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Abstract

Visual memory holds in mind details of objects, textures, faces, and scenes. After initial expo-

sure to an image, however, visual memories rapidly degrade because they are transferred from iconic

memory, a high-capacity sensory buffer, to working memory, a low-capacity maintenance system.

How does visual memory maintenance work? This dissertation builds the argument that the main-

tenance of short-term visual memories is analogous to the act of breathing: it is a dynamic process

with a default behavior that explains much of its usual workings, but which can be observed, overrid-

den, and controlled. Chapter 1 shows how the act of trying to remember more information causes

people to forget faster and to remember less (“load-dependent forgetting” and “overreaching”).

It then shows how the paradigm of evolution can be applied to the problem of maintenance, with

memories competing over a limited memory-supporting commodity, explaining these effects. Chap-

ter 2 presents experiments on metamemory, the ability of people to observe and make decisions

about their own memories. The experiments isolate a component of metamemory that monitors a

memory’s quality as it degrades over time. Chapter 3 connects memory to metamemory, drawing on

work from reinforcement learning and decision theory to liken the problem of memory maintenance

to that of an agent who sequentially decides what to prioritize in a partially observable mind.
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0
Introduction

when in 2013 geoffrey mutai crossed the finish line of the New York City marathon, he was

breathing hard, having run 26.2 miles in just two hours and eight minutes, winning the race (Belson,

2013). As many elite runners seem to do, he soon slowed to a walk, placed his hands on his hips, took

a few deep breaths, and continued on with an almost impossible calmness that masked much of the

complexity going on inside.

Strenuous exercise, such as running a marathon or biking up a hill, changes the body in many ways:
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internal temperature rises, lactic acid builds up in the muscles, and metabolic production of carbon

dioxide increases (Katz & Sahlin, 1988; Cheuvront & Haymes, 2001). In response, the brain makes

adjustments — for example, increasing the rate of breathing to maintain steady levels of oxygen and

carbon dioxide in the blood (Feldman & McCrimmon, 2008). Patterns of breathing change in re-

sponse to many environmental factors, such as the presence of toxins or the unavailability of oxygen,

most often with the goal of maintaining homeostasis and, ultimately, surviving (Feldman & McCrim-

mon, 2008).

Breathing, though usually automatic, can be brought under conscious control. For example, Lamaze

International teaches breathing techniques to expectant mothers to distract them from the pain of

childbirth (Lothian, 2011). And the Association Internationale pour le Développement de l’Apnée over-

sees the sport of deep freediving, in which competitors plunge as far as possible below sea while hold-

ing their breath. Sighing, singing, speaking and shushing all involve the deliberate sucking of air in-

ward and out. Lastly, becoming aware of one’s own breathing — and the temporary horror of won-

dering what would happen if the thought were never to leave your mind — is a vivid demonstration

of the interplay between effortful and automatic respiration (Kahneman, 2011; Stanovich & West,

2000; Wegner, 2009).

This dissertation is not about breathing. Rather, it is about remembering and forgetting our vi-

sual experiences. But just as computing machines have provided a useful analogy for thinking about

cognition, so too can breathing provide a useful analogy for thinking about the dynamics and control-

lability of memory. This dissertation builds the argument that the maintenance of short-term visual

memories is analogous to the act of breathing: it is a dynamic process with a default behavior that ex-

plains much of its usual workings, but which can be observed, overridden, and controlled. The default

behavior of maintenance and degradation (i.e., its dynamics in the absence of top-down control) is
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well described by an evolutionary process operating over the units of a memory-supporting cognitive

commodity, like attention. Memories can be observed through real-time metamemory, an inward-

looking process that tracks the status of a memory as it degrades over time. And the default behavior

can be overridden and controlled by the processes of directed forgetting and self-directed remember-

ing, which redirect maintenance in accordance with the goals.

The plan of the dissertation is as follows:

This introduction lays the groundwork by reviewing the relevant literature on visual working mem-

ory, metamemory, and directed forgetting.

Chapter 1, a manuscript on the time course of visual memory, describes a set of high-quality for-

getting functions measured through participants’ performance on a visual memory task. These for-

getting functions reveal the inadequacies of current time-based models. The manuscript then uses

evolutionary dynamics— a mathematical framework for describing how information is reproduced in

an environment that is subject to mutation, selection, and random drift — to construct a new model

of the time course of maintenance and degradation in visual working memory.

Chapter 2, a manuscript on metamemory, provides an experimental existence proof of a certain

kind of real-time metamemory, whereby, in real time, the memorizer monitors the current quality of

visual memories. This process is useful both because it provides a mechanism for judging confidence

in our memories, and because it can provide the foundation of an adaptive maintenance strategy that

selectively targets memories depending on their strength.

Chapter 3, a manuscript on the control of working memory, begins with an experiment on di-

rected forgetting, in which a memorizer controls the contents of memory according to the demands

of the task. It continues with an experiment on self-directed remembering, in which people adaptively

adjust the target of maintenance according to metamemory beliefs (e.g., by preferentially maintaining
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the best-remembered item when asked to do so). The chapter goes on to present a formal framework

for thinking about memory maintenance, drawing on work from the fields of reinforcement learning

and decision theory to cast the problem of memory maintenance as a partially-observable Markov

decision process. In doing so, it extends the model proposed in Chapter 1 to include self-directed

remembering as well as the real-time metamemory revealed in Chapter 2.

The final chapter reviews the contributions of the dissertation.

Working memory is a storage system that actively holds information in mind and allows for

its manipulation, providing a workspace for thought (Baddeley, 1992; Cowan, 2005). Its capacity is

strikingly limited, perhaps to only a few sights or sounds (Miller, 1956). Using working memory is

effortful: pupils dilate, skin conductance rises, and secondary tasks become impossible to perform

well (Kahneman, 1973). Much of the research on working memory has focused on characterizing

its limits and determining what gives rise to them. For example, working memory capacity is known

to be lower in young children and the elderly (Dobbs & Rule, 1989; Salthouse & Babcock, 1991;

Zacks, 1989; Gathercole et al., 2004), correlates strongly with a person’s fluid intelligence (Conway

et al., 2003; Cowan, 2005), is affected by sleep schedule (Chee & Choo, 2004; Steenari et al., 2003),

and can be impaired in people with mental disorders such as schizophrenia (Goldman-Rakic, 1994;

Gold et al., 1997; Manoach, 2003; Joormann & Gotlib, 2008; Martinussen et al., 2005). From this

work, we have learned a considerable amount about how much can be remembered and who is best

at remembering it.

Over the past 50 years, there have been two dominant approaches to studying the processes that

underlie working memory: the first is cognitive psychology, and the second is cognitive neuroscience.

Cognitive psychology is the study of how mental processes affect behavior and thought (Neisser,
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1967). Cognitive neuroscience is the study of the neural substrates of cognition — e.g., the brain

regions and networks that are active when a person thinks or observes — and how those substrates

together produce experience and behavior (Gazzaniga, 2004).

The cognitive psychology approach to studying memory begins with designing a behavioral task

and then proceeds by adjusting the task demands, altering the information that is presented (e.g.,

the number of stimuli, the format of presentation, or the category of object or sound) or the dura-

tion of the retention interval, which is the time between when the information is initially presented

and when it is later accessed to perform a task. This approach has a long tradition in experimental

psychology that goes back to Ebbinghaus’ 1885 bookÜber das Gedächtnis, in which he measured for-

getting curves that track the amount remembered as it falls over time.

The cognitive neuroscience approach, in contrast, catalogs the neural substrates of encoding and

maintaining visual information in working memory. Working memory is supported by a control net-

work that includes the prefrontal cortex, basal ganglia, and parietal cortex (Baddeley, 1992; Voytek &

Knight, 2010; Xu & Chun, 2005; Todd & Marois, 2004), acting in conjuction with posterior regions

that support storage (Postle et al., 1999; D’Esposito & Postle, 1999; Harrison & Tong, 2009; Emrich

et al., 2013). One of the most relevant findings is the existence of contralateral delay activity (cda),

which is event-related potential (erp) activity sustained during the maintenance interval of a mem-

ory task. The amplitude of cda tracks how much is remembered, and individual differences in cda

amplitude are correlated with individual differences in memory capacity (Vogel & Machizawa, 2004).

Cognitive psychology and cognitive neuroscience are not the only approaches to understanding

working memory. A third approach, the computational approach, delineates three levels of analysis

that are needed to explain any cognitive phenomenon: the computational, the algorithmic, and the

physical (Marr, 1982; Chater & Oaksford, 1998). The computational level considers the structure of
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the problem that the person (or system) faces, the information that is available, and the logic of the

possible solutions to that problem. The algorithmic level considers the rules by which a solution is

carried out. The physical level considers how those rules translate to a working biological system.

Though this flavor of thinking is largely absent from theories of visual working memory, there is

a strong precedent for it in the context of long term memory. John Anderson, a cognitive scientist

at Carnegie Mellon, provided (alongside colleagues) the first rational analysis of human memory

(Anderson, 1989; Anderson & Milson, 1989), introducing the approach to the study of higher-level

cognition (Chater & Oaksford, 1998). Anderson proposed that the problem of long term memory

is that of retrieving relevant information in a setting where retrieval is costly and relevance is uncer-

tain (Anderson & Milson, 1989). In later work with Lael Schooler, the two found that the availability

of a memory reflects the probability that the information it contains will be needed again in the fu-

ture, as determined by the statistics of reoccurrence as experienced in the environment (Anderson

& Schooler, 1991). The classic power-law forgetting functions of long-term memory (Ebbinghaus,

1913; Wixted & Carpenter, 2007; Wickelgren, 1974) were shown to naturally reflect the power-law

reoccurence of experiences in the environment — e.g., the names found in headlines ofTheNew York

Times or words encountered in the verbal interactions of children (Anderson & Schooler, 1991).

One example of a rational analysis of visual working memory is from Sims et al. (2012), which

proposes that the problem of visual working memory is that of transmitting visual information from

one point in time to another. In this formulation, solutions to the problem of visual memory take the

form of encoders and decoders that maximize performance on a task. Sims et al. (2012) found that

formulating the problem of working memory in this way does an excellent job of predicting behav-

ioral performance and its dependence on the statistics of the visual input.

This dissertation poses the problem of visual working memory differently because it takes seri-
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ously the idea that maintenance is an active and controllable process (Jonides et al., 2008). In this

light, the problem of visual working memory is seen as that of encoding visual information, main-

taining it over a short duration, and then later accessing it to perform a task well. This dissertation

combines the cognitive psychology and computational approaches to explore the rules by which

memory maintenance operates. This entails considering the space of possible maintenance strategies

and how that space is constrained by experiments on the default behavior, structure, and observabil-

ity of memory. One such constraint is metamemory.

In 2000 and 2004, ken jennings and brad rutter were contestants on the American game show

Jeopardy!, in which players display their knowledge of trivia by quickly responding with a question

whose answer matches the provided clue. Jennings and Rutter were two of the most successful con-

testants in the show’s history, winning just shy of 6 million USD between them (Jeopardy Produc-

tions, 2014). Strong players often know the answer immediately and have it ready before buzzing

in, but metamemory provides a useful tool when they don’t. Metamemory is an awareness of one’s

memories and the systems that store them. It is particularly useful in Jeopardy! because of two prop-

erties of the game’s design: the first player to “buzz in” is the one given the chance to respond, and

incorrect responses are penalized. Metamemory can thus help in two distinct ways. First, a player can

press the buzzer even before having recalled the correct response, using the following second or two

to retrieve the relevant information. Second, a player can avoid buzzing in when they are uncertain or

unlikely to respond correctly.

Metamemory is useful beyond Jeopardy!, extending to our everyday lives. It helps us to determine

that we are uncertain, to know when to ask for a reminder and who to ask for it, and to form beliefs

about our ability to remember certain kinds of experiences and events. Metamemory is often studied
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in the context of long term memory, where it is invoked to explain phenomena such as tip-of-the-

tongue states and the feeling of knowing (Flavell & Wellman, 1977; Wellman, 1977; Brown, 1991).

Healthy individuals have a rich set of metamemory skills that guide learning, decision making, and

action (Metcalfe & Shimamura, 1994). Neurological diseases, such as Alzheimer’s and Korsakoff ’s

syndrome, adversely affect metamemory judgments, causing a mismatch between what is remem-

bered and what is believed to be remembered (Pannu & Kaszniak, 2005).

Memories can be forgotten intentionally. Experiments on this process of “directed forget-

ting” often ask participants to study some information and then later direct them to remember or

forget specific elements of what was studied (Muther, 1965; Bjork et al., 1968). Memory tends to

be better for the to-be-remembered information than for the to-be-forgotten information. For ex-

ample, in Woodward & Bjork (1971), participants studied a list of words and later were asked to re-

call as many of them as possible. This is the popular free recall paradigm used extensively in studies

of long-term memory. Following each word’s presentation, a cue appeared instructing the partici-

pant either to remember or to forget the word. Later, participants were asked to recall all the words

from the studied list, regardless of how those words initially had been marked. The recall task was

challenging. Critically, its difficulty depended on how the word had been marked: those marked as

to-be-remembered were recalled 23.3% of the time, whereas those marked as to-be-forgotten were

recalled only 4.7% of the time. This is the hallmark of directed forgetting, which has been demon-

strated in both long- and short-term memory and was a popular topic of memory research in the

1970’s (Woodward & Bjork, 1971; Muther, 1965; Bjork et al., 1968; Block, 1971; Bjork, 1972; Ep-

stein, 1972; Burwitz, 1974; MacLeod, 1975).

Directed forgetting is intimately related to cognitive control and to the processes that determine
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our conscious thoughts from moment to moment (Macrae et al., 1997). For example, experimen-

tally adding cognitive load decreases people’s ability to suppress unwanted thoughts (Wegner & Er-

ber, 1992), and young children and the elderly have deficits in attentional processing, which makes

it more difficult for them to abandon memories and thoughts that are no longer relevant (Harnish-

feger & Bjorklund, 1993; Bjorklund & Harnishfeger, 1990; Passolunghi & Siegel, 2001; Hartman &

Hasher, 1991).

Memory, metamemory, and directed forgetting are the building blocks of this dissertation,

which begins by describing the default behavior of memory maintenance, goes on to show that the

memory state produced by that undirected behavior can be observed through metamemory, elabo-

rates and constrains the ways that maintenance can be controlled, and then proposes a formal frame-

work for the problem of memory maintenance in a partially observable mind.

We begin with the default behavior.
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1
Evolutionary dynamics of visual memory

1.0 Abstract

Visual memory enables a viewer to hold in mind details of objects, textures, faces, and scenes. After

initial exposure to an image, however, visual memories rapidly degrade because they are transferred

from iconic memory, a high-capacity sensory buffer, to working memory, a low-capacity mainte-

nance system. Here, we extend the classic depiction of the dynamics of visual memory maintenance

to include competitive interactions between memories, fluid reallocation of a memory-supporting
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commodity, and a stability threshold that determines the weakest memory that can still be main-

tained. The proposed model, based on these principles, can be understood as an evolutionary process

with memories competing over a limited memory-supporting commodity. The model reproduces the

time course of visual working memory observed in a series of experiments. Notable features of this

time course include load-dependent stability and overreaching, in which the act of trying to remem-

ber more information causes people to forget faster, and to remember less, respectively. Our results

demonstrate that evolutionary models provide quantitative insights into the mechanisms of memory

maintenance.

1.1 Introduction

Memories typically degrade until, at last, they are forgotten. From its inception, research on memory

degradation has characterized forgetting functions that track the downfall of how much is remembered

over time (Wixted & Ebbesen, 1991; Ebbinghaus, 1913). A forgetting function is shaped by the pro-

cesses that degrade and maintain memories, and its functional form often provides a signature of

the underlying mechanisms (Wixted, 1990). Examining forgetting functions can thus reveal impor-

tant insights, having previously provided some of the primary evidence for iconic memory (Sperling,

1960) and for rational theories of adaptive forgetting (Anderson, 1989; Anderson & Schooler, 1991).

In the case of visual memory, which holds in mind the details of what was seen, at least three sub-

systems contribute to storage and maintenance. Each subsystem has a characteristic timescale, for-

mat, and neural substrate. Iconic memory, a high-capacity sensory buffer, operates over short time

scales (0.05–1 s) and is thought to result from persistence of activation in mid- to high-level visual

areas such as the lateral occipital complex and temporal cortex (Sperling, 1960; Keysers et al., 2005;

Ferber et al., 2005). Visual working memory, an active maintenance system, operates over moderate
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time scales (0.5–20 s) and is supported by a network that includes prefrontal cortex, basal ganglia,

and parietal cortex (Baddeley, 1992; Voytek & Knight, 2010; Xu & Chun, 2005; Todd & Marois,

2004). Visual long-term memory, a high-capacity passive store, operates over lengthy time scales

(minutes to decades) and recruits much of the same machinery that supports more general forms of

long-term memory, such as the hippocampus (Brady et al., 2011b). Other subsystems have been pro-

posed, each with its own particular properties and substrates (Sligte et al., 2008; Magnussen, 2000;

Wood, 2009). Together, these systems maintain visual memories, allowing us to remember what we

see.

The classic forgetting function of visual memory, which is applicable to short and moderate time

scales, has a brief period of rapid decline followed by a long plateau, a form that is attributed to the

quick fading of iconic memory and the stability of working memory (Sperling, 1960). This model

has survived for over 50 years with only slight modification (Box 1) (Zhang & Luck, 2009). Here,

we extend the classic model to account for new data, leveraging the tools of evolutionary biology to

model memories as entities that compete for a limited mental commodity that is shared among them.

In a series of experiments, we asked participants to remember a set of objects, and then after a short

delay, to report the color of a randomly selected object using a graded continuous-report procedure

(Fig. 1 and Methods). We tested a five-hundredfold range of durations (0.03–16 s) and a twelve-fold

range of loads (1–12 objects), randomly interleaving them all. We used the resulting data to derive a

set of high-quality forgetting curves (Methods). These revealed effects unnoticed by previous studies,

which have typically kept load or duration fixed or varied each in a blocked design, rarely manipu-

lating both. Complete coverage of duration and load enables us to compare changes over time with

minimal contamination by differences in initial encoding; and by using graded rather than discrete

responses, we gain higher efficiency in detecting the presence of weak memories and the ability to
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distinguish weak memories from those that are completely forgotten.

....

Box 1
The classic model of the time course of visual memory
Experiments in the 1960s revealed the existence of iconic memory, a high-capacity sensory buffer
whose contents are short-lived, fading within a second (Sperling, 1960). At the time, working
memory was assumed to be stable, with stored objects remaining there indefinitely. The forgetting
function of the classic model, defined by the number of objects remembered at time t, is given by

y = β+ exp(−t/τ),

where τ is the mean lifetime of an iconic memory and β is the capacity of working memory (Ap-
pendix A).

The pure death model
The pure death model extends the classic model to accommodate degradation in working mem-
ory. We formalize this degradation as a concurrent process of exponential decay that happens
more slowly than iconic decay (Appendix A).

The sudden death model
The sudden death model extends the pure death model by proposing a 4-second window of time
in which working memory is immune to degradation (Zhang & Luck, 2009) (Appendix A).

++

Stare at the center

++

Present display

++

Delay  

+

Report

++

Cue an item

Figure 1: The memory task. Participants stare at a small cross at the center of the screen. A set of colorful
dots briefly appears. After a delay, the location of one of the dots (selected at random) is marked with a cue.
The participant is asked to report the color of the dot that appeared at the marked location. Performance is
assessed by comparing the reported color to the true color. Here, the participant makes a large error, reporting
the green object as orange.
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1.2 Results

1.2.0 Memory stability depends on load

Participants’ errors on the memory task were used to derive forgetting curves that track the number

of remembered objects as it falls over time (Fig. 2a, Methods). Fitting an exponential function sep-

arately to the data from each memory load, we found that the rate of forgetting depends on the total

amount of information held in mind, with lone memories lasting longest (estimated mean lifetime

of 157 s) and higher loads leading to progressively shorter lifetimes (Fig. 2b–d, Methods). The re-

lationship between memory load and mean lifetime is well described by a power law with exponent

–1.7 (r2 = 0.98, p = 6.5× 10–8), such that halving the load leads to roughly a tripling in mean lifetime

(Fig. 2b). This relationship was also found when limiting analysis to durations greater than 1 s, where

iconic memory plays no role (Sperling, 1960; Yang, 1999) (Fig. 2c). In the initial analysis, we as-

sumed that the forgetting function is exponential-like (Box 1, Eq. 1). To test whether load-dependent

stability is robust to this assumption, we also considered another functional form—a power law.

Power law forgetting has been observed in long-term memory (Wixted & Ebbesen, 1991) and is

common because it can arise both normatively (i.e., as the optimal solution to a task) (Anderson,

1989) and as an artifact of averaging exponential-like forgetting functions that differ in timescale (An-

derson & Tweney, 1997; Anderson, 2001). We found a comparable effect of load-dependent stability

under power law forgetting (Fig. 2d).

1.2.1 Crossovers and overreaching

The lines of the forgetting functions for each load cross (Fig 3a). At short durations, presenting a

greater number of objects causes more to be remembered. At long durations, however, the oppo-
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Figure 2: Load-dependent forgetting: the more you try to remember, the faster you forget. (a) Subplots show
the empirical forgetting function for each load (K = 1, 2, 3, 4, 6, 8, or 12 objects), tracking the number of re-
membered objects as it falls over time. The dashed black and solid grey curves assume an exponential form
to the forgetting function; the former is fit to all the data and the latter considers only durations of at least 1 s,
where iconic memory plays no role. The dotted red curve assumes that forgetting follows a power law. Curves
were fit to the data from each load separately (Methods). Error bars here and in other figures are 95% cred-
ible intervals. (b) Comparing lifetimes across loads, the relationship is well described by a power law with
exponent -1.66. (c) This relationship also holds for the estimates derived from durations of at least 1 s, where
iconic memory plays no role. (d) A similar relationship is found for degradation under power law forgetting,
quantified by the scaling exponent, which falls precipitously with load.
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site is often true: presenting a greater number of objects causes fewer to be remembered (Fig 3b).

Crossovers in the forgetting function imply that the relationship between the number of objects pre-

sented and the number remembered changes with time. (Fig 3c).

The presence of crossovers suggests a flawed strategy of the participants, who presumably control

how many objects they encode and maintain. Like a bodybuilder who herniates a disk by straining to

lift too heavy a weight, our participants performed worse because they tried to encode and maintain

more than they could handle—they overreached. A comparable effect has been reported for tracking

many moving objects at once, which is a task that is demanding of attention (Holcombe & Chen,

2013). Alternatively, it is possible that participants chose appropriately when deciding how many

objects to encode or maintain, but that the presence of distracting objects led to flawed execution of

the chosen strategy (Vogel et al., 2005). Crossovers are inconsistent with the classic model and its

variants, whose lines occasionally meet, but never cross (Box 1; for details, see Appendix A).

1.2.2 Evolutionary model

To explain these results, we propose an account of visual memory rooted in evolutionary dynamics,

a mathematical framework for describing how information is reproduced in a setting that is subject

to mutation, selection, and random drift (Nowak, 2006). Specifically, we describe an evolutionary

process operating over a commodity that supports memory. This commodity may take any one of a

number of forms, including (for example) cycles of a time-based refreshing process (Vergauwe et al.,

2009) or populations of neurons in prefrontal cortex representing “token” encodings of visual events

(Bowman & Wyble, 2007). No matter its particular form, what defines a commodity is being a lim-

ited asset, at least partially shared across memories, whose availability affects performance. A shared

commodity stands in contrast to a purely local substrate that represents specific stimulus attributes in
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Figure 3: Crossovers in the forgetting function and overreaching. (a) Each subplot is a pairwise comparison
of the forgetting functions for two memory loads, with the greater load K plotted in green and the lesser load
L in blue. Shaded error bars show 95% credible intervals at each time point. (b) The strength of evidence
for a crossover between the forgetting functions for a pair of loads K and L is expressed as twice the natural
logarithm of the Bayes factor B(K,L) in favor of a model with crossover over one without it (Kass & Raftery,
1995) (Methods). In the heat map, B(K,L) is coded as positive (green) when the evidence favors the crossover
model and as negative (blue) when it favors a model without crossover. (c) The crossover effect implies that
the relationship between the number of objects presented and the number remembered will change over time.
The plateau at≈ 3 objects for short durations is considered to be the signature of visual working memory’s
meager capacity. However, the non-monotonic curves seen for durations greater than 1 s are new and suggest
a failure on the part of participants, who would have performed better by trying to encode less of the display.
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particular locations of the visual field (Franconeri et al., 2013). Though such location- and content-

based substrates are essential for encoding information into working memory, they are perhaps less

relevant to memory maintenance, which may operate over a more pluripotent medium (Bowman &

Wyble, 2007).

Recent work has sought to determine both the quantization (Zhang & Luck, 2008; Bays & Husain,

2008) of the commodity and the structure of the memories that it forms [e.g., whether they form

bound objects (Luck & Vogel, 1997), bags of unbound features (Fougnie & Alvarez, 2011), or hi-

erarchical bundles of features (Brady et al., 2011b)]. In the general case, the commodity is divided

intoN quanta, each of which is dedicated to some information about a memory structure. Discrete

“slot”-based models setN ≈ 4, whereas “continuous resource” models consider the limit asN tends

to infinity (Zhang & Luck, 2008; Bays & Husain, 2008; Cowan, 2001; Wilken & Ma, 2004).

We model the evolution of the quantal population using a generalization of the Moran process.

The Moran process is a model of evolution in finite populations that was originally used to describe

the dynamics of allele frequencies (Moran, 1958), and which has recently been leveraged to describe

evolutionary processes in diverse settings, including frequency-dependent selection, emergence of

cooperative behavior, and cultural evolution of language (Nowak et al., 2004; Fudenberg et al., 2006;

Komarova & Nowak, 2003). The Moran process begins with a population of quanta (the units of the

commodity) that have been assigned to structures (which may be objects, features, bundles, etc.). At

each time step, a quantum becomes degraded, losing the information that it stores. In the same step,

the lost information is replaced by the contents of another quantum, randomly selected from them

all (Fig. 4). Our generalization further introduces a stability threshold: if at any point a structure has

fewer than s quanta assigned to it, it becomes inaccessible to the maintenance process and the asso-

ciated quanta lose their assignment, floating freely until they are reassigned (Fig. 4, grey dots). This
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threshold is comparable to a recently-proposed lower bound on the fidelity of an accessible memory

(Brady et al., 2013) and has the effect of limiting the number of structures that can be stored to ap-

proximatelyN/s. When the stability threshold is a single quantum, we can derive the forgetting func-

tion analytically (Appendix A); for greater values of the stability threshold, the forgetting function

is obtained numerically. Over time, the number of quanta assigned to a structure drifts. Eventually,

either a single structure reaches fixation, with all the quanta assigned to it, or corruption prevails and

all the quanta are left free-floating and unassigned.

Various cognitive processes could give rise to these dynamics. First consider a process of active

maintenance that recycles the memory commodity, repurposing quanta dedicated to lost memories

in order to provide redundancy to those that remain. Alternatively, consider a process of interference

where at each time step a quantum becomes corrupted, taking on the value and assignment of an

intruding quantum. In these ways, the evolutionary process can be seen as a formal model of memory

maintenance in the face of degradation due to interference or decay.

Each component of the evolutionary model — the commodity, the degradation process, and

the stability threshold — contributes to the resulting dynamics. When a memory structure loses a

quantum and hits the stability threshold, that structure is lost. This happens quickly at first, but more

slowly over time, because the loss of one memory lends stability to those that remain. When there are

many objects to remember, the memory commodity is spread thinly, with fewer quanta per memory

structure, and so each one stands closer to the stability threshold. In contrast, when there are fewer

objects to remember, the representation of each one is more stable. This discrepancy accounts for the

relationship between lifetime and load and may also explain the remarkable stability of lone memo-

ries, which need not compete at all for the memory commodity.

The proposed evolutionary process reproduces the observed forgetting functions of visual mem-

19



 t = 1

...

2

a

3+ 3– 3
4+ 2 3–

5± 2 2
5± 2 2
5± 2 2
5± 2 2
5± 2 2
5± 2 2
5+ 2– 2
6+ 0 2
6± 0 2
6± 0 2
6± 0 2
6+ 0 2–

7± 0 0
7± 0 0
7+ 0 0
8± 0 0
8± 0 0
8+ 0 0
9± 0 0

b c 9 quanta, 3 objects, s=2  12 quanta, 4 objects, s=3  15 quanta, 5 objects, s=3

Figure 4: Modeling the evolution of a memory-supporting commodity. (a) In the top row, a pool of 9 unal-
located quanta (grey dots) that wait to be assigned. In the second row, each quantum is assigned to one of
three structures, labeled in orange, red, and purple. Subsequent rows show the process as it plays out over
time, one time step per row. An empty circle denotes the quantum that died and a circle with a plus mark de-
notes the quantum that was selected to replace it. When the number of quanta assigned to a structure drops
below the threshold (s = 2 in panel a and s = 3 in panels b and c), the remaining quanta become inaccessible
to the maintenance process and lose their assignment (greyed-out dots). Numbers to the right of the panel
count the number of quanta dedicated to each structure at that time step, with superscripts showing which
structure gains, +, loses, –, or both,±. The number of stored structures corresponds to the number of unique
colors in a row. In this run, the orange structure reaches fixation. (b) A second iteration of the process, with 12
quanta and 4 objects. At the last time step that is displayed, the blue structure is the only one left, but it has
not yet reached fixation, with much of the commodity left unassigned. (c) A third iteration, with 15 quanta and
5 objects. Red takes an early lead, but is eventually overcome by green.
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ory, showing effects of load-dependent forgetting and overreaching, effects that are inconsistent with

the classic, pure death, and sudden death accounts, which show neither effect (Fig. 5, Methods, and

Appendix A). In the classic account (Fig. 5, grey dashed lines), only iconic memory degrades; the

stability of working memory produces flat forgetting functions with no slope and which do not cross.

In the pure death account (Fig. 5, blue dashed lines), working memory decays at a fixed rate that is

independent of load; this produces sloped lines that share a common decay rate (mean lifetime) and

never cross. The same is also true of the sudden death account (Fig. 5, yellow dashed lines), which

extends the pure death account by proposing a 4-second window of time in which working memory

is immune to degradation (Zhang & Luck, 2009). Only the proposed evolutionary process produces

both effects (Fig. 5, green solid lines).
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Figure 5: Comparing the forgetting functions of the classic, pure death, sudden death, and evolutionary mod-
els. Subplots show the forgetting function for a particular load (1, 2, 3, 4, 6, 8, or 12 objects). Competing mod-
els fail to capture important aspects of the data. The classic model (grey dashed line) does not change over
time. The pure death model (blue dashed line) has a fixed rate of forgetting, one that is too quick for low loads
(K = 1, 2, and 3) and too slow for high loads (K = 8 and 12). The sudden death model behaves similarly to the
pure death model. The evolutionary model succeeds, with slow forgetting at low loads and quick forgetting at
high loads (best-fit parameters N = 58, p = 0.82, tstep = 0.01, and s = 7). The form of each forgetting function
is derived in Appendix A. We also considered the effect of individual differences on the predictions of each
model (see Figs. 7–12).

21



1.3 Discussion

We modeled memory degradation as an evolutionary process operating over the quantal units of a

memory-supporting commodity. The proposed model, a generalization of the Moran process with a

stability threshold, captures important features of the forgetting functions of visual working memory.

First, the stability of a memory depends on the load, with lesser loads leading to progressively longer

lifetimes. Lone memories are remarkably stable, with lifetimes on the order of minutes. In contrast,

in the context of high loads, memories degrade quickly, in just a handful of seconds. The relationship

between load and mean lifetime—load-dependent forgetting—is well characterized by a power law.

Second, the lines of the forgetting functions at different loads cross, implying a failure of the partic-

ipants to encode or maintain an amount of information that was commensurate with their abilities

to maintain it. This is overreaching. These features follow naturally from the proposed evolutionary

process, but are absent from previous models.

In the context of visual working memory, encoding and maintenance are often viewed as a process

in which a limited store fills up during encoding and then remains mostly stable, perhaps with whole

object representations being lost one by one over time. Importantly, in this view, encoding and main-

tenance happen independently over stored objects, resulting in exponential decay functions with a

rate shared across different loads. Load-dependent forgetting suggests an alternate view: visual mem-

ory representations compete for a commodity that is at least partially shared among them, such that

the success of maintenance for one structure is affected by that for the others, thereby introducing a

dependency of forgetting on load. Our proposed evolutionary model is the simplest instantiation of

this principle, with a mental commodity fully shared across representations.

The capacity of working memory is often described as a small and stable “magical” number, one
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that began life as 7±2 chunks, later slipped to 4, and now hovers restlessly at 3, 2, or even just one

(Cowan, 2001; Miller, 1956; Rensink, 1999; McElree, 2001). The proposed evolutionary model and

its load-dependent stability may help to explain why these magical numbers are so pervasive. In our

model, when content is lost from memory, due to either interference or decay, the commodity that

had previously been assigned to that content is co-opted for use elsewhere. This interference (or re-

allocation) brings stability to the structures that remain, such that it becomes increasingly difficult

to lose the next one. No matter how many structures the quantal resource is initially spread among,

within a short time most of the structures are lost. The forgetting functions therefore spend the bulk

of their time hovering at only a small handful of objects.

It is conceivable that the proposed process could be used to describe both iconic and working

memory, together, as a single process. Iconic memory was initially considered to be a unitary system,

but was later fractionated into two distinct subcomponents, one providing visible persistence (i.e., the

experience of seeing a stimulus after its removal), the other providing informational persistence (i.e.,

remembering something about a stimulus after its removal) (Coltheart, 1980). Visible persistence is

distinct in its phenomenology from working memory, as memories are rarely experienced as being

seen, but informational persistence and working memory have long been conflated. For example,

studies of visual working memory often test at durations of 500–1000 ms, a point in time at which

there is a non-negligible contribution of iconic memory to task performance (Yang, 1999). We find

that the evolutionary model provides excellent fits to the forgetting functions of iconic memory that

have been measured in previous experiments (Fig. 6). Experimental evidence of a distinct iconic

storage system underlying informational persistence comes from a variety of experiments, not all of

which rely on its timing (e.g., see Becker et al., 2000). However, the closeness of fit between model

and data suggests that informational persistence in iconic memory may be the initial moments of
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maintenance in a lengthier short-term storage system.
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Figure 6: The evolutionary model can be used fit the full time course of visual memory as a single process.
Data are replotted from Yang (1999). Each subplot is data from the participant whose initials appear in the
bottom left corner. The stability threshold was fixed at s = 1 (see Methods).

Evolutionary dynamics provides a rich framework in which to extend our account of visual mem-

ory. For example, it is likely that the neural substrate over which visual memory maintenance op-

erates is in some way structured—perhaps as a gridded visuotopic maps like those found in visual

areas in the brain, or as a scale-free network, like so many other biological systems (Franconeri et al.,

2013; Gardner et al., 2008; Schira et al., 2010). Evolutionary graph theory, which extends evolution-

ary dynamics to structured populations, is a natural tool for specifying the interaction network of the

memory commodity and exploring how such structure impacts the stability of memories (Lieber-

man et al., 2005). Similarly, frequency-dependent fitness, where the success of an individual depends

on the abundance of that individual’s type, is analogous to a memory maintenance policy that selec-

tively maintains memories according to their stability (e.g., by purifying, selectively maintaining the

strongest memories, or balancing, selectively maintaining those memories on the brink) (Nowak

et al., 2004).

By constructing an evolutionary model of memory degradation that operates over the natural units

of visual memory allocation and maintenance—those of a memory-supporting commodity, rather

than whole objects—we are able to build better process models of memory maintenance and its dy-
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namics. Here, we focused on short-term visual memories. But just as the framework of evolutionary

theory has been applied across many domains and scales, from alleles to words and from cells to soci-

eties, so too might our approach, when appropriately extended, be applied to memory maintenance

in more complex systems, such as the transactional and collective memories of groups.

1.4 Methods

Participants

We recruited 1000 participants using Amazon Mechanical Turk, an online labor market where people

perform short computer-based tasks for pay (Berinsky et al., 2012; Buhrmester et al., 2011; Ipeirotis,

2010; Mason & Suri, 2012). Each participant was paid $0.50 for a few minutes of work. Recruitment

and testing was executed in accordance with Harvard University regulations and approved by the

Committee on the Use of Human Subjects in Research under the Institutional Review Board for the

Faculty of Arts and Sciences. Recruitment was limited to participants based in the US with approval

rates of at least 90%.

Stimuli

The stimulus consisted of a set of 1–12 colorful dots. The dots were arranged in a ring around a small

central fixation point. Each dot appeared in one of twelve locations spaced equally around the ring,

with the constraint that each dot had its own location. Dots were randomly assigned one of 180

equally spaced colors drawn from a circle (radius 59°, center L=54, a=18 and b=–8) cut out from the

cie L∗a∗b∗ color space. Stimuli were rendered in a browser. The viewing distance was approximately

50 cm.
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Procedure

The participant pressed the space bar to begin the trial. The stimulus immediately appeared for 250

ms and then disappeared. Participants were asked to remember the colors of the presented dots. The

screen remained blank for the retention interval. Once the waiting period was over, a small cue ap-

peared in the location of one of the dots, selected at random. The participant used the mouse to select

the remembered color of the cued dot. Colors were selected by moving the mouse in a circle around

the center of the display. A dot appeared at the center of the display and was continuously updated

with the currently selected color. Participants registered their selection by clicking. No feedback was

provided. There were ten possible retention intervals (1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, or 16 s)

and seven possible memory loads (1, 2, 3, 4, 6, 8, and 12 objects), for a total of 7 × 10 = 70 test trials.

The order of the trials was randomized so that the participant would not know at the time of encoding

how long they would need to remember the objects. There were 6 practice trials, 1–6 objects in as-

cending order, all with a retention interval of 1 s. There were negligible practice effects during the test

trials, suggesting that our training procedure was sufficient for participants to perform the task well

(Fig. 13).

Extracting the empirical forgetting functions

First we excluded participants who showed weak evidence of having faithfully completed the task.

To do this, for each participant, we compared two models of their performance using the Akaike in-

formation criterion. The first model was a two-parameter model (Zhang & Luck, 2008) where with

probability 1 − g the participant remembers the stimulus with fixed fidelity σ, the dispersion param-

eter of a von Mises distribution (a circular analogue to the normal distribution), and with proba-

bility g guesses blindly. The other model was a zero-parameter model where the participant always
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guessed blindly. Since our null model — complete guessing for all 76 trials — is so weak, our crite-

rion for inclusion was strict, aicC ≥ 10, which constitutes strong evidence of the presence of mem-

ory (Akaike, 1974). This strict criterion may inadvertently exclude participants with poor working

memory, though the results we find are comparable when relaxing the inclusion criterion to aicC ≥ 3,

which constitutes moderate evidence of memory.

Next, we combined participants’ data into a super-subject. The main manipulations of time and

load were performed within each subject — one trial per condition per participant — but the analysis

combined the data together. Though this is necessary to achieve sufficiently precise measurements,

it leaves open the possibility that variability among people in the form of individual differences will

affect the shape of the measured curves (see later sections). We fit a four-parameter variable-precision

model (Fougnie et al., 2012; van den Berg et al., 2012) to arrive at an estimate of the guess rate g sep-

arately for each duration and load K. The product (1 − g)K, the average number of remembered ob-

jects, is plotted in Figures 2, 3, and 5. Analysis was performed using MemToolbox 1.0.0. (Suchow

et al., 2013).

Estimating mean lifetimes

Mean lifetimes were estimated by fitting an exponential decay model to the raw error data. The ex-

ponential decay model is a time-based generalization of the two-component model described in the

previous section. In the exponential decay model, the number of remembered objects Y falls expo-

nentially with time t, such that Y(t) = β exp(t/τ), where τ is the mean lifetime and β is the number of

encoded objects at t = 0. Memory quality at each duration, as quantified by the dispersion parameter

of the corresponding von Mises distribution, was allowed to vary freely. A loose prior was placed over

each parameter for the purposes of estimation. The prior on βwas uniform over the full range, 0 to
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the number of presented objects. The prior on bias was uniform over the full range, –π to π radians.

The prior on τ was log-normal with a mean of 20 s and a standard deviation of 2 ln units. The prior

on the dispersion parameter of each von Mises distribution was log-normal with a mean of 7.4 and

a standard deviation of 1 ln unit. The model was fit with mcmc using Pymc2 version 2.2 (Patil et al.,

2010).

Strength of evidence for crossover

For each possible pairing of tested set sizes, we measured the strength of evidence in favor of a model

where the forgetting function for the greater set size crosses over that for lesser set size (i.e., where it

starts higher and ends lower) to one where it does not cross over. Strength of evidence was measured

using the Bayes factor, the ratio of the posterior odds to the prior odds. The prior odds were 1 : 1. The

prior probabilities on model parameters were the same as in the previous section.

Fitting the evolutionary model to the Yang (1999) data. In Fig. 6, we fit the evolutionary model

to data from Yang (1999)’s experiments on iconic memory (Yang, 1999). The model was fit by min-

imizing the squared error between the data and the model’s predictions using Nelder–Mead simplex

search over the model’s parameters (Lagarias et al., 1998) (Appendix A).

1.5 Additional results

In the following subsections, we consider the effects of individual differences, practice, and differ-

ences between in-lab and online testing.
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1.5.0 Individual differences

People vary considerably in the capacity of their working memory systems, and these individual dif-

ferences are correlated with intelligence, reasoning abilities, and reading comprehension (Unsworth

& Engle, 2005; Daneman & Carpenter, 1980; Fukuda et al., 2010; Kyllonen & Christal, 1990). Our

analysis procedure, which combines data from multiple participants into a single super-subject, masks

such variability, and it is therefore important to consider the ways in which the presence of individual

differences might impact our results.

First, variability might alter the predictions of the classic, sudden death, or pure death models,

undermining our claim that they fail to capture features of the empirical forgetting curves. Second,

variability might alter the predictions of the proposed evolutionary model, undermining the logic

whereby a tight fit between model and data lends support to the model. We examine each of these

possibilities below.

1.5.1 Individual differences in the classic model

In the classic model, variability can arise through individual differences in the initial capacity K,

which is the number of structures encoded in working memory. Through simulation, we inject in-

dividual differences by drawing 1 − g, the probability of encoding each object, from a Beta distribu-

tion with parameters chosen to cover a reasonable range of variability. Figure 7 shows that individual

differences of this sort have no impact on the resulting curves.

1.5.2 Variability in the pure death model

In the pure death model, variability can arise in two ways: through individual differences in the ini-

tial capacity β, and through individual differences in the mean lifetime τ. Variability in β is modeled
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Figure 7: Individual differences in the classic model. The bottom row shows histograms of 1–*g*, the proba-
bility of successfully encoding an object in working memory. The top row shows the resulting forgetting func-
tions, averaged over participants. Moving rightward, columns have greater individual differences.

in the same way as it is in the classic model. Through simulation, we inject variability into the mean

lifetime by drawing t from a log normal distribution. Figure 8 shows that variability in β has no impact

on the resulting curves and that variability in τ bends each curve, but does not change the relation-

ship between them, which would be needed to reproduce the effects of load-dependent stability or

crossover.

1.5.3 Variability in the sudden death model

In the sudden death model, variability can arise in three ways: through individual differences in (1)

the initial capacity β, (2) the mean lifetime τ, and (3) the length of the window of initial stability td.

Variability in β and τ are modeled in the same way as in the classic and pure death models. Through

simulation, we inject variability into td by drawing it from a log normal distribution. As before, vari-

ability in β has no impact on the resulting curves. Figure 9 shows that variability in τ has the same
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Figure 8: Individual differences in the pure death model. The leftmost column shows histograms of 1–g, the
probability of successfully encoding an object in working memory. The bottommost row show histograms of
τ, the mean lifetime. There are nine plots, one for each pair of distributions on 1–g and τ. Moving rightward,
columns have greater individual differences in τ. Moving downward, rows have greater individual differences in
1–g. The y-axis is logarithmic to highlight shifts away from an exponential function (a straight line).
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effects as it does in the pure death model and that variability in td softens the corner occuring at time

points directly before and after the cutoff. As with the pure death model, these individual differences

change the shape of the curves, but do not impact the relationship between them.

1.5.4 Variability in the evolutionary model

In the proposed evolutionary model, variability can arise in three ways: through individual differ-

ences in (1) the number of quantaN, (2) the duration of one time step tstep, or (3) the stability

threshold s. Through simulation, we inject variability into each parameter and observe the effects

on the predicted forgetting functions. DrawingN from a (discretized) normal distribution, we find

that individual differences have a greater benefit to high memory loads than to low loads, thereby

leading to a slight weakening of the crossover effect and load-dependent stability (Fig. 9). However,

a crossover is seen even with high levels of individual differences (sd of± 2 ln units). Next, drawing

the stability threshold from a discrete uniform distribution, we again find that individual differences

have a greater benefit to high memory loads than to low loads, with considerably less crossover, but

only a miniscule effect on the presence of load-dependent stability (Fig. 10). Lastly, drawing tstep

from a log normal distribution, we once again find the same result, with slight weakening of both

load-dependent stability and crossover (Fig. 10). Together, these results suggest that the predictions

of the proposed evolutionary model are tolerant to large individual differences inN, moderate indi-

vidual differences in k, and large individual differences in tstep.

1.5.5 The effects of practice

Here, we consider the effects of practice by tracking performance as it changes over the course of the

experiment’s 70 trials (Fig. 13). The number of remembered objects dropped slightly (linear corre-
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lation, r=–0.30, p = 0.013), roughly 0.01% per trial (slope of linear regression, –0.002 object/trial;

intercept, 2.2 objects). There were no significant changes in memory quality (r=0.15, p=0.22) or bias

(r=0.03, p = 0.81). This suggests that our training procedure was sufficient for participants to perform

the task well.

1.5.6 Laboratory replication

We performed an in-laboratory replication of the main experiment in a group of six naive participants.

The task used loads 1, 2, 3, and 6, and durations 0.125, 0.25, 0.5, 1, 4, and 10 s. Participants were each

tested for 6-8 sessions of 360 trials, 15 trials per condition (pairing of duration and memory load),

in random order. We observe similar results of load-dependent forgetting and overreaching, with a

crossover for the highest load.
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1.0.0. (Suchow et al., 2013)
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2
Looking inwards and back: realtimemonitoring

of visual workingmemories

2.0 Abstract

Confidence in our memories is influenced by many factors, including beliefs about the perceptibil-

ity or memorability of certain kinds of objects and events, as well as knowledge about our skill sets,

habits, and experiences. Notoriously, our knowledge and beliefs about memory can lead us astray,
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causing us to be overly confident in eyewitness testimony or to overestimate the frequency of recent

experiences. Here, using visual working memory as a case study, we designed a task that strips away

all these potentially misleading cues, requiring observers to make confidence judgments by directly

assessing the quality of their memory representations. We show that individuals can monitor the sta-

tus of a memory as it degrades over time. Our findings suggest that people have access to information

reflecting the existence and quality of their memories, and furthermore, that they can use this infor-

mation to guide their behavior.

2.1 Introduction

metamemory is an awareness of our memories and the systems that store them. We use metamem-

ory to determine that we are uncertain (“I can’t remember where I parked my car”), to ask for a re-

minder (“When’s that appointment, again?”), and to form beliefs about our ability to remember

certain kinds of information (“I’m good with names”) (Flavell & Wellman, 1977). For better or

for worse, judgments of confidence in our memories are influenced by many factors. These include

general knowledge in the form of beliefs about ourselves and what we find memorable, as well as

more specific knowledge derived from our previous experience with the task at hand (Koriat, 1997;

Schwartz, 1994; Schwartz et al., 1997). However, the cognitive mechanisms underlying metamemory

judgments are poorly understood.

Looking towards research in other areas of metacognition, where a variety of confidence mech-

anisms have been explored in detail, may provide a clue about the workings of metamemory. For

example, in the case of perceptual discriminations, one simple mechanism for judging confidence is

to use visual cues associated with uncertainty (e.g. faintness and blur), alone or in combination, as a

proxy for confidence (Barthelmé & Mamassian, 2010). Then, when asked to identify an object that
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appears blurry or faint, an observer using this mechanism will report having low confidence because

blurriness and faintness are stimulus features typically associated with uncertainty. Importantly, cue-

based mechanisms like this one draw on static information about the stimulus and decision-maker,

rather than directly accessing an internal representation or decision making process. In contrast, an

alternative class of mechanisms has been proposed that can compute realtime measures of perceptual

confidence (Kepecs et al., 2008). Realtime mechanisms are notable because, rather than relying on

externally observed cues, they monitor internal states as they change over time (Kepecs et al., 2008).

These monitored states may be those of decision variables associated with the task, or those of un-

derlying representations that store uncertainty explicitly — e.g., as probability distributions over past

states of the environment (Barthelmé & Mamassian, 2010).

Here, using visual working memory as a case study, we designed a test to isolate realtime mecha-

nisms underlying the evaluation of confidence in memory. Our task was a variant of a popular test

of visual working memory in which participants view a display of colorful dots and then, shortly

thereafter, report the color of a dot selected for them at random (Wilken & Ma, 2004). In our variant,

however, instead of requiring participants always to report the color of a randomly selected dot (“ran-

dom” condition), they were sometimes afforded the opportunity to report the color of the object

they remembered best (“best” condition). Choosing the best-remembered object requires an inward-

looking comparison of the relative quality of multiple memories, and is a within-trial analogue to

the opt-out procedure used extensively in studies of human and animal metacognition (Smith et al.,

1995, 1997; Tanaka & Funahashi, 2012). To strip away nearly all the usual sources of metamemory

information — general knowledge, stimulus-based cues, and time-based fluctuations in attention and

arousal — we compared memory for an object in a display when it was chosen by the participant as

their best remembered object to when it was chosen by the experimenter at random. This procedure
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enables us to isolate a form of monitoring whereby an individual tracks the status of a memory as it

degrades over time.

2.2 Methods

2.2.0 Logic of the task: isolating realtime monitoring

Participants were asked to remember the colors of a set of colorful dots, and then either to report the

color of a randomly selected dot, or to make an inward-looking decision by choosing the dot they

remembered best and reporting its color. Because our goal was to isolate the contribution of realtime

monitoring to this decision, the experimental procedure combined multiple techniques to eliminate

confounding sources of metamemory cues:

Stimulus-based cues. Of principal interest was whether memory would be more accurate for the

best-remembered object than for a randomly selected item. However, the best-remembered object

might be preferred for reasons that do not require a realtime assessment of memory quality. For ex-

ample, a participant may prefer a particular color (say, red), and pay more attention to it. Or perhaps

they find it more memorable, preferring to select red objects whenever the chance arises (e.g., see

Morey, 2011). This is a form of metamemory, but it does not reflect realtime monitoring.

To eliminate display factors such as these, we used a double-pass procedure (Burgess & Colborne,

1988; Gold et al., 2005; Green, 1964) where participants are asked to remember the same display

(i.e., a particular color and arrangement of dots) multiple times. We then compare memory perfor-

mance for a particular object when it was randomly selected by the experimenter versus when it was

chosen by the participant as the object that was best remembered. Any advantage for the preferred

object is thus unlikely to depend on stimulus-based factors, which are held constant across the condi-

tions.
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Tradeoffs in encoding or maintenance. When viewing the stimulus, a participant’s attention might

wander due to either an explicit strategy or accidental drift, causing one object to be encoded more

vigorously than another. This could also happen during maintenance, shifting priority from one ob-

ject to another after the stimulus has already disappeared. These imbalances, if known to the partici-

pant, could be used as a proxy for memory fidelity because an ignored object is unlikely to be remem-

bered well. To avoid this, our approach was to design the experiment to minimize tradeoffs and then

to perform a separate tradeoff detection procedure once the experiment was over.

Our design interleaved two different types of trials in random order. On half of the trials, partici-

pants reported the color of the dot they remembered best, while on the other half, they reported the

color of a dot selected at random by the experimenter. Interleaving the trial types encourages partici-

pants to remember all the dots, because they do not know which dot will be tested.

This procedure mitigates the tradeoffs, but it is possible that tradeoffs were still present. To de-

termine this, we used an additional tradeoff detection procedure: After reporting either the best-

remembered object or a randomly selected one, the participant was then asked to report the color of a

second dot on the display, selected at random. These two reports are used together to detect tradeoffs

with the detection procedure introduced in Fougnie et al. (2012), which relies on the fact that trade-

offs introduce dependencies in the measured quality of representations of objects on a display: if one

object is remembered particularly well, it comes at the expense of the others. Therefore, the detection

procedure compares performance for the first-reported object in two conditions: where the absolute

error for the second-reported item was (1) above or (2) below the median absolute error across all

second reports. A tradeoff is revealed by first reports being more accurate when second reports are

worse. The tradeoff analysis was limited to trials where the first object was randomly selected to avoid

the dependency introduced by the participant’s selection.
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Fluctuations in attention or arousal. Attention, arousal, and effort can fluctuate from moment to

moment (Kahneman, 1973). Most studies of metamemory ask for ratings or judgments about a par-

ticular memory at a particular moment, and so momentary fluctuations can affect performance and

therefore contribute to metamemory decisions. In our task, we asked participants to make a relative

judgment about the quality of simultaneously held memories, such that the confidence judgment

could never depend on the overall state of attention or arousal, which would apply equally to all ob-

jects on the display. Similarly, we randomized the order of the two trial types, which prevents mo-

mentary fluctuations from systematically affecting one trial type over the other.

2.2.1 Implementation of the task

++

a. blank screen

++

b. objects are
    presented
    for 600 ms

++

c. wait for 
    900 ms

++

f. click the best    

+

e. report #1,
    random

++

d. reveal trial
    type: random

++

+++

g. cue another
    object, at 
    random

h. report #2

++

i. feedback
+

d. reveal trial
    type: best

e. report #1,
    best

f. (nothing.)

Figure 15: Timeline of one trial of the double-pass metamemory task. First, the participant sees a set of col-
orful dots and is asked to remember them for 900 ms (a–c). Then the type of trial is revealed: the participant
will either choose, reporting the object they remember best (d, top, “best”), or mandatorily report the object
highlighted for them (d, bottom, “random”). These two trial types are interleaved in random order. Thus the
participant does not know the trial type until it is revealed in panel (d). Therefore the participant must encode
all the items. Once the trial type is revealed, the participant reports the color by selecting it from the color
wheel (e). A different item is then selected at random (g) and the participant reports its color (h). This second
report is later used in an assay of strategic or accidental trade-offs (see Methods and Supplemental Infor-
mation). Finally, the participant receives feedback (i). These steps, which constitute one trial, are repeated
hundreds of times in two rounds. In the second round, the displays used in the two conditions (“best” or “ran-
dom”) are swapped, producing a double-pass procedure where, unbeknownst to the participant, in the second
round the “randomly” chosen objects are in fact those chosen by the participant in the first round.

At the beginning of each trial, the participant fixated a small dot in the center of the screen. Then

the stimulus (a set of three colorful dots) appeared for 600 ms. Next, the trial type was revealed to
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the participant through a display that contained a cue in each of the locations of the test objects. If it

was a trial where the participant was asked to report a specific object, that object was highlighted as a

filled circle among open circles. On the other hand, if it was a trial where the participant reported the

best-remembered object, all the objects appeared filled in. Then a color wheel with all the possible

colors appeared and the color of the best-remembered object was reported. Finally, the participant

used a mouse-controlled cursor to select which object was best remembered. After this first report,

the participant was asked to report the color of a second object selected at random from the two that

remained. The reporting procedure was the same. Feedback was provided at the end of each trial. The

feedback screen, which appeared for 1000 ms, showed the actual color (inner ring) and the reported

color (outer ring) for both of the tested objects (Fig. 1i).

2.2.2 Stimuli and presentation

Each dot had a radius of 0.4° of visual angle. The dots were arranged in a ring with a radius of 3.8° and

centered on the display. The color of each dot was drawn uniformly from a circle cut out of the cie

1976 L*a*b* color space, centered at L = 54, a = 18, b = –8, with the constraint that the magnitude

of each display’s mean hue vector was 0.35. This decreases grouping cues and reduces imbalances in

appearance across displays. After the stimulus disappeared, there was a 900 ms retention interval.

Stimuli were rendered by matlab with the Psychophysics toolbox (Brainard, 1997; Pelli, 1997), and

presented on a 1920× 1200 lcd screen at 60 Hz, 38 pixel/cm, positioned 60 cm from the partici-

pant.
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2.2.3 Participants

Twelve people between the ages of 18 and 31 participated. They all had normal or corrected-to-

normal visual acuity. The protocol, approved by the Committee on the Use of Human Subjects in

Research under the Institutional Review Board for the Faculty of Arts & Sciences, was carried out in

accordance with the provisions of the World Medical Association Declaration of Helinski.

2.2.4 Data analysis

To quantify memory performance, for each participant and condition we separately fit a variable-

precision model to the data (Fougnie et al., 2012; van den Berg et al., 2012). This model supposes

that each object on the display is either remembered or forgotten, and that the quality with which

objects are remembered can vary. Specifically, the variable-precision model assumes that objects are

remembered with some probability, and that if remembered, errors in recall are distributed according

to a von Mises distribution centered around zero (though perhaps with some bias) and whose spread

(s.d.), a measure of memory fidelity, is itself distributed according to some higher-order distribution,

assumed here to be a zero-truncated normal.

We also considered a simpler fixed-precision model that did not allow memory quality to vary, as

well as an extension to it that allows for the possibility that the participant will “swap” items, erro-

neously reporting an item that was not the target (Bays et al., 2009). Analysis was performed with

MemToolbox 1.0.0 (Suchow et al., 2013). Analysis scripts and data are available as Supplementary

Material.
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2.3 Results

We found that participants can use realtime monitoring to make metamemory judgments. Figure 2

shows estimates of guessing rate (left panel) and precision (middle panel), averaged across partici-

pants. Individual participant results are shown (right panel) for items that were chosen as the best

remembered (circles) versus those same items when they were selected at random (squares). Ob-

servers performed better in both guessing rate and memory precision when they chose to report the

object, versus when the object was randomly selected. When asked to report the color of the best-

remembered object, participants remembered it 92±2% (mean ± sem) of the time and with fidelity

of 20.8±1°. When those same displays were presented in the second session and participants were

forced to report the same object that they had previously picked, they performed worse, remember-

ing it 71±3% of the time and with a fidelity of 23.8±2° (paired samples t-test, t(11) = 7.5, p = 1.2×

10–5 and t(11) = –2.5, p = 0.03, respectively). This worsening across exposures happened despite

overall performance being comparable in the two rounds (difference of 0.6° in fidelity from the first

to second round, paired samples t-test, t(11) = 0.51, p = 0.62; difference of 0.4% in guess rate, paired

samples t-test, t(11) = 0.14, p = 0.89).

Using the trade-off detection procedure described in Methods, we tested for trade-offs in the en-

coding or maintenance of items, but found none (guess rate for above vs. below median split: 20.5

vs. 19.4%, paired sample t-test, t(11) = –0.68, p = 0.51; fidelity: 22.1° vs. 22.4°, t(11) = 0.42, p = 0.68).

We performed additional analyses to determine whether our results are robust to assumptions

about the structure of visual memory representations. Specifically, we repeated the above analysis

using three other models: the two-component mixture model introduced by Zhang & Luck (2008),

the “swap” model introduced by Bays et al. (2009), and a one-component model without guessing.
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Figure 16: The contribution of realtime monitoring to judgments of confidence in memory. We compare per-
formance across two conditions, one where the participant selects an item as the one that was best remem-
bered from that display (squares), and another where the participant reports that same item because they
were required to (circles). They performed better when they made the choice, which implies that participants
can use realtime monitoring to guide their selections in the task, picking out the one they remember best.
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2.3.0 Results: Two-component mixture model

We considered a two-component model without variability in precision. When asked to report the

color of the best remembered item, participants remembered it 91±2% (mean ± sem) of the time

and with a fidelity of 20.5±1° (Fig. S1). When those same displays were presented in the second

session and participants were forced to report the same item that they had previously picked, they

performed worse, remembering it 68±4% of the time and with a fidelity of 22.3±1° (paired samples

t-test, t(11) = 6.8, p = 2.8× 10–5 and t(11) = –2.7, p = 0.02, respectively). This across-exposure wors-

ening happened despite the presence of small practice effects, which caused performance for the best-

remembered items to improve from the first session to the second (a gain of 1.8° in fidelity, paired

samples t-test, t(11) = 2.12, p = 0.0572; an insignificant 0.014 improvement in guess rate, paired sam-

ples t-test, t(11) = 0.70, p = 0.50). No tradeoffs were detected (guess rate for first object according

to whether absolute error on second object was above vs. below median: 0.36 vs. 0.34, paired sam-

ple t-test, t(11) = –0.77, p = 0.46; fidelity: 23.8° vs. 25.0°, t(11) = 0.62, p = 0.55). Analysis included a

bias parameter; its value did not differ significantly between the conditions (-0.47° vs. –0.48°, t(11) =

-0.02, p = 0.99).

2.3.1 Results: Adding a swap component

When asked to report the color of the best-remembered item, participants remembered it 93±2%

(mean ± sem) of the time and with a fidelity of 20.4±1° (Fig. S1a). When those same displays were

presented in the second session, they performed worse, remembering the item 70±4% of the time and

with a fidelity of 22.2±1.1° (paired samples t-test, t(11) = –6.8, p = 2.8× 10–5 and t(11) = –2.4, p =

0.03, respectively). The swap rate, the probability of mistakenly reporting one of the uncued objects

instead of the target, was 2% in both conditions and was no better for the best-remembered object
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Figure 17: Comparing performance in the random probe and choose-the-best conditions. Performance is ana-
lyzed using the two-component model of Zhang & Luck (2008).

(paired samples t-test, t(11) = –0.06, p = 0.95). The swap rates observed here, which are roughly

three times lower than those measured in a previous study using similar methods (Bays et al., 2009),

is perhaps due to differences in stimuli. Specifically, our stimuli were generated with a procedure that

reduced grouping of similar colors (see Methods), which is likely to be a major contributor to swap

errors. Analysis included a bias parameter; its value did not differ significantly between the condi-

tions (–0.36° vs. –0.54°, t(11) = 0.27, p = 0.79).

2.3.2 Results: No guessing

When asked to report the color of the best-remembered item, participants remembered the item with

a fidelity of 31±1° (Fig. S2). When those same displays were presented in the second session and

participants were forced to report the same item that they had previously picked, they performed

worse, remembering the item with a fidelity of 54±1° (paired samples t-test, t(11) = –8.3, p = 4.5×

10–6). Analysis included a bias parameter; its value did not differ significantly between the conditions

(–0.54° vs. –0.98°, t(11) = 0.29, p = 0.78).
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Figure 19: Comparing performance in the random probe and choose-the-best conditions. Performance is ana-
lyzed using a model without guessing.
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2.4 Discussion

The results of this experiment suggest that realtime monitoring can be used to make judgments of

confidence in working memory. We found that participants remembered an object’s color more ac-

curately when it had been chosen as the one they remembered best than when that same object, pre-

sented in the context of the same display, was selected at random by the experimenter. Even after

eliminating other sources of metamemory information, such as stimulus-based cues and tradeoffs in

encoding and maintenance, we found that observers were able to assess the quality of their memories

in realtime and could use that information to guide their behavior. Thus, the present results reveal a

strategy that can monitor both the existence and quality of representations in visual working mem-

ory.

This form of metamemory requires access to information that indexes the quality of memories.

Though it is unclear what mechanism provides realtime access to memories, research on uncertainty

in decision making may provide a clue:

A number of simple mechanisms have been proposed that might support realtime measures of

confidence in perceptual judgments (Kepecs et al., 2008). These mechanisms involve accessing deci-

sion variables that contribute to a decision. For example, in a race model, where evidence simultane-

ously accumulates for each alternative choice (Gold & Shadlen, 2007), confidence can be estimated

by measuring the difference in accumulated evidence for each alternative at the moment the choice is

made. High confidence is appropriate when there is a big imbalance in accumulated evidence. Anal-

ogous mechanisms may be at play in the monitoring of visual working memories. For example, con-

fidence in a memory could be computed by comparing the accumulated evidence for the winning

decision (i.e., stimulus value) to the average of the others. Alternatively, monitoring may be accom-
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plished through more indirect means, using a process akin to an availability heuristic. Suppose, for

instance, that less precise memories are more difficult to access (e.g., see Brady et al., 2013). Then,

the participant can use a metamemory routine that attempts to access a memory and terminates if

nothing has been accessed after a fixed amount of time. The time to access then serves as a proxy for

memory fidelity and can be used to inform confidence.

Whatever the mechanism might be, the present results demonstrate it is possible to access the cur-

rent state of a memory and to use that information to guide behavior. The existence of realtime mon-

itoring mechanisms has important implications not only for our understanding of metamemory, but

also for theories of the representational format of visual working memory. Leading models of visual

working memory assume that memory limits are determined purely by the availability of a limited

commodity: once you run out of memory slots (Awh et al., 2007; Zhang & Luck, 2008; Luck & Vo-

gel, 2013) or memory resources (Alvarez & Cavanagh, 2004; Bays et al., 2009; Wilken & Ma, 2004;

Ma et al., 2014), you can no longer store additional objects in memory. However, in addition to pos-

sible commodity-based limits, there is emerging evidence that visual working memory is also limited

by interference, degradation, or decay that leads to the gradual loss of information over time (Fougnie

et al., 2013). This decrease in quality appears to reflect a process that operates independently across

items (Fougnie et al., 2013). Such degradation leads to substantial variability in the quality of memo-

ries across objects, with some objects remembered very well, others remembered poorly, and others

completely forgotten. The present results provide evidence for the presence of variability in mem-

ory quality (Fougnie et al., 2012; van den Berg et al., 2012) and show that this variability cannot be

explained by stimulus differences or by differential allocation of attention within or across trials.
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2.5 Conclusion

Most research on metacognition has focused on perception and long-term memory, exploring how

people assess uncertainty about their current perceptions and distant memories. Theories of metamem-

ory have thus focused on how multiple sources of information influence judgments of confidence,

including several static factors such as how memorable the material is, or judgments about our own

abilities. Thus, it has been difficult to assess whether and how participants have access to information

that directly indexes the quality of a memory. In the present study, we developed a new method to

strip away these static factors, enabling us to isolate realtime metamemory mechanisms, taking ad-

vantage of the fact that working memories appear to degrade stochastically over time. We found that

observers appear to have access to the current state of their memories, and can use that information

to guide their behavior in an ongoing task. These findings open the door to new explorations into the

nature of the cues that enable realtime memory monitoring and into the impact of metamemory in

complex cognitive processes that rely on working memory.
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3
Controlling workingmemorymaintenance

Memories can be remembered and forgotten intentionally through the process of directed

forgetting and directed remembering, which prioritize some experiences over others for later access

(Muther, 1965; Bjork et al., 1968). These directed processes are closely related to cognitive control

and to the top-down processes that determine our conscious thoughts from moment to moment

(Macrae et al., 1997). At times, these control processes can backfire, causing unwanted thoughts and
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memories to linger despite our best intentions (Wegner, 2009).

One of the clearest demonstrations of directed remembering in short term visual memory comes

from recent work by Williams et al. (2012). In the study, participants performed a task in which they

were asked to remember the colors of one or two colorful squares. On trials when two objects were

presented, a cue would sometimes appear 1 s into the retention interval, informing the participant of

which object would be tested a few seconds later. This hint afforded participants the opportunity to

alter their maintenance behavior accordingly (Fig. 20). Williams et al. found that participants per-

formed better when the cue was present than when it was absent: the probability of remembering the

tested object increased from 85% to 91% and fidelity improved from 12.5° to 10.0° (Fig. 21). These

results show that visual memory maintenance is flexible — it can be shifted, prioritizing one stored

representation over another.
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++
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    value

++

++++
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++
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Figure 20: Method for revealing directed remembering in visual working memory (Williams et al., 2012).
There are three conditions. In condition 1, one object is presented. In condition 2, two objects are presented. In
condition 2′, two objects are presented and the tested object is cued early in the retention interval.

Directed remembering is one kind of flexible maintenance behavior, but other kinds are possible,

too. Specifically, the results of Chapter 2, in which we showed that people can use metamemory to

access the current strength of their visual memories, suggest the possibility of maintenance strategies
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Figure 21: Directed remembering in visual working memory. The probability of remembering the tested object
is highest when there is only one object (1), lower when there are two but one of them is cued (2′), and even
lower when there are two but none is cued (2). (Right) Fidelity shows the same pattern of results (NB: here, a
lower standard deviation means better performance). Data is replotted from (Williams et al., 2012).

that make use of metamemory. For example, one strategy that uses metamemory targets the weak-

est accessible memory. Another gives preference to memories that are already strongly represented.

These are just two of many such maintenance strategies that make use of metamemory to guide main-

tenance. What is the space of possible maintenance strategies, and how successful is each of them in

retaining visual information over short durations?

One factor affecting that success is the cost of directed maintenance: prioritizing one representa-

tion means neglecting others. This trade-off can be observed by comparing performance for priori-

tized vs. neglected representations (e.g., see Fig. 21). However, the results of Chapter 1 predict that

there will also be a second cost associated with direct maintenance. Specifically, in Chapter 1 it was

proposed that maintenance is limited by a stability threshold, such that only memory representations

with a strength that surpasses the threshold are accessible to the maintenance process and can re-

ceive its benefits. Memory representations that are too weak can not be maintained. The second cost

derives from this stability threshold: redistributing maintenance brings the neglected objects closer

to the edge. This cost would be apparent when comparing the overall efficiency of directed remem-
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bering across loads. Specifically, when there are few objects to maintain, there should be a relatively

efficient trade-off between objects, such that the overall amount that is remembered remains con-

stant, only being shifted from one object to another. However, as the number of objects increases, ef-

ficiency should drop because the act of shifting maintenance brings neglected representations closer

and closer to the stability threshold and thus more susceptible to total loss.

The goal of this work is to define the space of possible maintenance strategies, considering both

the constraints (e.g., the stability threshold) and the sources of information that are available (e.g.,

metamemory). In light of this goal, the plan of the chapter is as follows. Section 1 presents an ex-

periment on the efficiency of directed remembering, showing that this efficiency depends on load.

Section 2 presents an experiment on self-directed remembering, in which a person uses metamemory

to guide selection of the target of maintenance. Section 3 describes a formal framework, the Markov

decision process, which is useful for describing sequential decision making and will allow us to define

the space of possible maintenance strategies and to specify the minimal mechanisms needed to pro-

duce the flexible maintenance behaviors that were observed. The section then presents two classes of

maintenance policies — conditional and unconditional — and shows how conditional policies can

produce directed and self-directed remembering. Finally, it extends the model to cases of imperfect

metamemory, describing memory maintenance in a partially observable mind – i.e., situations when

the maintenance system has incomplete or uncertain information about the current status of actively

held memories.

3.1 Exp. 1: Efficiency of directed remembering

In the experiment that follows, we tested the prediction that the efficiency of directed remembering

decreases with load. Participants performed a directed remembering task. We manipulated whether
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the cue was present and whether it was valid— faithfully indicating which object would later be

tested. We also manipulated load. The undirected condition (no cue) provides the baseline measure-

ment of how much is remembered by default. The prioritized (i.e., validly-cued) and neglected (i.e.

invalidly-cued) conditions allow us to measure how much is remembered when maintenance is di-

rected. We use these measurements to compute the efficiency of directed remembering, which is the

proportion of information remembered in the undirected task that is remembered when maintenance

is directed.

3.1.1 Methods

Participants

Eight people between the ages of 18 and 26 participated. They all had normal or corrected-to-normal

visual acuity, normal color vision, and were naive to the purpose of the experiment.

Stimuli

Stimuli were 1, 2, 3, or 4 cubes. Each cube had three visible sides, one white, one grey, and one black,

viewed either from above or below. There were thus twelve configurations (Fig. 22). Cubes were

positioned 5° above, below, to the left of, or to the right of a central fixation mark. Stimuli are adapted

from Alvarez & Cavanagh (2004).

Procedure

After receiving instructions, the participant initiated the experiment by clicking a mouse. On each

trial, the objects appeared for 300 ms and then disappeared. The retention interval was 2.80 seconds.

On half of the trials, a cue appeared 0.600 s into the trial. The cue was a small grey dot (0.1 deg of vi-
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sual angle) flashed in the location of one of the cubes. The cue was valid on 75% of trials. On valid

trials, the cued cube was always tested. On invalid trials, the tested cube was chosen uniformly at ran-

dom from the other (non-cued) cubes. The tested cube’s location was marked with a small cue, iden-

tical to the one that was presented during the retention interval. Two hundred milliseconds after this

cue, a response screen containing all 12 possible cubes appeared. The participant selected the cube

that they remembered having seen in the location that was tested. Selecting a response automatically

initiated the next trial. No feedback was provided.

Analysis

We compare the efficiency of directed remembering across different loads. Efficiency is measured as

the proportion of the number of objects (or features) remembered in an undirected setting that are

remembered in a directed setting. Efficient directed remembering happens when the participant is

able to shift the balance of memory maintenance at whim while maintaining the same total amount

of information that they would have had they not shifted maintenance at all. Inefficient directed re-

membering happens when shifting the balance comes at the cost of fewer remembered objects (or

features) in total. For example, if the participant remembers 2 of 4 objects in an undirected setting,

but only 1 of 4 in a directed setting, that participant’s efficiency is 1/2.

Figure 22: Cubes used in the directed remembering experiment.

Measuring efficiency requires converting performance on the task to a measure of how much was

remembered. The specific conversion that is used depends on one’s model of how participants store
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memories. The most popular conversion assumes that the participant remembers k objects. If the

tested object is among those that are remembered, the participant responds correctly. Otherwise the

participant guesses blindly. This conversion assumes a “high-threshold” model of memory — either

the participant remembers enough about the particular object to report it correctly, or they remem-

ber nothing about it at all (Luck & Vogel, 1997; Cowan, 2001; Rouder et al., 2008). Perfomance on

the task is linear in k. It is also possible to relax this assumption by assuming that participants have

graded memories of the presented objects. We suppose that the participant remembers each feature

with some probability p; the participant responds by selecting randomly from among all possibilities

that are consistent with what is stored in memory. Under these assumptions, we find that task perfor-

mance is approximately linear in p (Fig. 23), such that efficiency measurements based either on the

number of stored objects or on the number of stored features will be similar.

The efficiency of directed remembering is thus defined as the ratio kU/(kP + kN), where kU, kP,

and kN are the number of remembered objects in the undirected, prioritized (i.e., validly-cued) and

neglected (i.e., invalidly-cued) conditions, respectively. The value of k is given by

k = L
(
P− 1/c

1− 1/c

)
, (3.1)

where L is the load, c is the number of alternatives (i.e., possible cubes, here 12), and P is proportion

correct on the task.

3.1.2 Results

Fig. 24 shows overall performance on the directed remembering task under various loads. As ex-

pected from previous studies, performance is best when there is only one object and declines with

increasing load. A 4× 3 repeated measures anova was run with load (1, 2, 3, or 4 cubes) and di-
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Figure 23: Task performance as a function of the probability of remembering each feature. Each point is the
result of simulating 100,000 trials under the assumptions in the main text.

rectedness (neglected, undirected, or directed) as factors. There was a main effect of load (F(1,11) =

14.08, p < 0.01). Performance is nearly perfect (96% correct) when there is only one object, confirm-

ing that participants were attentive during the task. Estimates of capacity were roughly 0.9 across the

whole task. Though these capacity estimates are uncharacteristically low for simple objects such as

colorful squares and familiar shapes, they are typical of highly complex or unfamiliar objects (Alvarez

& Cavanagh, 2004).

Critically, we find that the efficiency of directed remembering decreases as the load increases

(Fig. 25). Efficiency was lower with 4 objects than with 3 (paired t-test, t(7) = 3.0, p = 0.02) and

lower with 3 objects than with 2 (paired t-test, t(7) = 4.6, p = 0.001), declining from 0.87 to 0.55.
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3.1.3 Interim discussion

The results of Experiment 1 showed that the efficiency of directed remembering depends on the

memory load, revealing a second cost associated with directed maintenance. When multiple objects

are held in mind, the act of biasing maintenance towards one of them is more detrimental to the oth-

ers if there are many objects rather than only one or two. Our account of this effect lies in a stability

threshold that governs memory maintenance. The greater the load, the weaker the individual mem-

ory. Thus at greater loads, directing maintenance away from a representation (and thus allowing it to

weaken further) makes it more likely that it will cross the threshold of inaccessibility.

The drop in efficiency with load has implications for the selection of maintenance strategies that

are well suited to a given task. When one representation is known to be the only one that will be rele-

vant to future behavior, directing maintenance to it fully is the most sensible thing to do because the

aforementioned costs are irrelevant — they affect only the neglected representations, not the one

that is prioritized. However, when there is uncertainty about what information will be relevant to fu-

ture behavior, both costs become relevant and it becomes sensible to weigh the benefits of directing

maintenance towards the representations mostly likely to be useful against the costs of worsening the

neglected representations and remembering less in total.

3.2 Exp. 2: Self-directed remembering

Experiment 1 introduced a constraint on directed remembering: its efficiency is limited by the num-

ber of objects over which maintenance operates. The effectiveness of memory maintenance also

depends on the kinds of information that are available to it. Certain kinds of information, such as

metamemory, can in principle be used to direct maintenance and to help people to remember more.
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For example, prioritizing the representation that is currently weakest may promote remembering

many weak representations. In contrast, prioritizing the representation that is currently strongest

may promote remembering a small number of strong representations. Can participants use the rel-

ative strength of memories as a cue for what to prioritize, selectively maintaining the best- or worst-

remembered object?

In this experiment, we extend the phenomenon of directed remembering beyond external cues.

Specifically, we asked participants to engage in self-directed remembering — shifting the balance of

memory maintenance according to an internally measured metamemory signal. This is accomplished

by generalizing the directed remembering paradigm to include an internally generated direction, with

a cue informing participants that at the end of the trial they will report the color of whichever ob-

ject is remembered best. There are thus four conditions. In condition , a cue appears at the end of

the retention interval, telling the participant which object to report. This is the usual partial report

paradigm, used in Chapter 2. In condition , a cue appears at the end of the retention interval telling

the participant to report the best-remembered object. This is a simplified version of the metamemory

paradigm used in Chapter 1. In condition , a cue appears early in the retention interval, again telling

the participant which object to report the color of. This is the directed remembering paradigm. Fi-

nally, in condition , a cue appears early in the retention interval telling the participant to report the

best-remembered object. This is a test of self-directed remembering. The experiment is thus a 2× 2

design: an early vs. late cue to a random vs. the best-remembered object.
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3.2.1 Methods

Participants

Eight people between the ages of 18 and 25 participated. They all had normal or corrected-to-normal

visual acuity, normal color vision, and were naive to the purpose of the experiment.

Stimuli

The stimulus was four colorful dots (radius 0.4° of visual angle), arranged in a circle centered on the

display, with each object 4° from the center. At the center was a small black fixation mark. The color

of each dot was drawn uniformly from a circle cut out of the cie 1976 L*a*b* color space, centered at

L = 54, a = 18, b = –8. Stimuli were rendered by matlab with the Psychophysics toolbox (Brainard,

1997; Pelli, 1997; Kleiner et al., 2007), and presented on a 1920× 1200 lcd screen at 60 Hz, 38 pix-

el/cm, positioned 60 cm from the participant.

Procedure

A schematic diagram of the procedure is found in Fig. 26 on pg. 70. Each trial began with a blank

screen, followed by the presentation of the stimulus for 250 ms. There was then a 1000 ms retention

interval with a blank screen. In conditions with an early cue, the cue then appeared for 250 ms. Oth-

erwise the screen remained blank for the same amount of time. In all conditions there was then a

4000 ms retention interval. Then, in conditions with a late cue, the cue appeared for 250 ms. Other-

wise the screen remained blank for the same amount of time. After a 250 ms blank period, on every

trial the participant then reported the color of the appropriate object and its location.

67



Analysis

For each condition, we separately fit a hierarchical model to the data from all the participants. The

model assumes that errors are distributed according to a circular normal distribution centered around

0 deg with a standard deviation that is normally distributed in the population. The model was fit to

the data using MemToolbox 1.0.0 (Suchow et al., 2013).

3.2.2 Results

Fig. 27 compares performance on the memory task across the four conditions. Two comparisons are

critical:

First, comparing early cues for the best vs. random condition replicates the basic metamemory re-

sult from Chapter 1 and a previous publication (Fougnie et al., 2012). Performance was better for the

best-remembered object than for a randomly chosen object (early cue: 42± 6° vs. 31± 7°, standard

error, paired t-test, t(7) = 5.8, p = 6.3×10−4; late cue: 53± 18° vs. 35± 8°, standard error, paired

t-test, t(7) = 3.9, p = 0.006). This confirms that participants are successfully using metamemory to

guide selection of structures from working memory.

Second, comparing early vs. late cues for the best-remembered condition provides a test of self-

directed remembering. We found that performance was better with an early cue (s.d. 30.9°) than with

a late cue (s.d. 35.0°; paired t-test, t(7) = –4.6, p = 0.002; Fig. 27).

3.2.3 Interim discussion

Experiment 2 elaborated directed remembering to include internally-generated cues derived from

metamemory — “self-directed remembering”. We found that people were able to direct maintenance

to the representation that was currently remembered best, preferentially maintaining it.
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Figure 26 (following page): Experimental design for a test of self-directed remembering in visual working mem-
ory. The screen starts out empty, with a small fixation dot in the center (a). In (b–c), four objects are briefly
presented and then removed. Then a cue appears, either early or late in the retention interval (d–f). After a
brief pause (g), the participant reports the color of the appropriate object (h) and then confirms the location of
the reported object (i).
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Figure 26: (continued)
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Figure 27: Performance differed when participants reported the best-remembered object versus one that was
selected at random. Performance was better when the cue came early in the retention interval than when it
came late.
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The ability to control working memory in a way that depends not only on external cues but also on

the current memory state opens up the possibility for new maintenance strategies that make use of

metamemory to remember more. Two such strategies, mentioned above, at each moment prioritize

representation that is currently weakest or strongest. Other strategies are possible too, e.g. giving

graded preference to representations that are weakly represented, much like a conservationist might

allocate resources to species on the brink of extinction.

The time course of directed and self-directed remembering remains a crucial open question, and

the answer to it will determine the effectiveness of self-directed maintenance as a strategy for remem-

bering more. Our participants made a single metamemory decision and then directed maintenance to

the selected representation for the remainder of the trial. More sophisticated maintenance strategies

might use multiple metamemory measurements, updating the target of maintenance to always reflect,

for example, the strongest or weakest memory. The act of using metamemory, selecting a target of

maintenance, and redirecting maintenance to the selected target all presumably take time. The longer

it takes to redirect maintenance using metamemory, the less feasible such an approach will be.

3.3 Computational framework: Markov decision process

The goal of this work is to define the space of possible maintenance strategies, considering both the

constraints and the sources of information that are available. Experiment 1 showed that the efficiency

of directed remembering depends on the load, as would be predicted from a stability threshold that

determines the weakest memory that can be maintained. Experiment 2 showed that maintenance can

be directed by information from metamemory. Here, we extend the framework from Chapter 1 to

accommodate flexibility in working memory — i.e., control over the contents of memory according

to the demands of the task — as seen in both directed and self-directed remembering.

72



Specifically, to describe these flexible maintenance behaviors, we extend the model presented in

Chapter 1 by drawing on tools from decision theory, likening the act of working memory mainte-

nance to a sequential decision process in which, at each moment, the maintenance process decides

which mental representations to prioritize. We focus on a particular kind of sequential decision pro-

cess known as the Markov Decision Process, or mdp (Puterman, 1994), which provides an abstract

mathematical framework for describing decision making in a setting that is partly under control of

the decision maker (here, the control of maintenance) and partly under control of the environment

(here, the degradation process). Besides being well-suited to describing the problem of memory

maintenance, considering the Markov Decision Process has the added benefit of it being one of the

most well-understood domains in the mathematics and psychology of reinforcement learning. Thus,

once the connection has been established, a multitude of existing concepts and tools from reinforce-

ment learning and decision theory can be brought to bear on the dynamics of memory maintenance.

An mdp is defined by a state space, a set of possible actions, a transition model, and a reward func-

tion, each explained in turn below.

3.3.1 State space

We suppose that there is a memory-supporting commodity divided intoN quanta, each assigned to

a particular memory structure. The more of the commodity assigned to a structure, the stronger and

more robust the memory structure is. The state of memory is then an assignment of these quanta to

structures. A structure may receive the entire commodity, only a portion of it, or perhaps none at all.

One way to visualize the state space S for such a system is to consider the various ways thatN

quanta can be distributed among K structures. [Mathematically, this corresponds to a (K − 1) reg-

ular discrete simplex — which, in the case of K = 3, consists of the points on the interior of a gridded
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triangle whose vertices represent full allocation to a single memory structure, see Fig. 28. There is a

point on the simplex that corresponds to the initial allocation.]

0
1

2 ...

(N, 0, 0)

(N/2, 0, N/2)

(0, 0, N)(0, N, 0)

Figure 28: The 2-simplex. Each point on the simplex represents a specific allocation of the commodity. At the
vertices, the entire commodity is allocated to a single memory structure. At the edges, one structure receives
none of the commodity.

3.3.2 Set of possible actions

At each time step, we allow the maintenance process to act by selecting a quantum as the target of

maintenance. Thus the set of possible actions A is of sizeN, one action per quantum, and does not

depend on the state.

3.3.3 Transition model

The transition model specifies the probability of moving from one memory state to another. We will

make use of the transition model proposed in Chapter 1 — a generalized Moran process with a sta-

bility threshold. This transition model assumes that at each time step, a quantum degrades because

another quantum interferes with it or replaces it. If any memory structure is so weak that it has fewer

than s quanta assigned to it, all those quanta become free floating and unassigned. [This defines a
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transition model Pr(s′ | s, a), which gives the probability of landing in state s′ given that the agent

took action awhile in state s (Sutton & Barto, 1998; Ewens, 2004). It is a formal model of memory

degradation.]

3.3.4 Reward function

Finally, there is the reward function. By definition, the agent’s goal is to maximize the total reward

that is received. The reward function is a mapping from states to an amount of reward that is received

for landing in that state. In the case of a visual working memory task with a retention interval that is

known to the participant, the reward function is time-varying, taking on a value of zero everywhere

until the moment of the test, at which point it becomes positive for some states and (possibly) zero

for others. The specifics of the reward function inevitably depend on the demands of the task and

are usually implicit in the experiment’s design and mechanism of feedback. For example, tasks using

the continuous partial report paradigm require participants to hold information in mind for a fixed

duration, e.g., 2000 ms, with reward provided in proportion to the similarity between the participant’s

response and the true value. Other tasks provide all-or-none feedback.

Three reward functions are commonly used in experiments on visual working memory. The first

applies to tasks with an all-or-none design in which the participant receives full credit (e.g., +1) for

having remembered anything at all about the cued object (i.e., having at least one quantum assigned

to it at the time of the test) and otherwise receives no reward. This reward function is appropriate

when scoring performance using a high-threshold model (Luck & Vogel, 1997; Cowan, 2001; Rouder

et al., 2008, 2011), considering only the probability of remembering while ignoring accuracy. The

second reward function applies to tasks in which the participant receives credit in proportion to the

closeness of the reported value to the actual value (e.g., proportional to 180 − |x|, where x is the
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error in degrees in a circular dimension, such as hue), but with no penalty for blind guessing (e.g., by

providing an opt-out button or by filtering out guesses using a statistical procedure). The third reward

function applies to tasks in which both accuracy is important and guessing is penalized, modifying

the previous reward function by scoring all the responses, even those that are blind guesses.

3.3.5 Policies: unconditional

The Markov decision process is a general framework for describing the problem of sequential deci-

sion making, but it does not specify the particular strategy used by the agent to make a decision. That

strategy is defined by a policy, a function that specifies an action (or probability distribution over

actions) for each possible state. Much of modern research on mdps focuses on finding the optimal

policy, one that maximizes the (possibly time-discounted) reward (Monahan, 1982; Puterman, 1994;

Sutton & Barto, 1998; Kearns & Singh, 2002; Todorov, 2009).

The simplest maintenance policies do not depend on the current state of memory. Rather, they

produce the same behavior in every state. Borrowing terminology from game theory, in which a

player can adopt a strategy that does not depend on the behavior of the opponent (e.g., a player in the

Prisoner’s Dilemma who always defects), we call these maintenance policies unconditional (Rapoport,

1965; Axelrod & Hamilton, 1981). An example of an unconditional maintenance policy is all-i,

which selects the ith quantum as the target of maintenance. Another example of an unconditional

strategy is random, which selects a target at random, uniformly over all quanta. This maintenance

policy is equivalent to the neutral process from Chapter 1, and thus reproduces the full range of ex-

perimental results from that chapter.
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3.3.6 Policies: conditional

Conditional policies depend on the state. There are many conditional policies that are possible, but

we will focus on three that are needed to produce the behavioral results presented in Exps. 1 and 2:

all-j and Luce.

One example of a conditional policy is all-j, which selects a quantum uniformly from among

those assigned to structure j if one exists, otherwise choosing randomly among all the quanta. We

find that the all-j class of conditional policies is sufficient to produce directed remembering, with

performance being better for the prioritized object than for the neglected object, like it was in Exp. 1.

Specifically, we simulate the effects of a participant who uses random until the cue is revealed and

then switches to all-j, where j is the memory structure that corresponds to the cued object (Fig. 29).

A particularly interesting class of policies is inspired by a psychological principle known as Luce’s

choice axiom (Luce, 1959; Herrnstein, 1961). According to the axiom, when faced with a choice

among alternatives, a decision maker will exhibit ‘matching behavior’, selecting options with proba-

bility proportional to their value. Matching behavior was originally studied in the context of learning

theory, where value is defined as the expected reward (Estes, 1957; Sutton & Barto, 1998). Thus if

two levers offer rewards in a ratio of 2:1, an individual that displays matching behavior will press the

more rewarding lever twice as often. Here, value is akin to memory strength and is defined by the

number of quanta dedicated to a mnemonic structure.
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Figure 29: Reproducing directed remembering by simulating a conditional maintenance policy. Both panels
show forgetting functions for each of three objects that were presented (purple, yellow, and red lines), aver-
aged over 10,000 trials. The dashed vertical line marks the onset of the cue. In the upper panel, the participant
uses the random policy, which gives equal priority to all three objects. In the lower panel, the participant uses
the all-j policy, giving full priority to yellow and none to purple or red. Before the cue, the participants be-
have identically. After the cue, the behavior diverges, with yellow faring better than the other two. Simulations
were run with parameters N = 64 and K = 3 for 5000 steps, matching the best-fit parameters from Chapter 1.
The cue appeared at time step 1500.
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In practice, it is common to consider a generalization of matching behavior in which a real-valued

parameter L determines the decision-maker’s sensitivity to the signal. In this so-called “softmax” gen-

eralization of matching behavior, the probability of selecting option a from the set of alternatives A is

given by

p(a) =
v(a)L∑

b∈A
v(b)L

,

where v(x) is the strength of the signal generated by x and where L determines the decision maker’s

sensitivity to the signal (Sutton & Barto, 1998; Vul, 2010). Other softmax generalizations of match-

ing behavior are possible, many of which, like the Fermi function and Boltzmann distribution, are

borrowed from the field of statistical physics and provide a formal link between selection in various

domains (Ayala & Campbell, 1974; Blume, 1993; Sutton & Barto, 1998; Barabási & Albert, 1999;

Pan, 2010; Traulsen et al., 2007).

Five values of L are particularly significant for the process of memory maintenance. When L = 0,

the process is unconditional (i.e., insensitive to the signal). This corresponds to the neutral process

developed in Chapter 2. When L = 1, the process gives preference to objects in proportion to

how strongly they are currently represented. When L → ∞, the winner takes all. In contrast, when

L = −1, the process gives preference to objects in proportion to how weakly they are currently repre-

sented, and in the limit L → −∞, the loser takes all.

The Luce family of maintenance policies can reproduce the effects of self-directed remembering,

observed in Exp. 2 (Fig. 30).

79



0
0.2
0.4
0.6
0.8

1

Time step

Pr
ob

ab
ilit

y 
of

 re
m

em
be

rin
g

0 1000 2000 3000 4000 5000
0

0.2
0.4
0.6
0.8

1 on
se

t o
f c

ue

Figure 30: Reproducing self-directed remembering by simulating conditional maintenance policies. Once
again, both panels show forgetting functions for each of three objects that were presented (purple, yellow, and
red lines), averaged over 10,000 trials. The dashed vertical line again marks the onset of the cue. In the upper
panel, the participant uses the random policy, which gives equal priority to all three objects. Here, in the lower
panel, the participant uses the Luce policy with L=–1, assigning priority scores in proportion to how weakly the
object is currently represented. Before the cue, the participants behave identically. After the cue, the behavior
diverges, with the Luce policy faring better. Simulations were run with parameters N = 64, K = 3, and L ∈ 0,−1
for 5000 steps. The cue appeared at time step 1500.
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3.3.7 Partially observable minds

The framework of a Markov decision process makes a strong commitment to the accessibility of the

memory state to the memory maintenance system: it assumes perfect, real-time, no-cost metamem-

ory. However, the experiment reported in Chapter 1 gives us reason to believe that metamemory

may be imperfect. In that experiment, participants were more likely to remember an object when it

was chosen as best-remembered on that trial (92%± 2) than when it was selected at random from

three objects (71%± 3), even though the objects and displays were identical across the two condi-

tions (Fig. 16). From these data we can estimate the efficiency of realtime metamemory. Specifi-

cally, if participants remembered a randomly cued object 71% of the time, then we can infer that the

chance of remembering at least one of them (i.e., not having forgotten all three) is 1 – (1–0.71)3 =

0.98. When asked to pick out the best-remembered object, an ideal metamemorizer (one who per-

forms optimally given the information that is available) would be able to retrieve an object 98% of the

time. Our participants’ inability to reach this level of performance suggests that at least some of them

have less than ideal metamemory.

By generalizing the mdp to a partially observable world, we can accommodate situations of imper-

fect or costly metamemory. A partially observable world is one in which the agent does not know ex-

actly what state it is in, making it impossible to carry out conditional policies that depend on the state

without further information or assumptions. Often the agent has some instrument (a “sensor”) for

measuring or sensing the state. In the case of memory maintenance, the sensor is metamemory. The

agent uses the sensor to update its beliefs about the state. Thus the pomdp extends the mdp through

the introduction of a sensor model, which describes the information about the state that is provided

by each observation, and a belief state, which is a probability distribution over the state space that

embodies the agent’s beliefs about the current state (Monahan, 1982; Kaelbling et al., 1996). One
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possible belief state, a Dirichlet distribution with concentration parameters (4, 4, 4), is visualized

here as a surface on the simplex (Fig. 31).

 

 
Supplementary FSupplementary FSupplementary FSupplementary Figure S2. Simulating uneven allocation policies.  igure S2. Simulating uneven allocation policies.  igure S2. Simulating uneven allocation policies.  igure S2. Simulating uneven allocation policies.  (a)(a)(a)(a)     A ternary plot 
that shows the noiseless uneven allocation policies used for simulations. At each 
point, the allocation to x1, x2, and x3 sums to 1. The corners correspond to the three 
policies for which one item is given all of the commodity. The center corresponds to 
a policy of even allocation across the items. Each filled circle corresponds to a fixed, 
uneven allocation policy that could produce at least as much variability in precision 
as we observed in our data. (b & c)(b & c)(b & c)(b & c). Noisy allocation distributions are formalized as 
a Dirichlet distribution over the space of allocation policies, centered on even 
allocation. The distribution in panel (b)(b)(b)(b) has lower noise levels (concentration 
parameters of 9, 9, and 9) than the one in panel (c)(c)(c)(c) (concentration parameters of 4, 
4, and 4). 
  

Figure 31: A Dirichlet distribution with concentration parameters 4, 4, and 4, representing one possible state
of metamemory beliefs about resource allocation. This corresponds to a situation where the memorizer be-
lieves that the commodity is fairly evenly spread among memories 1, 2, and 3. The belief state is one com-
ponent of metamemory, capturing what the memorizer believes about the current state of its memory. The
sensor model is another component, capturing the information gained by metamemory observations.

In a partially observable mind, inefficiencies of metamemory limit the efficacy of flexible mainte-

nance behaviors. This is because in a world where the future depends on the past, one who does not

even know the present cannot suitably plan for what is to come. We demonstrate this dependence

by defining a simple metamemory agent and then simulating its behavior with different levels of ef-

ficiency. Metamemory observations made by the agent come in the form of object labels sampled

with probability proportional to their strength (that is, the number of quanta assigned to them). This

defines the sensor model. The agent is initially unaware of the allocation of the commodity, repre-

sented by a belief state initially set to a Dirichlet distribution with concentration parameters 1, 1, and

1, which is equivalent to a uniform distribution over all possible allocations. At each time step, the

agent makesm observations. We assume that the metamemory system has no memory of its own and

thus considers only the observations made at the current time step (see below for a brief discussion of

optimal filtering, in which the metamemory system also considers past observations). The Dirichlet

distribution is convenient for describing states of uncertainty about multinomial data both because

the Dirichlet is the conjugate prior for multinomial data and because its parameters act as pseudo-

counts, such that the a posteriori beliefs can be computed simply by incrementing the pseudocounts

82



by the number of observations made of each type. To avoid the problems caused by sampling zero

quanta of a certain type, we use additive smoothing by adding one to all the counts. These counts are

used by the Luce policy, with exponent 1. The efficiency of metamemory can be varied by altering

the number of observations made at each time step. This formulation makes it possible to vary effi-

ciency between two extremes. At one extreme,m = 0 and the agent gains no information about the

state. At the other extreme, in the limitm → ∞, the agent has perfect information about the state.

Intermediate efficiencies lead to intermediate performance (Fig. 32).
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Figure 32: Inefficiencies of metamemory limit the efficiency of memory maintenance. On the left are forgetting
functions for a simulated agent whose memory is only partially observable. At each time step the agent draws
m quanta (with replacement) and observes their tags. Selection happens according to the procedure in the
main text. On the right, performance increases with the number of samples taken. Simulations were run with
settings N = 128, K = 12, and L = –1.

We have defined a simple agent that uses metamemory to control memory maintenance. More

sophisticated approaches use the theory of optimal filtering. Filtering is the problem of estimating the

current state of a time-varying system given noisy observations of its past and present (Anderson &

Moore, 2012). Kalman filters and particle filters are two popular solutions to the filtering problem

that take into account the system’s dynamics and the statistical structure of the problem (Kalman

et al., 1960; Van Der Merwe et al., 2000).
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3.4 Discussion

This chapter began with two experiments on directed remembering. In the first experiment, we found

that the efficiency of directed remembering depends on the memory load, with larger loads leading to

less efficient directed remembering. In the second experiment, we found that participants were able

to use metamemory to direct their maintenance behavior, which we call “self-directed remembering”.

We then extended the neutral model from Chapter 1 to describe flexible memory maintenance be-

haviors, including directed remembering and self-directed remembering. This was accomplished by

likening memory maintenance to a sequential decision problem in which, at each moment, the agent

decides which mental representations to prioritize. The strategy used by the agent to solve the prob-

lem of memory maintenance is defined by a policy. Different policies lead to different outcomes: the

all-i family of policies lead to a neutral process; the all-j family allows for directed remembering;

and the Luce family allows for self-directed remembering. Each policy was able to explain the pattern

of results seen in experiments. We then considered memory maintenance in a partially-observable

mind.

Accessibility

The theory of working memory has not traditionally included much of a role for the concept of acces-

sibility because working memories are thought to be actively maintained, such that a retrieval stage

seems unnecessary (Baddeley, 1992; Brady et al., 2013; Fougnie et al., 2014). However, there is a

growing body of evidence for a role of accessibility and retrieval in visual working memory (Fougnie

et al., 2014; Brady et al., 2013). For example, real-world objects can be stored in working memory

with various degrees of visual detail, and Brady et al. (2013) found that the lowest possible quality in
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working memory is similar to that found in long-term memory, suggestive of a common limit — a

threshold of accessibility. The present work proposes a similar threshold of accessibility, though one

that operates during maintenance, not retrieval. In Chapter 1 this threshold helped us to explain the

crossover effect in the forgetting functions of visual memory, and here it helps us to explain why the

efficiency of directed remembering depends on the load.

The maintenance problem

Sims et al. (2012) propose that the problem of visual working memory is that of transmitting visual

information from one point in time to another. In this conceptualization of the problem of working

memory, solutions take the form of encoders and decoders that maximize performance on a task.

Sims et al. found that formulating the problem of working memory in this way does an excellent job

of predicting behavioral performance and its dependence on the statistics of the visual input.

The present work views the problem of working memory differently because it takes seriously the

idea that maintenance is an active and controllable process. In this light, the problem of visual work-

ing memory is that of encoding visual information, maintaining it over a short duration, and then

later accessing it to perform a task well. The framework of the Markov decision problem makes it

possible to carefully specify the structure of the task (the environment and goals) and its possible

solutions.

Connections to other resource allocation tasks

Perhaps the biggest payoff that comes from connecting the problem of working memory maintenance

to existing frameworks in mature fields such as decision theory and reinforcement learning is the set

of new questions that it makes possible to ask.
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For example, having delineated the set of possible maintenance policies, it becomes sensible to ask

which policy is optimal. As mentioned earlier, a considerable body of work in the field of reinforce-

ment learning explores methods for finding the optimal policy given the constraints of a particular

task (Monahan, 1982; Puterman, 1994; Sutton & Barto, 1998; Kearns & Singh, 2002; Zilli & Has-

selmo, 2008; Todorov, 2009). In the context of working memory, for example, policies that preferen-

tially maintain strong memories result in fewer representations that each have greater strength; these

policies are thus best suited for tasks that reward remembering much information about a few items.

In contrast, policies that preferentially maintain weak memories result in a greater number of repre-

sentations that are each weak; these policies are thus best suited for tasks that reward remembering

a little about everything. Determining the optimal maintenance strategy for the reward structures

commonly found in studies of visual working memory is a ripe area for future research.

One might also ask where maintenance policies come from. Specifically, how are they learned?

Methods such as temporal difference learning have emerged as candidate learning mechanisms used

in the brain to learn policies that guide behavior, and it has become popular to relate this particular

class of learning algorithms to known reward circuitry in the brain (Kaelbling et al., 1996; Hollerman

& Schultz, 1998; O’Doherty et al., 2003; O’Doherty, 2004; Maia, 2009; Schultz, 2010; Dayan & Niv,

2008). Particularly relevant is the work of Todd et al. (2008), who discuss methods for learning to

use working memory by temporal difference methods. Specifically, they showed how temporal dif-

ference learning can be used to shape representations in the prefrontal cortex so that they are useful

for working memory Todd et al. (2008). Also relevant is the work of (O’Reilly & Frank, 2006), who

developed an “actor/critic” model of the neural substrates of working memory and cognitive control.

They showed that an active gating mechanism that controls the contents of working memory can be

learned through learning mechanisms from reinforcement learning (O’Reilly & Frank, 2006).
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Finally, it may be useful to consider other resource allocation tasks that are similar in structure to

that of memory maintenance — e.g., scheduling and queuing. Much of the original work on these

problems came from the field of operations research, which originated from military planners in

WWII and which today considers the optimal solutions to decision making and resource allocation

tasks in a variety of settings, often in the context of organizational behavior (Graff, 1953; Taha, 2007)

or electronic systems (Åström & Wittenmark, 2011; Silberschatz et al., 2013). Having made the link

to these related problems, it may be fruitful to consider known solutions as candidate psychologi-

cal mechanisms. For example, queuing theory is a set of tools for considering resource allocation

tasks that feature the continuous arrival of entities that require the resource (e.g., callers to a com-

pany’s customer support center) (Kleinrock, 1975). Most of the popular working memory tasks are

episodic, with information arriving all at once and then being discarded at the end of the trial. Our

visual experience is not always so episodic; rather, it is sometimes necessary to update the contents of

working memory with new information or redirecting maintenance in light of new goals (Sandberg

et al., 2000; Matthey et al., 2012). Looking towards queuing theory, for example, may provide insight

into this problem of maintenance in the face of continuously-arriving information.
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4
Conclusion

This dissertation has argued that the maintenance of visual memories is akin to breathing:

it is a dynamic process with a default behavior that explains much of its usual workings, but which can

be observed, overridden, and controlled.

Chapter 1 showed that the default behavior of maintenance is well described by an evolutionary

process operating over the units of a memory-supporting cognitive commodity, like attention. In the

chapter, we extended the classic depiction of the dynamics of visual memory maintenance to include

competitive interactions between memories, fluid reallocation of a memory-supporting commodity,
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and a stability threshold that determines the weakest memory that can still be maintained. The pro-

posed model, based on these principles, can be understood as an evolutionary process with memories

competing over a limited memory-supporting commodity. The model reproduced the time course of

visual working memory observed in a series of experiments. Notable features of this time course in-

cluded load-dependent stability and overreaching, in which the act of trying to remember more infor-

mation causes people to forget faster, and to remember less, respectively. Our results demonstrated

that evolutionary models provide quantitative insights into the mechanisms of memory maintenance.

Chapter 2 showed that memories can be observed through real-time metamemory, an inward-

looking process that tracks the status of a memory as it degrades over time. Confidence in our mem-

ories is influenced by many factors, including beliefs about the perceptibility or memorability of cer-

tain kinds of objects and events, as well as knowledge about our skill sets, habits, and experiences.

Notoriously, our knowledge and beliefs about memory can lead us astray, causing us to be overly con-

fident in eyewitness testimony or to overestimate the frequency of recent experiences. We designed

a task that strips away all these potentially misleading cues, requiring observers to make confidence

judgments by directly assessing the quality of their memory representations. We show that individ-

uals can monitor the status of a memory as it degrades over time. Our findings suggest that people

have access to information reflecting the existence and quality of their memories, and furthermore,

that they can use this information to guide their behavior.

Chapter 3 showed that the default maintenance behavior can be overridden and controlled by the

processes of directed forgetting and self-directed remembering, which redirect maintenance in ac-

cordance with the goals. We found that the efficiency of directed forgetting depends on the memory

load. This follows naturally from the proposed stability threshold. Specifically, when there are few

representations, directed forgetting is efficient, shifting maintenance across objects without much
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cost. However, when there are many representations, directed forgetting is inefficienct, such that

shifting maintenance to prioritize one object comes at a big cost: fewer remembered objects in total.

The chapter then combined the default behavior, metamemory, and directed forgetting into a formal

framework borrowed from the field of reinformement learning. We extended the neutral model from

Chapter 1 to describe flexible memory maintenance behaviors, including directed forgetting and self-

directed remembering. This was accomplished by likening memory maintenance to a sequential deci-

sion problem in which, at each moment, the agent decides which mental representations to prioritize.

The strategy used by the agent to solve the problem of memory maintenance is defined by a policy.

Different policies lead to different outcomes: the all-i family of policies lead to a neutral process;

the all-j family allows for directed forgetting; and the Luce family allows for self-directed remem-

bering. And the efficiency of metamemory limits the efficacy of conditional maintenance policies in a

partially observable mind.

The two dominant approaches to studying the processes that underly working memory — psy-

chophysics and cognitive neuroscience — conceive of the problem of memory maintenance differ-

ently. Psychophysics studies how performance on a task changes as the spatiotemporal properties of

the stimulus are adjusted (Fechner, 1860; Stevens, 1975). In this light, memory maintenance is de-

fined by properties of the stimulus that affect it. Cognitive neuroscience studies the neural substrates

of cognition and how those substrates together produce experience and behavior (Gazzaniga, 2004).

In this light, maintenance is defined by its neural mechanisms.

This dissertation combined the techniques of psychophysics with a third approach — the compu-

tational approach — which delineates three levels of analysis that are needed to explain any cognitive

phenomenon: the computational, the algorithmic, and the physical (Marr, 1982; Chater & Oaksford,

1998). Most relevant here are the computational and algorithmic levels, which describe the structure
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of the task at hand, the logic of possible solutions, and the rules by which those solutions are carried

out. Each chapter of the dissertation aimed at applying this kind of thinking to some aspect of our

ability to maintain visual memories. Working memory is a flexible system, capable of many behav-

iors. The aspiration here is that by posing the problem of working memory in this way — as that of

an agent who decides what to prioritize in a partially observable mind — it will become possible to

discover the correspondingly rich and varied solutions taken to solve the maintenance problem.
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A
Forgetting functions of visual memory

In the following derivations, we suppose that the participant is asked to remember a set of K things

(the memory load), stored as objects, features, or hierarchical bundles of features (hereafter, “mem-

ory structures” or just “structures”). We further suppose that visual memory is limited and imperfect,

such that only Y ≤ K of the structures are stored. The quantity Y is allowed to vary as a function of

the time t since the offset of the stimulus. Then, for each model we can define a forgetting function that

relates the expected number of stored structures to time. For each of the four models of visual mem-
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ory compared in the main text, we derive expressions for its forgetting function.

A.0 Model #1: Classic

The classic model of the time course of visual memory, still used in modern applications (Lu et al.,

2005; Kuhbandner et al., 2011; Hahn et al., 2011), emerged in the 1960s from research using the

partial report paradigm (Sperling, 1960). That work revealed the existence of iconic memory, a stor-

age system with a high capacity and whose contents is short-lived, typically fading within a second

(Sperling, 1960). Under the classic model, working memory and iconic memory are together re-

sponsible for behavioral performance. The contribution of working memory is at most its full capac-

ity β, which is unchanging over time. The contribution of iconic memory above and beyond that of

working memory is often called the “partial report superiority effect” and is at most all of the remain-

ing K − β things that were not stored in working memory. The partial report superiority effect has

been found to decline exponentially as a function of time, and so the forgetting function of the classic

model is given by

E[Y(t)] =


β+ (K− β)e

−t
τ if β ≤ K

K if β > K,

(A.1)

where τ is the mean lifetime of an item held in iconic memory.

A.1 Model #2: Pure death

The previous model assumed that working memory is stable over time. But working memory is

known to degrade (Zhang & Luck, 2009; Yang, 1999). For simplicity, we assume that degradation
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in working memory is a pure death process in which structures are lost independently over time and

independently of each other, each having a mean lifetime of τ2. First consider the case of β ≤ K,

where working memory is exhausted. In this case, the probability that a randomly chosen structure

is stored in working memory is β
K e

−t
τ2 . The probability that it is stored in iconic memory is e

−t
τ . Thus

the forgetting function, which tracks the expected number of objects held in at least one of the two

systems, is given by

E[Y(t)] = K− K
(
1− β

K
e−t/τ2

)(
1− e−t/τ

)
. (A.2)

In the case of β > K, where working memory has room to spare, the term β
K is replaced by unity

because every structure is guaranteed a place. In the limit τ2 → ∞, the pure death model reduces to

the classic model.

A.2 Model #3: Sudden death

In 2009, Zhang & Luck proposed a “sudden death” model where after a window of initial stability

lasting approximately four seconds, entire objects are lost over time, but the quality of those that sur-

vive is constant (Zhang & Luck, 2009). A reasonable way to formalize this model is to equip the pure

death process with an initial grace period that lasts until time tdeath. The forgetting function for this

sudden death model is then governed by the classic model when t < tdeath and by the pure death

model when t ≥ tdeath. Note that, because of the initial grace period, when used in the sudden death

model, the term t
τ2 in Eq. 2.2 must be replaced by t−tdeath

τ2 .
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A.3 Model #4: Evolutionary model

Here, we derive the forgetting function of the evolutionary model with the stability threshold set

to s = 1, i.e., the Moran process (Moran, 1958, 1962). For s ≥ 1, we determined the forgetting

functions numerically.

We considerN quanta, each of which is assigned to one of the K structures at any given time. We

suppose that the structures stored in these quanta undergo a process of neutral drift, modeled as a

continuous-time Moran or pairwise comparison process. It is convenient to scale time so that one

time unit corresponds toN “generations” of this process, so that the contents of each quantum is up-

dated once per unit time, on average.

Decay of founding lineages

When stimuli are first presented to a subject, each quantum is immediately assigned a single struc-

ture. We consider this to be the “founding generation” of structures stored in memory. At any subse-

quent time, the contents of each quantum will be a copy (or a copy-of-a-copy, etc.) of a member of

this founding generation. Over time, the lineages (copies and copies-of-copies, etc.) of this founding

generation may grow or disappear through random drift. Eventually only one lineage will remain.

We first ask how many lineages from the founding generation will survive to time t > 0. This ques-

tion can be addressed using results from population genetics. We represent the number of founding

lineages that persist at time t by the random variable X(t). The expectation of this random variable is

(Tavaré, 1984):

E[X(t)] = 1+
M∑
ℓ=2

(2ℓ− 1)
(M
ℓ

)(M+ℓ−1
ℓ

) e−(ℓ2)t.
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The forgetting function

We now consider the forgetting function—that is, the expected number of distinct structures that

survive in memory at a given time. We suppose that, at time t = 0, each quantum is assigned ran-

domly to one of K structures. We represent the the number of structures remaining at time t ≥ 0 by

the random variable Y(t). The expected number of structures remembered at time t can be written as

E[Y(t)] = 1+
N∑

ℓ=2

CN,K
ℓ e−(

ℓ
2)t, (A.3)

with the coefficients CN,K
ℓ given by

CN,K
ℓ = (−1)ℓ (2ℓ− 1)

(N
ℓ

)(N+ℓ−1
ℓ

) K− 1
K 2F1

(
ℓ+ 1, 2− ℓ, 2,

K− 1
K

)
. (A.4)

Above, 2F1 is the hypergeometric function. The derivation of the forgetting function is given in the

next two sections.

In the limitN → ∞ (that is, if memory is regarded as a continuous resource) the forgetting func-

tion converges to

E[Y(t)] = 1+
∞∑
ℓ=2

CK
ℓ e

−(ℓ2)t,

with

CK
ℓ = (−1)ℓ (2ℓ− 1)

K− 1
K 2F1

(
ℓ+ 1, 2− ℓ, 2,

K− 1
K

)
.
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Trinomial coefficients

Our derivation of the forgetting function Eq. 2.3 relies on identities involving trinomial coefficients.

For nonnegative integersM, i, jwith i+ j ≤ M, the corresponding trinomial coefficient is defined as

(
M

i j M− i− j

)
=

K!
i!j!(K− i− j)!

.

Trinomial coefficients arise as coefficients in the expansion of (x+ y+ z)M. In particular, we have

(−x+ y+ 1)M =
∑

i+j=M
i≥0,j≥0

(−1)i
(

M
i j M− i− j

)
xiyj.

From the above expansion, we can derive the following relations:

M−j∑
i=0

(−1)i
(

M
i j M− i− j

)
=

1
j!
∂j

∂yj
(−x+ y+ 1)M

∣∣∣∣
(x,y)=(1,0)

=

(
M
j

)
(−x+ y+ 1)M−j

∣∣∣
(x,y)=(1,0)

=


1 j = M

0 otherwise.
(A.5)
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M−j∑
i=0

(−1)ii
(

M
i j M− i− j

)
=

1
j!
∂

∂x
∂j

∂yj
(−x+ y+ z)M

∣∣∣∣
(x,y,z)=(1,0,1)

=

(
M
j

)
∂

∂x
(−x+ y+ z)M−j

∣∣∣∣
(x,y,z)=(1,1,0)

= −
(
M
j

)
(M− j)(−x+ y+ z)M−j−1

∣∣∣
(x,y,z)=(1,1,0)

=


−M j = M− 1

0 otherwise.
(A.6)

Combining the previous two identities yields a third:

M∑
k=j

(−1)k−jk
(

M
M− k k− j j

)
=

M−j∑
i=0

(−1)i(i+ j)
(

M
M− i− j i j

)

=

M−j∑
i=0

(−1)ii
(

M
i j M− i− j

)

+ j
M−j∑
i=0

(−1)i
(

M
i j M− i− j

)

=



−M j = M− 1

M j = M

0 otherwise.

(A.7)
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Derivation of the forgetting function

We now derive the forgetting function for the evolutionary model. First we suppose that n of theN

founding lineages remain after time t; that is, X(t) = n. Since neutral drift does not favor any struc-

ture over any other, we can regard these n lineages as being assigned randomly among the K struc-

tures. This situation thus reduces to the classical probability problem of randomly partitioning a set of

n elements into K or fewer subsets.

For k ≤ n, the probability that k of the K items are represented in these n lineages is

Pr[Y(t) = k|X(t) = n] =

(
K
k

)n

k

 k!

Kn . (A.8)

Above,

n

k

 denotes the (n, k)th Stirling number of the second kind—that is, the number of ways

to partition a set of n elements into k non-empty subsets. This Stirling number can be obtained by the

formula

n

k

 =
1
k!

k∑
j=0

(−1)k−j
(
k
j

)
jn. (A.9)

Combining these equations yields

Pr[Y(t) = k|X(t) = n] =
(
K
k

) k∑
j=0

(−1)k−j
(
k
j

)(
j
K

)n
,

or equivalently, upon rearranging,
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Pr[Y(t) = k|X(t) = n] =
k∑

j=0

(−1)k−j
(

K
K− k k− j j

)(
j
K

)n
. (A.10)

The trinomial coefficient arises via the relation

(
K
k

)(
k
j

)
=

(
K

K− k k− j j

)
.

Now we consider the overall expected number of items remembered at time t by summing Eq.

2.10 over values of nweighted by their probabilities:

E[Y(t)] =
K∑

k=1

k
k∑

j=0

(−1)k−j
(

K
K− k k− j j

) N∑
n=1

(
j
K

)n
Pr[X(t) = n]

=
K∑

k=1

k
k∑

j=0

(−1)k−j
(

K
K− k k− j j

)
G(j/K; t), (A.11)

Above,G(x; t) is the probability generating function of X(t):

G(x; t) =
N∑

n=1

xn Pr[X(t) = n].

We use a previously discovered (Tavaré, 1984) formula for this generating function:

G(x; t) = x+ x(1− x)
N∑

ℓ=2

(2ℓ− 1)(−1)ℓ+1
(N
ℓ

)(N+ℓ−1
ℓ

) 2F1(ℓ+ 1, 2− ℓ, 2, x) e−(
ℓ
2)t. (A.12)

Substituting in Eq. 2.11, we obtain
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E[Y(t)] =
K∑

k=1

k
k∑

j=0

(−1)k−j
(

K
K− k k− j j

)

×

[
j
K
+

j
K

(
1− j

K

) N∑
ℓ=2

(2ℓ− 1)(−1)ℓ+1
(N
ℓ

)(N+ℓ−1
ℓ

) 2F1(ℓ+ 1, 2− ℓ, 2, j/K) e−(
ℓ
2)t

]
(A.13)

Using identity 2.6, we can simplify the term that is linear in j/K:

K∑
k=1

k
k∑

j=0

j
K
(−1)k−j

(
K

K− k k− j j

)
= 1.

Eq. 2.13 therefore reduces to

E[Y(t)] = 1+
K∑

k=1

k
k∑

j=0

(−1)k−j
(

K
K− k k− j j

)

× j
K

(
1− j

K

) N∑
ℓ=2

(2ℓ− 1)(−1)ℓ+1
(N
ℓ

)(N+ℓ−1
ℓ

) 2F1(ℓ+ 1, 2− ℓ, 2, j/K) e−(
ℓ
2)t.

In summary, the expected number of items remembered can be written as

E[Y(t)] = 1+
M∑
ℓ=2

CN,K
ℓ e−(

ℓ
2)t,
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with

CN,K
ℓ = (−1)ℓ+1(2ℓ− 1)

(N
ℓ

)(N+ℓ−1
ℓ

)
×

K∑
k=1

k
k∑

j=0

(−1)k−j
(

K
K− k k− j j

)
j
K

(
1− j

K

)

× 2F1(ℓ+ 1, 2− ℓ, 2, j/K). (A.14)

To simplify this expression for CN,K
ℓ we reorder sums:

K∑
k=1

k
k∑

j=0

(−1)k−j
(

K
K− k k− j j

)
j
K

(
1− j

K

)
2F1(ℓ+ 1, 2− ℓ, 2, j/K)

=

K∑
j=0

j
K

(
1− j

K

)
2F1(ℓ+ 1, 2− ℓ, 2, j/K)

K∑
k=j

(−1)k−jk
(

K
K− k k− j j

)
. (A.15)

Simplifying the second (nested) sum according to identity Eq. 2.7, we obtain Eq. 2.4.
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B
Data analysis with theMemToolbox

B.1 Abstract

The MemToolbox is a collection of matlab functions for modeling visual working memory. In sup-

port of its goal to provide a full suite of data analysis tools, the toolbox includes implementations

of popular models of visual working memory, real and simulated data sets, Bayesian and maximum

likelihood estimation procedures for fitting models to data, visualizations of data and fit, validation

routines, model comparison metrics, and experiment scripts. The MemToolbox is released under the
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permissive bsd license and is available at memtoolbox.org.

B.2 Introduction

Working memory is a storage system that actively holds information in mind and allows for its ma-

nipulation, providing a workspace for thought (Baddeley, 1986). Its strikingly limited capacity has

inspired a slew of research aimed at characterizing those limits in terms of the spatiotemporal proper-

ties of the stimulus and the age, intelligence, tiredness, and mental health of the individual.

A handful of experimental paradigms are predominant in the study of working memory. These in-

clude the delayed match-to-sample task used in studies of animal cognition (Blough, 1959) and the

span tasks used in studies of verbal working memory (Daneman & Carpenter, 1980). Research on

visual working memory relies primarily on two tasks: partial report and change detection (Fig. 33).

In a partial report task, the participant is shown a set of letters, shapes, or colorful dots, and then after

a brief delay is asked to report the properties of one or a subset of the items (Sperling, 1960; Wilken

& Ma, 2004; Zhang & Luck, 2008). In a change detection task, the participant is shown a pair of dis-

plays, one after the other, and is asked a question that requires comparing them, such as whether they

match (Luck & Vogel, 1997; Phillips, 1974; Pashler, 1988).

Formal models have been proposed that link performance in change detection and partial report

tasks to the architecture and capacity of the working memory system. These include the item limit

model (Pashler, 1988), the slot model (Luck & Vogel, 1997; Cowan, 2001), the slots+averaging

model (Zhang & Luck, 2008), the slots+resources model (Awh et al., 2007), the continuous resource

model (Wilken & Ma, 2004), the resources+swaps model (Bays et al., 2009), the ensemble statis-

tics+items model (Brady & Alvarez, 2011), and the variable-precision model (van den Berg et al.,

2012; Fougnie et al., 2012). Each model specifies the structure of visual memory and the decision
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Figure 33: (a) A continuous partial report task. The observer sees the stimulus display, and then after a delay
is asked to report the exact color of a single item. (b) A change detection task. The observer sees the stimulus
display, then after a delay is asked to report whether the test display matches.

process used to perform the task.

Having been fit to the data, these models are used to make claims about the architecture and ca-

pacity of memory. For example, using an item limit model to fit data from a change detection task,

Luck & Vogel (1997) showed that observers can remember the same number of objects regardless

of whether they store one or two features per object (e.g., only color vs. both color and orientation),

and from this inferred that the storage format of visual working memory is integrated objects, not in-

dividual features. Using data from a continuous partial report task, Brady & Alvarez (2011) showed

that when items are presented in a group, memory for an individual item is biased towards the group

average, and from this inferred that working memory is hierarchical, representing both ensembles of

items and individual items.

B.3 The MemToolbox

We created the MemToolbox, a collection of matlab functions for modeling visual working mem-

ory. The toolbox provides everything needed to perform the analyses commonly used in studies of
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Figure 34: An example of a model’s fit to continuous partial report data. Most responses fall within a relatively
small range around the target item’s true value, but some response are far off. These data are fit using the
mixture model of Zhang & Luck (2008), which attributes the gap in performance to differences in the state of
memory for the target item: with probability g the observer remembers nothing about the item and guesses
randomly; with probability 1–g the observer has a noisy representation of the item, leading to responses cen-
tered at the true value and with a standard deviation sd that reflects the quality of the observer’s memory.

visual working memory, including model implementations, maximum likelihood routines, and data

validation checks, although it defaults to a Bayesian workflow that encourages a deeper look into the

data and the models’ fits. In the following sections, we highlight the toolbox’s core functionality and

describe the improvements it offers to the standard workflow. We begin by reviewing the standard

workflow and its implementation in the toolbox.

B.3.1 The standard workflow

The experimenter first picks a model. Then, to fit the model to experimental data using probabilis-

tic methods, a likelihood function is defined that describes the model’s predictions for each possible

setting of its parameters. (Formally, given a modelMwith free parameters θ, the model’s likelihood

function specifies a probability distribution P(D|θ) over possible datasetsD.) With the likelihood

function in hand, an estimator is used to pick the parameter settings that provide the best fit to the

data. A popular choice is the maximum likelihood estimator, which selects the parameter values that
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maximize the model’s likelihood function given the data (Dempster et al., 1977; Lagarias et al., 1998).

Typically, this procedure is performed separately for each participant and experimental condition,

resulting in parameter estimates that are then compared using traditional statistical tests (e.g., Zhang

& Luck, 2008).

The MemToolbox uses two matlab structures (“structs”) to organize the information needed

to analyze data using the standard workflow: one that describes the data to be fit, and another that

describes the model and its likelihood function.

Fitting a set of data with a model is then as simple as calling the built-in MLE() function. For ex-

ample, if data was obtained from a continuous color report task where an observer made errors of -89

degrees, 29 degrees, etc, a model could be fit using the following workflow:

>> model = StandardMixtureModel();
>> data.errors = [-89,29,-2,6,-16,65,43,-12,10,0,178,-42];
>> fit = MLE(data, model)

This will return the maximum likelihood parameters for this observer’s data, allowing for standard

analysis techniques to be used.

Thus, with little effort, the MemToolbox can be used to simplify (and speed-up) existing work-

flows by allowing for straightforward fitting of nearly all of the standard models used in the visual

working memory literature. In support of this goal, the toolbox includes descriptive models such as

the StandardMixtureModel (that of Zhang & Luck, 2008) and SwapModel of Bays et al. (2009),

as well as several explanatory models, such as VariablePrecisionModel (e.g., van den Berg et al.,

2012; Fougnie et al., 2012). For more information about a particular model m, type help m at the

matlab prompt. For example, to access the help file for StandardMixtureModel, run

help StandardMixtureModel. It is also possible to view the full code for a model by running

edit m. (In fact, this applies to any function in the toolbox.) For example, to view the code for the
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swap model, type edit SwapModel, which will show the model’s probability distribution function,

the parameters’ ranges, and the specification of priors for the model’s parameters.

The toolbox also includes a number of wrapper functions that extend existing models and make

them more robust. For example, the wrapper function WithBias()adds a bias term, WithLapses()

adds an inattention parameter, and Orientation() alters a model so that it uses a 180 deg error

space, appropriate for objects that are rotationally symmetric, e.g., line segments. Inattention param-

eters are particularly important because deciding whether to include such parameters has an inor-

dinate influence on parameter estimation and model selection (Rouder et al., 2008). Many of the

standard models in the toolbox (e.g., StandardMixtureModel) already include such inattention

parameters.

B.3.2 The Bayesian workflow

By default, instead of returning the maximum likelihood estimate, the toolbox uses a Bayesian work-

flow that constructs a full probability distribution over parameter values. This probability distribution

describes the reasonableness of each possible parameter setting after considering the observed data,

in light of prior beliefs. In doing so, it strongly encourages a thorough examination of model fit. The

Bayesian workflow is implemented as MemFit, the toolbox’s primary fitting function.

>> fit = MemFit(data, model)

Bayesian inference provides a rational rule for updating prior beliefs (“the prior”) based on ex-

perimental data. The prior, P(θ), conveys which parameter values are thought to be reasonable, and

specifying it can be as straightforward as setting upper and lower bounds (for example, bounding

the guess rate between 0 and 1). Analysts add value through judicious selection of priors that faith-

fully reflect their beliefs. Because a prior can have arbitrarily large impact on the resulting inference,

it is important both to carefully consider which distribution is appropriate, and, when communicat-
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ing results that depend on those inferences, to report exactly the choice that was made. For the pur-

poses of exploratory data analysis, it is common to use a noninformative or weakly informative prior

that spreads the probability thinly over a swath of plausible parameter values (e.g., the Jeffreys prior,

a class of noninformative priors that are invariant under reparameterization of the model; Jeffreys,

1946; Jaynes, 1968) to avoid an inordinate influence of the prior on inferences.

Once specified, beliefs are then updated (according to Bayes’ rule) to take into account the experi-

mental data. Bayes’ rule stipulates that after observing dataD, the posterior beliefs about the parame-

ters (“the posterior”) are given by

P(θ|D) ∝ P(D|θ) · P(θ),

which combines the likelihood of the data given the parameters with the prior probability of the pa-

rameters.

Estimating the full posterior distribution is harder than finding the maximum likelihood estimate.

For some models it is possible to derive closed-form expressions for the posterior distribution, but

for most models this is intractable and so sampling-based algorithms are used to approximate it. One

such algorithm, the Metropolis-Hastings variant of Markov Chain Monte Carlo (mcmc), is applica-

ble to a wide range of models and is thus the one used by the toolbox (Metropolis et al., 1953; Hast-

ings, 1970). The algorithm chooses an initial set of model parameters, and then, over many iterations,

proposes small moves to these parameter values, accepting or rejecting them based on how probable

the new parameter values are in both the prior and the likelihood function. In this way, it constructs

a random walk that visits parameter settings with frequency proportional to their probability under

the posterior. This allows the estimation of the full posterior of the model in a reasonable amount of

time, and is theoretically equivalent to the more straightforward (but much slower) technique of eval-

uating the model’s likelihood and prior at every possible setting of the parameters (implemented in
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the GridSearch function). For an introduction to mcmc, we recommend Andrieu et al. (2003). The

MemToolbox includes an implementation of mcmc that attempts, as best as possible, to automate

the process of sampling from the posterior of the models that are included in the toolbox.

With the posterior distribution in hand, there are a number of ways to analyze and visualize the

results. First, the maximum of the posterior distribution (themaximum a posteriori or map esti-

mate) can be used as a point-estimate that is analogous to the maximum likelihood estimate, differing

only in the map’s consideration of the prior (This estimate can be calculated directly using the map

function). However, visualizing the full posterior distribution also provides information about how

well the data constrain the parameter values and whether there are trade-offs between parameters

(Fig. 35).

Fig. 35 shows a posterior distribution for data analyzed with the standard mixture model of Zhang

& Luck (2008). The plots on the main diagonal are histograms of values for each parameter, the so-

called “marginals” of the posterior distribution; the plots on the off-diagonals reveal correlations

between parameters. Note that in the standard mixture model, there is a slight negative correlation

between the standard deviation parameter and the guess rate parameter: data can be seen as hav-

ing either a slightly higher guess rate and lower standard deviation, or a slightly lower guess rate and

higher standard deviation. Examining the full posterior reveals this tradeoff, which remains hidden

when using maximum likelihood fits. This is important when drawing conclusions that depend on

how these two parameters relate. For example, Anderson et al. (2011) found correlations between

a measure based on guess rate and another based on standard deviation, and used this to argue that

each observer has a fixed personal number of discrete memory slots. However, because the param-

eters trade off, such correlations are meaningful only if the estimates are derived from independent

sets of data; otherwise the correlations are inflated by the noise in estimating the parameters (Brady

et al., 2011a). Thus, understanding the full posterior distribution is critical to correctly estimating

parameters and their relationships to each other.
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Figure 35: An example of the full posterior of the standard mixture model of Zhang & Luck (2008), where g is
the guess rate and sd is the standard deviation of observers’ report for remembered items. On the diagonal are
plots that show the posterior for an individual parameter – e.g., the distribution for guess rate (g) is plotted in
the top left corner. We can see that the data make us quite confident that the guess rate is between 0.08 and
0.11. On the off-diagonals are the correlations between the parameters – for example, the top right axis shows
guess rate (y-axis) plotted against standard deviation (x-axis). Each row and each column corresponds to a
parameter, e.g., the x-axis for all the plots in the second column corresponds to standard deviation.

B.3.3 Posterior predictive checks

Another technique applied by the MemToolbox is the automatic use of posterior predictive checks.

Sometimes a whole class of models performs poorly, such that there are no parameter settings that

will produce a good fit. In this case, maximum likelihood and maximum a posteriori estimates are

misleading: they dutifully pick out the best, even if the best is still quite bad. A good practice then

is to check the quality of the fit, examining which aspects of the data it captures and which aspects it

misses (Gelman et al., 1996, 2004). This can be accomplished through a posterior predictive check,
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which simulates new data from the posterior fit of the model, and then compares the histograms of

the actual and simulated data (Fig. 36). MemFit performs posterior predictive checks by default.
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Figure 36: (a) Simulated data from the posterior of the model (green), with the actual data overlaid (black).
The mismatch between the two is symptomatic of a poor fit. (b) The difference between the simulated and
real data, bounded by 95% credible intervals. If at any spot the credible interval does not include zero, it is an
indication that the model does not accurately fit the data.

A model that can accurately fit the data in a posterior predictive check does not necessarily provide

a good fit. For example, the model may fit the averaged data but fail to fit observers’ data from indi-

vidual displays, perhaps because of reports of incorrect items (Bays et al., 2009) or because of the use

of grouping or ensemble statistics (Brady & Tenenbaum, 2013). In addition, a good fit does not nec-

essarily indicate a good model: an extremely flexible model that can mimic any data always provides

a good fit, but this provides no evidence in favor of that model (Roberts & Pashler, 2000). However,

models that systematically deviate in a posterior predictive check nearly always need improvement.
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B.3.4 Hierarchical modeling

Typically, the question of interest in working memory research is not about a single observer, but a

population: Do older individuals have reduced working memory capacity? Do people guess more of-

ten when there is more to remember? When aggregating results from multiple participants to answer

such questions, the standard technique is to separately fit a model to the data from each participant

(using, for example, maximum likelihood estimation) and to combine parameter estimates across

participants by taking their average or median. Differences between conditions are then examined

through t-tests or anovas. This approach to analyzing data from multiple participants allows gen-

eralization to the population as a whole, since participant variance is taken into account by treating

parameters as random effects (Daw, 2011). One flaw with this approach is that it entirely discards

information about the reliability of each participant’s parameter estimates. This is particularly prob-

lematic when there are differences in how well the data constrain the parameters of each participant

(e.g., because of differences in the number of completed trials), or when there are significant trade-

offs between parameters (as in the parameters of the standard model), in which case analyzing them

separately can be problematic (Brady et al., 2011a). For example, the standard deviation parameter

of the standard mixture model is considerably less constrained at high guess rates than at low guess

rates. Thus, even with the same number of trials, our estimate of the standard deviation will be more

reliable for participants with lower guess rates than those with higher guess rates.

A better technique, although one that is more computationally intensive, is to fit a single hierar-

chical model of all participants (e.g., Morey, 2011; Rouder et al., 2003; Rouder & Lu, 2005). This

treats each participant’s parameters as samples from a normally distributed population and uses the

data to infer the population mean and SD of each parameter. This technique automatically gives more

weight to participants whose data give more reliable parameters estimates and causes “shrinkage” of

each participant’s parameter estimates towards the population mean, sensibly avoiding extreme val-
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ues caused by noisy data. For example, using maximum likelihood estimates, participants with high

guess rates are sometimes estimated to have guess rates near zero but standard deviations of 3000 deg

(resulting in a nearly flat normal distribution). This problem is avoided by fitting participants in a

hierarchical model.

By default, when given multiple data sets, one per participant, MemFitwill separately fit the model

to each participant’s data. Hierarchical modeling is performed by passing an optional parameter, ‘Use-

Hierarchical’, to MemFit:

>> data1 = MemDataset(1);
>> data2 = MemDataset(2);
>> model = StandardMixtureModel();
>> fit = MemFit({data1,data2}, model, ’UseHierarchical’, true)

Fitting such models is computationally more difficult, and so you should ensure the estimation

procedure has correctly converged (e.g., using the PlotConvergence function provided by the tool-

box) before relying on the parameter estimates to make inferences.

B.3.5 Model comparison

Which model best describes the data? Answering this question requires considering both the resem-

blance between the model and the data and also the model’s flexibility. Flexible models can fit many

data sets, and so a good fit provides only weak evidence of a good match between model and data.

In contrast, a good fit between an inflexible model and the data provides stronger evidence of a good

match. To account for this, many approaches to model comparison penalize more flexible models;

these include the Akaike Information Criterion with correction for finite data (aicc; Akaike, 1974;

Burnham & Anderson, 2004), the Bayesian Information Criterion (bic; Schwarz, 1978), the De-

viance Information Criterion (dic; Spiegelhalter et al., 2002), and the Bayes factor (Kass & Raftery,

1995). It is also possible to perform cross-validation — fitting and testing separate data — to elim-
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inate the advantage of a more flexible model. Implementations of some of these model comparison

techniques are provided by the MemToolbox, and can be accessed by passing multiple models to the

MemFit function:

>> model1 = StandardMixtureModel();
>> model2 = SwapModel();
>> modelComparison = MemFit(data, {model1, model2})

This will output model comparison metrics and describe them, including which model is preferred by

each metric.

Despite the array of tools provided by the MemToolbox, we do not wish to give the impression

that model selection can be automated. Choosing between competing models is no easier or more

straightforward than choosing between competing scientific theories (Pitt & Myung, 2002). Selec-

tion criteria like aicc are simply tools for understanding model fits, and it is important to consider

their computational underpinnings when deciding which criterion to use — before performing the

analysis. For example, the criteria included in the toolbox are calibrated differently in terms of how

strongly they penalize complex models, with criteria such as aicc having an inconsistent calibration

that penalizes complex models less than criteria such as bic, which penalizes complex models in a

way that depends on their functional form, taking into account correlations between parameters.

DIC is the only method appropriate in a hierarchical setting.

In addition to choosing an appropriate model comparison metric, we recommend computing the

metric for each participant independently and looking at consistency across participants to make in-

ferences about the best fitting models. Importantly, by fitting independently for each participant, you

can take into account participant variance, and are thus able to generalize to the population as a whole

(for example, by using an anova over model likelihoods). By contrast, computing a single aicc or

bic value across all participants does not allow generalization to the population, as it ignores partici-

pant variance; one participant that is fit much better by a particular model can drive the entire aicc or
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bic value. This kind of fixed effects analysis can thus seriously overstate the true significance of results

(Stephan et al., 2010). As in the case of estimating parameters, this technique of estimating model

likelihoods for each participant and then performing an anova or t-test over these parameters is only

an approximation to the fully Bayesian hierarchical model that considers the evidence simultaneously

from each participant (Stephan et al., 2009); however, in the case of model comparison, the simpler

technique is likely sufficient for most visual working memory experiments.

To facilitate this kind of analysis, the MemToolbox performs model comparison on individual

participant data and MemFit calculates many of the relevant model comparison metrics, so that you

may choose the appropriate comparison for your theoretical claim.

B.4 Availability, contents, & help

The MemToolbox is available on the web at memtoolbox.org. To install the toolbox, place it some-

where sensible and then run the included Setup.m script, which will add it to matlab’s default path.

The distribution includes source code, demos, and a tutorial that reviews all of the toolbox’s function-

ality. It is released under a bsd license, allowing free use for research or teaching. The organization of

the toolbox’s folder structure is outlined in the file MemToolbox/Contents.m. Detailed descriptions

of each function (e.g., MCMC) can be found in the help sections contained in each file. To access the

help section for some function f from the matlab prompt, run help f.

B.5 Conclusion

We created the MemToolbox for modeling visual working memory. The toolbox provides everything

needed to perform the analyses routinely used in visual working memory, including model imple-

mentations, maximum likelihood routines, and data validation checks. In addition, it provides tools

that offer a deeper look into the data and the fit of the model to the data. This introduction gave a
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high-level overview of its approach and core features. To learn to use the toolbox, we recommend the

tutorial, available at memtoolbox.org.
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