
the observations in each cluster remain the same, the diameter of each cluster is shifted.
Simjep favors clusters with large diameter, assigning most pairs of ions a very low sim-

o, W

ilarities, while Simjqg o uses a wide range of similarities. Sim; )™ breaks the ions into

six distinct, highly dissimilar groups, while ions in each group have very high similarity.

2.6 DISCUSSION AND EXTENSIONS

The construction of the binary indicator model allows for the existence of charge-
imbalanced substitutions, as illustrated in Example 2. The A; are calculated based upon

a count of the number of times a species i1 substitutes for another species 1, within the
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Figure 2.7: The hierarchical clustering of ionic species is shown for the sixty most common ions in the
. . . . . . O, M.
data set. Simyq, is shown in figure A, Simyg i in figure B, and of Sim;,,; Hin figure C. The re-scaled

ionic similarities do not change the observations in each cluster, but they do affect the diameters of the

clusters.
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same crystal structure prototype regardless of what other charge compensating sub-
stitutions may occur on other sites. Looking carefully through the transition metal
substitutions found in the center of Figure 2.6, we find many examples of charge im-
balanced substitutions occurring with high probability. This illustrates the capacity of
this model to capture subtleties in the similarity of ionic species beyond that of charge
state or ionic radius. With respect to the prediction of crystal structure, the construc-
tion of this ionic similarity function cuts straight to the heart of the problem; similarity
is defined with respect to how often two ions will inhabit the same structure in the
same site.

The existence of charge-imbalanced substitutions, which require a concurrent
charge compensating substitution, clearly violates the assumption that the ); are in-
dependent. The model described by Hautier et al* can be thought of as a first order
model; it only allows for binary interactions. Like a cluster expansion, its accuracy can
be improved by including second order interaction terms; the addition of such A; ;
terms would greatly increase the number of parameters to be fit, and would require
more data to fit robustly.

Finally, one weakness of the algorithm constructed in this chapter is that it is unable
to distinguish between substitutions that do not occur because they are energetically
unfavorable and substitutions that do not occur because they have not been reported
in the data set at hand. Elements that are rare, expensive, or toxic tend to occur less
frequently in experimentally reported databases, and thus tend to have low ionic sub-
stitutional similarities. This weakness is due to the fact that this algorithm is trained on
positive data only. One potentially interesting but computationally expensive exten-
sion of this work would be to use ab initio methods to perform a statistical sampling of
ionic substitutions. It would then be possible to assign definitive penalties, based upon

calculated energies, to the rarely reported substitutions.
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Composition Similarity

GROWING MATERIALS DATABASES and the availability of more computational power

6941 Grow-

have lead to considerable development in computational materials design.
ing databases of materials knowledge incur the necessity to develop methods with
which to organize such knowledge. For instance, the Inorganic Crystal Structure
Database now contains 161,030 entries.” Given a promising compound with certain
properties, how can we systematically search for similar compounds? Such a definition
of similarity must be with respect to a given property; in this chapter we develop a sim-
ilarity function between two compositions that reflects the likelihood with which two
compounds will have the same crystal structure.

Traditionally, materials scientists have relied upon structure mapping methods com-
bined with heuristic design rules derived from the physical properties of individual ions

to predict the structure of novel materials. For example, the Hume-Rothery rules re-

late the ratio of valence electrons per atom to the crystal structures formed,* while the
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Pauling rules relate the structure of ionic materials to the radii of the ions involved,”
and Pettifor maps demonstrate clustering of similar crystal structures in a space where
the coordinate of each element is simply related to its position in the periodic table.”®
Miedema related the electron concentration at the boundary of a Wigner-Seitz cell to
the formation enthalpy of binary metallic systems. ®* While these methods provide
some physical insight, their predictive quality is limited,°” and no obvious extension of
these methods exists to make them more accurate or extend them to higher component
systems.

Modern structure prediction methods may involve an unbiased search through
the vast space of possible atomic arrangements; 28,47:94:95 others use chemical knowl-
edge, including geometric data such as expected bond lengths, * secondary building
units,’” and structure prototype databases in conjunction with thermodynamic data**
to reduce the search space. The problem with modern structure prediction methods is
that they require a large number of energy evaluations, making them computationally
costly.

Motivated by D.G. Pettifor’s structure maps which displayed a correlation between
ions with similar Mendeleev number and the binary structure prototypes in which they
formed, we generalize Pettifor’s idea to incorporate information from not only binary,
but ternary, quaternary, and more complex compounds. Following the work of Hau-
tier et al,””*® we use the ionic substitutional similarity function derived in Chapter 2
to develop a composition similarity function. This composition similarity function
has the advantage over traditional, heuristic methods that it is general: any two com-
positions, regardless of the number or identity of the components, can be compared to
each other. Indeed, knowledge gleaned from the binary and ternary systems is used to
inform our knowledge of the quaternary and more complex systems. This generality
can be used to impart a distance-like structure to the database of knowledge, clustering
together compounds of similar composition. The composition similarity function has
the advantage of speed over that of modern structure prediction methods; informed by
knowledge gleaned from current structure databases, composition similarity correctly
classifies a new composition by selecting the correct prototype for an oxide structure
from a list of known prototypes within s guesses 80% of the time.

The search through the space of possible atomic arrangements becomes much more

difficult when considering complex materials such as the quaternary oxides. This vast,

35



sparsely sampled search space, with its enormous number of combinatoric possibilities,
represents a rich area for the development of new materials. We present in this chapter
composition similarity, a data mined function on the composition of a material that
uses chemical knowledge from binary and ternary compounds. We apply composition
similarity to the problem of structure prediction, validating the hypothesis that compo-
sition similarity reflects structural similarity, and achieve remarkably successful results

with respect to the complex oxides.

3.1 SIMILARITY BETWEEN COMPOSITIONS

In this section, we develop a similarity function between two compositions. Note that
“similarity” refers to a property for which these compositions behave similarly. In this
case, that property is crystal structure. We begin by data mining from the oxide train-
ing set an ionic substitution similarity function between two ions, per Hautier et al 36,
described in Chapter 2. We use the ionic substitution similarity as an input to the com-
position similarity function, defining a composition similarity function via the best
matching of ions in composition ¢1 to ions in composition ¢,. The desired function
should increase monotonically from o to 1 with the probability that the two composi-
tions take the same prototype. It should achieve its maximum value of 1 when the two

compositions are identical.

3..1 MAXIMUM MATCHINGS

Given the ionic substitutional similarity defined in Chapter 2, it is possible to define
a quantitative data-mined similarity rating between two compositions. Calculating
composition similarity involves finding the best possible matching of the ions in one
composition to the ions in the other such that the average ionic substitutional similar-
ity between each pair is maximized. As the concept of a best matching is used multiple
times in this thesis, we include here a brief primer on maximum matchings.

A graph is an ordered pair G = (V, E) comprising a set of V of vertices together
with a set E of edges. Each edge e = (v, v2) represents a relationship between two
vertices.

A weighted graph has a weight w, assigned to each edge: E: V. x V — R.
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A RSN

Weight

Figure 3.1: A weighted bipartite graph. The orange nodes represent the nodes in U; the green nodes
represent nodes in V. Edges must join nodes from U to nodes in V; no edge may connect two nodes of
the same color.

A bipartite graph is a graph whose vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in V.

An example of a weighted, bipartite graph is shown in Figure 3.1. Bipartite graphs
are often used when comparing objects that fall into two classes.

Within the context of this thesis, we will use bipartite graphs to represent relation-
ships between species, specific ions within substructures, and between substructures.
The nodes within our graphs typically represent ions; the edges represent similarities
between the nodes. All the similarities in this thesis, and thus all the edges, will satisty
0<w.<1.

A matching on a graph is a set of edges such that no two edges share a common ver-
tex.

The maximum weighted bipartite graph matching problem, also known as the as-
signment problem, 8 s the problem of finding a matching on a bipartite graph such
that the sum of the edge weights in the matching have the maximal (or minimal) value.
One commonly used analogy when describing the assignment problem is that of work-
ers and tasks. Given n workers, n tasks and the n X n set of non-negative costs for each
worker to do each task, assign each worker a task such that each task is completed by a
different worker with the minimal cost.

The assignment problem is commonly solved using the Hungarian algorithm ™

which operates in O(n?) time. The Hungarian algorithm requires that the values in
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the cost matrix are non-negative.
We gratefully acknowledge Brian Clapper for his open source Python implemen-
tation of the Hungarian algorithm which we have used extensively throughout this

thesis.*

3.1.2 COMPOSITION SIMILARITY DEFINITION

A composition is defined as a set of ions {i} together with the number of times each
ion appears {n}. We represent compositions by their reduced versions, where the re-
duced version has the smallest integers {n} that preserve the correct ratios between
the ions. The sum Yn of the number of ions in the reduced composition is the total
number of ions Ny, of a given composition.

Given two compositions ¢1 and ¢, we find the lowest common multiple nj.,, of

2
total”

1

total and n

n Two sets of ions s1 and s of length ny, are created by enumerating
the ions of ¢1 and ¢, the appropriate number of times. Searching through all the pos-
sible matchings (i1, 12) of the ions i1 in sj to the ions I in sy, the matching that maxi-
mizes the average similarity of the two sets is found. This maximal average similarity is

defined as the composition similarity between ¢q and c;.

i 2i1,izematchingSlmion (117 12)
Slmcomp (C1 s CZ) = max. (3.I>
all matchings Njem

For clarity, we depict in Figure 3.2 a schematic of a sample calculation.

To limit computational complexity, for the purposes of this thesis we cap nj., at
a maximum value of 100. The implementation of this cap has several subleties which
we detail here. If nj, > 100, we must ascertain how many ions from each composi-
tion to compare to each other. This number serves as the divisor when we calculate the

maximal average ionic similarity. We wish to guarantee the representation of at least

1

one full reduced composition for each composition ¢1, ¢;. Therefore, if eithern

or ntzOt 4 1s greater than the cutoft value of 100, we will compare the larger number of
. 1 2

lons max (ntotal’ ol
number of multiples of either ntlotal or ntzotal to each other, such that the divisor is as

) from each composition. Otherwise, the divisor will be a whole

close as possible to 100, but still less than or equal to 100. Pseudo code is given for gen-

erating the divisor below.
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Given two compounds with compositions C1 and C2,

(- 00®] - 0000]

Step 1: Find the lowest common multiple of the number of ions in each:

(- 000000000000
(- 9000000000000

Step 2: Assign each pair of ions a similarity:

(- 000000000000 =

(- 000000000000 &

Similarity

Step 3: Rearrange the ions to maximize the average similarity:

(- 000000000000

ARRNNEER
(- 000000 000

which we define to be the composition similarity between C1 and C2

Figure 3.2: Composition similarity algorithm. The composition similarity is calculated by finding the
maximum matching of ions in one composition to the ions in another. The weights of the edges are
given by the ionic substitution similarities between the ions. The maximum matching is calculated
between the same number of ions from both compositions.
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currentLCM = lcm(numSpeciesl, numSpecies2)
if (numSpeciesl > cutoff) or (numSpecies2 > cutoff):
divisor = max(numSpeciesl, numSpecies2)
else if (currentLCM <= cutoff):
divisor = currentLCM
else:
if (cutoff% numSpeciesl > cutoff % numSpecies2):
multiplier = int(cutoff)/int(numSpecies2)
divisor = multiplier * numSpecies2
else:
multiplier = dint(cutoff)/int(numSpeciesl)
divisor = multiplier * numSpeciesl
The composition similarity yields a rating between o and 1 for every pair of compo-
sitions ¢ and ¢, with identical compositions having similarity 1. Based on data mined
values for the probability with which each ion will substitute for another within the
same prototype, this composition similarity provides a quantitative method to evaluate

the likelihood with which two compounds will form in the same prototype.

3.2 APPLICATION TO THE PREDICTION OF STRUCTURE PROTOTYPES

In this section we validate the composition similarity function by assessing the extent
to which compounds with similar compositions are likely to appear in the same proto-
type. The structure prediction problem depends upon the assumption that at a given
set of external conditions, the composition of a compound determines its structure.
Therefore we must assess whether or not the relationship between composition and
structure is captured by the proposed composition similarity function.

We begin by describing the construction of the data set used in this chapter. We will
examine in detail the effect of clustering by composition similarity on three example
compounds from the data set. We then present a statistical analysis of the overall per-

formance of prototype prediction by composition similarity.
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3.2.0  DATA SET CONSTRUCTION

The data set that we used to validate composition similarity was constructed with sev-
eral criterion in mind. The data set should be of moderate size; large enough to data
mine patterns from, but small enough to be computationally feasible on a trial basis. It
should contain a variety of prototypes and chemistries, but for an initial validation, this
variety should be contained within a relatively dense space of prototypes. Finally, the
data set should be of interest to the scientific community.

We selected the family of oxide crystal structures for use in this thesis, as it comprises
a well-studied, highly structured, and commercially pertinent family of compounds.
Furthermore, we removed peroxides, superoxides, high temperature and high pressure
phases in an effort to limit our data set to that of the ionic, low-temperature and low-
pressure solids, thus limiting the complexity and the sparsity of the data set at hand.
Lastly, we subjected the data set to a rigorous cleaning process to remove structures
which could have been incorrectly reported; we removed structures with hydrogen,
structures with reported composition-structure mismatches, unbelievably short bond
lengths, and duplicate structures.

All of the compounds in the Inorganic Crystal Structure Database” (ICSD) 2012

were searched for compounds that satisfied the following criteria:

* Compounds must be oxides, as indicated by at least 20% oxygen content by ion

count.

* Compounds must not be peroxides or superoxides, as indicated by O-O bond

lengths L < 1.50 A.

* Compounds must not be marked ‘high pressure’, ‘HP’, ‘high temperature’, or
‘HT”

* Compounds must not have improbably short (< 1A) bond lengths.

* Compounds must not have a mismatch between the reported composition and

the ions given in the crystal structure.

* Compounds must not contain hydrogen. The reported crystal structures of

compounds containing hydrogen are often unreliable.
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The resultant oxides were sorted into structure prototypes using an affine mapping
algorithm. #>* The data set was further cleaned by removing duplicates, defined as
compounds with the same composition and the same structure prototype, resulting in

a final data set of 5,694 oxide compounds.

3.2.2 A FEw ExaMmpPLES

After cleaning, the complete data set was randomly split into two sets for cross-validation.
The first set, called the training set, consists of 95% of the compounds, representing the
database of known compounds to be data mined. The remaining 5%, called the test set,
serves as a set of as-yet-unseen compounds which we used to evaluate the efficacy of
composition similarity. We performed the cross validation process a total of 5 times.

The ionic substitution similarity function was evaluated based upon the com-
pounds in the training set. Using the ionic substitution similarity, composition sim-
ilarities were calculated between every composition in the test set and every compound
in the training set. Finally, for each composition in the test set, the compounds in the
training set were ordered by composition similarity. This cross-validation process was
completed with five different partitions of training and test sets; here, we present the
cumulative results from all 5 partitions.

We begin by examining the behavior of clustering by composition similarity upon

three sample compounds from the test set.

ExamrLE 1: Ca,FeWOyq

Table 3.1and figure 3.3 summarize the results of sorting by composition similarity to
CayFeWOg, which appears in the test set in the double perovskite crystal prototype.
Ranking the compounds in the training set by composition similarity to Ca;FeWOg,
we find that composition similarity begins by finding compounds that differ by one
ionic substitution per formula unit. The first most similar compound substitutes Mo
for W, yielding Ca; FeMoQg, which forms in a distorted double perovskite prototype.
The next two most similar compounds are two polymorphs, Ca;NiWOyg, forming

in the distorted double perovskite prototype and an experimentally reported proto-

type featuring square planar-coordinated Ni2* ijons. The next two most similar com-

pounds, Ca,MnWOg, Ca;MgW Og, both form in the distorted double perovskite
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Table 3.1: Prototype Prediction for Ca, Fe WOy

Composition  Prototype  Similarity to Ca,FeWOq

Ca,FeMoOg I 0.968
Ca,NiWOq I 0.965
Ca;NiWOg¢ 2 0.965
CaaMnWOg4 I 0.961
CazMgWO6 1 0.961
BaFeWOyq I 0.956
BaFeWOyq 3 0.956

Prototype 1 2 3

Figure 3.3: Three structure prototypes suggested for Ca; FeWOg. The first and third prototypes are
both double perovskites, with the octahedron in the first prototype being slightly distorted. The second
prototype represents an experimentally determined polymorph of Ca; NiW Og.

prototype. Finally, the next guess, BaFeWOg, representing a substitution of two
Ba%™ ions for Ca%™ ions per formula unit, appears in two polymorphs; the distorted
and perfect double perovskite prototypes. In this example, the composition similarity
method finds the correct structure prototype for the compound in question on the 3rd

guess., though all guesses are structurally similar to CaFeWOg.

ExaMprLE 2: BalLa, Ti304

Table 3.2 summarizes the results of sorting by composition similarity to BaLa; Ti301,
which appears in the test set. The most similar compound in the training set is La Ti3012,
followed by La, Ti; O7. With the third guess, composition similarity returns to the

original stoichiometry and finds BaPr, Ti3O1¢, which forms in the same prototype as
BaLa, Ti3O1y.
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Table 3.2: Prototype Prediction for BaLa, Ti301

Composition  Similarity to Bala, Ti3O1g
La; T304, 0.973
LazTi207 0.965
BaPrzTi3 010 0.962.

Table 3.3: Prototype Prediction for DyMnO3

Composition  Prototype = Similarity to DyMnOj;

DyMnOs; I 1.000
DyMnOs; 2 1.000
DyMnO3; 3 1.000
YMnO; 3 0.927
YMnO; 4 0.927

ExampLE 3: DyMnOj;

Table 3.3 and figure 3.4 summarize the results of sorting by composition similarity

to a polymorph of DyMnOj3 that appears in the test set. The LnMnOj3 structures,
where Ln is a lanthanide, form primarily in two structural prototypes — a distorted
orthorhombic perovskite and a hexagonal structure®”. The target compound in our
training set forms in the distorted orthorhombic perovskite structure, shown in figure
3.4.

Examining the results of ordering the test set by composition similarity shown in
Table 3.3, we find that the three most similar compounds in the test set are polymorphs
of DyMnOs3; two distorted versions of the distorted orthorhombic perovskite struc-
ture and the hexagonal structure. Lastly, composition similarity substitutes Y for Dy,
guessing two polymorphs of YMnOj3; the first polymorph is the tetrahedral arrange-
ment, and the second is the correct distorted orthorhombic perovskite.

Again, composition similarity selects crystal structures that have similar structural
components. Three out of the first four structures are remarkably similar distorted
orthorhombic perovskite structures; the last is a well-known polymorph of DyMnOs.
The final structure only differs from previous ones by a slight shift in the placement of

the central Dy37 ion.
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Prototype 1 2 3 4 5

Figure 3.4: Four structure prototypes suggested for DyMnO3. Numbers 1, 2, and 4 are all distorted
orthorhombic perovskite structures. Structure prototype number 3 is a hexagonal crystal structure
commonly found in the LnMn QO3 family, where Ln is a lanthanide.

3.2.3 STATISTICAL RESULTS

To quantitatively assess the ability of composition similarity to cluster compounds
with similar structure, we consider the application of composition to structure proto-
typing. For each composition in our test set, we ask - what structure prototype would
this compound form in? We answer this question by referring to the list of compounds
in our training set, ordered by similarity to the test set composition. Structure proto-
types are guessed from that list, progressing from the most similar compounds down-

wards, subject to the following rules:

1. If a compound in the test set forms in a structure prototype that is unrepre-
sented in the training set, we do not consider this compound, as it is impossible
to guess this structure prototype. Composition similarity does not have the

ability to suggest as-yet-unseen crystal structures.

2. If the test set composition is a binary, ternary, or quaternary or more complex
composition, only appropriate binary, ternary, or quaternary or more complex
prototype guesses are permitted, matching the number of chemical components

in the compound.
3. No prototype is guessed twice.

4. No training set compounds with the same composition as the test set composi-
tion are considered. Recall that the entire dataset, consisting of both test set and
training set, is constructed such that no two entries share the same composition

and prototype; such entries would be considered duplicates. Thus, guessing
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compounds with the same composition would be by definition suggesting poly-

morphs with incorrect prototypes.

In the following analysis our structure prototype prediction algorithm, the ‘com-
position similarity’ algorithm, is compared against a control in which the list of sug-
gested prototypes is ordered by the frequency with which these prototypes appear
in the training set, called the ‘most common prototypes’ algorithm. Prototypes are
guessed, subject to the same rules, from the most frequently observed prototypes to the
least. This is a similar benchmark to what was used previously by Fischer et al**.

Figure 3.5 depicts the performance of crystal structure prototyping via composition
similarity aggregated across all 5 cross-validated test sets. The horizontal axis depicts the
probability with which the correct prototype is among our guesses against the vertical
axis, which depicts the number of guesses made. The black line shows the performance
of prototyping via composition similarity. The dotted line shows the performance
of prototyping via the most common prototypes method. Prototyping via composi-
tion similarity consistently outperforms prototyping via the most common prototypes
method, requiring a smaller number of guesses at every confidence level. Overall, pro-
totyping via composition similarity achieves 80% accuracy within 5 guesses. 67% of the
time, the correct prototype is guessed within the first 3 guesses.

The strengths and weaknesses of composition similarity become evident when the
data is broken down by the number of components in the compound. Dividing the
data set into groups of binary, ternary, and quaternary or higher compositions, a clear
trend in favor of the prediction of more complex compound prototypes emerges. Fig-
ure 3.6 shows the number of guesses necessary to find the correct prototype, broken
down by number of components in the compound, for prototypes ordered via the
composition similarity and most common prototypes methods. The composition simi-
larity rating fares poorly in the binary compounds, performing comparably to the most
common prototypes method. Its performance improves markedly in the ternaries,
while the most common prototypes method suffers from the large number (~1100) of
candidate ternary prototypes. The trend continues into the quaternaries, where the
most common prototypes ranking fares remarkably well, predicting the correct struc-
ture prototype out of over 1,600 candidate structure prototypes on the first guess 65%

of the time, within 2 guesses 80% of the time, and within 1o guesses 90% of the time.
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Figure 3.5: Prototyping ICSD oxides by composition similarity. The black line shows the number of
guesses necessary to select the correct prototype by composition similarity. The dotted line shows
the number of guesses necessary if those guesses were ordered by the frequency with which that
prototype appears.
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Figure 3.6: Prototyping oxides by complexity of compound. The bold lines show the number of guesses
necessary to select the correct prototype by composition similarity. The dotted lines shows the num-
ber of guesses necessary if those guesses were ordered by the frequency with which that prototype
appears. The performance of composition similarity increases dramatically with the number of compo-
nents in a compound.
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3.3 DISCUSSION AND EXTENSIONS

We have presented a data-mined, quantitative composition similarity function that re-
flects the probability of two compositions taking the same crystal structure prototype.
This composition similarity function is obtained in two steps; the first is to data mine
an ionic substitutional similarity function that reflects the probability that two ions
will substitute for each other within the same prototype. The second is to use this ionic
substitutional similarity to find the most similar matching of the ions in two given
compositions; the average similarity of this matching is the composition similarity.

We have used structure prototype prediction as a means of evaluating the efficiency
with which composition similarity groups similar compounds. Using composition
similarity, we ordered the oxides in a training set of over 5,000 compounds versus each
compound in a test set of over 280 compounds - five times. The compounds that ap-
pear first on the ordered list represent the most similar compounds to the test set com-
pound in question. We have shown that these most similar compounds are very likely
to share the same prototype as the test set compound, validating the hypothesis that
similarity in composition correlates with similarity in structure.

It is worth noting that while structure prediction by composition similarity is de-
pendent upon having a large, trustworthy data set that is pertinent to the structure
being predicted, it also has the remarkable ability to predict crystal structures on a large
scale. Compared to first-principles calculation based structure prediction algorithms,
data mining is lighting fast, yielding the ability to predict large numbers of crystal struc-
tures. To our knowledge, no ab initio based structure prediction algorithms have pub-
lished statistical evaluations of the efficacy of their methods.

We have found that composition similarity orders the possible prototype structures
more effectively as the number of components of the compound increases, finding the
correct prototype in remarkably few guesses. This is particularly useful for multiple
reasons. Complex oxides are a particularly rich family of compounds comprising a large
body of current scientific research. Additionally, complex compounds tend to have
more atoms per unit cell; this hurdle is particularly difficult for first-principles structure
prediction methods, which scale poorly with the number of atoms per unit cell. First
principles methods are further limited by the necessity of guessing how many atoms

there are per unit cell prior to calculation, whereas structure prediction by composition
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similarity neatly circumvents this problem.

The correlation between performance of composition similarity and the number
of components of the compound in question can be attributed to the relative lack of
prototypes in the quaternary structures. Figure 3.7 shows the prototype distributions
throughout an oxide data set. The x axis depicts the number of prototypes necessary
to capture y percent of the compounds in the data set. Lines with low slopes depict
prototypes that account for a small percentage of the structures in a data set; high slope
regions represent prototypes that are densely populated.

While the binary compounds contain only one non-oxygen ion and form in over
280 distinct prototypes, the ternaries contain two non-oxygen ions and form in 970
prototypes, and the quaternaries contain three non-oxygen ions and form in 1300 pro-
totypes. Considering the number of possible ionic combinations, with over 200 species
of ions represented in our database, the number of combinations grow 200-fold going
from the binaries to the ternaries and 4000-fold from the binaries to the quaternaries.
However, the number of prototypes the algorithm must order in this data set grows
far more slowly to the benefit of the predictive ability of our algorithm. While there
undoubtedly exist ternary and quaternary prototypes that are as yet unrepresented in
the ICSD - 50% of the quaternary prototypes in the test set were not represented in the
training set - this study shows that composition similarity takes advantage of the higher
ratio of ionic combinations to number of structural prototypes available in a quater-
nary composition to better order the current list of available prototypes. For those
quaternary prototypes that were represented in the training set, we find the correct
prototype on the first guess 65% of the time.

We refer back to example 3.2.2, in which we rank training set compounds by their
composition similarity to BaLayTi301, to highlight one of the weaknesses of compo-
sition similarity. In this example, it takes composition similarity three guesses to obtain
the correct structure prototype. The first two guesses, LazTi301; and La, Ti, O, ex-
hibit starkly differing stoichiometries from the desired compound which would make
them unlikely candidates for sharing the same structure prototype. However, because
composition similarity is given by the highest average chemical similarity between pairs
of ions from both compounds, high chemical similarity between a majority of the ions
can outweigh a few improbable substitutions. Looking carefully at this example, it

would seem improbable for the ions from BaLa; Ti301¢ to map stoichiometrically
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Figure 3.7: Prototype distributions in the oxides. 285 binary prototypes account for all binary crystal
structures, whereas 1315 quaternary or more complex prototypes account for all the complex oxides.
Approximately 400 quaternary prototypes appear more than once, accounting for almost 60% of the
structures in the data set.
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onto the ions of Las Ti301,; however, taking the lowest common multiple the 16 ions
per formula unit in BaLa; Ti301¢ and the 19 ions per formula unitin LagTi3 O,
we find our similarity function is forced to compare 247 ions of each composition. In
this case, one of the O2~ ions from BaLa, Tiz;O1¢ must eventually be mapped onto
either La’* or Ti**, a rather improbable substitution. However, over 247 compar-
isons in total, there are enough overwhelmingly good substitutions to outweigh a few
improbable ones.

In future work it would be possible to address this weakness through a simple algo-
rithmic variation. The substitution of ions in differing charge states could be strictly
disallowed by automatically setting their similarities to — inf. Such a modification,
while computationally straightforward and physically meaningful, would also result
in aloss of information. The current algorithm data mines chemical similarity while
allowing for multiple substitutions within the same prototype; it is not uncommon
for ions of differing charge states to substitute for each other when accompanied by
another, simultaneous substitution which offsets the charge imbalance. The informa-
tion gleaned from charge-imbalanced, multiple-ion substitutions would be lost if we
implemented this variation.

Compared to other structure prediction algorithms, ordering via composition
similarity has distinct strengths and weaknesses. Unlike direct optimization search
methods, composition similarity does not have the ability to predict new structure
prototypes that are not represented in current databases. Some direct optimization
search methods, for example, simulated annealing, can attempt to systematically search
through the infinitely-sized space of possible structures given infinite time, while
composition similarity is strictly limited to searching the data set at hand. However,
composition similarity effectively orders structure prototype candidates prior to any
energetic evaluation, and is thus quite computationally cost-effective. Furthermore,
the growing efficacy of composition similarity with the complexity of the compound
makes structure prediction via composition similarity much more attractive in the qua-
ternary or even quintenary compounds. We expect the performance of composition
similarity to improve as more quaternary compounds are discovered.

Composition similarity has broader potential for application than the example of
prototype prediction discussed above. The composition similarity function takes as

its input any two compositions, and outputs a number that reflects the chemical and
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structural similarity between them. Such a function is useful with respect to the classi-
fication: we demonstrated the performance of composition similarity when classifying
compounds by structure prototype. However, in a broader sense, composition similar-
ity is useful because it is an effective clustering method, grouping together compounds
that are similar and providing a mechanism for the mapping of composition space.
Defining the distance between two compositions as 1 — the composition similarity, we
now have a semi-metric which imposes a structure upon the space of compositions.
Note that this distance does not satisfy the triangle inequality, and thus is only a semi-
metric.

Figure 3.8 shows a small sample set of 300 compounds drawn randomly from the
test set, clustered by composition similarity. The vertical axis represents the distance
between two compounds, or the largest possible distance between two clusters. Identi-
cal compounds (5103 ) have distance zero. The horizontal axis represents the clustering
of similar compounds; generally speaking, similar compounds will be drawn closer to
each other on the horizontal axis.

Figure 3.8 represents the ability of composition similarity to provide structure to a
well-explored but as yet relatively unmapped space; the space of all compounds. It can
form a hierarchical grouping of similar compounds across all chemistries, comparing
binary compounds to ternaries and quaternaries in a quantitative, physically meaning-
ful way. We suggest that the organizational value of composition similarity may prove
useful, allowing the designers of new compounds a new mechanism by which to search
for compositionally similar compounds.

Finally, it is possible to extend the composition similarity method such that it is no
longer based upon structural similarity. This chapter describes a two-step algorithm;
the first part, following the work of Hautier*, data mines an ionic substitutional sim-
ilarity between two ions which reflects the tendency of those ions to form within the
same structure prototypes. The second part describes how to use that ionic similar-
ity function to compute a composition similarity function. Appropriately, we use the
ionic similarity that reflects the tendency to form within the same prototype to predict
crystal structure. However, the two parts are modular; the derivation of composition
similarity is independent of which ionic similarity function is used. If the end goal were
not the prediction of crystal structure but another property, using another ionic simi-

larity function may prove more direct and yield a better prediction.
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Figure 3.8: Clustering compounds by composition similarity. Grouping together compounds with high
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Data mining across not only structural but also chemical similarity allows us to
counteract the sparsely sampled nature of the space of quaternary materials; indeed,
when limited to the quaternary subset of the oxides, composition similarity correctly
selects the correct prototype from a list of known prototypes on the first guess 65% of

the time.
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Substructural Similarity

IN THE PREVIOUS CHAPTER, we developed a similarity between ionic compositions
and used it to validate the correlation between similar compositions and crystal struc-
ture prototypes. Pursuant to the belief that ionic similarity is a rich tool for data min-
ing structural materials properties, in this chapter we link ionic substitutional similarity
to a structural property that is less rigidly defined than crystal structure prototype.
Breaking crystal structures down into substructures allows us to further subdivide

our data set, yielding more points in a richer database. Instead of mining 5,700 com-
pounds in 2,600 prototypes, we are now able to extract millions of substructures from
the same database of 5,700 compounds. Again, we use ionic substitutional similarity to
construct a similarity function between substructures, this time including an explicit
geometry-dependent term in our substructural similarity definition. This new simi-
larity function allows us to combat data sparsity, collecting information from across

binary, ternary, and quaternary prototypes to predict defect ion insertion sites.
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Substructure based analyses of materials properties have a rich history in materials
science. Linus Pauling’s Principles determining the structure of complex ionic crys-
tals7*, colloquially known as the Pauling rules, describe a set of rules for deriving ionic
crystal structures based upon geometry and local packing rules. Pauling begins with a
geometric argument based upon the ratio of the cation radius to the anion radius, fit-
ting as many anions about a central cation as geometry will allow. Pauling continues
on with various electrostatic arguments about the packing and arrangements of ionic
polyhedra.

Daams and Villars presented in 2000 an enlightening study in which they de-
composed 200,000 inorganic crystal structures in 5,000 structural prototypes into
chemistry-independent atomic environment types. Promisingly, they showed that only
20 of the most frequent atomic environment types were necessary to account for 80%
of the prototypes seen; only another 7o rarer atomic environment types were necessary
to account for their entire data set.

Given the high degree of structure that Daams and Villars have found in the atomic
environments of inorganic compounds, alongside Pauling’s intuitive and compelling
physical arguments, decomposing crystal structures into substructural units is a natural
next step. Substructural decomposition is less rigidly constrained than crystal struc-
ture prototyping, allowing us to further subdivide the data set at hand. On the other
hand, the relatively small number of geometrically distinct substructures we expect to
find prevents us from exposing ourselves to intractably large numbers of substructures
which would prove computationally expensive to run statistical analyses upon.

In this chapter, we validate our work with applications to the development of
lithium ion batteries. Lithium ion batteries are commonly used in consumer electron-
ics such as cell phones, power tools, and even electric cars. Lithium ions flow from
anode to cathode and back during charge and discharge, intercalating into the elec-
trode materials. The commercial success of lithium ion batteries has prompted a surge
of computational battery research. % In particular, the Materials Project ** presents an
exhaustive toolkit for the exploration of inorganic compounds, providing amongst
other data voltage profiles and oxygen evolution data for potential lithium ion battery
electrode materials. However, one basic problem that the Materials Project has yet to
develop a computationally feasible strategy to solve is this: In a potential lithium ion

electrode material, where are the lithium ion sites?
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It is possible to use first-principles 4b initio methods to calculate the energy required
to place an Li-ion on a specific site within a crystal structure. Indeed, this method is
used to calculate Li-ion intercalation voltages.”* However, such a computation re-
quires the user to relax the crystal structure around the intercalated ion; such a ‘single-
site” calculation is not computationally cheap. Using first-principles methods to ex-
haustively search the space of potential Li-ion intercalation sites across all the inorganic
crystal structures would be very computationally expensive, as many inorganic crystal
structures have hundreds or even thousands of candidate Li-ion sites.

It is to such computationally difficult search problems that the data mining tech-
niques in this thesis are most readily applied. Data mining techniques are probabilistic
in nature and depend upon the completeness of the training set at hand; they cannot
provide the relative reliability of an ab initio calculation. On the other hand, data min-
ing techniques are incredibly fast. Thus it makes sense to preface any high-throughput
series of ab initio computations with a data mining component which orders the search
space by probability of success. In chapter 3, we ordered the search space of complex
oxide prototypes to great success. In this chapter, we use data mining in conjunction
with the substructural similarity function to order the search space of Li-ion intercala-
tion sites in the oxides.

We begin by presenting a mathematically rigorous definition of substructure and
justifying this definition for use within a machine learning algorithm. We will de-
fine a similarity function between these substructures that respects both geometric
and chemical similarity while avoiding computationally costly geometric rotations.

We present an example of substructure clustering by investigating the lithium sites in
the oxides. Finally, we apply substructural similarity to data mining the prediction of

lithium insertion sites in the oxides.

4.1  DEFINING SUBSTRUCTURE

In this section we develop a definition of a substructure of a crystal structure and de-
scribe a method of evaluating the similarity between two substructures. This similarity
should be higher if two substructures are chemically similar and higher if two substruc-
tures are geometrically similar. We define chemical similarity by data mining from the

oxide training set an ionic substitution similarity function between two ions, per Hau-
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1.6936 This function grows with the probability of the two ions substituting

tiereta
for each other within the same prototype within the database. Finally, we use the ionic
substitution similarity as an input to the substructure similarity function, defining a
similarity function via the best matching of ions in substructure 1 to ions in substruc-
ture . This similarity is a function between o and 1 that is continuous with respect to
small geometric perturbations. Two identical substructures have similarity 1.

In the field of machine learning, the term ‘feature vector selection’ is used to describe
the problem of finding and choosing the variables that influence the outcome of the
problem at hand. The choice of feature vector should not only include all of the fac-
tors that may influence the outcome of the problem, but it should also be dense: To
the greatest extent possible, it should not include information that does not influence
the outcome of the problem. Feature vector selection benefits strongly from domain
knowledge in the field of study.

With respect to the problem at hand, we believe that a good feature vector for sub-

structure prediction and data mining should fulfill the following criterion.

1. The feature vector should include geomerric information about a substructure.
At a minimum, the feature vector should be able to distinguish between sev-
eral commonly found coordinations such as tetrahedra and octahedra. More
geometric information, for example distortions in octahedral site, or the iden-
tities of next-nearest neighbors, could also prove useful, however it is critical
that such additional geometric information not create an overly sparse space.
As we are expecting millions of substructures, it is also useful to minimize com-
putational complexity by limiting feature vector size. For example, including
information on the third nearest neighbors could create an overly specific fea-

ture vector.

2. The feature vector should be continuous with respect to small variations in ge-
ometry. As the data in this thesis is experimentally generated, we would like to
create a feature vector that is robust against small perturbations in atomic posi-

tion.

3. The feature vector should include chemical information. The strength of this

thesis lies in using the ionic substitutional similarity to organize and understand
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structural information; any feature vector should include the chemistries of the

ions involved.

4. Lastly, the feature vector should be clearly, simply, and intuitively defined.

Motivated by the work of Villars*, we design a feature vector based upon a sub-
structure around a central jon. This choice allows for a clear decomposition of a given
crystal structure into substructures; every ion is the center of it’s own substructure.
While Villars uses an atomic environment based upon Brunner and Schwarzenbach’s
maximum gap rule’®, in this thesis we chose to describe a feature vector based upon
a weighted Voronoi polyhedron described by O’Keefte.” Both methods include ge-
ometric information that is independent of symmetry and continuous against small
perturbations in crystal structure.

Brunner and Schwarzenbach’s maximum gap rule is based upon the radial distribu-
tion function around the central ion. The radial distribution function is normalized by
I'min, and then the maximum gap in the radial distribution function is identified. Ions
that appear with a radius smaller than the maximum gap are counted as neighboring
ions; ions with a larger radius are not considered neighbors. An example histogram is
shown in figure 4.1. The maximum gap rule is elegant, easily calculable, and contin-
uous. However, the clarity of this method breaks down when a maximum gap is not
clearly discernable.

O’Keeffe’s method is based upon the Voronoi decomposition of a crystal structure. ””
A crystal structure ¢ can be decomposed into a set of Voronoi polyhedra with one cen-
tral ion X inside each polyhedron. " Each polyhedron represents the set of points that
are closer to X than any other ion. Each face of the polyhedron surrounding x is gener-
ated by the plane bisecting the line between x and a neighboring ion y, and subtends a
solid angle €2y from the central ion. Following the work of O’Keefte, for a given poly-
hedron, the neighbor y corresponding to the greatest solid angle is assigned a weight
Wy = Wmax = 1, and every other neighbor z is assigned a weight w, = €, /Qpay.

Neighboring ions with greater Voronoi weights tend to be closer to the central ion
i; they also tend to have fewer nearby neighbors within the same solid angle from the
central ion. Correspondingly, neighbors with small Voronoi weights tend to be fur-
ther away from the central ion 1, and tend to have more nearby neighbors. O’Keeffe’s

method is also elegant, continuous, and calculable with Barber’s elegant Quickhull
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Figure 4.1: A radial distribution function based next-neighbor histogram for the FCC Cu crystal struc-
ture.?
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algorithm. ® Additionally, O’Keeffe’s algorithm is intuitive and rigorously mathemati-
cally defined.
For the purposes of this chapter, we represent the substructure s of a central ion 1 in

a crystal structure ¢ to with the following data structure:

* We identify the central ion and it’s ionic species 1

* We keep an unordered list of neighboring ions, represented by (ionic species x

and Voronoi weight wy ) pairs, {(x, wx) }.

For example, a phosphate tetrahedron would be stored thus:
+ Central ion: P**+
* Peripheral ions: (027, 1), (0%, 1), (0?7, 1), (0?7, 1)

The choice to record O’Keeffe’s Voronoi polyhedra weights instead of the distance
from a neighboring ion to the central ion was also motivated by the desire to create an
informationally dense feature vector. By keeping an unordered list of neighboring ions
with associated weights instead of all the geometric information about the substruc-
ture, we have forfeited a large amount of angularly dependent geometric information.
Keeping all the geometric information about the substructure would require costly
geometric rotations when comparing two substructures to each other. However, the
information captured by O’Keeffe’s weighted Voronoi polyhedra contains a reasonable
mixture of angular and radial information. Not only do neighbors that are closer to the
central ion have higher weights, but neighbors that are farther from other neighbors
also have higher weights.

This feature vector choice allows us to represent the atomic environment of an ion
in a chemistry and geometrically sensitive manner. Furthermore, the feature vector
will remain unchanged if the crystal structure is rescaled by a constant, allowing us
to robustly compare the atomic environments of ions of differing radii. We note that
the proposed definition of a substructure is mathematically rigorous, in that it can be
calculated for every crystal structure. It is not dependent of symmetry, and it is contin-
uous against small variations in crystal structure, with respect to both small movements

of ions and small changes in lattice vector.
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4.2 SIMILARITY BETWEEN SUBSTRUCTURES

In this section we develop a similarity function between two substructures. This func-
tion should be higher if two substructures are chemically similar and higher if two
substructures are geometrically similar. This function should be 1 if two substructures
are identical, and should always be greater than o.

Two substructure s; and s; have central ions 1 and j and sets of neighbors N; and N;.
Each neighboringionx € Njandy € N; hasan associated weight wy or wy that
satisfies 0 < w < 1.

We begin be defining a score between two neighboring ions x and y:

— (wx—wy)?
Score(x,y) = Simjon (X, y) min(wy, wy)e & . (4.1)

This score satisfies the following properties:

* itis greater if the two ions are chemically similar, due to the contribution of the

ionic substitution similarity function.

* Itis greater if the weights of the two ions are higher, due to the contribution of

the minimum of the two weights, and

* itis greater if the weights of the two ions are close to each other, due to the con-

tribution of the Gaussian function.

The parameter c allows the user to tune the sensitivity with which the score pe-
nalizes different weights. A higher value of ¢ yields a wider spread in the Gaussian,
allowing for greater differences between the weights and lesser geometric sensitivity.

This score represents the similarity of the two neighboring ions to each other, tak-
ing into account both chemical and geometric similarity. It tends to be higher if the
neighboring ions are more central to their respective substructures.

Next, we define a product between two substructures:

Product(si,sj)) = ~ max X oo Score(x,y) (4.2)
all matchings ™ 5

where the sum is taken over the pairing of ions x € Nj toionsy € N; that maxi-

mizes the product. If there are more ions in one substructure than the other, the excess
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ions in the larger substructure will remain unpaired, and will not contribute to the
sum. This product between two substructures does not take into account the simi-
larity of the central ion, and is used throughout this chapter as the application under
consideration is the identification of Li sites.

An alternative product between two substructures that takes into account the simi-

larity of the central ions 1 and j is given by:

PrOduCt(Si, S]) = Slmion (17 ]) + max. Zx7yematchingscore(xﬂ Y) (43)
all matchings

This product should be used when comparing substructures with differing central
ions, as in chapter s.

Finally, we normalize the product of two substructures to obtain the substructure
similarity function. This type of normalization is necessary to avoid assigning larger
substructures larger similarities due to their greater number of neighboring ions.

Product(s;, sj)

Simgypseruce (Sis i) = .
substruce (i ) y/Product(s;, s;), Product(s;, s;) (4-4)

We define substructural similarity to be the resultant similarity function.

It is worth noting that discarding the excess unpaired neighboring ions in the max-
imum matching represents large computational savings over the maximum matching
calculation in the composition similarity chapter. When calculating composition sim-
ilarity, it is physically intuitive to compare the same number of ions from one compo-
sition to the other; for this reason the maximum matching is calculated over the lowest
common multiple of the number of ions in each composition. It is not uncommon for
this maximum matching to be calculated over so-8o ions. However, when calculating
similarity between substructures, the geometry of the substructures at hand require
that we only compare the number of ions in one substructure to the number of ions in
the other. No lowest common multiple is required. On average, a Voronoi polyhedron
in the oxide data set will have 16 neighbors. Recalling from chapter 3 that the Hun-
garian algorithm operates in O(n?) time, this represents substantial computational

savings.
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4.3 ArrricaTION TO LI S1TE PREDICTION

We now have the ability to parse crystal structures into substructures and to organize

those substructures by similarity to each other. To demonstrate the capabilities of this
set of tools, we use substructural decomposition and similarity to analyze the set of Li
sites in the oxides. We will begin by describing the oxide data set at hand, and then we

will predict Li sites for a set of oxide crystal structures.

4.31 DaTA SET CONSTRUCTION

The data set that we used to validate substructure similarity was very similar to the
data set used to calculate composition similarity. The rationale behind selecting the
oxides can be read about in chapter 3.2.1. The oxide data set constructed for the work
in this section differs from the one used in the composition similarity chapter in that
the compounds were additionally screened for charge-balanced structures only; the
ICSD database was updated to include all data from year 2014, and the affine mapping
algorithm used to prototype the database was updated to the most recent pymatgen7?
version 2.1.2.

All of the compounds in the Inorganic Crystal Structure Database” (ICSD) 2012

were searched for compounds that satisfied the following criteria:

* Compounds must be oxides, as indicated by at least 20% oxygen content by ion

count.

* Compounds must not be peroxides or superoxides, as indicated by O-O bond

lengths L < 1.50 A.

* Compounds must not be marked ‘high pressure’, ‘HP’, ‘high temperature’, or
‘HT”

- Compounds must not have improbably short (< 1A) bond lengths.

* Compounds must not have a mismatch between the reported composition and

the ions given in the crystal structure.

* Compounds must not contain hydrogen. The reported crystal structures of

compounds containing hydrogen are often unreliable.
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* Compounds must be charge balanced, as indicated by the total charge of all the

species reported summing to an absolute value < [0.001].

The resultant oxides were sorted into structure prototypes using an elegeant affine
mapping algorithm by Stephen Dacek and Shyue-Ping Ong. *>" The data set was fur-
ther cleaned by removing duplicates, defined as compounds with the same composi-
tion and the same structure prototype, resulting in a final data set of 5,509 oxide com-
pounds.

After cleaning, the complete data set was randomly split into 10 equally sized sub-
sets for cross validation. Each subset served in turn as a test set, while the other 9 sub-
sets served as the training set for cross validation. The training set, comprising 90% of
the compounds, represents the database of known compounds to be data mined. The
remaining 10%, called the test set, mimics a set of as-yet-unseen compounds which we

use to evaluate the efficacy of our site prediction algorithm.

4.3.2  SITE PREDICTION ALGORITHM

In the following section, we apply substructural similarity to to the prediction of Li
sites in the oxides. While there are many possible ways to use the ionic, composition,
and substructural similarities we have constructed to predict Li sites, we describe below
one simple method that validates the substructural similarity.

The ionic substitution similarity functions was extracted from the training set as
described in chapter 2. As the substructural similarity function balances chemical simi-
larity versus geometric similarity, we used the tunable ionic similarity function given by
equation 2.10. The parameters o and w, which were used in the tunable jonic similarity,
and the parameter ¢, used in the substructural similarity, were set using nested cross-
validation. Each training set was further subdivided into s partitions; each partition
was held apart as a test set in turn, creating s internal cross-validation sets for each exter-
nal cross-validation set. The algorithm described below was run for each internal cross
validation set while we varied each parameter o, u, and ¢ in turn; the set of parameters
that yielded the highest overall area under curve score (described below) was chosen.
This optimal set of parametersoc = 0.3,u = 0.7,and ¢ = 0.05 was then used to

generate the results in the external cross-validation loop.
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Each compound in the training set was searched for Li sites, and a database of Li
substructures was compiled. The ionic substitution similarity and the database of Li
substructures consist of all the information extracted from the training set.

For each Li-containing compound in the test set, the Li sites were removed. The re-
sultant, Li-free crystal structures represent delithiated oxides for which we will predict
the Li sites. The Voronoi polyhedra for the Li-free crystal structures were computed
using the quickhull algorithm for convex hulls by Barber et al. ¢ The set of points given
by the corners of each Voronoi polyhedron and the centers of each Voronoi polyhedra
face constitute a reasonable set of potential lithiation sites; we call this set of points the
Voronoi points of the crystal structure. The Voronoi polyhedron corners represent the
set of points that are equidistant from their four closest neighbors, and thus represent
the set of points that are as far away as possible from any other point.®* Voronoi poly-
hedron face centers are another common site for inserted species. Finally, all sites and
Voronoi points for each Li-containing compound were grouped together into symmet-
rically identical sites using pyspglib® to reduce computational complexity.

We attempted to rediscover the removed Li sites in each Li-containing compound
in the test set. For each symmetrically distinct Voronoi point in a crystal structure, we
calculated the substructural similarity between this Voronoi point and every known
Li substructure obtained from our training set. We ranked each symmetrically distinct
Voronoi point by its distance to the most similar Li containing substructure, where
distance is given by 1 — similarity, to produce an ordered list. Going down the list, we

guessed Li sites subject to the following rules:

1. If the current symmetrically distinct Voronoi point is within r < 0.5 Aof an
undiscovered Li site, it is considered a correct guess. That Li site and all of its
symmetrically distinct neighbors are now marked as discovered, and cannot be

discovered again.

2. If the current Voronoi point is within r < 0.25 Aof a previously guessed Voronoi
point, this Voronoi point is not guessed. This rule is necessary because Voronoi

points are commonly found clustered together.

As in chapter 3, we found it useful to compare the performance of the substructural

similarity ranking versus another ranking method. One simple and interesting ranking
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method involves ranking the sites by radius, where the radius is given by the site-to-

site distance to the nearest neighbor. The average Li site radius in the oxide database
was 2.1 A. The following section gives the results for ranking both via the substructural
similarity method, and by distance d = |r — 2.1|, where r is the site radius given by the

distance from the center of the site to the center of the closest ion.

4.3.3 REsuLrTs

Figure 4.2 depicts the results of Li site prediction in the oxides by the two ranking
methods given above. The x axis shows the probability of achieving a given result for a
specific oxide selected from the data set; the y axis shows the number of wrong guesses
necessary before finding all the Li sites. The data shown is aggregated across all 10 cross-
validated sets, and thus represents Li site prediction across all unique 302 Li-containing
oxides.

Ranking potential Li sites by substructural similarity fares better than ranking by
site radius, consistently requiring 2-3 times fewer incorrect guesses. Substructural simi-
larity finds all the Li sites within a crystal structure with 9 incorrect guesses 90% of the
time. 50% of the time, it finds all the Li sites without any incorrect guesses. However,
on the most difficult §%, it requires over so incorrect guesses to find all the Li sites; this
is because approximately 5% of Li-ion sites are not within 0.5 Aof a Voronoi point, and
thus cannot be found by this algorithm. Ranking by substructural similarity would be
a potentially useful first screening mechanism in a high-throughput search for Li sites.

Figure 4.3 depicts the results of Li site prediction via a receiver operating character-
istic (ROC) curve. A ROC curve depicts the true positive fraction versus the false posi-
tive fraction for a binary classifier as the predictive threshold is varied. ROC curves are
commonly used to assess the tradeoff between sensitivity and specificity**. In this case
the binary classifiers at hand are classifying Voronoi points as Li sites or not Li sites; the
true positive fraction or the sensitivity is the fraction of correctly identified Li sites, and
the false positive fraction is the fraction of incorrectly identified not Li sites. The ratio
of true positives to false positives changes as we vary the distance below which a given
Voronoi point is classified as a Li site.

A perfect classifier should correctly identify all of the true positives before returning

a false positive. The ROC curve of a perfect classifier would go straight up from (o, o)
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Figure 4.2: The Li site identification rate. The solid line shows the number of incorrect guesses before
identifying all the Li sites in a structure via the substructural similarity method; the dotted line shows
the number of incorrect guesses using the radius of the site. Substructural similarity finds all the Li sites
within a crystal structure with 9 incorrect guesses 90% of the time.
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to (o, 1) before going right to (1, ). The area under the ROC curve (AUC) is a com-
monly used figure of merit to assess the quality of a binary classifier. A perfect classifier
has AUC=1.

Examining figure 4.3, the benefits of Li site prediction by substructural similarity
becomes clear. Substructural similarity achieves a higher area under the curve by cor-
rectly identifying Li sites earlier, before mis-identifying non-Li sites.

Finally, figure 4.4 depicts the performance of Li site classification broken down by
compound complexity. Here, we define the compound complexity as the number of
symmetrically distinct sites in the crystal structure; this number appears to be linearly
correlated with the number of symmetrically distinct Voronoi points in the crystal
structure (shown in black). Again, the number of guesses required to find all the Li
sites by substructural similarity (shown in blue) is consistently lower than the number
of guesses required to find all the Li sites by radius (shown in red). Interestingly, the
number of guesses required to find all the Li sites does not appear to be correlated with
the complexity of the compound. Finally, there are a number of outlying poor per-
formers distributed across several compound complexities which require 100 or more

guesses to identify all the Li sites.

4.3.4 DIsSCUsSION

We have developed a definition of substructure that is mathematically precise, contin-
uous against small variations in position, and calculable for every atomic position in
every crystal structure. We built upon that definition of substructure a similarity func-
tion that takes into account geometric and chemical similarity and produces a number
between o and 1 that is higher if the two substructures are more similar. We used this
definition of substructure and substructural similarity to predict Li sites in oxide com-
pounds, finding all the Li sites within a crystal structure with 9 incorrect guesses 90%
of the time. This application has the potential to greatly reduce computational time
in the search for Li insertion sites, as it is not uncommon for there to be hundreds of
symmetrically distinct Voronoi points per oxide crystal structure.

One of the strengths of the proposed data mining algorithm for interstitial insertion
sites is that it is both general and flexible. While the presented work considers only

the insertion of Li ions, there is no reason this work could not be extended to predict
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Figure 4.3: The receiver operating characteristic for Li site classification. The X axis depicts the false
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the insertion sites for Na or Mg ions; indeed, this framework can be used to identify,
analyze, and predict the sites of any ion.

Furthermore, the proposed data mining algorithm was used to validate the substruc-
ture and substructural similarity constructions. We present a brief analysis of the fail-
ure modes of this data mining algorithm. Firstly, approximately 5% of Li sites are never
found because 5% of the Li sites are not within o.5 Aof a Voronoi point. Next, of 312
lithiated oxides, there were 8 structures for which the Li site finding algorithm required
more than 100 guesses to identify all the Voronoi points that were within o.5 Aofa Li
site. Table 4.1 gives summary information for the those 7 lithiated structures. The ta-
ble shows the number of symmetrically distinct Li sties, the number of guesses to find
all the Li sites, and the number of Voronoi Points in the crystal structure. Finally, the
table also gives two other quantities of interest. The minimum distance between any
Voronoi point in the crystal structure and any Li site in the training set is sometimes
pertinent; the average distance between any voronoi point and any Li site is approx-
imately 0.6. Therefore if the minimum distance between any Voronoi point in the
structure and any Li site is higher than 0.9, this crystal structure would be a statistical
outlier and should be further examiend. Secondly, the distance at which the last Li site
was identified is pertinent as a measure of how unusual the most unusual Li site in the
crystal structure is. The greater the distance, the more unusual the site. Table 4.1 gives
all of the quantities described above.

Looking through Table 4.1, we notice in the last two columns two structures with
unusually high Voronoi distances. LijNd9Mo16035 and LigRbgB3,Os¢ were both
reported with no charge state information. When ions are reported without charge
state information, the algorithm searches for similar ions with a charge state of o, yield-
ing very low similarities to known substructures. The minimum distances between any
Voronoi point and all known Li sites for these two structures are 0.92 and 0.9s. Error
due to unreported charge states can be easily addressed in future work by screening out
such crystal structures.

The other 6 structures illustrate a weakness of any data mining algorithm, in that
the data mined predictions are only as good as the data set at hand. The distances be-
tween the last found Li site and the closest Li site in the training set for each of these
structures is greater 0.44, whereas the average distance between an Li site and the clos-

est Li site in the training set is 0.31. In contrast, the average distance between a ran-
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Table 4.1: Failure Modes for Li Site Prediction

Composition Li Sites Guesses  Voronoi  Minimum Maximum
Points Distance Li
Distance
Li;rV§+(P5+Oi7)3 2 1y 221 0.36 0.51
Li;Nd9Mo1603;5 I 186 206 0.92 0.99
Li;%SiﬁrOég 19 190 909 0.33 0.44
LifyCri" Pl O3y 3 211 1049 0.31 0.44
LifOAS‘;r Ug;r O%gg 5 236 1220 0.33 0.44
LigRbgB3,056 2 262 349 0.95 0.99
Lij, Wg O3, 2 274 396 0.36 0.54
Li;roCIZ_BﬁOg 2 357 615 0.41 0.60

domly drawn Voronoi point and the closest Li site in the training set is 0.57. The dis-
tribution of Li site distances and the number of guesses necessary to find an Li site is
given in figure 4.s. The red line and the right hand axis plot the distance of a site to
the closest Li site in the training set versus the average number of guesses necessary to
find it; the blue line and the left hand axis plot the distance of a site to the closest Li
site in the training set versus the percentage of Li sites in the test set that are found at
that distance. A good prediction algorithm increases the lag between the blue curve
and the red curve, identifying all of the Li sites before increasing the number of guesses.
The other 6 structures represent the tail end of the red curve; the unusually high dis-
tances of the last Li sites to be found indicate that there are no highly similar Li sites
in the training set. This is either because of an usual chemistry as demonstrated by
LifOAsgz+ Uggr 0%58, or an unusual geometry.

While the substructural data mining methods developed in this chapter are general
and could theoretically be applied to any number of ionic species, the weakness of data
mining lies in the quality of the data set at hand. For example, the quality of the Li site
predictions depends strongly on the number of Li sites in the database; in this case,
the oxide database provided 1631 occurrences of Li in 312 crystal structures across 458
unique substructures. However, if we were to repeat this prediction procedure for Mg
site predictions, the same oxide database would provide only 839 occurrences of Mg
in 140 crystal structures across 176 unique substructures. For this reason, we expect

data mining predictions to fare less well when applied to less common chemistries. In
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Figure 4.5: Distance distribution of Li sites and number of guesses. The x axis depicts the distance as
calculated by the similarity metric between an Li site in the test set and the closest Li site in the training
set. The blue y axis on the left hand side depicts the distribution of Li sites versus distance; the red y
axis on the right hand side depicts the average number of guesses at a given distance. An ideal ranking
system would increase the lag between the blue and the red lines, finding 100% of the Li sites before
requiring more than 1 guess.
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such a scenario, it would be reasonable to use ionic similarity to gather data from across
similar chemistries. We could include data from ions with high ionic substitutional
similarity (like Ca and Sr), weighted by ionic substitutional similarity, when making
predictions for Mg sites.

There are several reasonable extensions and permutations of the current algorithm.
We extracted a list of known Li sites and compared potential sites directly to the known
sites, ranking potential sites by similarity to a known site. It would be reasonable to
take into account other factors - for instance, the radius of the potential site, the ratio
of anions to cations in the host structure, or even the composition of the host struc-
ture. One could easily extend the algorithm by conditioning the ranking of the po-
tential site upon not only substructural similarity to an Li site, but also substructural
similarity to a known Na site. One could also condition the ranking upon the com-
position of the host structure being similar to the composition of a structure that is
known to host Li. Another algorithm would search through the database for structures
with similar compositions and extract Li sites from those compositions only. There are
many possibilities for reasonable site prediction algorithms, each with its own tradeoffs
in terms of computational time, dependency on the robustness of the data set at hand,
and quality of potential results.

We explore the possibility of combining radius information with the substructural
similarity. Figure 4.6 shows the Voronoi points (blue) and Li sites (red) from 30 ran-
domly selected Li-containing oxides. The x-axis depicts the similarity versus the most
similar Li site in the training set; the y axis depicts the radius difference from 2.1 A. The
Li sites are clearly clustered in the lower left-hand corner. However, it is not clear from
this graph to what extent the Li sites ares separable from the Voronoi points, as there
are also many Voronoi points in the lower left-hand corner.

We attempted to combine radius and substructural information via a variety of
linear regression techniques. We trained a linear classifier on the set of Voronoi points
from the training set; each Voronoi point contributed both radial and substructural
similarity distances, and information on whether or not it was within o.s Aof a Li site.
We then used the linear classifier to classify points in the test set; figure 4.7 shows the
cumulative results of ridge regression over all 10 cross-validated sets. Linear regression
does not improve upon the predictions made by substructural similarity.

Examining the ROC curve shown in figures 4.7 and 4.3 more closely, we find that
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Figure 4.6: Li sites and Voronoi points from 30 randomly selected Li-containing oxides. While the Li
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separable from the Voronoi points.
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all curves reach their maximum true positive rate at around 95%. Approximately 5% of
the Li sites are never found because % of the Li sites are not within 0.5 Aof a Voronoi
point. A reasonable extension of this work would include a more thorough search for
potential Li sites; it is not clear that the Voronoi points are an optimal set. From figure
4.4, we infer that the number of incorrect guesses required by the substructural simi-
larity algorithm does not grow with the number of Voronoi points, so the performance
cost of adding more potential Li sites is minimal. The cost of computing the substruc-
tural similarly low and is easily parallelized. One could consider discretizing the space
within a given crystal structure into 0.5 Acubes and reducing the resultant points by
symmetry.

It is worth mentioning that while the framework presented in this chapter captures
only local, first-neighbor interactions, there are a number of potentially meaningful
extensions to explore. It would not be difficult to extend the substructures in this work
to include second-neighbor interactions by representing each substructure as a graph
that includes second-neighbor connections. Alternatively, one can view each crystal
structure as an overlapping tiling of substructures; each ion participates not only in the
substructure to which it is central, but also in all of it’s first neighbor substructures. Us-
ing this framework, one can mine for patterns in the interconnectivity of substructures.
What substructures tend to overlap the most? What combination of substructures
allows for Li-ion diffusion?

We have outlined a mechanism for the prediction of Li sites in the oxides. For the
purpose of validation, we began with lithiated oxide crystal structures, removed the Li
ions, and then predicted the Li sites in the artificially delithiated structures. This con-
struction allowed us to obtain an experimentally verified set of Li sites. However, when
applying this algorithm to the identification of Li sites in delithiated structures, we
expect to obtain less accurate results for two reasons. Firstly, structures relax when Li
ions are added or removed. The artificially delithiated structures we ran our predictions
on were not relaxed; in essence, they were artificially frozen in a structure with Li-ion
vacancies, making it easier to identify Li-ion sites. Secondly, this algorithm does not
take into account the effect of Li concentration on the Li sites predicted. In effect, this
algorithm is a mechanism for the prediction of Li sites in the dilute limit. It would be
theoretically possible to insert Li ion-by-ion into a structure, re-running the prediction

algorithm between each insertion to find the next Li site. However, as this algorithm
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only takes into account local effects, we expect the ability of this algorithm to predict Li
orderings to be limited.

We have used a definition of substructural similarity that can be tuned for greater
or lesser geometric and chemical sensitivities. We set the tuning parameters o, u, and
¢ to maximize the area under the ROC curve for the application of predicting Li sites
in the oxides. However, differing applications of the substructural similarity function
will call for different tunings. For example, the current algorithm ranks all potential
Li sites across a host of candidate oxide compounds. Another potential application
of substructural similarity would be to rank potential Li sites within a single oxide
compound to predict diffusion pathways. In this second application, we would expect
the optimal tuning of the substructural similarity to be more sensitive to geometric
differences and less sensitive to chemistry, as finding a diffusion path requires the ability
to distinguish between small geometric differences.

This chapter has presented a definition of substructure that is mathematically rig-
orous, continuous with respect to small displacements in ion position, and dependent
upon both chemistry and geometry. We have further defined a similarity function be-
tween any two substructures that is 1 if the two substructures are identical, and decays
towards o with growing differences in geometry and chemistry. This definition of
substructure and substructural similarity allow for the decomposition and analysis of
crystal structure databases. We have validated substructural analysis by predicting Li

sites in the oxides.
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Conclusion

THUS FAR WE HAVE PRESENTED SIMILARITY FUNCTIONS between ions, compo-
sitions, and substructures. We have shown how these similarity functions preserve
similarity in crystal structure and can be used to predict structure prototype and Li in-
sertion sites. In this chapter we present an extension of this work in the form of a sim-
ilarity function between crystal structures. We discuss the potential of this work to aid
in the prediction of entirely new crystal structures, and conclude with a few thoughts

on future applications.

5.1 STRUCTURAL SIMILARITY

The composition and substructural similarity functions are both functions of ionic
similarity that apply maximum matching algorithms to find the most similar map-

ping of ions. A straightforward extension of these ideas leads to a similarity function
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between crystal structures.

A crystal structure X with m atomic sites can be decomposed into m substructures
{s1,82,...5m } as described in chapter 4. Viewing each crystal structure as a composition
of substructures, we express each crystal structure as a set of substructures {s} together
with the number of times each substructure appears {n}. We reduce each crystal struc-
ture such that the reduced version has the smallest integers {n} that preserve the cor-
rect ratios between the substructures. The sum ¥n of the number of substructures in
the reduced composition is the total number of substructures n,| of a given reduced
crystal structure.

Given two crystal structures X1 and X2, we find the lowest common multiple nj.,

1

roral A0d ntzotal. Two sets of substructures {s1 } and {s; } of length ny, are cre-

of n
ated by enumerating the substructures of x; and x; the appropriate number of times.

Searching through all the possible matchings (ss1, ss2) of the substructures ssy in {s1 }
to the substructures ss; in {s, }, the matching that maximizes the average similarity of
the two sets is found. This maximal average similarity is defined as the crystal structure

similarity between x1 and x5.

Zssl 552 ematchingSImsubstruct(551 ,552)

Simgtructure (Xl s Xz) = max.
all matchings Njem

(s.1)
The crystal structure similarity yields a rating between o and 1 for every pair of crys-
tal structures X1 and X3, with identical compositions having similarity 1. Based on data
mined values for the probability with which each ion will substitute for another within
the same prototype, this crystal structure similarity provides a quantitative, local sub-
structure based distance semi-metric between crystal structures that is sensitive to both

chemistry and geometry.

5.2 FUTURE DIRECTIONS

We’ve presented a framework for the computation of data mined similarities and dis-
tances between ions, compositions, substructures and crystal structures. Compounds
with high composition similarity are likely to have high structural and substructural

similarity. The similarities between substructures and crystal structures are continuous
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against small displacements in position and invariant under rotation and translation.

In this section we discuss extensions and potential applications of this work.

5.2.1 NEGATIVE DATA

One weakness of the work presented in this thesis is that it is based solely upon pos-
itive data. The ionic substitutional similarities that form the basis of this work are
trained upon an experimentally determined database of stable crystal structures. If a
crystal structure is absent from this database, it is impossible to distinguish whether it
is absent because it is structurally unstable or if it is absent because it has not yet been
sampled. This absence of negative data extends to every prediction made in this the-
sis; while we can observe that certain predictions are likely, it is impossible for us to say
whether other predictions are unlikely or simply the result of absent data.

One method by which this weakness could be addressed would involve a database of
ab initio calculations. The careful construction of such a database would calculate the
formation energies of a number of highly unstable phases, allowing for the collection
of data on unlikely substitutions. This extension of this work would enable predictions
of which compositions are unlikely to form in a given prototype, and which ions are

unlikely to inhabit particular sites.

5.2.2 ORGANIZATION OF DATA

As mentioned previously in Chapter 2, the creation of a similarity function and the as-
sociated distance function imposes a topology upon the space, creating a natural means
by which to cluster and organize ions, compositions, substructures and crystal struc-
tures. This clustering can be used to create a hierarchy of compositions, like the one
shown in figure 3.8, allowing for the grouping of chemically similar compositions. Al-
ternatively, we can create a hierarchy of crystal structures. Figure 5.1 depicts the cluster-
ing of 25 randomly selected oxides by composition similarity and structural similarity.
Oxides are connected by horizontal lines at the height of the distance between them
(depicted by the y axis); similar oxides are connected by lower horizontal lines.
Clustering by composition similarity yields very similar results to clustering by struc-
tural similarity, as one would expect. We have shown previously that compounds with

similar compositions are more likely to have the same structure prototype, and the two
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Figure 5.1: Clustering by composition and structural similarity. 25 randomly selected oxides were

clustered by both composition and structure similarity. The distances between two oxides are given by

the height of the horizontal line connecting them. Composition and structure similarity often preserve

clustering characteristics (circled in blue and yellow).
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similarity functions are based upon the same ionic similarity function. The clusters
circled in blue and in yellow are reproduced by the two different similarities, whereas
the rest of the architecture is not reproduced. Organizing compounds by composition
similarity yields similar but different results than organizing compounds by structural
similarity.

Such organization of data could be carried out on a large scale by the Materials
Project*?, enabling users to search through databases including the Inorganic Crystal
Structure Database” and thousands of 4 initio computations. An application that en-
ables searching the database by structural similarity to a given compound would allow
for substructure-guided search. For example, a researcher studying lithium ion batteries
could search for materials with similar substructures to LiFePOy4, hoping to find crystal
structures with similar substructures, thus maximizing the chances of preserving good
Li-ion conductivity. A researcher studying a particular chemistry could search instead
by composition similarity to find compounds that are chemically similar, finding new
compounds in slightly differing compositions.

Such a large-scale implementation of this organizational scheme would require mil-
lions of similarity computations between compositions, substructures, and crystal
structures which could be calculated once and stored in the cloud for future use. Rank-
ing a new incoming crystal structure or composition by similarity to every other en-
try in the database would require tens of thousands of similarity calculations. While
similarity calculations are highly parallelizable, this process could be shortened via the
implementation of a binary search tree. The implementation of a binary search tree
would cut the computational cost of ranking one compound versus n database com-
pounds from n computations down to 2 log n computations.”

Unfortunately, one weakness of the similarity algorithms presented in this thesis lies
in the fact that the distances derived from them do not satisfy the triangle inequality,
and thus the efficacy of a binary search tree would be suspect. If there were one clear
improvement to be made to this thesis, it would be to modify the distances presented
such that they satisfy the triangle inequality, which would greatly decrease computa-
tion time and enable the use of many machine learning techniques for clustering and
classification.

At the same time, a brief analysis of the similarity computations made for this thesis

show relatively few violations of the triangle inequality; those violations tend to be
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small in magnitude. Implementing a binary search tree that confirms the each binary
decision by computing the next four options in addition to the current two would be
a reasonable method to reduce approximation error. Such a ‘double checked’ binary

search tree would find the most similar structure in 4 log n computations.

5.2.3 PREDICTION OF NEW CRYSTAL STRUCTURES

The work in this thesis also has potential applications to the prediction of new crystal
structures. The substructural work in this thesis could be used to predict substruc-
tural components of new crystal structures in several ways. However, the packing of
substructures in a new crystal structures remains a hard problem, and the work in this
thesis would appeal to ongoing research for methods to assist in computing low-energy
packings.

For example, given a new composition, we could look for compounds with simi-
lar compositions as in chapter 3. These compounds could be used to seed a genetic
algorithm such as Glass et al’s USPEX **, The USPEX algorithm could be used to
generate mutations between generations of likely crystal structures. The energy of each
mutated crystal structure could be evaluated using ab initio methods, or as a faster
screening process, we could relax each mutated crystal structure to a local minimum us-
ing a faster molecular simulation code such as GULP 26 and use not energy, but crystal
structural similarity to likely structures to evaluate fitness.

Mellot-Draznieks et al. have published several interesting studies using simulated
annealing techniques to assemble “secondary building units.”**%% These secondary
building units are predefined inorganic building units in three-dimensional spaces.
Mellot-Draznieks uses empirical “glueing” rules®® to scan through potential packings
of these building units. Dyer et al. expanded upon this work in 2013, using larger mod-
ules to investigate perovskite-related materials.*>™ While the assembly methods used
by Draznieks and Dyer are extraordinarily promising, these structure prediction tech-
niques still depend upon the user’s chemical intuition to select plausible secondary
building units or modules. The work in this thesis provides a framework for the sys-
tematic, quantifiable identification of likely building blocks from existing data. Com-
pounds with similar compositions to the target composition could be decomposed

into substructures, and those substructures could be used to seed Mellot-Drazniek’s
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simulated annealing code.

Additionally, the substructural decomposition in this thesis can be used as a ma-
chine learning framework to extract the “glueing” rules between substructures. The
decomposition of a crystal structure into substructures described in chapter 4 yields
one substructure per ion. Given two substructures a and b with a common ion x, we
can now data mine the substructure around ion x. How often are substructures a and
b connected by one ion x? How often are they connected by two ions? With what fre-
quency does the substructure around ion x overlap with substructures a and b? Aided
by the creation of a large database of substructures, we can answer all of these ques-

tions.

5.2.4 DATA MINING FOR MATERIALS PROPERTIES

Finally, the work in this thesis can be used to search for materials properties. The work
in chapter 4 was used to search for Li insertion sites; a straightforward extension of this
work could be used to aid in the search for Li diffusion paths.

Rupp et al. have recently presented a similar framework for the prediction of molec-
ular atomization energies. *> Rupp represents molecules via a Coulomb matrix as de-
scribed in figure 5.2. The square matrix has one row per atom and can be extracted
from the crystal structure of the molecule. The off-diagonal elements of the Coulomb
matrix encode the Coulomb repulsion between atoms, whereas the diagonal elements
encode a polynomial fit of atomic energies to nuclear charge. Rupp achieves good pre-
diction of atomization energies across 7,000 ‘small’ organic molecules that contain up
to 7 heavy atoms, contain C, N, O, or S, and are saturated with hydrogen.

Rupp’s algorithm is interesting because it encodes crystal structure information into
a two-dimensional matrix that, when passed into a ridge regression algorithm, achieves
very good results. However, the weakness of Rupp’s algorithm lies in the fact that there
is no clear ordering of the atoms in the Coulomb matrix. Although a matrix can only
represent one molecule, a molecule can be represented by many matrices by via permu-
tations of the rows and columns of it’s Coulomb matrix. Rupp partially circumvents
this difficulty by reducing the information encoded in each Coulomb matrix to it’s
eigenvalue and computing the eigenvalues of many permutations of the Coulomb ma-

80,31

trix. °>* Given two identical but large and complex molecules, Rupp’s algorithm would
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Figure 5.2: Rupp'’s matrix representation of molecules. 3! The Coulomb matrix representation is ex-
tracted from a molecule from the atomic coordinates R; and nuclear charges Z;. The matrix contains
one row per atom, is symmetric, and requires no explicit bond information.

need to calculate the eigenvalues of hundreds of permutations of the Coulomb matrix
in order to discover that the atomization energies of the two molecules are identical.

The ideal solution to Rupp’s problem would involve ordering the atoms each molec-
ular Coulomb matrix in a fashion such that each molecule has only one Coulomb
matrix representation. If such an ordering existed, a calculation of the distances be-
tween Coulomb matrices would allow for the comparison of the most similar atoms
in each molecule. In computer science, the problem of discovering whether or not two
Coulomb matrices represent the same molecule is known as the graph isomorphism
problem.™. Itis not currently known if the graph isomorphism problem can be solved
in polynomial time.*”»»* For large molecules, the graph isomorphism problem is com-
putationally difficult to solve.

The substructural and structural similarity functions in this thesis bypass this dif-
ficulty by representing only the Voronoi neighbor interactions. Instead of preserving
the entire adjacency matrix, which is computed by Voronoi neighbor adjacency in this
thesis, we preserve only the local interactions. This simplification allows us to calcu-
late distances between adjacency matrices by matching the most similar ions of one
structure to the most similar ions of the other via the use of a weighted bipartite graph
matching algorithm which is calculable in O(n?) time.™® Inspired by Rupp’s proof of
concept, we believe that the direct, local, geometric and chemical comparisons enabled
by this thesis will allow for the data mined prediction of materials properties.

We have presented a structure-based framework for the datamined analysis of crystal
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structure. Given a data-mined similarity function between two ions, we have imple-
mented similarity functions between compositions, crystal structures and substruc-
tures. These similarity functions can be used to quantitatively organize data, to assist
in the prediction of novel crystal structures, and to data mine predictions of materials

properties.
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