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Abstract

In 2 + 1-dimensional conformal field theories with a global U(1) symmetry, monopoles
can be introduced through a background gauge field that couples to the U(1) conserved
current. We use the state-operator correspondence to calculate scaling dimensions of such
monopoles. We obtain the next-to-leading term in the 1/Nb expansion of the Wilson-Fisher
fixed point in the theory of Nb complex bosons.
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1 Introduction

Polyakov [1] introduced monopoles in 2+1 dimensions as instanton tunneling events in com-

pact gauge theories. The proliferation of these monopoles leads to confinement and to the

absence of a Coulomb phase in such gauge theories, provided there are no gapless matter

fields that can suppress the monopoles. In condensed matter physics, two-dimensional lat-

tice quantum antiferromagnets can be written as compact U(1) gauge theories at strong

coupling [2]: here, monopole events are accompanied by Berry phases [3, 4], which are re-

sponsible for valence bond solid order in the confining phase [4, 5].

We can also consider monopole operators at conformal fixed points of 2 + 1-dimensional

gauge theories [6–13]. These are gauge-invariant primary operators that determine impor-

tant aspects of the structure of the conformal field theory (CFT). In the application to

antiferromagnets, the scaling dimension of the monopole operator determines the power-law

decay of the valence bond solid order at “deconfined” quantum critical points [9, 10, 14, 15].

This paper will consider a di↵erent class of monopoles in 2+1 dimensions. We consider

CFTs with a global U(1) symmetry. The CFT may also have fluctuating gauge fields, but

these play no role in the construction of such monopoles. Instead, the monopole is introduced

by a background U(1) gauge field that couples to the CFT conserved current. A monopole

with charge q inserted at r = r0, which we henceforth denote by Mq(r0), corresponds to a

background gauge field configuration whose field strength1

fµ⌫ = @µ↵⌫ � @⌫↵µ (1)

integrates to 2⇡q over any small two-sphere surrounding the insertion point:

Z

S2

f = 2⇡q . (2)

As we will see explicitly in Section 2, each such background monopole comes associated with

a Dirac string that starts at r = r0. If the matter fields have integer U(1) charges, the Dirac

string is not observable provided that q is an integer.

Such monopoles appear to not have been considered until recently [16, 17]. They do not

correspond to operators in the CFT in a strict sense; instead, they should be rather thought

of as non-local background sources to which we couple our CFT. Studying the response of the

CFT to such background sources provides useful information about the CFT, which can be

used, for instance, to test various dualities [16]. In addition, these monopole insertions have

been argued to play a crucial role in the structure of the compressible quantum phases that

1In standard vector notation, instead of f we would use the magnetic field � = ⇤f , which can be also
written as ~� = ~r⇥ ~↵. Eq. (2) becomes

R
S2

~� · d ~A = 2⇡q, where d ~A is the oriented area element.
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are obtained when a non-zero chemical potential is applied to the global U(1) charge [17,18].

Specifically, they serve to quantize the U(1) charge and to determine the lattice spacing of

Wigner crystal states such that there are an integer number of particles per unit cell; they are

also important in determining the period of Friedel oscillations [18,19] of compressible states

that do not break translational symmetries and may have “hidden” Fermi surfaces [17,20–22].

In this paper we will restrict our attention to CFTs to which no external chemical potential

has been applied.

The definition of Mq presented above is imprecise, partly because the condition (2)

does not specify f uniquely, and partly because we have not specified the allowed behavior

of the charged matter fields close to the singularity at r = r0. Just as in the case of

monopole operators in gauge theories [7], a precise definition can be given through the state-

operator correspondence, or, more precisely, through an extension thereof to the present

case. According to the state-operator correspondence, any local operator of a CFT inserted

at the origin of R3 corresponds to a normalizable state of the CFT on S2 ⇥ R, where the

R coordinate is interpreted as Euclidean time. A monopole insertion Mq is by no means a

local operator, but it can nevertheless be defined as corresponding to the vacuum on S2 (as

opposed to any other excited state) in the presence of q units of background magnetic flux

(as in (2)) that is uniformly distributed throughout the S2.

The monopole insertion defined above is a Lorentz scalar. It also has a well-defined scaling

dimension �q in the following sense. If we consider a background gauge field configuration

↵µ corresponding to a monopole of strength q at r = r1 and one of strength �q at r = r2,

the partition function in the presence of these two monopole insertions has power-law decay

with the relative distance |r1 � r2|, namely

hMq(r1)M�q(r2)i =
R D� exp �� R d3xL[↵]�R D� exp �� R d3xL� / 1

|r1 � r2|2�q
, (3)

where we denoted by L[↵] the Lagrangian of the CFT coupled to ↵µ. One can extract �q

from the exponent in (3). Equivalently, in view of the definition of Mq through the state-

operator correspondence described above, one can also map a single monopole insertion on

R3 to S2 ⇥R and identify �q with the ground state energy on S2 in the presence of q units

of background magnetic flux. Explicitly, we have

�q = Fq ⌘ � logZq , (4)

where Zq is the partition function on S2 ⇥ R, and Fq the corresponding free energy.

The question that we will address in this paper concerns the scaling dimensions �q of

the monopole insertions Mq in simple CFTs. To calculate these scaling dimensions, we will
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use (4). For certain free CFTs with global U(1) symmetry, one can infer �q from existing

results in the literature. A simple example is the free CFT of Nf complex fermions. The

Lagrangian

Lf =

NfX

a=1

 †
a(i/@) a (5)

is invariant under a U(Nf ) global symmetry under which  a transforms as a fundamental

vector with Nf components. We can consider the diagonal U(1) subgroup of U(Nf ), which

we couple to a U(1) background gauge field such that the modified Lagrangian is

Lf [↵] =

NfX

a=1

 †
a(i/@ + /↵) a . (6)

As above, we consider monopole insertions of q units of background magnetic flux. Using

(4), �q can be computed from the partition function on S2 ⇥ R, which is now a Gaussian

integral because the Lagrangian (6) is quadratic in  a and there are no interactions. The

same Gaussian integral was calculated in Ref. [7] as part of a slightly di↵erent problem:

The authors of Ref. [7] were interested in computing the scaling dimensions of monopole

operators in three-dimensional QED with Nf flavors, which is the same theory as (6), with

the exception that the gauge field ↵µ would be dynamical. While the leading large Nf result

of Ref. [7] is only approximate for QED (because there are corrections coming from the

fluctuations of the gauge field), in the free fermion theory (6) one obtains an exact result

that holds at all Nf .2 We reproduce the dimensions �q for the first few lowest values of q

in Table 1. Similar results for a non-supersymmetric free theory of Nb complex scalars are

q �q/Nf

0 0
1 0.265
2 0.673
3 1.186
4 1.786
5 2.462

Table 1: The scaling dimensions of the monopole insertions Mq in the free theory of Nf

fermions corresponding to the diagonal U(1) subgroup of the global U(Nf ) symmetry group.
These results are exact in Nf .

presented in Appendix A.

2We should restrict to Nf even in order to avoid a parity anomaly.
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In this paper we are interested in the more complicated case of an interacting CFT

with global U(1) symmetry. The simplest such CFT is the XY model, described by the

Wilson-Fisher fixed point of the �4 field theory of a complex scalar field �. Starting with

the Lagrangian

LXY = |@µ�|2 + s|�|2 + u|�|4 , (7)

the Wilson-Fisher fixed point is reached in the infrared provided that the coe�cient s is

tuned to zero. This theory has a global U(1) symmetry under which � is rotated by a phase,

and it is this U(1) symmetry that we couple to a background gauge field ↵µ. The Lagrangian

in the presence of ↵µ is

LXY [↵] = |(@µ � i↵µ)�|2 + s|�|2 + u|�|4 . (8)

As in the previous examples, we can consider a monopole configuration with q units of

background magnetic flux as defining the insertion Mq.

Unfortunately, the Wilson-Fisher fixed point of a single complex scalar cannot be accessed

perturbatively, so we will compute the dimensions �q by first generalizing LXY [↵] to a theory

with Nb complex scalars with Lagrangian

L[↵] =
NbX

a=1

|(@µ � i↵µ)�a|2 + s|~�|2 + u
⇣
|~�|2
⌘2

, |~�|2 ⌘
NbX

a=1

|�a|2 , (9)

and then performing a 1/Nb expansion. Our goal in this paper is to find the first two terms

in this expansion. The CFT (obtained by setting ↵ = 0 in (9) and tuning s to zero) is the

Wilson-Fisher fixed point with O(2Nb) symmetry. The U(1) symmetry that we consider is

a subgroup of O(2Nb) that acts by rotating each complex scalar by the same phase.

The rest of this paper is organized as follows. In Section 2 we set up our conventions and

explain the method we use to compute �q in the model (9) in more detail. In Section 3 we

perform the leading order calculation in Nb. To this order, we find agreement with the results

of Refs. [6, 11] on the leading large Nb dependence of the dimensions of monopole operators

in the CPNb�1 model. Indeed, to leading order in Nb, one can ignore the contribution to the

S2 ground state energy coming from the gauge field fluctuations in the CPNb�1 model, so

the scale dimensions of the monopole operators in that model should agree with those in the

ungauged theory (9). In Section 4 we compute the leading 1/Nb corrections to �q. We end

with a discussion of our results in Section 5.
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2 Method

We consider the O(2Nb) scalar field theory defined on an arbitrary conformally flat manifold

by the action

S =
NbX

a=1

Z
d3r

p
g
h
gµ⌫ [(@µ + i↵µ)�

⇤
a] [(@⌫ � i↵⌫)�a] +

✓
i�+

R
8

◆
|�a|2

i
, (10)

where R is the Ricci scalar of the background metric gµ⌫ , and ↵µ is a background gauge

field. The only dynamical fields are the complex scalars �a and the Lagrange multiplier field

�. It can be checked explicitly that this action is invariant under the Weyl transformations

gµ⌫ ! f(r)2gµ⌫ , ↵µ ! ↵µ , �a ! f(r)�1/2�a , �! f(r)�2� , (11)

for which f can be taken to be an arbitrary real-valued function. We will be interested in

the action (10) on two conformally flat backgrounds: R3 and S2 ⇥R, which have R = 0 and

R = 2, respectively.

On R3, in the case where and ↵µ = 0, the action (10) describes the Wilson-Fisher fixed

point of 2Nb real scalars. Indeed, one can add the term
R
d3r �2/(4u) to this action without

changing the IR fixed point, because u flows to infinity; integrating out � produces the

interacting theory (9) with ↵µ = s = 0, which represents the more conventional description

of the Wilson-Fisher fixed point. The monopole background h↵µi = Aq
µ that corresponds to

an insertion of Mq at the origin of R3 satisfies, in spherical coordinates,3

dAq =
q

2
sin ✓d✓ ^ d� , (12)

which follows from (2). We can work in a gauge where

Aq(r) =
q

2
(1� cos ✓)d� . (13)

This background gauge field is well-defined everywhere away from ✓ = ⇡ where there is a

Dirac string. This Dirac string is not observable provided that q is taken to be an integer.

Starting with the theory on R3 in the monopole background (13), the theory on S2 ⇥ R
can be obtained from a Weyl transformation as in (11). Indeed, writing the flat metric on

3In standard vector notation, we would write ~r ⇥ ~Aq = qêr/(2 |r|2) instead of (12), and ~Aq = q
2 (1 �

cos ✓)/(r sin ✓)ê� instead of (13) in flat space. On S2 ⇥ R, we have ~Aq = q
2 (1� cos ✓)/(sin ✓)ê�.
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R3 in spherical coordinates as

ds2 = dr2 + r2d⌦2 , (14)

and defining r = e⌧ , we obtain a metric conformal to S2 ⇥ R:

ds2 = e2⌧
�
d⌧ 2 + d⌦2

�
. (15)

So if we send gR
3

µ⌫ ! e�2⌧gR
3

µ⌫ = gS
2⇥R

µ⌫ and at the same time rescale �a ! e⌧/2�a, � ! e2⌧�,

↵µ ! ↵µ as dictated by (11), we obtain the action on S2 ⇥ R. The monopole background

(13) now corresponds to a constant magnetic field uniformly distributed over S2.

As explained in the introduction, we identify the scaling dimensions �q of the monopole

insertions Mq with the ground state energy Fq on S2. We expand this ground state energy

at large Nb as follows:

Fq = NbF1
q + �Fq +O(1/Nb) . (16)

When q = 0 the operator Mq is just the identity operator and it corresponds to the ground

state on S2 in the absence of any magnetic flux. We expect this operator to have vanishing

scaling dimension. Indeed, we will check explicitly that F0 = 0 in our regularization scheme.

We now turn to the evaluation of F1
q in the next section and of �Fq in Section 4. We

will work solely on S2 ⇥ R whose coordinates we denote collectively by r ⌘ (⌧, ✓,�).

3 Nb = 1 theory

In computing the leading large Nb contribution to the ground state energy on S2, one can

evaluate the partition function corresponding to (10) in the saddle point approximation

where the fluctuations of the Lagrange multiplier field � can be ignored. However, � should

be adjusted such that the ground state energy is minimized. We thus expand the Lagrange

multiplier about its saddle point value as4

i� = a2q +
q2

4
+ i�̃ , (17)

where a2q will be determined shortly by the saddle-point condition, and �̃ is a fluctuation

that we will consider in the next section.

4This notation has been chosen to be compatible with Ref. [11] that studied the CPNb�1 model.
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We expand the field �a in terms of the monopole harmonics defined in Ref. [23]:5

�a(r) =
1X

`=q/2

X

m

Z
d!

2⇡
Z`m,a(!)Yq/2,`m(✓,�)e

�i!⌧ . (18)

The quadratic action for the �a then takes the diagonal form

S =
NbX

a=1

1X

`=q/2

X̀

m=�`

Z
d!

2⇡

⇥
!2 + (`+ 1/2)2 + a2q

⇤ |Z`m,a(!)|2 , (19)

where we have used the fact that the eigenvalues of the gauge-covariant Laplacian on S2 are

`(` + 1) � (q/2)2 [23]. From (19), it is easy to read o↵ the leading approximation to the

ground state energy at large Nb, which comes from performing the Gaussian integral over

the scalar fields �a, or equivalently over the coe�cients Z`m,a. The coe�cient F1
q appearing

in (16) is then [11]

F1
q =

Z
d!

2⇡

1X

`=q/2

(2`+ 1) log
⇥
!2 + (`+ 1/2)2 + a2q

⇤
. (20)

This expression is divergent, but it can be evaluated, for instance, using zeta function regu-

larization. First we write formally logA = �dA�s/ds
��
s=0

in all the terms of (20), then we

evaluate the sum and integral at values of s where they are absolutely convergent, and at

the end we set s = 0. Performing the ! integral, we obtain

F1
q =

1X

`=q/2

(2`+ 1)
⇥
(`+ 1/2)2 + a2q

⇤ 1
2�s

�����
s=0

, (21)

which still diverges when evaluated at s = 0. We then use the identity

2
1X

`=q/2


(`+ 1/2)2(1�s) +

✓
1

2
� s

◆
a2q(`+ 1/2)2s

������
s=0

=
q(1� q2)

12
� qa2q

2
. (22)

This identity can be derived by writing the sums on the left-hand side in terms of the Hurwitz

zeta function ⇣(s, a) =
P1

n=0 1/(n + a)s and analytically continuing to s = 0. The terms

on the left-hand side of (22) are nothing but the large ` expansion of the terms in (21), so

subtracting (22) from (21) yields a finite result when s = 0. Adding and subtracting (22)

5Note that our definition of q di↵ers from that of Ref. [23] by a factor of two.
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from (21), we therefore find

F1
q = 2

1X

`=q/2


(`+ 1/2)

⇥
(`+ 1/2)2 + a2q

⇤1/2 � (`+ 1/2)2 � 1

2
a2q

�

� 2


q(q2 � 1)

24
+

qa2q
4

�
,

(23)

which involves a convergent sum over ` that can easily be evaluated numerically.

The value of a2q is not arbitrary, but should be chosen so that the saddle point condition

@F1
q

@a2q
= 0 (24)

is satisfied. In our case, where F1
q is given by (23), we therefore have

1X

`=q/2

0

@ `+ 1/2q
(`+ 1/2)2 + a2q

� 1

1

A =
q

2
. (25)

For the first few small values of q, we give in Table 2 the solutions of this equation as well

as the corresponding values of F1
q obtained after plugging these solutions back into (23).

The values of F1
q agree precisely with those obtained in Ref. [6] in the large Nb limit of the

CPNb�1 model.

q a2q F1
q

0 0 0
1 �0.4498063 0.1245922
2 �1.3978298 0.3110952
3 �2.8454565 0.5440693
4 �4.7929356 0.8157878
5 �7.2403441 1.1214167

Table 2: The values of a2q that solve (25) and the corresponding coe�cients F1
q that enter

the large Nb expansion of the ground state energy (16) on S2.

The q = 0 case of these results is notable. The value a20 = 0 is just that expected from

the conformal mapping between R3 and S2⇥R. Also F1
0 = 0, a result that was not evident

at intermediate stages.
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4 1/Nb corrections

4.1 General structure

The leading 1/Nb correction to the result of the previous sections comes from the contribution

to the S2 ground state energy coming from the fluctuations �̃ of the Lagrange multiplier.

Let us begin by discussing the general structure of this correction.

After integrating out �a, the e↵ective action for the fluctuations takes the form

Se↵ =
1

2

Z
d3 rd3r0

p
g(r)

p
g(r0)�̃(r)Dq(r, r0)�̃(r0) + . . . , (26)

where we omitted higher order terms in �̃. The kernel Dq(r, r0) appearing in eq. (26) is

nothing but the two-point correlator of |�a|2 :

Dq(r, r0) = h|�a(r)|2 |�a(r
0)|2i = NbG(r, r0)G⇤(r, r0) , (27)

where we introduced the Green’s function G(r, r0) = h�⇤(r)�(r0)i for a single complex field

� in the background monopole flux Aµ. We will compute this Green’s function shortly.

Because of the explicit factor of Nb in (27), at large Nb we can ignore the higher order terms

in (26), and evaluate the contribution from �̃ to the partition function in the saddle point

approximation. The coe�cient �Fq appearing in eq. (16) can then be obtained by performing

a Gaussian integral, which yields

�Fq =
1

2
log detDq . (28)

To calculate log detDq, we should diagonalize the kernel Dq. This diagonalization is

accomplished by expanding �̃ and Dq in terms of the appropriate spherical harmonics. These

quantities do not experience a net monopole flux, because they are neutral, and so we

(fortunately) do not need the monopole spherical harmonics here. The expansions

�̃(r) =

Z
d!

2⇡
ei!⌧Y`m(✓,�)⇤`m(!) ,

Dq(r, r0) =

Z
d!

2⇡

X

`m

Dq
` (!)Y`m(✓,�)Y

⇤
`m(✓

0,�0)ei!(⌧�⌧ 0)
(29)

yield a diagonal e↵ective action

Se↵ =
1

2

Z
d!

2⇡

X

`m

Dq
` (!)|⇤`m(!)|2 . (30)

9



Eq. (28) then gives

�Fq =
1

2

Z
d!

2⇡

1X

`=0

(2`+ 1) logDq
` (!) . (31)

In the following subsections we present expressions for the kernel in (30): We first present

the simpler kernel at q = 0, and then the kernels at general q. We will check explicitly that

�F0 = 0, as required by conformal invariance in the absence of any monopole insertions.

4.2 The kernel of fluctuations at q = 0

At q = 0, it is not hard to obtain the Green’s function on S2 ⇥ R starting from the Green’s

function on R3, 1/(4⇡|~r� ~r0|), and using the conformal mapping explained around equation

(15). The result is

G(r, r0) =
1

4⇡
p
2(cosh(⌧ � ⌧ 0)� cos �)

, (32)

where � is the relative angle between the two points on S2 defined through

cos � = cos ✓ cos ✓0 + sin ✓ sin ✓0 cos(�� �0) . (33)

Using (27), (29), and (32), we obtain

D0
` (!) =

1

16⇡

Z 1

�1
d⌧

Z ⇡

0

sin ✓d✓
ei!⌧P`(cos ✓)

(cosh ⌧ � cos ✓)
. (34)

We performed these integrals analytically for a number of small values of `; from the structure

of these answers we deduced the general result:

D0
` (!) =

����
� ((`+ 1 + i!) /2)

4� ((`+ 2 + i!) /2)

����
2

, (35)

which can be written more explicitly as

D0
2`(!) =


tanh(⇡!/2)

8!

� Ỳ

n=1

(!2 + (2n� 1)2)

(!2 + 4n2)
,

D0
2`+1(!) =


! coth(⇡!/2)

8(!2 + 1)

� Ỳ

n=1

(!2 + 4n2)

(!2 + (2n+ 1)2)
.

(36)

In the limit of large ! and ` we expect the �̃ self-energy to be given by the flat space

10



limit

Z
d3p0

8⇡3

1

p02(p+ p0)2
=

1

8p
. (37)

Indeed, expanding (35) with the help of the Stirling approximation, we find

D0
` (!) =

1

8
p
!2 + `(`+ 1)

� `(`+ 1)

32 (!2 + `(`+ 1))5/2
+O

 
1

(!2 + `(`+ 1))5/2

!
, (38)

which agrees with (37) upon using the identification p ⇠p!2 + `(`+ 1).

4.3 The kernel of fluctuations for general q

Now we turn to the much harder case of non-vanishing q. In this case we don’t have a simple

closed form expression for the scalar Green’s function, so we turn to the mode expansion

(18). From the action (19) we deduce that the Green’s function for a single �a is

G(r, r0) =
1X

`=q/2

Z
d!

2⇡
ei!(⌧�⌧ 0)

"
X̀

m=�`

Y ⇤
q/2,`m(✓,�)Yq/2,`m(✓

0,�0)

#
1

!2 + (`+ 1/2)2 + a2q

=
1X

`=q/2

eiq⇥Fq,`(�)
e�Eq`|⌧�⌧ 0|

2Eq`
.

(39)

In writing the second line we defined the energy

Eq` ⌘
q

(`+ 1/2)2 + a2q , (40)

and performed the ! integral; we also performed the sum over m, which, up to the phase

factor

ei⇥ =
1

cos(�/2)

h
cos(✓/2) cos(✓0/2) + e�i(���0) sin(✓/2) sin(✓0/2)

i
(41)

discussed in Ref. [24], yields a polynomial in cos � that can also be written in terms of the

monopole harmonics as

Fq,`(�) ⌘
r

2`+ 1

4⇡
Yq/2,`,�q/2(�, 0) . (42)

(See Appendix B for more explicit expressions for Fq,`(�).) Here, � is the relative angle of

the two points on S2 defined in (33).

From (27) and (39), we can now determine Dq(r, r0). Further extracting Dq
` (!) using

11



(29) we obtain

Dq
` (!)(2⇡)�(! + !0) =

1

(2`+ 1)

1X

`0,`00=q/2

Z
d3rd3r0

p
g(r)

p
g(r0)F0,`(�)Fq,`0(�)Fq,`00(�)

⇥ e�(Eq`0+Eq`00 )|⌧�⌧ 0|�i!⌧�i!0⌧ 0

4Eq`Eq`0
. (43)

We can simplify this expression to

Dq
` (!) =

8⇡2

(2`+ 1)

1X

`0`00=q/2


Eq`0 + Eq`00

2Eq`0Eq`00(!2 + (Eq`0 + Eq`00)2)

�
ID(`, `

0, `00) , (44)

where

ID(`, `
0, `00) =

Z ⇡

0

sin ✓d✓F0,`(✓)Fq,`0(✓)Fq,`00(✓) . (45)

This is an integral of three monopole harmonics and can be expressed in terms of the Wigner

3-j symbols as

ID(`, `
0, `00) =


(2`+ 1)(2`0 + 1)(2`00 + 1)

32⇡3

� 
` `0 `00

0 �q/2 q/2

!2

. (46)

We can check, for instance, that this result equals (34) for q = 0 and ` = 0

D0
0(!) =

1

2⇡

1X

`=0

1

!2 + (2`+ 1)2
=

tanh(⇡!/2)

8!
. (47)

4.4 Numerics

The results of the previous sections are all we need for calculating numerically the correction

�Fq to the scaling dimensions of the monopole operators. Unfortunately, the expression (31)

is formally divergent, as can be seen for instance in the case q = 0 where we know D0
` (!)

explicitly, and hence eq. (31) is not suitable for numerical evaluation in its current form.

However, we expect the divergences to be independent of q, so the di↵erences �Fq1 � �Fq2

should be finite and shouldn’t require regularization. Moreover, it must be true that �F0 = 0,

because the case q = 0 corresponds to an insertion of the identity operator, which should

have vanishing scaling dimension. (See Appendix C for an explicit check that �F0 = 0.)

Subtracting �F0 from (31), we can then also write �Fq as

�Fq =
1

2

Z
d!

2⇡

1X

`=1

(2`+ 1) log
Dq

` (!)

D0
` (!)

, (48)

12



which we evaluate numerically for the first few lowest values of q.

In evaluating (48), one has to perform three sums (two when calculating Dq
` (!) using

(44) and one in (48)) and one integral over !. Let us first comment on the two sums in

(44). For fixed `0, the sum over `00 in (44) has only finitely many non-zero terms because the

3-j symbols in (46) vanish unless `, `0 and `00 satisfy the triangle inequality. To see whether

or not the remaining sum over `0 is convergent, one should find an asymptotic expansion

at large `0 for the terms in this sum. While for general ` it may seem hard to do so, it is

easier to first fix ` to a small value for which the sum over `00 has 2` + 1 terms that can be

written down explicitly, and the large `0 asymptotics can be easily computed. Repeating this

procedure for several values of `, one can infer the large `0 asymptotics for all ` by noticing

that all the expressions involved are polynomials in `(`+ 1). The first few terms are

1

8⇡`02
� 1

8⇡`03
+

3� 6a2q + 2`(`+ 1)� !2

32⇡`04
+ . . . . (49)

This expression shows that the sum over `0 is absolutely convergent. To save computational

resources, one can use a mix of numerical and analytical techniques in evaluating Dq
` (!): the

terms with low `0 should be summed up explicitly, while for the terms with large `0 one can

sum up analytically the approximate expression (49) developed to a higher order of accuracy.

(In our computations, we developed the large `0 approximation up to order 1/`013.)

Lastly, in calculating (48) one should be wary that there could still be divergences. We

find that imposing a relativistic cuto↵6

!2 + `(`+ 1)  L(L+ 1) , (50)

yields a finite answer as we take L ! 1. The absence of divergences relies heavily not only

on the choice of cuto↵ (50), but also on choosing the value of a2q that solves eq. (25); for

other values of a2q there would be divergences. See Figure 1 for a plot of �Fq in terms of 1/L

in the case q = 1, where from the large L extrapolation we obtain �F1 ⇡ �0.057. In this

case we therefore conclude that the scaling dimension of the monopole operator M1 is

�1 = 0.125Nb � 0.057 +O(1/Nb) , (51)

where we included the leading large Nb behavior that was also given in Table 2. Repeating

this procedure for the first few small values of q, we obtain the results in Table 3. This is

the main result of this paper.

6At high energies the Lorentzian theory has SO(2, 1) symmetry that is also obeyed by the cuto↵ (50), so
the speed of light is not renormalized. If one chooses a cuto↵ that breaks the SO(2, 1) symmetry, then there
are finite corrections to the speed of light in the IR that have to be accounted for.
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Figure 1: The coe�cient �F1 evaluated numerically from (48) using the relativistic cuto↵
(50) as a function of the inverse cuto↵ scale 1/L. The solid line is a quadratic fit from which
we extract the value �F1 ⇡ �0.057 as we take L ! 1.

q �q = Fq

0 0
1 0.125Nb � 0.057 +O(1/Nb)
2 0.311Nb � 0.152 +O(1/Nb)
3 0.544Nb � 0.272 +O(1/Nb)
4 0.816Nb � 0.414 +O(1/Nb)
5 1.121Nb � 0.575 +O(1/Nb)

Table 3: The scaling dimensions of the first few monopole operators Mq in the Wilson-Fisher
CFT of Nb complex scalars in the large Nb expansion (16). The leading large Nb behavior
was computed in Section 3, and agrees with results from the CPNb�1 model [6]. The O(N0

b )
term was computed numerically using (48).

5 Discussion

Following recent work [16, 17], in this paper we considered monopole insertions in 2 + 1-

dimensional CFTs that have a global U(1) symmetry. A simple example of such a CFT

is the Wilson-Fisher fixed point of the XY model. Critical exponents of this CFT have

long been the focus of much study, and are among the most accurately known non-trivial

exponents of higher dimensional CFTs [25]. Associated with the monopole insertions, we

have a new set of critical exponents of this venerable CFT. We computed these exponents

(i.e. monopole scaling dimensions) to next-to-leading order in the 1/Nb expansion of a theory

with Nb complex bosons. Our results for the scaling dimensions are summarized in Table 3.

The numerical series in Table 3 appear to be reasonable even when evaluated at Nb = 1.

It would be interesting to also compute the monopole scaling dimensions in Monte Carlo

14



simulations or series expansions, such as those in Ref. [25].
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A Free scalar theory

We can also calculate the scaling dimensions �q in the free theory of Nb complex scalars.

The only di↵erence from the Wilson-Fisher CFT is that the action for the free theory does

not have a Lagrange multiplier �, but there is a conformal coupling R|�|2 in the action, as

in (10). The ground state energy on S2 in the presence of q units of magnetic flux that we

obtain by integrating out the scalars is NbF1
q , where F1

q can be computed from (23) with

a2q = �q2/4, as appropriate for conformally coupled scalars. See Table 4 for a few particular

cases. These results are exact.

q �q/Nb

0 0
1 0.097
2 0.226
3 0.384
4 0.567
5 0.770

Table 4: The first few scaling dimensions �q of the monopole insertions Mq in the free CFT
of Nb scalars.

B Monopole harmonics

We start with the relation

X̀

m=�`

Y ⇤
q/2,`m(✓,�)Yq/2,`m(✓

0,�0) = Fq,`(�)e
iq⇥ , (52)
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where F is defined in eq. (42) and the angles � and ⇥ are defined in eq. (33).

Above, we have used the functions

Fq,`(✓) ⌘
r

(2`+ 1)

4⇡
Yq/2,`,�q/2(✓, 0)

= 2�q/2

✓
2`+ 1

4⇡

◆
(1 + cos ✓)q/2P 0,q

`�q/2(cos ✓)

= 2�q/2

✓
2`+ 1

4⇡

◆
(1 + cos ✓)q/2�1

"
(`+ q/2)P 0,q�1

`�q/2(cos ✓) + (`� q/2 + 1)P 0,q�1
`�q/2+1(cos ✓)

(`+ 1/2)

#
.

(53)

The special values are

Fq,`(✓) =

8
>><

>>:

✓
2`+ 1

4⇡

◆
P`(cos ✓) if q = 0 ,

1p
2

✓
2`+ 1

4⇡

◆
(1 + cos ✓)�1/2

⇥
P`�1/2(cos ✓) + P`+1/2(cos ✓)

⇤
if q = 1 ,

(54)

etc.

C Calculation of �F0

We now show that using zeta-function regularization we find �F0 = 0. Using the infinite

product representation for the hyperbolic tangent and cotangent in (36), one can show that

logD0
` (!) =

1X

k=`+1

(�1)k+` log(!2 + k2) + (!-independent terms) . (55)

The !-independent terms do not contribute to �F0 in our regularization scheme. With the

help of

Z
d!

2⇡
log(!2 + a2) = |a| , (56)

which can be derived, for instance, by rewriting (56) as

� d

ds

Z
d!

2⇡

1

(!2 + a2)s

�����
s=0

= � d

ds

p
⇡�(s� 1/2) |a|1�2s

2⇡�(s)

�����
s=0

= |a| , (57)
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we can perform the ! integral in (31) and we obtain

�F0 =
1

2

1X

`=0

(�1)`(2`+ 1)
1X

k=`+1

(�1)kk . (58)

The sum over k can be written in terms of the Hurwitz zeta function ⇣(s, a) =
P1

n=0 1/(n+a)s

as

1X

k=`+1

(�1)kk = 2(�1)`

⇣

✓
�1,

`+ 2

2

◆
� ⇣

✓
�1,

`+ 1

2

◆�
=

(�1)`+1

4
(2`+ 1) , (59)

so then

�F0 = �1

2

1X

`=0

✓
`+

1

2

◆2

= �1

2
⇣

✓
�2,

1

2

◆
= 0 . (60)
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