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Abstract
We present an unrestricted Hartree-Fock computation of charge-ordering instabilities of two-dimensional

metals with antiferromagnetic exchange interactions, allowing for arbitrary ordering wavevectors and in-

ternal wavefunctions of the particle-hole pair condensate. We find that the ordering has a dominant d

symmetry of rotations about lattice points for a range of ordering wavevectors, including those observed

in recent experiments at low temperatures on YBa2Cu3Oy. This d symmetry implies the charge ordering

is primarily on the bonds of the Cu lattice, and we propose incommensurate bond order parameters for the

underdoped cuprates. The field theory for the onset of Néel order in a metal has an emergent pseudospin

symmetry which ‘rotates’ d-wave Cooper pairs to particle-hole pairs (Metlitski et al., Phys. Rev. B 82,

075128 (2010)): our results show that this symmetry has consequences even when the spin correlations are

short-ranged and incommensurate.
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A remarkable series of experiments [1–13] have shed new light on the underdoped region of

the cuprate high temperature superconductors. These experiments detect a bi-directional charge

density wave with a period in the range of 3 to 5 lattice spacings at low hole densities and low

temperatures (T ). This order is co-incident with regions of the phase diagram where quantum

oscillations [14] were observed in YBa2Cu3Oy, strongly supporting the hypothesis [7, 15–18] that

the charge density wave is responsible for the Fermi pockets leading to quantum oscillations. Some

of the experiments [3, 5–8, 11, 12, 19, 20] also indicate that there is negligible modulation of the

charge density on the Cu sites; instead, it is primarily a bond density wave, with modulations in

spin-singlet observables on the Cu-Cu links, such as the electron kinetic energy.

This paper presents a Hartree-Fock computation of charge-ordering instabilities of a two-

dimensional metal of electrons with antiferromagnetic exchange interactions (described by a ‘t-J’

model). We allow the charge-ordering to appear at any wavevector, Q, and also allow an arbitrary

internal wavefunction, �Q(k) for the spin-singlet particle-hole pair condensate responsible for the

density wave order (here Q is the center-of-mass momentum of the particle-hole pair, and k is the

relative momentum). We show that this freedom leads to significant insight, despite the simplicity

of our method. We find that for a range of small Q (more precisely, in the ‘T preserved’ region

of Fig. 2), including those observed so far in the experiments [1–6, 8–12] at low T , the dominant

structure of the internal wavefunction has a d-wave form [21], with �Q(k) ⇠ (cos kx � cos ky) for

a band-structure appropriate for the cuprates. This d symmetry implies that the charge order is

located primarily on the Cu-Cu links, there is little modulation of the charge density on the Cu

sites, and time-reversal symmetry (T ) is preserved. We refer to this class of charge order as an

‘incommensurate d-wave bond order’. Our computation also allows for other spin-singlet orders,

such as Ising-nematic [22–24], ‘d-density wave’ [25–27], and ‘circulating currents’ [28], the last

two of which break T : they are all less preferred than the incommensurate d-wave bond order in

the underdoped region, while Ising-nematic order is preferred at larger doping.

The preferred value of Q in our Hartree-Fock computation in a metal has the form Q =

(±Qm,±Qm) [21]; similar orders have appeared in recent computations [21, 29, 30] using the

renormalization group and other methods. At low doping, we find that Qm ⇡ Q0, where Q0 is

defined geometrically from the ‘hot spots’ on the Fermi surface, as shown in Fig. 1 (see also Fig. 3

for a comparison between the values of Qm and Q0). Remarkably, the hot spots of commensurate

Néel order play a crucial role when the antiferromagnetic correlations are short-ranged, and even

when they are incommensurate. Recent field-theoretic studies [21, 30] focused on the Fermi sur-
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FIG. 1: Fermi surface of the hole-doped cuprates, showing the Brillouin zone boundary to antiferromag-

netism at K = (⇡, ⇡) (dashed lines), the hot spots (filled circles), and the wavevectors (Q0, 0) and (Q0,Q0).

face in the immediate vicinity of these hot spots, and this connection allows us to interpret our

Hartree-Fock results in terms of an emergent approximate pseudospin symmetry [21]. The pseu-

dospin symmetry ‘rotates’ d-wave Cooper pairs to particle-hole pairs: the Cooper pair amplitude

�S (k) rotates into �Q(k), which explains the predominant d symmetry of the latter. Our results

show that the pseudospin symmetry is a good guide to picking optimum states in lattice computa-

tions on models with short spin correlation lengths, even though the symmetry is exact only in a

continuum limit where the spin correlation length becomes very large.

As in Ref. [21, 30], we propose that the high T pseudogap is a metal with a fluctuating multi-

dimensional order with both a superconducting component, �S (k), and a bond order component

�Q(k) over a range of Q around (±Qm,±Qm). At lower T , superconductivity appears by the

polarization of this order along �S (k). Subsequent static charge-ordering requires computation

of the non-zero Q instabilities within the superconductor. Fortunately, the latter computation has

already been performed in closely related models [31, 32]: bond order modulations were found

with Q along the (1, 0), (0, 1) directions, as is the case in observations at low T [1–6, 8–12]. In our

metallic computations, there is a ‘valley’ of stability from (Qm,Qm) to (Qm, 0) and (0,Qm), but the

global minimum is at (Qm,Qm) (see Fig. 2); within the superconducting phase in zero magnetic

field, the balance can evidently be tipped in favor of bond order near (±Qm, 0) and (0,±Qm). The

choice of ordering wavevectors between (±Qm,±Qm) and (±Qm, 0), (0,±Qm) surely depends upon
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details of the Hamiltonian, the value of T , and the presence of a magnetic field, and is perhaps not

accurately estimated by our present simple Hartree-Fock computation. Nevertheless, we expect

the predominant d symmetry of particle-hole pair condensate, �Q(k), to be robust for |Q| . 2Qm,

for the same reason it is robust for the particle-particle condensate, �S (k), of the superconductor.

We examine the following Hamiltonian of electrons on a square lattice of sites i at positions ri

with annihilation operators ci↵, where ↵ =", # is a spin label:

H =
X

i, j

"⇣
�µ�i j � ti j

⌘
c†i↵c j↵ +

1
2

Ji j ~S i · ~S j

#
. (1)

Here µ is the chemical potential, ti j are the electron hopping amplitudes, Ji j are exchange interac-

tions, and the electron spin operator ~S i =
1
2c†i↵~�↵�ci�, with ~� the Pauli matrices. The pseudospin

symmetry acts as on the Nambu spinor  i↵ = (ci↵, ✏↵�c
†
i�) as a SU(2) rotation Vi in Nambu space

under which  i↵ ! Vi i↵. A key property is that ~S i =
1
4 
†
i↵~�↵� i�, and this is invariant under

the pseudospin transformation. Consequently the exchange interaction is invariant under indepen-

dent rotations Vi on each lattice site [33], and this gauge invariance was exploited in the study of

spin liquid ground states of Mott insulators [27]. The pseudospin symmetry is completely broken

by the ti j terms in H, and so it was expected that pseudospin symmetry plays no role in metallic

states, except those that are proximate to certain spin liquids [27, 34]. Here, we are interested

in metallic states proximate to systems with long-range antiferromagnetism; surprisingly, it was

shown in Ref. [21], that an analog of the pseudospin gauge symmetry of Refs. [33, 35] reappears

in the critical theory of the antiferromagnetic quantum critical point in a conventional metal, as

4 independent global SU(2) pseudospin rotations, one for each pair of hot spots. These rotations

serve to map the d-wave Cooper pairing �S (k) to the d-wave bond order �Q(k), as is also evident

in our computations below.

Note that H does not contain an explicit on-site interaction, the ‘Hubbard U’. Both the Cooper

pair and the bond order have small on-site components because of the d symmetry, and so U is not

important in selecting the ordering instabilities. The e↵ects of U can be accounted for by ‘slave

particle’ methods [25, 31], and its main consequence is a renormalization of the quasiparticle

dispersion. Finally, such local interactions are irrelevant in the field theory of Ref. [21].

For our charge-ordering Hartree-Fock analysis, we need the best variational estimate for the

mean-field Hamiltonian

HMF =
X

i, j

⇣
�µ�i j � ti j � �i j

⌘
c†i↵c j↵ (2)
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where the non-local charge order �i j is written as

�i j =
X

Q

2
666664

1
V

X

k

eik·(ri�r j)�Q(k)
3
777775 e

iQ·(ri+r j)/2, (3)

with V the system volume. This expression highlights the physical interpretation of �Q(k): (i) if

�Q(k) is a constant independent of k (i.e. s-wave) then we have an ordinary site charge density

wave at wavevector Q with only �ii non-zero; (ii) if �Q(k) ⇠ c1 cos kx + c2 cos ky (d- and extended

s-wave) then we have bond order at wavevector Q with �i j non-zero only if i and j are nearest

neighbors. Also note that hermiticity requires �⇤Q(k) = ��Q(k), and under time-reversal T :

�Q(k)! �Q(�k).

All the functions �Q(k) are variational parameters, to be optimized by minimizing the free

energy by F  FMF + hH � HMFiMF , where the average is over a thermal ensemble defined by

HMF . Here, we expand the r.h.s. in powers of �Q(k), and replace the inequality by an equality.

To quadratic order in �Q, we write the result in terms of hermitian functional operators on the

Brillouin zone as

F =
X

k,k0,Q

�⇤Q(k)
q
⇧Q(k)MQ(k,k0)

q
⇧Q(k0)�Q(k0) + . . . (4)

where the kernel is

MQ(k,k0) = �k,k0 +
3
V
�0(k � k0)

q
⇧Q(k)⇧Q(k0) (5)

while the polarizability and susceptibility are

⇧Q(k) =
f ("(k +Q/2)) � f ("(k �Q/2))
"(k �Q/2) � "(k +Q/2)

, �0(q) =
1
4

X

j

Ji jeiq·(ri�r j), (6)

with "(k) the electron dispersion associated with ti j, and f the Fermi function. From Eq. (4) we see

that the linear charge-ordering instability of the metal occurs via condensation in the eigenmodes

of the operatorMQ(k,k0) with the lowest eigenvalues. We have chosen the specific forms of the

kernel in Eq. (5) so that we need only solve the following eigenvalue problem

3
V

X

k0

q
⇧Q(k) �0(k � k0)

q
⇧Q(k0) �Q(k0) = �Q�Q(k)

for the minimum eigenvalues �Q and corresponding eigenvectors �Q(k), and their structure is

independent of the overall strength of the interaction �0. The charge-order will then be �Q(k) /
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�Q(k)/
p
⇧Q(k). Our principal numerical results below are on the Q dependence of �Q, and on

the k dependence of �Q(k) so obtained.

We also solved for the corresponding instability of the metal to the superconductor. In this

case HMF has the charge-ordering term �i j replaced by the pairing term �Pk �S (k)ck"c�k# +H.c.,

and the subsequent expressions have the replacements �Q(k)! �S (k),MQ(k,k0)!MS (k,k0),

⇧Q(k)! ⇧S (k), �Q ! �S , with ⇧S (k) = (1� 2 f ("(k)))/(2"(k)). In particular, the expression for

the kernelMS (k,k0) in terms of ⇧S (k) has a form identical to Eq. (5), a key consequence of the

pseudospin symmetry of the exchange interaction. Note also that for dispersions with "(k +Q) =

�"(k) we have ⇧Q = ⇧S and soMQ =MS ; Ref. [21] pointed out that the dispersion obeys such

a relationship close to the hot spots of a generic Fermi surface for Q = (±Q0,±Q0) (see Fig. 1)),

and this then establishes the pseudospin rotation symmetry between �S and �Q(k).

We assume an electronic dispersion "(k) = �2t1

⇣
cos(kx) + cos(ky)

⌘
� 4t2 cos(kx) cos(ky) �

2t3

⇣
cos(2kx) + cos(2ky)

⌘
� µ and a susceptibility �0(q) which is peaked near the antiferromagnetic

wavevector

�0(q) =
X

K

A
4(⇠�2 + 2(2 � cos(qx � Kx) � cos(qy � Ky)))

, (7)

where ⇠ is the antiferromagnetic correlation length, the sum extends over K = ±(⇡, ⇡(1 � �)), ±
(⇡(1��), ⇡), and we used both the commensurate case � = 0 and the incommensurate case � = 1/4,

with little di↵erence between the results. We only need a short spin correlation length, ⇠, and

indeed obtained very similar results even for the case where �0(q) was obtained from Eq. (6) with

only a nearest-neighbor Ji j. We diagonalized the kernels after discretizing the Brillouin zone to L2

points with L up to 80, and the results below are for t1 = 1, t2 = �0.32, and t3 = 0.128 for a range

of values of T , µ, and ⇠.

Numerical results. For the full range of parameters examined, we consistently found that �S

was the minimal eigenvalue (indeed, BCS theory implies ��S diverges logarithmically as T ! 0),

and the corresponding eigenvector �S (k) was well approximated by the d-wave form ⇠ (cos kx �
cos ky) (see Table I). So d-wave superconductivity is the primary instability.

For the charge ordering instabilities, we show the Q dependence of �Q in Figs 2 and in the

supplement. We characterize the corresponding eigenvectors �S ,Q(k) using orthonormal basis

functions,  �(k) of the square lattice space group:

�Q(k) =
X

�

cQ,�  �(k) (8)

where cQ,� are numerical coe�cients collected in Table I. Depending upon the symmetry of Q
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FIG. 2: Plot of �Q/A, where �Q is the smallest charge order eigenvalue, as a function of Qx and Qy. We

used µ = �1.11856, ⇠ = 2, T = 0.06, � = 1/4 and L = 64. Charge order appears when �Q < �1, which

happens when A is large enough. The global minimum is at (Qm,Qm) and Qm is plotted in Fig. 3 as a

function of µ. Notice also the blue valleys extending from (Qm,Qm) to (Qm, 0) and (0,Qm). The region with

time-reversal, T , preserved has the eigenfunctions �Q(�k) = �Q(k) which are predominantly d, while the

region with T broken has �Q(�k) = ��Q(k), as shown for some values of Q in Table I.

(in particular, the little group of the wavevector Q) and of the eigenvector, some of the cQ,� may

be exactly zero. But for a generic Q, only time-reversal constrains the values of cQ,�, and we are

allowed to have an admixture of many basis functions. Nevertheless, only a small number of basis

functions have appreciable coe�cients, and so Eq. (8) represents a useful expansion.

The global minimum of �Q is at a wavevector along the diagonal with Q = (Qm,Qm), and we

show a plot of Qm as a function of chemical potential in Fig. 3. We also show the corresponding

values of Q0 as defined in Fig. 1; for small doping we see that Qm ⇡ Q0, one of our key results:

the pseudospin symmetry of the hot-spot theory of Ref. [21] is a good guide to determining the

ordering even for models with short-range, incommensurate, antiferromagnetic spin correlations.

At larger doping, after the chemical potential crosses the van-Hove singularity [29], there are no

hot spots, and we find Qm = 0. For Q = (Qm,Qm), Table I shows that �Q(k) is predominantly d,

with a small admixture of g. For Q = (Qm, 0), �Q remains predominantly d, but now has a small

7



�  �(k) Q = Q = Q = Q = �S (k)

(Qm,Qm) (Qm, 0) (0, 0) (⇡, ⇡)

s 1 0 -0.226 0 0 0

s0 cos kx + cos ky 0 0.040 0 0 0

s00 cos(2kx) + cos(2ky) 0 -0.051 0 0 0

d cos kx � cos ky 0.993 0.964 0.997 0 0.998

d0 cos(2kx) � cos(2ky) - 0.058 -0.057 -0.044 0 -0.047

dxy 2 sin kx sin ky 0 0 0 0 0

px
p

2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0

g (cos kx � cos ky) -0.010 0 0 0 0

⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion for �Q(k) in Eq. (8) for various values Q and �. The values

of cQ,� are normalized so that
P
� |cQ,�|2 = 1, where the sum over � includes the small contributions from

higher order basis functions not shown above. Values shown as 0 are constrained to be exactly zero by

symmetry. The last column shows the coe�cients in the corresponding expansion for �S (k). Parameters

are as in Fig. 2, and Qm = 4⇡/11.

s component [32].

At Q = 0, we find that �Q(k) is purely d: this corresponds to Ising-nematic order [22–24]. The

T -breaking ‘circulating-current’ order of Ref. [28] has a px,y form for �Q(k) at Q = 0, but this

does not appear as a lowest eigenvalue, and so is not present in Fig. 2. Finally, �Q also has a broad

local minimum at Q = (⇡, ⇡): here �Q(k) does have the px,y form which breaks T , and leads to

the state with spontaneous orbital currents [25–27].

Experiments [1–6, 8–12] have observed charge ordering at Q = (Qm, 0), (0,Qm) at low T .

Choosing the largest 2 components at this wavevector from Table I, we have

�Q(k) =

8>>><
>>>:
�s + �d(cos kx � cos ky) , Q = (±Qm, 0)

�s � �d(cos kx � cos ky) , Q = (0,±Qm)
(9)

with �s/�d = �0.234. Similarly, we can have bond-ordering along Q = (±Qm,±Qm) with only

�d non-zero. We present implications of these orders for X-ray scattering, nuclear magnetic reso-

nance, photoemission and scanning tunneling microscopy in the supplement.
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1.2 1.4 1.6 1.8

0.5

1.

FIG. 3: Plot of Qm (circles), where the minimum of �Q occurs at Q = (±Qm,±Qm). Also shown are the

corresponding values of Q0 (squares), as defined by the hotspots on the Fermi surface in Fig. 1. The near

equality of Qm and Q0 is evidence for the pseudospin symmetry; note that this holds even though �0(q)

in Eq. (7) is peaked at the wavevectors K = (⇡,±3⇡/4), (±3⇡/4, ⇡), as is the case in many hole-doped

cuprates.

Our evidence for pseudospin symmetry between Cooper pairing and charge order should have

significant implications for the dynamics of these orders, which have been studied recently in

Ref. [36]. For the phase diagram of the hole-doped cuprates, our model has a T = 0 quantum-

critical point near optimal doping associated with disappearance of this bond order [7, 31]. An

important challenge is to use such a critical point to describe the evolution of the Fermi surface

[17], and the ‘strange’ metal.
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[32] M. Vojta and O. Rösch, Phys. Rev. B 77, 094504 (2008).

[33] I. A✏eck, Z. Zou, T. Hsu, and P. W. Anderson, Phys. Rev. B 38, 745 (1988); E. Dagotto, E. Fradkin,

and A. Moreo, Phys. Rev. B 38, 2926 (1988).

[34] G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 (1988).

[35] Hae-Young Kee, Annals of Physics 325, 1260 (2010).

[36] J. P. Hinton et al., arXiv:1305.1361.

[37] A. Garg, M. Randeria, and N. Trivedi, Nature Physics 4, 762 (2008).

11

http://dx.doi.org/10.1038/nphys2641
http://arxiv.org/abs/1210.3276
http://arxiv.org/abs/cond-mat/0402109
http://arxiv.org/abs/1305.1361


SUPPLEMENTARY MATERIAL

First, we give further details on the function �Q in Fig. 2. In Fig. 4, we plot �Q along di↵erent

lines in the Brillouin zone, and also indicate the regions where T is preserved and broken.
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FIG. 4: Plot of the eigenvalue of Fig. 2 along the Brillouin zone diagonal with Q = (Q,Q) (full line), along

the line Q = (Qm,Q) (dotted blue line), now with L = 80. The eigenfunction �Q(k) has predominant d

symmetry (as in the state of Ref. [21]) with T preserved to the left of the filled circles, and predominant px,y

symmetry with T broken (as in the state of Refs. [25, 26]) to the right of the filled circles. The Q = (0, 0)

point corresponds to Ising nematic order [22–24].

Next, we describe properties of the bond-ordered state in Eq. (9). Inserting Eq. (9) into Eq. (3),

we see that the real space order parameter �i j is non-zero only when i = j, or when i and j

are nearest neighbors. The values of �ii correspond to an ordinary on-site charge density wave

on the Cu sites at wavevectors Q = (0,±Qm), (±Qm, 0) with amplitude proportional to �s. The

larger component of the ordering is however the bond-density wave given by �i j with i, j nearest

neighbors, whose amplitude is proportional to �d. We show plots of the values of �i j on the

bonds of the square lattice in Fig. 5 and 6. Fig 5 contains the case of uni-directional order only

at the wavevectors Q = (±Qm, 0), while Fig. 6 is the case of bi-directional order at wavevectors

Q = (±Qm, 0) and Q = (0,±Qm).

For completeness, we also show the corresponding plots for ordering along Q = (±Qm,±Qm)

in Figs 7 and 8; these appeared earlier in Figs. 22 and 23 in Ref. [21] at a di↵erent period. Note that

the di↵erence between bi-directional order at Q = (±Qm, 0) and Q = (0,±Qm) in Fig. 6 and bi-

directional order at Q = ±(Qm,Qm) and Q = ±(Qm,�Qm) in Fig. 8 is subtle, and not immediately
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FIG. 5: Plot of the values of �i j, when i and j are nearest neighbors; the value is denoted by a colored square

centered at the midpoint between i and j. The lines intersect at the Cu sites, and the colored squares are on

the O sites: the colors are therefore a measure of the charge density (or other spectral properties) on the O

sites. This is also the bond-component of the ordering in Eq. (9), proportional to �d; there is an additional

site-component, proportional to �s, which is not shown. The plot above is for the case of uni-directional

order at Q = (±Qm, 0) where Qm = 4⇡/11, and other cases are in the following figures.

apparent at first glance: the periods along the x and y axes appear the same. However, the Fourier

transforms of these two cases are distinct.

The four plots in Fig. 5-8 together contain information that should be useful in interpreting

scanning tunneling microscopy, nuclear magnetic resonance, and X-ray scattering experiments:

the colors can be viewed as a measure of any observable on the O site which is invariant under

time-reversal and spin rotation. Most simply, such an observable is the charge density on the O site,

but any spectral property of the O atom also qualifies, and the latter can have readily measurable

consequences in such experiments.

Finally, we consider the electronic spectral function in the presence of bond-ordering in a metal.

This is obtained by diagonalizing the following Hamiltonian

Hb =
X

k

"
"(k)c†k↵ck↵ �

X

Q

�Q(k +Q/2) c†k+Q,↵ck↵

#
, (10)
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FIG. 6: As in Fig. 5, but for the case of bi-directional order at Q = (±Qm, 0) and Q = (0,±Qm).
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FIG. 7: As in Fig. 5, but for the case of uni-directional order at Q = ±(Qm,Qm). We have chosen �Q(k) to

be purely d, which is an excellent approximation to the state in Table I. In this case �i j is non-zero only if i

and j are nearest neighbors, and these are shown above; there is no density wave on the Cu sites. This plot

also appeared in Ref. [21] with a di↵erent period.
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FIG. 8: As in Fig. 7, but for the case of bi-directional order at Q = ±(Qm,Qm) and Q = ±(Qm,�Qm).

where the sum over k extends over the complete Brillouin zone of the square lattice. For the case

of bi-directional order in Eq. (9), the sum over Q extends over the 4 values (±Qm, 0) and (0,±Qm).

Some care must be taken in evaluating the wavevector Q/2 in the argument of �Q in Eq. (10)

as it is not invariant under translation of Q by a reciprocal lattice vector of the square lattice: in

each term, we take the momenta k and k + Q to be separated by exactly Q (and not modulo a

reciprocal lattice vector), and then �Q(k +Q/2) is evaluated at the midpoint between them. For

Qm = 4⇡/11, determining the spectrum of Hb involves diagonalizing a 121⇥121 matrix for each k.

From the eigenfunctions and eigenvectors we computed the imaginary part of the single-electron

Green’s function, ImGk,k(! + i⌘), the quantity related to the photoemission spectrum. For the

bi-directional ordering along Q = (±Qm, 0), (0,±Qm) of Eq. (9) the result is shown in Fig. 9. The

corresponding result for bi-directional ordering along Q = ±(Qm,Qm),±(Qm,�Qm) is in Fig. 10;

in this case �s = 0 by symmetry, and only �d was non-zero.

The stability of the Fermi arc in the ‘nodal’ region (kx ⇡ ky) is enhanced [32, 37] because of

the weak coupling to the charge order, arising from the predominant d character of Eq. (9). In the

anti-nodal region, the parent Fermi surface has been gapped out by the bond order, but ‘shadows’

are apparent at wavevectors shifted by the charge order. However, these Fermi surfaces should

be easily broadened by impurity-induced phase-shifts in the charge ordering, while protecting the
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FIG. 9: Electron spectral density in the phase with bidirectional charge order at Q = (Qm, 0) and (0,Qm)

with Qm = 4⇡/11. The left panel show ImGk,k(! + i⌘) at ! = 0 and ⌘ = 0.02; the right panel shows

log
⇥
ImGk,k(! + i⌘)

⇤
for the same parameters, as a way of enhancing the low intensities. The dashed line

is the underlying Fermi surface of the metal without charge order. The charge order is as in Eqs. (3,9) with

�d = 0.3, �s/�d = �0.234, and other parameters as in Fig. 2.

nodal arcs. Furthermore, contributions from the superconducting component of the pairing order

parameter should also help fully gap out the antinodal region.
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FIG. 10: As in Fig. 9, but for the case of bi-directional ordering along Q = ±(Qm,Qm),±(Qm,�Qm). The

charge order is as in Eqs. (3,9) with �d = 0.3, and �s = 0 is required by symmetry.
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