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We propose and analyze a new approach based on quantum error correction (QEC) to improve
quantum metrology in the presence of noise. We identify the conditions under which QEC allows
one to improve the signal-to-noise ratio in quantum-limited measurements, and we demonstrate
that it enables, in certain situations, Heisenberg-limited sensitivity. We discuss specific applications
to nanoscale sensing using nitrogen-vacancy centers in diamond in which QEC can significantly
improve the measurement sensitivity and bandwidth under realistic experimental conditions.
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The precise measurement of physical quantities is of
great importance in science, with implications ranging
from the global positioning system (GPS), to nanoscale
sensing in biological systems [1], and tests of fundamen-
tal laws of physics [2, 3]. The theory of quantum metrol-
ogy [4, 5] provides an efficient framework for understand-
ing the fundamental limits of the achievable accuracy in
the determination of a parameter (e.g., a magnetic field
or frequency), given a certain amount of resources (e.g.,
number of available atoms or time). In recent years, the
exploration of these limits in the presence of realistic im-
perfections and noise have been actively pursued [6–10].
In a typical quantum measurement, the sensing qubits
(e.g., atoms or spins) repeatedly interrogate the param-
eter to be measured over a total time τ . For instance, a
Ramsey-type experiment involves a sequence of measure-
ment cycles of duration T . Since each Ramsey cycle in-
troduces measurement noise it is beneficial to extend the
duration of a single interrogation to its maximum value
T → τ . However, in the presence of qubit decoherence
of rate γ, the Ramsey time is inherently limited, as for
times T ≥ 1/γ the phase information acquired during the
interrogation is lost [6]. One of the most successful tech-
niques to counter the compromising effects of environ-
mental noise is dynamical decoupling (DD) [11, 12] which
has become a standard technique, e.g., in coherent solid
state physics to increase qubit lifetimes for quantum in-
formation processing [13]. Here, a series of control pulses
(or continuous wave control fields) effectively achieves a
cancellation of the coupling Hamiltonian between the sys-
tem (i.e., qubit) and its environment to a certain order,
thus effectively reducing the value of γ [11]. DD can also
enhance the sensitivity in quantum metrology [14]. Re-
cently, it has been successfully used to improve the signal-
to-noise ratio in magnetometry [1, 15–17], and temper-
ature measurement [18]. However, in order to achieve
sensitivity improvements, the pulse repetition rate of a
DD protocol (which has to match the frequency of the

measured signal) needs to be faster than the correlation
time of the environmental bath τc. Therefore, for envi-
ronments with fast internal dynamics DD is not feasible.

In this Letter, we propose a complementary approach
that employs quantum error correction (QEC) [19–21] to
enhance the qubit coherence for metrology. In contrast
to DD, the QEC operations have to be implemented on
timescales of the error rate γ. The effectiveness of our ap-
proach is therefore independent of the correlation time of
the bath, and it is capable of correcting noise even in the
limit of Markovian environments (τc → 0). Our proto-
col can be applied to improve metrology with individual
qubits. The most direct application is to nanoscale mea-
surements of magnetic and electric fields using nitrogen
vacancy (NV) centers in diamond (relevant, e.g., for stud-
ies of neural activity to magnetic imaging of biomolecules
and exotic materials). We show that in such measure-
ments significant improvements in sensitivity and detec-
tor bandwidth can be obtained. Our approach can be
understood as a sequential feedback protocol. When ap-
plied to ensembles of N qubits, it can yield, in certain sit-
uations, Heisenberg-limited scaling, thus surpassing the
recently developed sensitivity bounds in the presence of
noise [8–10].

QEC is based on the fact that any kind of noise, dis-
crete or continuous, can be represented in Kraus decom-
position by a discrete set of error operation elements
{E0, . . . Ew}. It is then possible – by the use of re-
dundant degrees of freedom (provided, e.g., by ancilla
qubits) – to encode the logical information in a subspace
of the Hilbert space (the so called quantum code C) such
that each of the errors Ei maps the code to an respec-
tive orthogonal and undeformed subspace Ei, allowing to
efficiently detect and correct whenever an error has oc-
curred. The challenge in QEC for metrology is to devise
a code which is capable to reliably identify and correct er-
rors while, at the same time, not interfering with the sig-
nal. Consider a state that evolves within the code space
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C under the action of the Hamiltonian H generating the
signal we aim to measure: e−iHt |Ψ〉 =

∣∣Ψφ(t)

〉
∈ C for

|Ψ〉 ∈ C (φ(t) denotes a parametrization of the state evo-
lution, e.g., by the phase accumulated in a Ramsey-type
experiment). If an error Ei occurs the state is mapped
to Ei

∣∣Ψφ(t)

〉
=
∣∣ηφ(t)

〉
∈ Ei. In the simplest case, the

spaces Ei and C are orthogonal, and we are able to re-
liably detect this error by measurement of the projector
on Ei (the so-called syndrome operator). Evidently, this
is not always possible, e.g., in the case where the gener-
ator of the signal is proportional to the error operation
element H ∝ Ei. Any conceivable QEC code will also
”correct” the signal, and compromise the sensitivity of
the detecting state. In what follows, we derive a general
set of conditions under which QEC can be employed to
improve metrology.

General Formalism. We consider a generic scenario in
quantum metrology. Let us assume we have N detector
qubits to sense a parameter ω, e.g., a magnetic or elec-
tric field. Interrogating the parameter, the qubits evolve
coherently according to the Hamiltonian

Hs =
ω

2
G, (1)

where G represents the generator of the signal which, in
general, can be a sum of single- or multi-particle oper-
ators. During the evolution, the qubits are subject to
some arbitrary form of noise which is described by the
quantum operation [21]

E(ρ) =
∑

k

EkρE
†
k. (2)

If we further denote the completely positive map corre-
sponding to the coherent evolution of Eq. (1) as Mρ =
e−iHtρeiHt, the goal of QEC for metrology is to design a
recovery operation R, such that

(R ◦ E ◦M)(ρ) ∝Mρ, (3)

for all states within a certain quantum code ρ ∈ C ≤ H,
where H denotes the Hilbert space. Note, that Eq. (3)
has to be understood in the short-time limit where
E ◦ M ≈ M ◦ E , i.e., recovery operations have to be
applied on timescales short compared to the noise rate
γ. Defining P as the projector on the code space C, the
recovery operation R of Eq. (3) exists iff the two condi-
tions

1. [G, P ] = 0,

2. PE†iEjP = Ai,jP ,

are fulfilled, with A = (Ai,j) being a hermitian ma-
trix. Condition (1) represents the requirement that the
code C is an invariant subspace of the generator G, and
ensures that if we prepare a code state and no error
occurs, the evolution is restricted to the code space:

M(ρ) ∈ C, ∀ρ ∈ C. Condition (2) guarantees that the
error operation elements Ei map the code space onto or-
thogonal and undeformed subspaces, and in a construc-
tive proof [21] one can show that conditions (1) & (2)
guarantee the existence of the recovery operation defined
in Eq. (3) which is able to correct the errors Ei, without
disturbing the signal.

However, these conditions alone allow also for solu-
tions, in which the generator G acts as the identity on
the code. Obviously, such a code is useless for metrology,
since the action of the Hamiltonian yields a global phase
on the code states. In order to exclude these trivial so-
lutions we further require that the maximum quantum
Fisher information [22] within the code space must be
larger than zero

3. ξ ≡ max
|Ψ〉∈C

〈
∆G2

〉
Ψ
> 0,

where
〈
∆G2

〉
Ψ

= 〈Ψ| G2 |Ψ〉 − 〈Ψ| G |Ψ〉2. Since the
achievable precision in the measurement of ω is δω ∝
1/
√
ξ [5], ξ also serves as a figure of merit which quanti-

fies how useful a particular code C is for metrology.
Example. To illustrate the general working principle,

consider the following model system of a single qubit de-
tector subject to phase-flip noise in z direction (pure de-
phasing) sensing a signal in x direction described by the
Hamiltonian

Hs =
ω

2
X1, (4)

where X1 is the x Pauli operator acting on the detector
spin (Z1 and Y1, respectively, will denote the remaining
Pauli matrices below). The noise is described by the op-
eration elements E0 =

√
1− p1, E1 =

√
pZ1, where p

is the error probability. Using standard Ramsey spec-
troscopy, the qubit interrogates the parameter for the
Ramsey time T , and after n repetitions we can deter-
mine the value of ω with accuracy [23]

δω ≈ 1

T
√
n

=
1√
Tτ

, (5)

where we defined the total measurement time τ = nT .
Due to the presence of noise, the Ramsey time is limited
by the dephasing rate T ≤ 1/γ (⇔ p = γT ≤ 1), resulting
in the suboptimal measurement accuracy

δω ≤
√
γ

τ
. (6)

Let us now assume we additionally have a long-lived
and ”blind” ancilla at our disposal which neither inter-
acts with the parameter nor is subject to noise. By defin-
ing the simple code spanned by the two states |1〉 ≡ |++〉
and |0〉 ≡ |−−〉 (where ± in the first (second) slot
represents X eigenstates of the single detector (ancilla)
qubit), one readily checks that, [Hs, P ] = 0, ξ = 2, and
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T
| |

α α α α
| | | | . . . | |

|−〉 H • φ1

R
φ2

R
φ3

R
. . . φr

R
• D

|−〉 . . . |−〉

Figure 1: Circuit model of the error correction for the model described by Eq. (4). The code state can be prepared by application
of a Hadamard (denoted by H) and CNOT gate. After each segment of free evolution of duration α = T/r the QEC operation
R is applied. After the final decoding and measurement (D) the effective error rate has been reduced by a factor of the number
of QEC steps r.

A = diag(1−p, p), i.e. the requirements for QEC are met.
To perform the measurement, we initialize the system in
the state |Ψ〉 = (|++〉+ |−−〉)/

√
2 ∈ C. Under the action

of the Hamiltonian the state accumulates a phase φ = ωt:
|Ψ(t)〉 ∝ (|++〉+ e−iφ |−−〉)/

√
2. If a Z error occurs the

state is mapped to |Ψ(t)〉 ∝ (|−+〉+e−iφ |+−〉)/
√

2, such
that the subsequent evolution reduces the phase, rather
than increasing it, resulting in a randomized signal for
T ≥ γ−1

To implement QEC, we divide the Ramsey time T into
r intervals of equal duration α = T/r, and perform a
QEC step R after each segment (R is assumed to be in-
stantaneous on timescales of the evolution), as illustrated
in Fig. 1. The QEC operation R consists of two steps:
[24]:

1. Measuring the syndrome operator X1X2 (with X2

acting on the ancilla spin).

2. For outcome −1: Application of an X1 gate.
For outcome +1: No action is required.

Although single errors within a segment can be cor-
rected with the operation R (assuming perfect gates),
they introduce a small phase uncertainty, due to the
fact that the exact time of the error within the inter-
val α is unknown. Despite this small residual uncer-
tainty, we demonstrate in [25] that by performing r QEC
steps we can extend the Ramsey time linearly to a value
T → rγ−1, assuming the QEC operation R is imple-
mented on a timescale short compared to the dephasing
time γ−1. Consequently, after r ≈ γτ−1 repetitions we
can extend the interrogation time to its maximum value
T → τ , and achieve the best sensitivity allowed by quan-
tum mechanics

δω ≈ 1/τ. (7)

This result is confirmed by numerical simulations dis-
played in Fig. 2. Even for relatively low repetition rates
of the recovery operations, αγ = 1, the linear, noise-free
scaling is recovered. For imperfect recovery operations
(failing with probability perror = 10−3), and residual par-
allel noise components (γ‖ = 10−3γ), a significant con-
stant improvement is found.

Quantum metrology in the presence of perpendicular
noise as described by Eq. (4) has been investigated in
[10] for the case of multi-particle measurements. Eval-
uating the general precision bounds derived in [8, 9]
yields an optimal asymptotic scaling of the sensitivity
δω ∝ 1/(N5/6

√
τ). While this result represents a scaling

better than the standard quantum limit (i.e., ∝ 1/
√
N),

it can further be improved by allowing for sequential feed-
back protocols, as represented by the QEC-based method
we now suggest. Being provided withN detector spins we
define the code |1〉 ≡ |+〉⊗N and |0〉 ≡ |−〉⊗N (note that
here no ancilla is needed). Assuming independent Z noise
acting on the individual detector spins, the error opera-
tion elements are given as E0 =

√
1−Np1, and Ei = pZi

(i=1. . . N), where we neglect operation elements of order
O(p2) or higher. Again, one readily checks that all re-
quirements for QEC are fulfilled with ξ = (2N)2, indi-
cating the potential for Heisenberg-limited spectroscopy.
We prepare the system in a Greenberger-Horne-Zeilinger
(GHZ) state |Ψ〉 = (|+〉⊗N + |−〉⊗N )/

√
2 ∈ C, which

accumulates the phase Φ N times faster than uncorre-
lated qubits. In this situation, a single error Zi can be
detected by measuring the syndrome operators Xi−1Xi

and XiXi+1, and corrected by an appropriate π rota-
tion. A single QEC operation R consequently involves
N−1 syndrome measurements of the operators XiXi+1
(i=1. . . N-1). As above, repetitive application of R al-
lows to extend the Ramsey time to the maximum value
T → τ , achieving, in principle, the Heisenberg limit of
metrology [5] δω ≈ 1/(Nτ) with an optimal scaling in
both resources time τ and particle number N [26].

These considerations demonstrate that under certain
conditions QEC (and possibly other feedback protocols)
provide a way to improve the sensitivity bounds derived
in [8–10]. We note that this result does not contradict
[7], where it was demonstrated that feedback strategies
cannot improve sensitivity in phase estimation if the as-
sociated channel is full rank. In our protocol the QEC
operation is employed explicitly before the channel asso-
ciated to the free system evolution under the particular
noise model we consider becomes full rank, i.e. in the
short-time limit.

Applications. The feasibility of quantum QEC has re-
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Figure 2: Estimation error δω for the model of transversal
noise (see text), normalized by the total measurement time
τ (for sufficiently large τ). In the standard approach (dash-
dotted) the free evolution time has an optimal value T ≈ γ−1,
limiting the achievable sensitivity. Ideally, QEC (solid) can
restore the noise-free scaling (dashed) with the interrogation

time (∝ 1/
√
T ) even for relatively small QEC repetition rates

1/α = γ. The dotted lines show the achievable sensitivity in
the presence of a small parallel noise component γ‖ = 10−3γ,

and a probability perror = 10−3 that the QEC operation fails.

cently been demonstrated experimentally in various dif-
ferent physical systems, such as trapped ions [27], su-
perconducting qubits [28], and nitrogen-vacancy (NV)
centers [29, 30]. In the following, we consider an
example from solid state nano-sensing using nitrogen-
vacancy (NV) defect centers in diamond in which our ap-
proach can be applied under realistic experimental con-
ditions. Recent work [31] has suggested and experimen-
tally demonstrated the use of NV centers for sensing of
electric fields with high sensitivity and spatial resolution,
e.g., for the biological imaging of neural activity [32–36].
NV centers are optically addressable diamond lattice de-
fects with a stable paramagnetic ground state of spin
S = 1 [37]. In zero magnetic field, the spin state |0〉
is separated from the degenerate states |1〉 and |−1〉 by
a splitting of ω0 ∼ 3 GHz. Electric fields perpendicu-
lar to the NV symmetry axis lift the remaining degen-
eracy by coupling the states |1〉 and |−1〉 at a strength
of d⊥ = 17Hz cm V−1. Identifying |1〉 and |−1〉 as the
detector qubit states (X1 = | − 1〉〈1| + |1〉〈−1|), this en-
ables the measurement of a DC or AC electric field using
standard Ramsey spectroscopy. In the case of AC mea-
surements, a constant magnetic field has to be applied
to bring the |1〉 ↔ |−1〉 transition in resonance with the
electric field frequency. Due to the large zero-field split-
ting, x and y magnetic noise is highly suppressed [by a
factor (ω0τc)

2], and the dominant noise contribution lim-
iting the sensitivity is provided by magnetic field fluctua-
tions in z direction, accounting for pure dephasing of the

qubit states. Furthermore, generically, the NV electron
spin is hyperfine-coupled to the nuclear spin of the con-
stituting nitrogen atom (whose coherence times are well
beyond beyond those of the NV center [13]), enabling
coherent two-qubit operations [38]. In particular, the
longevity of the coupled nuclear spin has recently been
used to successfully implement a full QEC procedure in
two proof-of-principle experiments [29, 30].

For the simple QEC code we consider, the QEC op-
eration R using the 15N nuclear spin as the ancilla can
be done on the time scale of a few microseconds, with-
out performing a full measurement and feedback loop,
as described in [25]. This, in principle, allows extend-
ing the Ramsey time to the NV center population relax-
ation time T ≤ T1. Specifically, let us consider the case
of DC or low frequency field sensing, relevant, e.g., in
the biological imaging of neural activity [32–34]. In this
case, DD cannot be used to improve the spin coherence
time, and, generically, the interrogation time is limited by
T ∗2 ≈ 1−100µs. Since depending on the operational con-
ditions T1 ranges from 10ms up to 1s, our QED approach
could potentially improve the sensitivity by a factor of√
T1/T ∗2 = 10− 103. In the case of AC metrology, stan-

dard sensing experiments that use DD techniques such
as Hahn echo or CPMG can achieve a suppression of the
noise by a factor (∆t/τc)

2 [11], where ∆t denotes the
duration of a single decoupling sequence. Under typical
experimental conditions this results in an effective coher-
ence time of the order of 10µs − 1ms � T1 (for shallow
NV centers). In such experiments [31], QEC can still
improve sensitivity by a factor of 3 to 300, reaching val-
ues of the order of 1− 10V cm−1 Hz−1/2 for a single NV
center.

A second application of the QEC protocol involves AC
magnetometry with NV centers. Alternatively to the
conventional approach employing decoupling or double
resonance techniques [39], we consider a scheme in which
we tune the transition frequency between the |0〉 and |1〉
sublevels of the NV center ground state into resonance
with the target AC field by applying an external mag-
netic field. As before, the use of a simple QEC protocol
enhances the qubit coherence ideally to a value ∼ T1. As
shown in [25], similar to the above case, this approach
can improve the sensitivity by a factor of 10 to 103,
and allows to expand the operational frequency range to
several GHz. For applications requiring the use of dia-
mond nano-crystals the improvement could, in principle,
be markedly higher due to the lower initial spin coherence
times. The above considerations include the possibility
of bulk magnetic and electric sensing with a macroscopic
number of uncorrelated NV center spin detectors in a
sample, since the QEC operation does not require indi-
vidual addressing or measurement of different detector
spins.

In summary, we have presented a QEC-based approach
to enhance the sensing accuracy in quantum metrology
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in the presence of noise. We demonstrated that our tech-
nique can improve the sensitivity of nanoscale magnetic
and electric field sensors under current experimental con-
ditions. Identifying further relevant physical situations
in which QEC can be employed to improve sensing –
possibly by using more involved codes based on multi-
ple qubits or multilevel systems – remains an interest-
ing task. In particular, the combination of the comple-
mentary techniques of QEC and DD in sensing protocols
appears to be a promising path with potential applica-
tions in a large variety of fields [1, 14, 15, 39]. From a
theoretical perspective our approach demonstrates that
sequential feedback protocols can improve the sensitivity
bounds developed in [8–10]. While the conditions we de-
rived for perfect noise cancellation with QEC are restric-
tive, and applicable only to specific models, it remains an
interesting questions if more general feedback protocols
can be applied to more generic scenarios possibly at the
cost of imperfect noise suppression.
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sions. This work was supported by NSF, CUA, HQOC,
ITAMP, the Defense Advanced Research Projects
Agency (QuASAR program), and NDSEG (IL).

Supplementary Information

A: Error analysis

In this section we provide a full quantum mechanical
derivation of the achievable measurement accuracy us-
ing QEC in the model described by Eq. (4) of the main
text. For a given number of QEC steps r we demand
that pr ≡ αγ � 1, i.e. the probability that two errors
occur during the free evolution time is negligible [of order
O(p2)]. Under this condition, and the assumption of per-
fect QEC gates, the QEC operation can reliably correct
for errors after each segment α = T/r. Note, that the
above condition is by a factor r less stringent than the
naive condition without QEC Tγ � 1, and enables the
extension of the interrogation time by the same factor.
Nevertheless, errors introduce a small residual phase un-
certainty, due to the fact that the exact time of the error
within the interval α is unknown. While in the absence
of an error, the state picks up a phase φ0 = ωα, this
phase is reduced to a value φ(t) = φ0 − 2ω(α− t), where
t ∈ (0, α] denotes the time at which the error has oc-
curred. The probability density of errors occurring in k
segments at times (t1, t2, . . . , tk), ti ∈ [0, α] is given by a
binomial distribution

Pr(k) =

(
r

k

)
(pr/α)k(1− pr)r−k. (8)

For such an event, the total phase picked up by the state
is

Φk(t1, t2, . . . , tk) = Φ0 −
k∑

i

2ω(α− ti), (9)

where we defined Φ0 = rφ0 = ωT . Consequently, the
probability that a given phase Φ has accumulated after
the interrogation time T is given by the distribution

ξ(Φ) =

r∑

k=0

Pr(k)

∫ α

0

. . .

∫ α

0

dt′1 . . . dt
′
kδ(Φk − Φ), (10)

with δ(x) denoting the Dirac delta function. On average
the state picks up the phase

〈Φ〉 =

∫
dΦξ(Φ)Φ

=

r∑

k=0

Pr(k)

∫ α

0

. . .

∫ α

0

dt′1 . . . dt
′
kΦk(t1, . . . , tk)

=

r∑

k=0

Pr(k)(αkΦ0 − αk+1kω)

=Φ0 − rprωα = (1− pr)Φ0. (11)

This illustrated that instead of the actual frequency ω,
the presented measurement protocol rather assess the
slightly modified parameter (1−pr)ω. This however does
not present a limitation but merely requires an initial cal-
ibration of the device prior to the actual measurement.

In an analogous but more involved calculation on fur-
ther finds

〈Φ2〉 =

[
(1− pr)2 +

1

r
(
3

4
pr − p2

r)

]
Φ2

0 ≡ f(pr)
2Φ2

0, (12)

where f(pr) ≈ 1, for pr � 1.

One then readily shows that the state of the detector
qubit after a final disentangling operation subsequent to
the last QEC step (see Fig. 1 of the main text) is given
as

ρΦ0
=

∫ ∞

−∞
dΦξ(Φ)|Φ〉〈Φ|, (13)

where

|Φ〉 =
(
e−iΦ |↓〉+ eiΦ |↑〉

)
/
√

2 (14)

=cos(Φ) |+〉+ sin(Φ) |−〉 , (15)

with the X basis states |±〉 = (|↑〉 ± |↓〉)/
√

2. Note, that
the dependence of the state on the phase Φ0 that we want
to measure is hidden in the distribution ξ(Φ).

A subsequent measurement in the X basis yields the
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outcome ”1” with probability

P+(Φ0) =Tr (|+〉〈+|ρΦ0) (16)

=

∫
dΦξ(Φ)cos2Φ (17)

≈1

2

(
1 + cos

[
2
√
〈Φ2〉

])
(18)

=
1

2
(1 + cos [2f(pr)Φ0]) , (19)

where in the last step we used the self-consistent assump-
tion

√
〈Φ2〉 � 1.

If we repeat this procedure n times, this enables an
estimation of the phase Φ0 with uncertainty

δΦ =

√
P+(Φ0)[1− P+(Φ0)]

|∂P+(Φ0)/∂Φ0|
1√
n

(20)

=
1

f(pr)
√
n
≈ 1√

n
. (21)

At the same time, since we only have to ensure that
pr = Tγ/r � 1, we can extend the interrogation time
by a factor of r as compared to the naive approach
T → rγ−1. By this we achieve a measurement accuracy

δω ≈ δΦ/T ≈
√

γ

rτ
, (22)

√
r times better than the standard Ramsey protocol

without QEC. Consequently, using r = τ/γ steps, we
achieve the best accuracy allowed by quantum mechan-
ics δω ≈ 1/τ . Hereby the QEC operation is required to
be fast on the timescale set by α� 1/γ.

B: Spontaneous emission and parallel dephasing

In the main text we have demonstrated that if the sig-
nal generator and the noise operation elements fulfill con-
ditions (1) − (3), then QEC can successfully be applied
to eliminate the effects of noise. Of course, for a given
signal Hamiltonian there are certain types of noise that
cannot be corrected, and the abovementioned conditions
provide a useful tool to identify the latter.

As an example, consider the case of a single qubit sub-
ject to spontaneous decay in the z basis, accumulating a
signal according to the Hamiltonian H = ω

2Z (an anal-
ogous argument can be given for an orthogonal signal
H ∝ X). The error operation elements of spontaneous
emission (with probability p) read

E0 =

(
1 0
0
√

1− p

)
;E1 =

(
0
√
p

0 0

)
, (23)

such that one readily shows G = Z ∝ E†0E0 + const.
Since according to condition (1) [G, P ] = 0 it directly

follows that PE†0E0P = E†0E0P , violating condition (2),

unless P is an projector on a Z eigenstate, in which case,
however, ξ = 0. Therefore any QEC code successfully
correcting for independent spontaneous decay is useless
for metrology. The same argumentation applies for pure
dephasing noise in parallel direction of the signal (H =
ω
2Z, and E1 ∝ Z).

It should therefore be emphasized that the predicted
noise-free scaling in the models considered in the main
text strictly holds only in the regime where the inevitable
uncorrectable noise components are negligible. Consider
again the example of electric field sensing with NV cen-
ters. In a standard Ramsey-type experiment without
QEC the interrogation time is limited by the perpendic-
ular magnetic noise giving rise to the electron coherence
time T ∗2 . Therefore, for measurement times τ & T ∗2 the
linear scaling of the sensitivity δω ∼ 1/τ breaks down,
and the suboptimal scaling δω ∼ 1/

√
T ∗2 τ is found (red

line in Fig. 3). We have seen that this perpendicular noise
component (T ∗2 ) can be corrected in a simple two qubit
code allowing, in principle, to extend the interrogation
time T → τ as in a noise free situation. However, the
population relaxation arising from the vibrational cou-
pling to the diamond lattice, give rises to the NV centers
spin relaxation time T1. In a similar but slightly more
complicated calculation than the one above one can show
that such spin-flip errors are not correctable as they con-
tain a parallel noise component. Therefore, for measure-
ment times τ & T1, the interrogation time will be limited
by T ≤ T1 (blue line in Fig. 3). In the asymptotic limit
τ →∞, this weaker restriction to the interrogation time
yields a constant (and potentially large) sensitivity im-
provement by a factor

√
T1/T ∗2 . Note that if we have

N independent copies of the sensing qubit, and we per-
form QEC on each system individually, the sensitivity is
improved by a factor

√
N .

Let us now consider the multi-qubit QEC code de-
scribed in the main text. There we demonstrated that
provided with N detector spins one can define the code
|1〉 ≡ |+〉⊗N and |0〉 ≡ |−〉⊗N to achieve Heisenberg
scaling of the sensitivity, δω ≈ 1/(Nτ). Despite the fact
that the parallel noise component (in the form of T1 pro-
cesses) leads to a breakdown of the Heisenberg scaling for
τ & T1/N (reflected in the merging of the black solid and
dashed lines for large τ in Fig. 3), for short measurement
times τ the sensitivity improvements can be markedly
higher (∝

√
N) than for uncorrelated probes.

C: QEC operation R for NV centers

In this section, we discuss how the QEC operation R
can be implemented for the example of NV center field
sensing, using the 15N nuclear spin as an ancilla. In
the first step, using standard techniques [40], we prepare
state (|0 ↓〉 + |1 ↑〉)/

√
2, where |0〉 and |1〉 denote the

electron spin states, and | ↓〉 and | ↑〉 denote the projec-
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Figure 3: Estimation error δω (normalized by the total mea-
surement time τ , and the number of probe copies N) in elec-
tric field sensing with NV centers (see text) for T1 = 103T ∗2 .
Independent probes in a standard Ramsey experiment with-
out QEC (red line) are limited by the perpendicular magnetic
noise giving rise to the electron coherence time T ∗2 . If QEC
if performed on each of the probes individually (blue line)
the noise-free scaling can be extended up to the point where
parallel noise components (in the form of T1 relaxation pro-
cesses) become relevant (τ & T1), yielding a sizable constant
improvement in the asymptotic limit. Using the multi-qubit
code employing Greenberger-Horne-Zeilinger (GHZ) states as
described in the main text (black lines), markedly larger im-
provement can be found in the limit of short measurement
times. The parallel noise component leads to a breakdown of
the Heisenberg scaling for τ & T1/N .

tion of the nuclear spin on the NV axis. Applying a π/2
pulse to both the electron and the nuclear spins prepares
the code state

|Ψ〉 = (|+ +〉+ | − −〉)/
√

2, (24)

which undergoes evolution, as described in the main text.
The QEC procedure R is then implemented as follows.
We again apply a π/2 pulse to both the electron and the
nuclear spins. If no Z-error has occurred, the resulting
state is

|ΨNE〉 = (|0 ↓〉+ eiΦ|1 ↑〉)/
√

2, (25)

whereas if a Z-error has occurred, the state is

|ΨE〉 = (|1 ↓〉+ eiΦ|0 ↑〉)/
√

2. (26)

The error correction step itself consists of a CNOT gate
that applies an electron π-pulse conditional on the | ↑〉
nuclear spin state (this is done by tuning the microwave
frequency to the |0 ↑〉 → |1 ↑〉 transition). This operation
decouples the electronic from the nuclear spin, storing
the accumulated phase in the nuclear degree of freedom.
A subsequent pulse of green laser light [41] re-sets the
electronic state [|1〉 (|0〉) in the case of an (no) error] to
|0〉, and another CNOT gate, as described above, recovers
the state Eq. (25). Application of a π/2 pulse, applied to

both the electron and the nuclear spins, rotates the state
back to the code space, completing the QEC operation.
This procedure can be implemented on the time scale
of a few microseconds: there is no need to perform a
full measurement and feedback loop, due to the design
of the re-setting operation using the polarizing optical
transition of the NV center [41].

D: AC magnetometry with NV centers

Using Ramsey-type measurements – possibly improved
by conventional DD techniques – the sensitivity to clas-
sical AC magnetic fields is limited by the NV center co-
herence time, typically of the order of 10 µs to 1 ms, de-
pending on the noise spectrum of the local environment.
We consider an alternative scheme in which we tune the
transition frequency between the |0〉 and |1〉 sublevels of
the NV center ground state into resonance with the tar-
get AC field by applying an external magnetic field which
enables the measurement of fields with frequencies in a
range from MHz to several GHz. By optically pumping
the NV center into the |0〉 sublevel and measuring the
spin-dependent fluorescence after a variable delay time
T , the spin flips induced by the target AC field can be
monitored, constituting the magnetic signal. Ordinar-
ily, the spin flips are suppressed by the broad linewidth
(T ∗2 ∼ 1 to 100µs) of the electronic transition, making
this approach ineffective. However, performing QEC to
effectively narrow the linewidth using the nitrogen nu-
clear spin as an ancilla qubit, we can suppress the de-
phasing due to the z noise. The effectiveness of the QEC
is independent of the environmental noise spectrum, and,
as in the previous case, allows the Ramsey time to be ex-
tended to the phonon-induced T1 time, improving the
sensitivity by a factor of 10 to 103, the frequency resolu-
tion by a factor of 102 to 106, and potentially expanding
the operational frequency range to several GHz.
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