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Abstract: We compute three-point correlators between the stress-energy tensor and con-

served currents of conformal field theories (CFTs) in 2+1 dimensions. We first compute the

correlators in the large-flavor-number expansion of conformal gauge theories and then do the

computation using holography. In the holographic approach, the correlators are computed

from an e↵ective action on 3+1 dimensional anti-de Sitter space (AdS
4

), and depend upon the

co-e�cient, �, of a four-derivative term in the action. We find a precise match between the

CFT and the holographic results, thus fixing the values of �. The CFTs of free fermions and

bosons take the values � = 1/12,�1/12 respectively, and so saturate the bound |�|  1/12

obtained earlier from the holographic theory; the correlator of the conserved gauge flux of

U(1) gauge theories takes intermediate values of �. The value of � also controls the fre-

quency dependence of the conductivity, and other properties of quantum-critical transport at

non-zero temperatures. Our results for the values of � lead to an appealing physical inter-

pretation of particle-like or vortex-like transport near quantum phase transitions of interest

in condensed matter physics. This paper includes appendices reviewing key features of the

AdS/CFT correspondence for condensed matter physicists.
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1 Introduction

This paper is a contribution to the program of connecting strongly interacting condensed

matter systems to theories based upon the methods of gauge-gravity duality [1, 2]. Such

methods o↵er powerful tools to describe dynamics at non-zero temperatures, and far from

equilibrium, in regimes far-removed from any quasiparticle theory. But they have been rig-

orously established only for strongly interacting non-Abelian gauge theories which are very

di↵erent from those relevant for condensed matter applications. For the latter, the simplest

context in which the connections may be made are conformal field theories (CFTs) in 2+1

dimensions [3] which are dual to gravity theories on AdS
4

. Myers et al. [4] proposed extend-

ing the gauge-gravity methods to a wider class of systems by viewing the gravity theory as a

phenomenological e↵ective field theory on 3+1 dimensional anti-de Sitter space (AdS
4

), with

physical observables to be computed in the gravity theory at tree level. The e↵ective field

theory was expanded in powers of spacetime gradients, and all terms with up to 4 gradients

were retained; such a field theory was also considered earlier by Ritz and Ward [5]. In this
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Figure 1. Illustration of the AdS-CFT correspondence in the context of quantum critical transport
at finite temperatures. The present paper is concerned with the upper blue arrow: we fix couplings by
matching correlators of the CFT to those of the gravity theory. The bottom blue arrow is addressed
in Refs. [4] and [7], which computed the relevant conductivities and quasi-normal modes of the gravity
dual for general values of the couplings in Eq. (1.7).

paper, we will pin down the values of the coupling constants in this holographic theory by a

matching procedure based upon the computation of 3-point correlators of the stress-energy

tensor and the conserved currents at zero temperature (T ) [6]. This allows us to relate CFTs

of interest in condensed matter to a specific holographic action. And it paves the way for

predictions on the non-zero T and non-equilibrium dynamics for condensed matter systems

from holographic methods as illustrated in Fig. 1.

We have written this paper for readers with a background in condensed matter theory, and

a knowledge of general relativity. Readers with no prior knowledge of gauge-gravity duality

are referred to a recent review article [8] for an overall perspective, and to Appendix B for a

description of the correspondence between correlators of the CFT and the theory on AdS
4

.

While our results are quite general, it is useful to express them in the context of a

particular CFT which has numerous condensed matter applications [9, 10, 11]. The matter

sector has Dirac fermions  ↵, ↵ = 1 . . . Nf , and complex scalars, za, a = 1 . . . Ns. We will
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always take the large Nf limit with Ns/Nf fixed, and use the symbol NF to refer generically

to either Ns or Nf . These matter fields are coupled to each other and a U(1) gauge field ai

by a Lagrangian of the form

L =

N
f

X

↵=1

i ↵�
iDi ↵ +

N
s

X

a=1

✓

|Diza|2 + s|za|2 + u

2

�|za|2
�

2

◆

+ . . . , (1.1)

where Di = @i� iai is the gauge covariant derivative, the Dirac matrices obey Tr(�i�j) = 2⌘ij

where ⌘ij is the Minkowski metric, and the ellipses represent additional possible contact-

couplings between the fermions and bosons. The scalar “mass” term, s, has to be tuned to

reach the quantum critical point, which is described by a CFT at the renormalization group

(RG) fixed point; fermion mass terms can be removed by imposing discrete symmetries. So

the scalar mass is the only relevant perturbation at the CFT fixed point and only a single

parameter has to be tuned to access the fixed point. All other couplings, such as u and the

Yukawa coupling, reach values associated with the RG fixed point, and so their values are

immaterial for the universal properties of interest in the present paper.

This CFT has three globally conserved currents. There is the SU(Ns) scalar flavor current

J `
s,i = �iz⇤a T `

ab (Dizb) + i (Diza)
⇤ T `

ab zb, (1.2)

where T ` are the generators of SU(Ns) normalized by Tr(T `Tm) = �`m. Similarly there is

the fermion SU(Nf ) flavor current

J `
f,i =  ↵ T `

↵��i  � . (1.3)

Finally, there is the topological U(1) current

Jt,i =
1

2⇡
✏ijk@

jak. (1.4)

We will use the symbol Ji to generically refer to any one of these three currents. A basic

property of the CFT [12] is that the two-point correlator of a conserved current obeys

hJi(k)Jj(�k)i = �CJ |k|
✓

⌘ij � kikj
|k|2

◆

, (1.5)

where k is a spacetime momentum, ⌘ij = diag(�1, 1, 1) is the Minkowski metric, and CJ is

a dimensionless universal constant associated with the CFT and the current. Similarly, the
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stress-energy tensor, Tij , of the CFT has the two-point correlator [13]

hTij(k)Tuv(�k)i = CT |k|3
✓

⌘iu⌘jv + ⌘ju⌘iv � ⌘ij⌘uv + ⌘ij
kukv
|k|2 + ⌘uv

kikj
|k|2

�⌘iukjkv
|k|2 � ⌘ju

kikv
|k|2 � ⌘iv

kjku
|k|2 � ⌘jv

kiku
|k|2 +

kikjkukv
|k|4

◆

, (1.6)

where CT is another universal constant characterizing the CFT.

The primary focus of the present paper will be on the structure of the 3-point correlator

hTi1j1(k1)Ji2(k2)Ji3(k3)i. The general form of this correlator for a CFT was specified by

Osborn and Petkou [12] in position space: they showed that it was fully determined by

the values of CJ , CT , and a single additional constant. Such a position space correlator

was matched to holographic results by Hofman and Maldacena [6], and we will follow their

methods in Section 6. However, we will first perform this computation in momentum space.

It is not a simple matter to take the Fourier transform of the earlier position space result [12],

and we will therefore compute this correlator directly from the CFT, and from its holographic

partner.

Our purpose is to relate the conserved current correlators of the CFT (1.1) to the e↵ective

holographic theory of Refs. [4, 5]. The theory is defined on AdS
4

, and has a (non-Abelian

or Abelian) gauge field Aµ, and corresponding gauge flux Fµ⌫ , associated with each of the

conserved currents Ji. (Our convention is that Greek indices run over all directions in the

bulk, while Latin indices are used to denote boundary directions.) We note that there is no

direct relationship between the bulk gauge field Aµ and the boundary gauge field ai. The

4-derivative action for each bulk gauge field is

S =
1

g2
4

Z

d4x
p�gTr



�1

4
Fµ⌫F

µ⌫ + � Cµ⌫⇢�Fµ⌫F ⇢�

�

, (1.7)

where Tr is the trace over SU(Ns) or SU(Nf ) indices (if present), gµ⌫ is the metric of AdS
4

and Cµ⌫⇢� is the Weyl curvature tensor. As we will review below, matching the two-point

correlator of the current between (1.1) and (1.7) fixes the value of the coupling g
4

. The

coupling crucial for our purposes is �; it was shown that the stability of the theory S requires

|�|  1/12. The structure of the 3-point correlator hTi1j1(k1)Ji2(k2)Ji3(k3)i is determined

by �, and so � will play the role of the additional constant noted by Osborn and Petkou [12]

(the explicit relation to their constants is specified in Section 6). Comparison with the CFT

computation yields the value of �. An overview of the correlation functions needed to fix the

values of the coupling constants in Eq. (1.7) is given in Fig. 2.
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Figure 2. Correlators (with helicity projections) that fix the numerical values of the couplings in the
holographic action specified by Eqs. (1.7) and (B.22). These correlators are evaluated in the present
paper in the boundary conformal field theory.

Our results for the values of � for the currents in (1.2), (1.3), and (1.4) are

�f =
1

12
+O(1/NF ),

�s = � 1

12
+O(1/NF ),

�t =
Ns � Nf

12(Ns + Nf )
+O(1/NF ). (1.8)

It is interesting that the free CFT results (�f and �s at NF = 1) saturate the bound on �

in the large NF limit. We recall that a similar feature was observed in earlier computations

of three-point correlators of the stress energy tensor, where the free field results also saturate

the bounds obtained from the holographic higher derivative theory [14, 15].

For Nf = 0 we have �s = ��t. This change in sign of � is consistent with the expectations

[4] of its transformation under particle-vortex duality, and the interpretation of Jti as the

matter current in the dual theory. Further discussion on the physical consequences of these

values of � appear in Section 7.

We note that 3-point correlators of CFTs have also played an important role in recent

investigations of theories with higher-spin conserved currents [16]. Our 3-point correlator is

similar, but our holographic considerations follow a di↵erent route.

The outline of the rest of the paper is as follows. In Section 2 we describe the setting,

in which we will perform our correlation function calculations. Section 3 will present the

computation of the 3-point correlator in the large NF limit of the CFT. In Section 4 we will

present the holographic computation of the 3-point correlator implied by the AdS
4

action of

Myers et al. at tree level. The two sets of results will be matched in Section 5. Section 6 will

present another derivation of our values of � for the free field theories, using the methods of

Ref. [6]. In Section 7, we explore some of the consequences of these results.
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2 Setting

In this section, we introduce our momentum space notation for the 3-point correlators and

briefly recapitulate the spinor-helicity projections that we perform in the CFT as well as in

the holography computation. The momentum space expressions of the 3-point correlator are

obtained by Fourier transforming along the boundary directions:

Ki1j1i2i3(k
1

,k
2

,k
3

) =
⌦

T i1j1(k1)J
i2(k2)J

i3(k3)
↵

⌘
Z

D

T
n

T i1j1(x1)J
i2(x2)J

i3(x3)
oE

ei
P3

m=1 km·xmd3xm,
(2.1)

where T is the time-ordering symbol and the integral runs over the three flat directions on the

boundary. (The time-ordered correlator is what we would get by computing the Euclidean

correlation function and then Wick-rotating to Lorentzian space.)

There are several advantages of working in momentum space. Some of these will become

apparent below, but let us comment on one immediate benefit. In 2.1, we have many free

indices. In particular, for the stress-tensor, the Ward identities tell us that if we contract i
1

and j
1

in (2.1), this will yield a known answer in terms of lower point correlators. Similarly

(2.1) is symmetric in i
1

, j
1

up to contact terms that again involve two-point functions. How-

ever, this still naively leaves us with 5 degrees of freedom in the stress-tensor and 3 in each

of the currents.

However, both the stress-tensor and the currents are conserved. In position space, this

leads to di↵erential Ward identities. In momentum space, these identities become algebraic:

they translate to the simple statement that, for m = 1, 2, 3, the contraction km,i
m

Ki1j1i2i3 is

determined in terms of lower-point correlators.

This means that we can extract all the physical information in (2.1) by contracting the

stress-tensor with any two symmetric and traceless polarization tensors that are transverse

to the momentum k1, and the two currents with polarization vectors that are transverse to

k2 and k3 respectively. So, we can instead consider

K(e1,k1, ✏2,k2, ✏3,k3) = e
1,i1j1✏2,i2✏3,i3hT i1j1(k1)J

i2(k2)J
i3(k3)i. (2.2)

Here e1 is a polarization-tensor for the stress-tensor, and ✏2 and ✏3 are polarization vectors for

the currents. We choose these to be transverse to the momentum carried by the corresponding

operator, and it will also be convenient for us to choose them to be null:

✏

m

· k
m

= ✏

m

· ✏
m

= 0. (2.3)

We can choose the polarization tensor e1 to be just an outer product of two polarization
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vectors for k1:

e
1,ij = ✏

1,i✏1,j . (2.4)

So, the use of momentum space drastically cuts down the number of independent indices

that we need to deal with and allows us to directly engage with the physical quantities in

(2.2).

To simplify the algebra even further, we will use the spinor-helicity formalism to write

down explicit expressions for the polarization tensors and, later, to simplify the correlators.

The spinor-helicity formalism was initially introduced to study four dimensional scattering

amplitudes, as a means of e�ciently encoding the kinematics of the external particles. (See

Ref. [17] and references there.) It was adapted to the study of correlators in three-dimensional

conformal field theories by Maldacena and Pimentel [18].

Our conventions are di↵erent from those of Ref. [18], and we provide a detailed introduc-

tion to this formalism in Appendix C. Here, we excerpt a few of the essential details to help

the reader parse the formulas in this paper.

Given a three vector k = (k
0

, k
1

, k
2

), we consider the 2⇥ 2 matrix

k↵↵̇ = k
0

�0↵↵̇ + k
1

�1↵↵̇ + k
2

�2↵↵̇ + i|k|�3↵↵̇, (2.5)

where |k| ⌘ p
k · k =

p

k2

1

+ k2

2

� k2

0

. By construction, this 2⇥ 2 matrix has rank 1 and so it

can be decomposed into the outer product of a 2⇥ 1 and a 1⇥ 2 vector:

k↵↵̇ = �↵�̄↵̇. (2.6)

The � and �̄ are called spinors, and instead of giving the momentum 3-vectors for each

operator insertion, we can instead give these spinors.

We can define dot products of these spinors via:

h�
1

, �
2

i = ✏↵��
1↵�

2� = �
1↵�

↵
2

,
⌦

�̄
1

, �̄
2

↵

= ✏↵̇
˙��̄

1↵̇�̄
2

˙� = �̄
1↵̇�̄

↵̇
2

. (2.7)

Finally, one other advantage of this formalism is that the polarization vectors we referred to

above can be written quite easily in terms of these spinors:

✏+↵↵̇ = 2
�̄†↵�̄↵̇
⇥

�, �̄
⇤ =

�̄†↵�̄↵̇
i|k| , ✏�↵↵̇ = 2

�↵�
†
↵̇

⇥

�, �̄
⇤ =

�↵�
†
↵̇

i|k| , (2.8)

where we have labeled the polarization vectors by a “helicity” that can either be positive or

negative. We refer the interested reader to Appendix C for further details.
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3 CFT computation of 3-point correlators

In this section, we compute the three-point correlators of each of the conserved currents (1.2),

(1.3), and (1.4) for the CFT Lagrangian (1.1) with its stress-energy tensor:

Tij = Ts,ij + Tf,ij , (3.1)

which consists of a scalar, bosonic contribution

Ts,ij =
N

s

X

a=1

✓

(Diza)
⇤ (Djza) + (Djza)

⇤ (Diza)� 1

4

�

@i@j + ⌘ij@
2

� |za|2
◆

, (3.2)

and the fermionic contribution

Tf,ij =
i

4

N
f

X

↵=1

✓

 ↵�i (Dj ↵) +  ↵�j (Di ↵)�
�

D⇤
i  ↵

�

�j ↵ � �D⇤
j ↵

�

�i ↵

◆

. (3.3)

We evaluate the correlators by summing over all possible Wick contractions of the constituent

operators of hTJJi defined in (2.1) in the limit of large flavor number NF . As expected, we

will see that the leading contractions with the flavor currents are those of the free CFT. For

the topological currents the first non-vanishing contractions appear at O(1/NF ). All con-

tractions involve tensor-valued one-loop integrations in momentum space which we evaluate

using Davydychev recursion relations [19]. Finally, the full tensor-valued expressions are con-

tracted with the polarization or helicity operators defined in Sec. 2 to bring them to a form

that facilitates comparison with the corresponding helicity projections from the holographic

calculation (performed in Sec. 4).

We refer the readers to Appendix A for a review of the computations of the two-point

functions, hJJi and hTT i, leading to (1.5, 1.6) and the final results after contracting with

the corresponding polarization tensors.

3.1 hTJJi for SU(Ns) scalar flavor current

Evaluating Wick’s theorem for the scalar correlator yields two non-vanishing contractions

depicted diagrammatically in Fig. 3. The full expression for the two diagrams is:

Ki1j1i2i3
s (k1,k2,k3) =

Z

d3P

8⇡3
4

P 2(P + k1)2(P � k2)2
(2P � k2)

i2(2P + k1)
i3

⇥


1

2
(P � k2)

i1(P + k1)
j1 +

1

2
(P � k2)

j1(P + k1)
i1

+
1

8
(|k3|2⌘i1j1 + (k1 + k2)

i1(k1 + k2)
j1)

�

,

(3.4)
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Tij(k1)

Ji2(k2)
Ji3(k3)

Tij(k1)

Ji3(k3)

Ji2(k2)

Figure 3. One-loop triangle diagrams for the scalar contribution to hTJJi. The top corner of the
respective triangles are (momentum-dependent) stress-tensor vertices while the bottom two corners
represent current vertices.

P P + k1

Tij(k)
2PiPj

Ji(k)

P P + k1

Pi

Figure 4. Momentum structure of the stress tensor (top) and current vertex (bottom) after contract-
ing with transverse and traceless polarization tensors.

with k1 + k2 + k3 = 0. The momentum dependence in the numerator of (3.4) comes from

derivative operators of the fields at each vertex. We are only interested in certain polarization

projections of this expression and we now explain how this simplifies the momentum structure

considerably.

Quite generally, a current insertion with momentum k at a vertex where one line brings

in P (Fig. 4) and the other line carries away P + k leads to an e↵ective vertex: (2Pi + ki).

However, since this correlator will finally be dotted with a transverse polarization vector,

one can drop the ki term on the right hand side in the computations below. Also, here and

below we have dropped the SU(Ns) generator T ` because it only yields factors of unity after

tracing over SU(Ns) indices. Similarly, a stress-tensor insertion carrying momentum k at a

vertex where one line brings in the loop-momentum P (Fig. 4) and the other line carries

away P +k results in a vertex that we are finally going to contract with a polarization tensor

that is transverse and traceless. Since this tensor will satisfy eij⌘ij = 0 = eijki, we can drop

– 9 –



the terms proportional to ⌘ij and also the terms proportional to ki and kj above. Using this

logic, the expressions for the e↵ective stress tensor and current vertex, respectively, become

quite simple (see Fig. 4) and from Eq. (3.4) we only need to consider

8Nsei1j1✏i2✏i3

Z

d3P

8⇡3



Pi1Pj1(P + k1)i2Pi3

P 2(P + k1)2(P � k3)2
+

Pi1Pj1(P + k1)i3Pi2

P 2(P + k1)2(P � k2)2

�

. (3.5)

These integrals can be done by automating the Davydychev recursion relations [19]. The

resulting expressions are quite lengthy, as shown in the attached Mathematica file [20]. How-

ever, after we dot this answer with polarization tensors and rewrite it using the spinor helicity

formalism, our final answers are quite simple. The interested reader should again consult the

Mathematica file for details. We find the following results for Ns complex scalars, which we

will later compare to the results obtained from holography:

1

Ns
K+��

s =
�h�

3

, �
2

i4
32 h�

2

, �
1

i2 h�
3

, �
1

i2 |k1|2|k2||k3|
h

�|k1|2 � (|k2|� |k3|)2
�

2

(|k2|+ |k3|)
i

.

(3.6)

Contracting the stress tensor with a negative helicity polarization tensor and both the

currents with negative helicity polarization vectors leads to:

1

Ns
K���

s =
h�

2

, �
1

i2 h�
3

, �
1

i2
32|k1|2

✓

8|k1|3
(|k1|+ |k2|+ |k3|)4 � 1

|k2| �
1

|k3|
◆

. (3.7)

Contracting with a negative helicity for the stress tensor and one of the currents, and a

positive helicity for the second current, we find:

1

Ns
K��+

s =
h�

2

, �
1

i4 (�|k1|+ |k2|+ |k3|)2
32 h�

3

, �
2

i2 |k1|2|k2||k3|(|k1|+ |k2|+ |k3|)2
⇥ ⇥(|k2|+ |k3|)

�|k1|2 + |k2|2 + |k3|2
�

+ 2
�|k2|2 + |k3|2

� |k1|
⇤

.

(3.8)

It is worthwhile to point out that all the answers above have the correct Lorentz transfor-

mation properties on the boundary and have the correct dimension. They are also symmetric

in particles 2 and 3 when those particles have the same helicity.

3.2 hTJJi for SU(Nf ) fermion flavor current

Now, we turn to the computation of the three-point correlator Kf for the fermion current Jf .

The non-vanishing contractions from Wick’s theorem are again given by Fig. 3 with fermion

loop propagators and the current and stress tensor vertices carrying additional Dirac matrix

structure instead of derivative operators, as was the case for scalars. The full expression for
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Kf is given by,

Ki1j1i2i3
f (k1,k2,k3) = � 1

4



⌥i1u3i2v2i3u2⌘j1v3 + i
1

$ j
1

�

Z

d3P

8⇡3
(2P+ k1 � k2)v3(P� k2)u3Pv2(P+ k1)u2

P 2(P+ k1)2(P� k2)2
,

(3.9)

with a trace over six Dirac matrices given by

⌥i1u3i2v2i3u2 = 2Tr[�i1�u3�i2�v2�i3�u2 ]. (3.10)

Again the momentum integral can be done using the Davydychev recursion relations and

the trace over Dirac matrices can be carried out using standard identities of the Cli↵ord

algebra. After contracting with polarization vectors — the reader should consult the attached

Mathematica file [21] for details — and simplifying further, we get:

1

Nf
K+��

f =
�h�

3

, �
2

i4
64 h�

2

, �
1

i2 h�
3

, �
1

i2 |k1|2|k2||k3|
h

�|k1|2 � (|k2|� |k3|)2
�

2

(|k2|+ |k3|)
i

,

(3.11)

1

Nf
K���

f =
h�

2

, �
1

i2 h�
3

, �
1

i2
64|k1|2

✓ �16|k1|3
(|k1|+ |k2|+ |k3|)4 � 1

|k2| �
1

|k3|
◆

, (3.12)

1

Nf
K��+

f =
h�

2

, �
1

i4 (�|k1|+ |k2|+ |k3|)2
64 h�

3

, �
2

i2 |k1|2|k2||k3|(|k1|+ |k2|+ |k3|)2
(3.13)

⇥ ⇥(|k2|+ |k3|)|k1|2 + (|k2|� |k3|)2 (2|k1|+ |k2|+ |k3|)
⇤

,

where we used the same conventions for the helicity superscripts as in the scalar case (3.6).

3.3 hTJJi for U(1) topological current

The contractions involving two topological currents (1.4) necessarily involve two gauge field

insertions and the leading diagrams of the 1/NF expansion are shown in Fig. 5. Although

there is no bare dynamics in the gauge sector of Eq. (1.1), the gauge field picks an order 1/NF

dynamical renormalization from fluctuations of the scalars and fermions [10], and takes the

well known “overdamped” form:

Du2v2(q) = hau2av2i =
16

(Ns + Nf )

1

|q|
✓

⌘u2v2 � ⇣
qu2qv2
q2

◆

, (3.14)
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Figure 5. Feynman diagrams contributing to the 3-point correlator of Jt. The full lines are the
bosonic or fermionic matter fields, and the zigzag line is the ai propagator.

where ⇣ is a gauge-fixing parameter that should not appear in the expression for any physical

observable. With this gauge propagator, the diagrams in Fig. 5 evaluate to the expressions:

Ki1j1i2i3
t (k

1

,k
2

,k
3

) =

✓

8

⇡(Nf + Ns)

◆

2

✏i2u2v2✏
i3
u3v3

ku2
2

ku3
3

|k2||k3|

⇥
"

Nf

(

Ki1j1v2v3
f (k

1

,k
2

,k
3

)

+
|k3|
32

⇥

⌘v2j1⌘i1v3 + ⌘v2i1⌘j1v3
⇤

+
|k2|
32

⇥

⌘v3j1⌘i1v2 + ⌘v3i1⌘j1v2
⇤

)

+Ns

(

Ki1j1v2v3
s (k

1

,k
2

,k
3

)

+
|k2|
16

⇥

⌘v2j1⌘i1v3 + ⌘v2i1⌘j1v3
⇤

+
|k3|
16

⇥

⌘v3j1⌘i1v2 + ⌘v3i1⌘j1v2
⇤

)#

, (3.15)
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where the terms proportional to Ks and Kf , respectively, originate from the top diagram

in Fig. 5. The other terms proportional to products of the metric originate from the loops

involving only two internal propagators; these terms are analytic in two of the momenta and

give rise to contact terms when Fourier transformed back to position space. A discussion of

the nature of these terms appears in Section 5. These contact terms drop out of the final

polarization contractions that are compared to the results from holography.

4 Holographic computation of 3-point correlators

In this section we will compute the three-point correlators discussed above, from the bulk

theory, using AdS/CFT.

We will work with the Poincare patch of AdS:

ds2 =
dz2 + ⌘ijdxidxj

z2
, (4.1)

where i, j run over the three boundary directions and we have set the AdS radius to 1. So,

all dimensionful quantities that follow are measured in these units.

The computation of the correlator requires us to evaluate the bulk action to non-linear

order, in the presence of certain solutions to the linearized equations of motion. This cor-

responds to evaluating the “Witten diagram” in Fig. 6 which requires a three-point bulk

interaction between the gauge fields and the fluctuations of the metric.

Figure 6. Witten diagram illustrating the holographic computation. The disk represent AdS4, and
the CFT is on its boundary. The holographic co-ordinate, z, is the radial direction. The wavy line is
a bulk graviton hµ⌫ , and the dashed line is the gauge field Aµ.
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4.1 Evaluation of the Bulk Action

The first step in our computation is to write down the non-linear three-point interaction

terms in the action. We can simplify our calculation by realizing that we are only interested

in evaluating this action “on-shell,” (when the gauge field and metric perturbation satisfy

linearized equations of motion) and so there are various terms that we can drop, as we will

do below.

The relevant part of the action is:

S =
1

g2
4

Z

d4x
p�g



�1

4
Fµ⌫F⇢�gµ⇢g⌫� + �Cµ⌫⇢�F↵�F��g

µ↵g⌫�g⇢�g��
�

. (4.2)

First, we need to expand the Weyl tensor term in terms of the metric perturbation. We

will use the conformal transformation properties of the Weyl tensor to write:

C↵���

⇣⌘µ⌫
z2

+ hµ⌫

⌘

=
1

z2
C↵���

�

⌘µ⌫ + z2hµ⌫

�

. (4.3)

For convenience, we define
ehµ⌫ = z2hµ⌫ . (4.4)

In what follows below, we will use the notation that:

C↵��� ⌘ C↵���

⇣⌘µ⌫
z2

+ hµ⌫

⌘

,

eC↵��� ⌘ C↵���

⇣

⌘µ⌫ + ehµ⌫

⌘

,
(4.5)

with similar conventions for other quantities like the Riemann and Ricci tensors. (A tilde

comes on top of quantities evaluated in the flat space background metric, with the perturba-

tion eh.)

We can choose a gauge — both in flat space, and in AdS — where the metric fluctuation

obeys:
ehzµ = 0. (4.6)

It is easy to check that solutions to the equations of motion must be transverse and traceless:

ehµ⌫⌘
µ⌫ = 0 = @⇢hµ⌫⌘

µ⇢. (4.7)

If we know that we will only have to evaluate the interaction vertex on wave-functions

that obey (4.6) and (4.7), we can simplify the expressions for the Riemann tensor, the Ricci
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tensor, and the Ricci scalar in the linearized theory:

eR↵µ�⌫ =
1

2

⇣

eh↵⌫,µ� + ehµ�,⌫↵ � ehµ⌫,↵� � eh↵�,µ⌫

⌘

,

eR↵� = �1

2
⌘µ⌫@µ@⌫eh↵� ,

eR = 0.

(4.8)

From this, we can obtain the Weyl tensor, which is: (here d is the boundary dimension, and

so d + 1 is the bulk dimension)

eC↵µ�⌫ = eR↵µ�⌫ � 2

d � 1

⇣

⌘↵[� eR⌫]µ � ⌘µ[� eR⌫]↵

⌘

+
2

d(d � 1)
eR⌘↵[�⌘⌫]µ

=
1

2

⇣

eh↵⌫,µ� + ehµ�,⌫↵ � ehµ⌫,↵� � eh↵�,µ⌫ +⇤
n

⌘↵[�eh⌫]µ � ⌘µ[�eh⌫]↵

o⌘

,

(4.9)

where, we have defined ⇤ ⌘ ⌘µ⌫@µ@⌫ and used d = 3.

However, this expression can be simplified considerably. With the understanding that

i, j, k, l run over the boundary directions and with z representing the radial-direction, we need

the following components of the Weyl tensor:

2 eCzizj =
1

2

"

X

l

@2l � @2z

#

ehij ,

2 eCzijk = @k@zehij � @j@zehik,

2 eCijkl =
1

2

"

@2z �
X

l

@2l

#

⇣

⌘ikehjl � ⌘ilehkj � ⌘jkehil + ⌘jlehik

⌘

.

(4.10)

In evaluating the first two lines, we have used the conditions (4.6) and (4.7). In evaluating the

last line, we have used the fact that the Weyl tensor vanishes identically in 3-dimensions. This

might suggest that only the additional term involving the z-derivatives survives; however, one

needs to be careful about the factor in front of the Laplacian, which is dimension dependent.

When we take all of this into account, we get the expression above.1

With these results for the flat-space Weyl tensor, the expression for the Weyl tensor in

AdS is also fixed by the relation (4.3). We should point out that while we have not written all

the non-zero components above, the components that we have written, and the symmetries

of the Weyl tensor fix everything.

To evaluate the interaction vertex, we also note the fact that, for the evaluation of the

1This almost— but not quite — agrees with the results of Ref. [18]. In particular the first line of (4.10)
does not agree with the first line of (2.12) of Ref. [18] in general, and neither does the last line. However, the
expressions do agree if we are evaluating this tensor on a solution of the form h

ij

= ✏
ij

e�|k|z+ik·x, which was
the case under consideration in that paper.
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three point function under consideration, the non-Abelian terms in the field-strength are

unimportant. So, in what follows below, we simply take:

Fµ⌫ = @µA⌫ � @⌫Aµ, (4.11)

and choose a gauge where

Az = 0, @iA
i = 0. (4.12)

To finally evaluate the interaction vertex in AdS, we will use the explicit forms of the

wave functions for the gauge field and for the graviton. These are given by:

Ai = ✏ie
�|k|zeik·x,

hij =
1

z2
eije

�|k|z (1 + |k|z) eik·x,

ehij = eije
�|k|z (1 + |k|z) eik·x.

(4.13)

See Ref.[22] for further details on the notation. Below, we will use Rm to denote the radial

part of the wave function of the mth particle:

R
1

= (1 + |k1|z)e�|k1|z, R
2

= e�|k2|z, R
3

= e�|k3|z, (4.14)

and also use the notation: ḟ ⌘ @f
@z .

We now need to evaluate the variation of the action to first order in the metric pertur-

bation h, and second order in the gauge field. This is appropriate, since we wish to compute

a three point function involving one stress tensor and two currents. Since the Weyl tensor

vanishes in pure AdS, and we have no gauge field background either, the variation in the

Weyl-gauge term is simply its value in the presence of the perturbation,

g2
4

�
�S

1

=

Z

dz
p�gCµ⌫⇢�F↵�F��g

µ↵g⌫�g⇢�g��. (4.15)

Let us now evaluate the di↵erent contractions that appear in the expression above, keep-

ing track of the numerical factors.

• First of all, we note that given the expressions for the wave functions in (4.13) above,

we can always replace a derivative @j ! ikj . Each term in the contraction has two such

spatial derivatives leading to an overall minus sign.

• Secondly, the Weyl tensor is anti-symmetric under the interchange of the first two or

the third and fourth indices. Since the field strength is also anti-symmetric, we get a

factor of 4 by summing over these permutations.
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• Finally, there is a factor of 1

2

in (4.10), but we have to keep in mind that we need to

sum over the two possible permutations of the gauge-fields in the Witten diagram.

Therefore, we have:

�S
11

= CzizjF
ziF zj + CizjzF

izF jz + CizzjF
izF zj + CzijzF

ziF jz

= �2z6(✏1 · ✏2)(✏1 · ✏3)
⇣

|k1|2R1

+ R̈
1

⌘

Ṙ
2

Ṙ
3

,

�S
12

= CzijkF
ziF jk + CizjkF

izF jk + CijzkF
ijF zk + CijkzF

ijF kz

= �2z6
h

{(k1 · ✏3)(k3 · ✏1)� (k1 · k3)(✏1 · ✏3)} (✏1 · ✏2)Ṙ1

Ṙ
2

R
3

+ {(k1 · ✏2)(k2 · ✏1)� (k1 · k2)(✏1 · ✏2)} (✏1 · ✏3)Ṙ1

R
2

Ṙ
3

i

,

�S
13

= CijklF
ijF kl

= �4z6
h

(k2 · k3)(✏3 · ✏1)(✏2 · ✏1)� (k2 · ✏1)(k3 · ✏2)(✏1 · ✏3)
� (k3 · ✏1)(k2 · ✏3)(✏2 · ✏1) + (k2 · ✏1)(k3 · ✏1)(✏2 · ✏3)

i ⇣

R̈
1

+ |k1|2R1

⌘

R
2

R
3

.

(4.16)

Let us make a comment about the overall power of z. We get four-factors of z2 from the four

inverse metric components that are required to raise the indices of F . However, we get one

factor of 1

z2
from C. This is what leads to the overall z6 outside. Also, we caution the reader

that when we write ✏1 · ✏2 above, and other such expressions involving the dot-product of

three-dimensional vectors, this dot-product is taken with the flat space metric:

✏1 · ✏2 ⌘ ✏
1i✏2j⌘

ij . (4.17)

The variation of the full Weyl-gauge term in the action is just the sum of the terms above:

g2
4

�
�S

1

=

Z

dz
p�g [�S

11

+ �S
12

+ �S
13

] . (4.18)

There is, of course, another term that contributes to the three-point function, which

comes from the interaction of the metric perturbation with the stress tensor of the gauge

field. This evaluates to:

g2
4

�S
2

=

Z p�gdz



1

2
Fµ⌫F⇢�⌘

µ↵h↵�⌘
�⇢⌘⌫�

�

z6. (4.19)

Note that the conditions (4.6), (4.7) mean we can drop the term that comes from the variation

of
p�g. We also have an overall minus sign because �gµ⌫ = �gµ⇢h⇢��g�⌫ . The overall factor

of z6 comes from the four inverse metric factors, but it is important to remember that one

– 17 –



needs to include the 1

z2
in h↵� from (4.13).

We can write

g2
4

�S
2

= �
Z

dz

(

h

(k2 · ✏1)(k3 · ✏1)(✏2 · ✏3)� (k2 · ✏1)(✏3 · ✏1)(✏2 · k3)

� (k3 · ✏1)(✏2 · ✏1)(✏3 · k2) + (k2 · k3)(✏2 · ✏1)(✏3 · ✏1)
i

R
1

R
2

R
3

� (✏1 · ✏2)(✏1 · ✏3)R1

Ṙ
2

Ṙ
3

)

.

(4.20)

Note that we have regained a minus sign from the two factors of i that get pulled down

in the di↵erentiation, although this does not occur in the last term above where we have a

z-derivative instead. Also note that all factors of z are gone, when we account for the
p�g

and the factor of 1

z2
in h↵� from (4.13).

As a final step in evaluating the 3-point function we now need to do the radial integrals

in (4.18) and (4.19). First, let us do the radial integrals in (4.18). Note that once we account

for the fact that
p�g = 1

z4
, there is an overall factor of z2 in every radial integral. These are

Z

z2R̈
1

R
2

R
3

dz =
2|k1|2(2|k1|� |k2|� |k3|)

(|k1|+ |k2|+ |k3|)4 , (4.21)

Z

z2Ṙ
1

Ṙ
2

R
3

dz =
6|k1|2|k2|

(|k1|+ |k2|+ |k3|)4 , (4.22)

Z

z2Ṙ
1

Ṙ
2

R
3

dz =
6|k1|2|k3|

(|k1|+ |k2|+ |k3|)4 , (4.23)

Z

z2R
1

Ṙ
2

Ṙ
3

dz =
2|k2||k3|(4|k1|+ |k2|+ |k3|)

(|k1|+ |k2|+ |k3|)4 . (4.24)

(4.25)

Now, we turn to the radial integrals in (4.19). These are

Z

R
1

R
2

R
3

dz =
2|k1|+ |k2|+ |k3|
(|k1|+ |k2|+ |k3|)2 , (4.26)

Z

R
1

Ṙ
2

Ṙ
3

dz = |k2||k3| 2|k1|+ |k2|+ |k3|
(|k1|+ |k2|+ |k3|)2 . (4.27)

(4.28)

All these integrals are convergent.
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4.2 Final Bulk Answers in the Spinor Helicity Formalism

The expressions for the bulk action, and the radial integrals above in principle give us all the

information we need about the boundary correlator. However, to extract some physics from

this, it is convenient to choose various “helicities” for the stress-tensor and the currents and

then write down the answer in the spinor-helicity formalism that was outlined above.

We only need to consider the following three choices of helicities:

1. Both currents, and the stress tensor have negative helicity.

2. The stress tensor and one current has negative helicity, but the other current has positive

helicity.

3. The stress tensor has positive helicity, and the two currents have negative helicity.

All other possibilities can be obtained from these ones by permuting the two currents and/or

using parity.

The use of the spinor-helicity formalism considerably simplifies the algebraic expressions

involved in the answers. The reader who is interested in the algebra that enters this simpli-

fication should consult the accompanying Mathematica file [23]. Here, we simply present the

final answers.

For the case where all the helicities are negative, we have the following expression.

K���
ads

(k1,k2,k3) = �24�
h�

2

, �
1

i2 h�
3

, �
1

i2 |k1|
g2
4

E4

, (4.29)

where we have defined:

E ⌘ |k1|+ |k2|+ |k3|. (4.30)

It is natural for this expression (considered as an analytic function of E) to have a pole

at E = 0, and in fact the residue at this pole is related to the four dimensional flat space

amplitude of a graviton and two gluons as pointed out in Ref. [24]. We also note that the

usual gravitational interaction does not contribute to this helicity combination at all, and the

entire combination comes from the Weyl interaction.

When the stress tensor and the first current insertion are dotted with negative helicity

polarization vectors and the second current is dotted with a positive helicity polarization

vector, we find:

K��+

ads

= �h�
2

, �
1

i4 (|k2|+ |k3|� |k1|)2 (2|k1|+ |k2|+ |k3|)
2 h�

3

, �
2

i2 |k1|2g2
4

E2

. (4.31)

In this case, we find that the Weyl interaction does not contribute to this helicity combination,

whereas the usual gravitational interaction does.
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Finally, we come to the the case where the stress-tensor has positive helicity and the two

currents have negative helicity. For this correlator, we have:

K+��
ads

= 0. (4.32)

Neither the Weyl nor the gravitational interaction contribute to this helicity combination!

It is useful to check that these answers indeed have the expected behaviour under scaling.

Recall that the stress tensor has dimension 3, and the two conserved currents have dimension

2 each. Fourier transforming the 3-position variables gives us a dimension of �9, of which

the momentum space �-function that we have suppressed above soaks up �3. So, we expect

the net dimension in momentum space to be 1, which is true of all the expressions above.

The spinor helicity formalism only makes the Lorentz group on the boundary manifest.

It is possible to check that these answers also satisfy the constraints of special conformal

transformations as indicated in Ref. [18], but this is a slightly more involved calculation.

5 Matching the Answers

In this section, we will match the answers of the CFT computations of Sec. 3 (and Appendix A)

with the AdS answers of Sec. 4. This will allow us to determine the values of physical

parameters in the bulk, that would reproduce the free answers.

5.1 Scalars

��+ Helicity Let us start with (3.8), which we can write as:

1

Ns
K��+

s =
h�

2

, �
1

i4 (�|k1|+ |k2|+ |k3|)2
32 h�

3

, �
2

i2 |k1|2|k2||k3|(|k1|+ |k2|+ |k3|)2
⇥ ⇥(|k1|+ |k2|+ |k3|)2(|k2|+ |k3|)� 2 (2|k1|+ |k2|+ |k3|) |k2||k3|

⇤

=
1

Ns

eK��+

s + C��+

s .

(5.1)

Here,

eK��+

s = �Ns
h�

2

, �
1

i4
h�

3

, �
2

i2
(�|k1|+ |k2|+ |k3|)2(2|k1|+ |k2|+ |k3|)

16|k1|2(|k1|+ |k2|+ |k3|)2 , (5.2)

has exactly the same functional form as the answer obtained from the AdS calculation in

(4.31) and we have defined:

C��+

s =
h�

2

, �
1

i4 (�|k1|+ |k2|+ |k3|)2 (|k2|+ |k3|)
32 h�

3

, �
2

i2 |k1|2|k2||k3|
. (5.3)
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We will now show that (5.3) is purely a contact term. In fact we can write

C��+

s =
1

8
(✏1 · ✏2) (✏1 · ✏3) (|k2|+ |k3|) . (5.4)

To check the equivalence of (5.4) and (5.3), we note that:

�1

8
(✏1 · ✏2) (✏1 · ✏3) (|k2|+ |k3|)

=
�1

32|k1|2|k2||k3| h�1, �2i
2

⇥

�
1

, �̄
3

⇤

2

(|k2|+ |k3|)

=
1

32|k1|2|k2||k3|
h�

1

, �
2

i4 ⌦�̄
2

, �̄
3

↵

2

E2

(|k2|+ |k3|)

=
1

32|k1|2|k2||k3|
h�

1

, �
2

i4
h�

2

, �
3

i2 (|k2|+ |k3|� |k1|)2 (|k2|+ |k3|) ,

(5.5)

where the last line is manifestly the same as (5.3).

However, we can write (5.4) as

C��+

s =
1

32
e
1i1j1✏2i2✏3i3

⇥

⌘i1i2⌘j1i3 (|k2|+ |k3|)
⇤

. (5.6)

The term in the square brackets is the “bare” correlator, before contracting with the polariza-

tion vectors, and this is the term we should Fourier transform to position space. In position

space, this is evidently a contact term.

The general rule is that a term that is “analytic” in two of the momenta yields a contact

term when Fourier transformed to position space. In this case, we notice, for example, that

after adding the overall momentum conserving delta function we have:

Z

|k2|�(k2 + k3 + k1)e
i
P

km·xm
Y

d3k
m

= (2⇡)3�(x
1

� x
3

)

Z

|k2|eik2·(x2�x3)d3k2. (5.7)

Contact terms in correlators are very subtle since they depend on the precise definition of

the correlator, and also on the regulator used to compute it. While they might have physical

significance under some circumstances, in this paper, we will just drop these additional �

function terms and work with K̃��+

s instead of K��+

s .
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+ � � Helicity It turns out that the free answer (3.6) is entirely a contact term in this

case! We note that

1

4
(✏1 · k2)(✏1 · k3)(✏2 · ✏3) (|k2|+ |k3|)

=
1

32|k1|2|k2||k3| h�2, �3i
2

⌦

�̄
1

, �̄
2

↵ ⌦

�̄
1

, �̄
3

↵ ⇥

�̄
1

, �
2

⇤ ⇥

�̄
1

, �
3

⇤

(|k2|+ |k3|)

=
1

32
h�

2

, �
3

i4 (|k1|+ |k3|� |k2|)2(|k1|+ |k2|� |k3|)2 (|k2|+ |k3|)

=
1

Ns
K+��

s .

(5.8)

This is consistent with the fact that both the Weyl interaction and the ordinary gravitational

interaction yield 0 in the AdS calculation (4.32). For notational consistency, we can set:

eK+��
s = 0, C+��

s =
1

Ns
K+��

s . (5.9)

��� Helicity Turning finally to (3.7), we see that this expression can be written as:

1

Ns
K���

s =
1

Ns

eK���
s + C���

s , (5.10)

where

eK���
s = Ns

h�
2

, �
1

i2 h�
3

, �
1

i2
4

✓ |k1|
(|k1|+ |k2|+ |k3|)4

◆

, (5.11)

has exactly the same functional form as the AdS answer (4.29) and the contact term C���
s

is:

C���
s =

�1

8
(✏1 · ✏2)(✏1 · ✏3) (|k2|+ |k3|) . (5.12)

5.1.1 Value of �

Our final task is to find the value of � for free-scalars. To make the normalization of the

two-point functions drop out, we can simply consider the ratio:

eK���
s

eK��+

s

= �12�s
K���

ads

K��+

ads

. (5.13)

Since the two ratios above should be equal, we find that we should set:

�s = � 1

12
, (5.14)

where we have added a subscript to distinguish it from the value for free-fermions that we

will find below.
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We end by pointing out a very interesting feature of the answers (4.29), (4.32) and

(4.31): there is no term where the ordinary interaction and the Weyl interaction contribute

simultaneously. If we had a term where the two interactions contributed simultaneously, we

could have fixed � by looking at the functional form of the answer. However, � appears as a

simple ratio of two answers and so one needs to be extremely careful in determining all the

signs and numerical prefactors in the expressions for the various 3-point functions correctly.

5.1.2 Value of GN

We can also set the value of GN from our calculations. Although GN does not appear in the

three-point computations above, it does appear in the computation of the two-point function

for the stress-tensor from the bulk using the action (B.22). If we write the results for the two

point functions in Appendix A and Appendix B.5 as:

✏
1,i1✏1,i2✏2,i3✏2,i4hT i1i2

s (k)T i3i4
s (�k)i = CT,s|k|3(✏1 · ✏2)2,

✏
1,i1✏2,i2hJ i1

s J i2
s i = �CJ,s|k|(✏1 · ✏2),

(5.15)

then we should demand that the normalization independent quantities be equal:

1
p

CT,sCJ,s

eK���
s =

1
p

CT,adsCJ,ads

K���
ads

,

1
p

CT,sCJ,s

eK��+

s =
1

p

CT,adsCJ,ads

K��+

ads

.
(5.16)

We have, from the results for two point functions:

CT,s =
Ns

128
, CJ,s =

Ns

16
,

CT,ads =
1

⇡GN,s
, CJ,ads =

1

g2
4,s

.
(5.17)

This leads to the scalar contribution

1

GN,s
=
⇡Ns

512
. (5.18)

Note that, with this choice, the quantities CT,s and CT,ads do not agree and this is a

sign of the fact that, with our conventions, the stress-tensor of the bulk theory is normalized

di↵erently from that of the boundary theory. This, in turn, results from our choice of Z

above (B.25). This choice was made to yield a particularly simple graviton bulk to boundary

propagator, and to get CT,s to match with CT,ads we should have chosen Z = �d
4⇡G

N

, which is

twice the choice that we have made currently.
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5.1.3 Value of g2
4

Note that g2
4,s does not appear in the quantities (5.16) at all since it cancels between the

three-point and the two-point functions. However, we can choose a value by demanding that

the two-point functions of the currents be equal in the bulk and the boundary. Imposing:

CJ,ads = CJ,s, (5.19)

we can set:

g2
4,s =

16

Ns
. (5.20)

5.2 Fermions

The analysis for the fermionic answers is almost identical, so we will not repeat it in detail

here. However, with a little work, (see the Mathematica file [21]) we find that we can write:

1

Nf
K���

f =
1

Nf

eK���
f + C���

f ,

1

Nf
K��+

f =
1

Nf

eK��+

f + C��+

f ,

1

Nf
K+��

f =
1

Nf

eK+��
f + C+��

f ,

(5.21)

where
eK���
f = � eK���

s , eK��+

f = eK��+

s , eK+��
f = eK+��

s = 0, (5.22)

and the analytic remainders are:

C���
f =

1

2
C���
s , C��+

f =
1

2
C��+

s , C+��
f =

1

2
C+��
s , (5.23)

which are half those of the scalar-case above.

Thus, we immediately see that for free-fermions, we have

�f = ��s = 1

12
. (5.24)

A standard computation of the fermion 2-point functions shows that as for the scalars, we

now have

g2
4,f =

16

Nf
,

1

GN,f
=
⇡Nf

512
. (5.25)
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Of course, the CFT only has a single GN which is simply 1/GN = 1/GN,f + 1/GN,s at this

order in 1/NF .

5.3 Topological Current

To obtain the value of � for the topological current, we do not need to do any additional

work. The analysis for the topological current proceeds in the following sequence of steps:

1. First, we can ignore the third line of (3.15) which includes terms like ⌘v2j1, ⌘v2i1 etc.

since they are analytic in two of the momenta. This leaves us with the terms involving

Ks and Kf .

2. Instead of contracting Kf and Ks with the polarization vectors ✏2 and ✏3, we instead

need to contract them with the vectors: ✏2 ⇥ k2/|k2| and ✏3 ⇥ k3/|k3|.2

3. However, this returns the original polarization vectors, up to a sign that depends on

the helicity. In particular

✏2 ⇥ k2/|k2| = h
2

✏2, (5.26)

where h
2

is the helicity of current 2. A similar formula holds for current 3.

4. Therefore we get the same amplitudes as earlier up to a sign that is 1 if both currents

have the same helicity and �1 if the currents have opposite helicities.

This chain of argument immediately yields

�t =
(Ns � Nf )

12(Ns + Nf )
. (5.27)

6 Position space correlators and energy flux

In this section, we provide an alternate route to fix the value of � using the 3-point functions

hTJJi in position space. In particular, we will extend the calculation of energy flux in Ref. [6]

to arbitrary spacetime dimensions d and by comparing it with the holographic results, we

relate � to the parameters in the 3-point correlator of a general CFT obtained by Osborn

and Petkou [12]. The latter parameters are known for free CFTs, and so we will obtain an

alternate derivation of the NF ! 1 limits of �s and �f , consistent with our previous results.

In a CFT, we consider a thought experiment in which a localized disturbance or state

is created by the insertion of a conserved vector current (✏ · J), where ✏ is a fixed, spatial

polarization vector. We assume that this local disturbance injects a fixed energy E and the

2We need to be careful because we are in Lorentzian space, and the ordinary rules for the cross-product
will take us from two vectors with lowered indices to a vector with a raised index.
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system evolves in time. Now, we can place calorimeters at large distances and further study

the anisotropic distribution of energy. In this experiment, a particular quantity, that is the

energy flux escaping to the null infinity, will take a very simple form. If the direction of the

null infinity is given by the unit vector n, the energy flux collected by the calorimeter will be

given by:

hE(n)i =
h0|(✏⇤ · J†)E(n)(J · ✏)|0i

h0|(✏⇤ · J†)(J · ✏)|0i (6.1)

=
E

⌦d



1 +A
✓ |✏ · n|2

|✏|2 � 1

d � 1

◆�

, (6.2)

This form of the energy flux is completely fixed by the energy conservation and O(d�1) sym-

metry of the construction. Here E(n) is the energy flux operator, to be introduced shortly in

(6.3). The total energy injected by the perturbation is E and ⌦d = 2⇡
d�1
2 /�(d�1

2

) is the area

of the unit (d� 2)-sphere. Further, A is a constant which characterizes the CFT. As pointed

out after Eq. (1.6), the three point function hTJJi in real space is completely determined by

CJ , CT and an additional constant. The coe�cient A is related to this additional constant

and in holography, it is related to the coupling constant � in (1.7). In this section, we will

find A through field theory and holographic calculations, and by comparing the results we

will fix � for free scalar and fermionic field theories. First, we will begin with the 3-point

function hTJJi in position space, which is specified by Osborn and Petkou [12], and calculate

energy density (6.1) for CFTs.

6.1 A in CFTs

To set up the calculations on field theory side, we work with Minkowski metric with ‘mostly

positive’ signature. In our thought experiment, we place the calorimeter at large distance

along x1 direction and hence the unit vector ni = �i
1

. To measure the energy along the null

infinity, it is convenient to use the light-cone coordinates, which we define as x± = x0 ± x1.

Then, the energy flux operator is given by [6, 14]

E(x1,n) =

Z

dx�
1

"

lim
x+
1 !1

✓

x+

1

� x�
1

2

◆d�2

T��(x
+

1

, x�
1

)

#

, (6.3)

where T�� is the component of the stress energy tensor. Now to fix A, it is su�cient to

calculate the energy one point function for a state created by the operator (J · ✏), which
appears in the numerator of (6.1). So the calculation will boil down to using the expression

for three point function hJ†
i (x2)T��(x1,n)Jj(x3)i and performing various integrations. We

can simplify these integrations by using symmetries of the construction. In the correlations

hJ†
i (x2)T��(x1,n)Jj(x3)i, we can use translation invariance to set x3 = 0. By aligning the
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calorimeter along ni = �i
1

, we have also fixed x1 = {x0

1

, x1

1

, 0, . . . }. With these simplifications,

we will only need to integrate over the coordinates x2 = x = {x0, x1, x2, . . . }. We further

choose the spatial polarization vector ✏ to be ✏ = {✏0, ✏1, ✏2, ✏3 . . . } = {0, cos ✓, sin ✓, 0, . . . }.
In this notation, we clearly have |✏ ·n| = cos ✓ and the numerator of (6.1) takes the following

form

f(E) =

Z

dx+dx�e
iE

⇣
x

++x

�
2

⌘
Z

dd�2x

⇥
Z

dx�
1

"

lim
x+
1 !1

✓

x+

1

� x�
1

2

◆d�2

✏i✏jhJi(x)T��(x
+

1

, x�
1

)Jj(0)i
#

, (6.4)

where now i, j will take the values {+,�, 2}. Now we use the three point correlator hTJJi in
position space to evaluate (6.4). As discussed in Ref. [12], using the conformal symmetry and

Ward identities, the form of the three point functions in d-dimensional CFTs can be fixed to

hTij(x1)Jk(x2)Jl(x3)i =
tijmn(X23) gmp gnq Ikp(x21) Ilq(x31)

|x12|d |x13|d |x23|d�2

, (6.5)

where

x12 = x1 � x2 , X12 =
x13

|x13|2 � x23

|x23|2 and X̂i =
Xi

p|X|2 . (6.6)

Further, we have

Iij(x) = gij � 2
xixj

|x|2 ,

tijmn(X) = â h1

ij(X̂)gmn + b̂ h1

ij(X̂)h1

mn(X̂) + ĉ h2

ijmn(X̂) + ê h3

ijmn(X̂) . (6.7)

h1

ij(X̂) = X̂iX̂j � 1

d
gij

h2

ijmn(X̂) = X̂iX̂mgjn + {i $ j, m $ n}
�4

d
X̂iX̂jgmn � 4

d
X̂mX̂ngij +

4

d2
gijgmn ,

h3

ijmn(X̂) = gimgjn + gingjm � 2

d
gijgmn . (6.8)

In the above expression, {i $ j, m $ n} represents three terms that we get by permuting

the indices. Moreover in (6.7), all the coe�cients with ‘hat’ are not independent and we have

the following relations between them,

d â � 2b̂ + 2(d � 2)ĉ = 0 , b̂ � d(d � 2)ê = 0 . (6.9)

Now to evaluate (6.4), it is convenient to assume that the spacetime is even dimensional.
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This assumption will allow us to use the residue theorem to evaluate certain integrals when

we are doing the calculation for arbitrary d. However, our final results are insensitive to the

parity of the spacetime dimension and in the end, we can analytically continue the results to

odd spacetime dimensions. Now for even d, we go through the following steps to compute

(6.4):

• First we use (6.5) to find the form of hJi(x)T��(x1)Jj(0)i.

• We take the limit x+

1

! 1 to get

Ki��j = lim
x+
1 !1

✓

x+

1

� x�
1

2

◆d�2

hJi(x)T��(x1)Jj(0)i (6.10)

• Next, we integrate over x�
1

. For that, we time order the operators using following i✏

prescription: x0

1

! x0

1

� i✏ and x0 ! x0 � 2i✏.

• We use standard results to integrate over the (d � 2) spatial dimensions orthogonal to

x±. While going through this step for di↵erent i, j in (6.4), we will find that some of

the integrals are divergent. This is just an artifact of performing the integrations along

the directions orthogonal to x±, before integrating over x±. We do so to simplify the

integrations for arbitrary d and to fix these spurious divergences, we use the techniques

of dimensional regularization. At this step, we perform the integration over (d� 2� )

spatial dimensions instead of (d�2), and in the final result we will take the limit ! 0.

So here, we actually calculate

Z

dd�2�x

Z

dx�
1

Ki��j . (6.11)

• Now we perform the integration over x� and x+:

Z

dx� dx+ ei
E

2 x�
ei

E

2 x+
Z

dd�2�x

Z

dx�
1

Ki��j . (6.12)

In the contour integrations at this step, we close the loop from above because only then

the integrations will converge.

• Finally, we take the limit ! 0 to get a finite result:

Qi��j = lim
!0

Z

dx� dx+ ei
E

2 x�
ei

E

2 x+
Z

dd�2�x

Z

dx�
1

Ki��j . (6.13)
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We repeat the above steps for all the values of i and j in (6.4). Details of these calculations

can be found in attached Mathematica program [25] and we find that

Q���� =
(d � 2)

⇣

(d + 1)(2dâ + (d � 2)b̂ + 4(d � 2)ĉ) + 2d(d + 2)ê
⌘

⇡
d

2+2

2d�1 (d + 2)�
�

d+2

2

�

3

✓

E

2

◆d�1

,

Q���+

= �
d
⇣

(d � 2)(d + 1)b̂ + d(dâ + 2(d � 2)ĉ)
⌘

⇡
d

2+2

2d �
�

d
2

+ 2
�

�
�

d
2

+ 1
�

2

✓

E

2

◆d�1

,

Q���2

= 0 ,

Q
+��� = �

⇣

(dâ + 2(d � 2)ĉ)�
�

d
2

� 1
�

�
�

d
2

+ 1
�

+ (d + 1)b̂�
�

d
2

�

2

⌘

⇡
d

2+2

2d�2 �
�

d
2

� 1
�

�
�

d
2

+ 2
�

�
�

d
2

�

2

�
�

d
2

+ 1
�

✓

E

2

◆d�1

,

Q
+��+

=
d(d � 1) b̂⇡

d

2+2

2d�1 �
�

d
2

+ 1
�

3

✓

E

2

◆d�1

,

Q
+��2

= 0 ,

Q
2��� = 0 ,

Q
2��+

= 0 ,

Q
2��2

= � (dâ � 4ĉ)⇡
d

2+2

2d�3 �
�

d
2

�

�
�

d
2

+ 1
�

2

✓

E

2

◆d�1

.

Using these values for Qijkl and relations (6.9) in (6.4), we find that the energy flux for

arbitrary d becomes

hE(n)i =
E

⌦d

✓

1� (d � 1) (d(d � 2)ê � ĉ)

(d � 2) (ê + ĉ)

✓

cos2 ✓ � 1

d � 1

◆◆

. (6.14)

Note that the two point function in the denominator of (6.1) does not have any angular

dependence, and it fixes the normalization of higher point functions. Now, we can easily read

o↵ the value of A from (6.14) and also find it to be consistent with results for d = 4 in Ref. [6].

In Ref. [12], Osborn and Petkou have further studied the position three-point functions

for the specific conformal field theory (1.1). By calculating the collinear three point functions

hTJJi for free scalar and free fermions, they have found the ratio of the coe�cients ĉ and ê

to be
✓

ê

ĉ

◆

s

=
1

d � 2
and

✓

ê

ĉ

◆

f

= 0 . (6.15)

These can be further used to find the value of A in scalar and fermionic conformal field

theories to be

As = d � 1 and Af = �d � 1

d � 2
. (6.16)
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In the next section, we show how A is related to the coupling constant � in action (1.7) for

d = 3. Then, these results are compared with the CFT results (6.16) to fix � for free field

theories.

6.2 A from holography and matching the results

The holographic computation of A for d = 4 was first done in Ref. [6] and then was extended

to d = 3 in Ref. [4]. These calculations can be easily generalized to arbitrary dimensions and

we find that

A = �4 d(d � 1)� . (6.17)

A quick overview of the holographic computation is as follows. According to the AdS/CFT

dictionary, the computation of expectation value of energy flux in the boundary theory, for

a state created by a conserved vector current, boils down to calculating the three point

function between two photons and a graviton. To compute such a three point function in

the bulk gravity (1.7), we need to introduce appropriate metric fluctuations and two gauge

field perturbations in the (d+ 1)-dimensional AdS background. These fluctuations couple to

the stress-energy tensor and vector current insertions Tij and Ji on the boundary and one

needs to evaluate their on-shell contribution for the action (1.7), as was done in Section 4.

The bulk action has two terms. We find that the first term only contributes to the angle

independent component of (6.2) and the second term introduces the anisotropy in the flux

distribution. Hence, merely by comparing the contributions from both of the terms, we can

easily extract the coe�cient A. For more details of this calculation, interested readers can

refer to Appendix D of Refs. [6] and [15].

Now we match the field theory and holographic calculations from Eqs. (6.16) and (6.17)

for d = 3 to find following values of � for free scalars and fermions

�s = � 1

12
and �f =

1

12
, (6.18)

which indeed are consistent with the momentum space calculations in (5.14) and (5.24) in

the limit NF = 1.

7 Conclusions

The primary results of this paper are the values of � in Eq. (1.8) for the conserved currents

of the 2+1 dimensional CFTs defined in (1.1). Here � is defined as a parameter controlling

the structure of the zero temperature three-point correlator hTJJi between the stress-energy

tensor and the conserved current. Osborn and Petkou [12] specified the general form of

the hTJJi correlator, and � was exactly connected to their parameterization in Section 6.

However, � also appears in the holographic representation of the CFT on AdS
4

, and is the
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coupling constant determining a four-derivative term in a gradient expansion of the e↵ective

action: see Eq. (1.7). The latter connection endows � with much greater physical importance:

it determines the structure of a variety of dynamical properties of charge transport at non-

zero temperatures, both equilibrium and non-equilibrium. The holographic formulation also

leads to the bound |�|  1/12 [4].

The action (1.7) was derived in Ref. [4] as the most general 4-derivative holographic

theory expressed in terms of the gauge flux Fµ⌫ and the metric tensor. We can also consider

augmenting this action by other fields, which are holographic duals of other primary operators

of the CFT [7, 26]. The most important of these is the “mass” term |za|2 in (1.1), which tunes

the CFT away from the critical point at T = 0. Here we are assuming we are at the CFT

critical point at T = 0, and so such a relevant perturbation is not present in the underlying

theory at T = 0; the structure of the interactions in the CFT ensures that there is no change

in h|za|2i at T > 0 [27]. In the holographic theory, |za|2 is represented by a scalar dilaton

field, �. This can influence charge transport by an additional term ⇠ �Fµ⌫Fµ⌫ in (1.7).

Such a � does not have an expectation value in the AdS
4

theory at T = 0, and will not

acquire one at T > 0 in the absence of external sources. In the linear response computation

of the conductivity from such an augmented action, the ⇠ �Fµ⌫Fµ⌫ term only influences the

conductivity at the one-loop level in the bulk theory, so need not be included in our tree-level

treatment of the e↵ective theory (1.7). Thus � remains as the crucial coupling determining

the structure of the charge transport properties of the CFT, as was noted recently [7].

In Refs. [4, 7], it was shown that � determined the structure of the universal frequency

dependence of the conductivity �(!) at non-zero temperatures. For 0 < �  1/12, it was

found that there was a Drude-like peak at ! = 0, followed by an eventual saturation at

a constant at large !. Such a structure appears physically reasonable from our present

computation of � = 1/12 for the free-fermion theory with Ns = 0: the free fermion theory

has a delta function at zero frequency [28], and it is expected that this will be broadened to

a Drude peak upon including interactions.

In the complementary range �1/12  � < 0, it was found [4, 7] that �(!) had a ‘dip’ at

! = 0, rather than a peak. The value � = �1/12 is obtained for the free scalar theory with

Nf = 0. We can understand this dip if we interpret the scalar field in (1.1) as representing

a vortex degree of freedom near e.g. a superfluid-insulator quantum phase transition [28].

Particle-vortex duality maps the conductivity to its inverse, and the inverse conductivity

then has a Drude-like peak at ! = 0. Further evidence for this interpretation comes from our

computation of �t = 1/12 obtained with Nf = 0 for the topological current of (1.1). Under

particle-vortex duality, the charged particle current in the dual theory maps to the topological

current of (1.1), and so this also implies a peak in �(!) for the charged particle current.

It would be interesting to compute other dynamical consequences of the value of �. In a
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recent work [7], it was shown that � crucially determined the structure of the poles and zeros

of the complex conductivity in the lower-half of the complex frequency plane. These poles and

zeros are associated with quasinormal modes of the holographic theory, and they are expected

to be central to an understanding of the thermal dynamics of the CFT. Combined with more

precise computations of the value of � by the methods of the present paper, these connections

open up the possibility of precise predictions for the dynamics of the strongly-interacting

condensed matter systems.
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A Review of the CFT two-point correlators hJJi and hTT i

In this appendix, we derive the current and stress-tensor two-point functions given in Eq. (1.5,

1.6) and compute CJ and CT for the free theory. In momentum space, the two point function

for currents and for the stress-tensor is just given by two bubble diagrams: one with two

scalar boson propagators and the other with two fermion propagators, respectively. The

scalar boson contribution to the current-current correlator reads:

✏
1,i1✏2,i2hJ i1

s (�k)J i2
s (k)i = 4Ns✏

i1
1

✏i2
2

Z

Pi1Pi2

P 2(P + k)2
d3P

8⇡3
. (A.1)

Using the identity
Z

Pi1Pi2

P 2(P + k)2
d3P

8⇡3
=

✓

3
ki1ki2
|k|2 � ⌘i1i2

◆ |k|
64

, (A.2)

one obtains

✏
1,i1✏2,i2hJ i1

s J i2
s i = �Ns

|k|
16

✏1 · ✏2, (A.3)
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in agreement with the uncontracted expression in (1.5). This yields CJ,s = Ns/16 for the

complex scalars. The calculation for free Dirac fermions is similar and one obtains CJ,f =

Nf/16.

For the two point function of the stress-tensor, the scalar boson bubble can be integrated

using the identity

Z

d3P

8⇡3
Pi1Pi2Pi3Pi4

P 2(P + k)2
=(⌘i1i2⌘i3i4 + 2 terms)

|k|3
1024

�
✓

ki1ki2
|k|2 ⌘i3i4 + 5 terms

◆

5|k|3
1024

+
35ki1ki2ki3ki4

1024|k| ,

(A.4)

resulting in the expression

✏
1,i1✏1,i2✏2,i3✏2,i4hT i1i2

s (k)T i3i4
s (�k)i = Ns

256
2(✏1 · ✏2)2|k|3 . (A.5)

Note that this agrees with (1.6) with CT,s = Ns/128. An identical computation for the two

point function of the stress-tensor for free Dirac fermions gives CT,f = Nf/128.

These quantities enable us to fix the values of certain coupling constants in the gravity

theory in Section 5.

B AdS/CFT Correlators and Two Point Functions

This appendix provides background on the methods of gauge-gravity duality for readers who

are condensed matter physicists.

The AdS/CFT conjecture states that theories of quantum gravity on d + 1 dimensional

anti-de Sitter space (denoted AdSd+1

), are dual to d-dimensional conformal field theories that

live on the “boundary” of AdS. The theory in AdSd+1

is called the “bulk theory” and the

theory on the boundary is called the “boundary theory.” In the version of the correspondence

that we will be using here, the bulk theory will live on the “Poincare patch” of AdSd+1

(the

metric for this patch was already described above), while the boundary theory will live on

Rd�1,1.

More precisely, the conjecture states that each “field” in the bulk corresponds to an op-

erator on the boundary; second, if we do the path integral in the bulk theory with asymptotic

boundary conditions fixed for these fields, then this equals the generating functional of the

boundary theory with sources turned on for the corresponding operators.

Such an approach makes sense as long as we can distinguish individual fields in the bulk,

and there is a corresponding decomposition of the spectrum of operators in the boundary

theory in terms of single and double trace operators. This decomposition is possible for
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theories with a large-N expansion, and it is in this regime that the AdS/CFT conjecture has

been widely tested.

We now describe this conjecture quantitatively and explain how it may be used to calcu-

late and compare correlation functions.

B.1 Prescription

In this section, we describe the prescription for computing correlation functions in AdS/CFT.

This follows Ref. [2] with some refinements that were made in Ref. [29]. (See Ref. [30] for a

review.)

A scalar field of mass-squared m2 in the bulk is dual to an operator of dimension

� = d
2

+
q

�

d
2

�

2

+ m2 on the boundary. If we solve the equations of motion for a free

field of this mass we find, that near the boundary, we can have � ⇠ zd�� and � ⇠ z�.

The solution that grows at the boundary is called the “non-normalizable” solution, while the

other one is called the “normalizable” solution. If we work in Euclidean AdS, then fixing the

coe�cient of the non-normalizable mode, and demanding regularity in the interior automati-

cally fixes the normalizable mode also. In Lorentzian AdS, the normalizable mode can be set

independently for time-like momenta, but below we will consider those solutions that come

from a continuation of the Euclidean solutions.

The original prescription for correlation functions [2] was given for massless fields. For

massive fields, we need to be careful about regularization because the non-normalizable mode

diverges as we approach the boundary. So, we will cut the AdS space o↵ at z = ✏, and

consider doing the bulk path integral with the following regularized boundary condition for

the scalar field as we approach the boundary:

�(x, z) �!
z!✏

✏d���
0

(x). (B.1)

The idea is to work with this boundary condition and extract the finite part in ✏ at the end

of the calculation. Then, the AdS/CFT prescription is that:

Z

e�SD�
�

�

�

�

bound

= he
R
�0(x)O(x)ddxi

CFT

. (B.2)

Here the left hand side is short hand for the path integral in the bulk done with the boundary

conditions (B.1) while the right hand side is an expectation value in the conformal field theory.

Although, to lighten the notation, we have chosen a particular coordinate system to represent

the boundary conditions (B.1), the prescription is independent of this choice.

The original conjecture (B.2) was made in specific contexts: for example, one of the best

studied examples of the AdS/CFT duality is when the bulk theory is type IIB string theory
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on AdS
5

⇥ S5 and the boundary theory is N = 4 super-Yang-Mills theory. Several other

examples are known.

However, where correlation functions are concerned, the prescription (B.2) may be ex-

amined just as well within e↵ective field theory. This means that we take some e↵ective field

theory in the bulk and compute the left hand side of (B.2) at tree-level in the bulk. This

computation can be used to define a generating functional in a CFT to leading order in 1

N .3

This is because one can show that the quantity obtained this way satisfies all the constraints

of conformal invariance and the operator product expansion (OPE) to leading order in 1

N in

the boundary theory.

Now let us turn to the stress-tensor and conserved currents. The graviton in the bulk is

dual to the stress tensor on the boundary, and a gauge field is dual to conserved currents.

Now, consider doing the bulk path integral with the following boundary conditions for the

metric and the gauge fields:

gzz(x, z) �!
z!0

1

z2
; gzi(x, z) �!

z!0

0; gij(x, z) �!
z!0

1

z2
(⌘ij + �ij(x)) ,

Az(x, z) �!
z!0

0;Ai(x, z) �!
z!0

Vi(x).
(B.3)

Then the bulk path integral with these boundary conditions is conjectured to be the same as

the following generating functional of the conformal field theory:

he
R
[�

ij

(x)T ij

(x)+V
i

(x)ji(x)]ddxi.

B.2 Scalar Two Point Function

The simplest setting in which we can test these ideas is to evaluate two-point functions.

Consider a free massive scalar with action:

S
bulk

= �1

2

Z p�g
⇥

(@µ�)
2 + m2�2

⇤

. (B.4)

At leading order we can evaluate the left hand side of (B.2) in the saddle point approximation.

Let us also take

�
0

(x) = �
1

eik1·x + �
2

eik2·x. (B.5)

We need to find a solution of the equations of motion:

(⇤� m2)� = 0, (B.6)

3As we mentioned above, the prescription (B.2) makes sense when we have a perturbative parameter that
allows us to di↵erentiate between single and double trace operators, and we are using N as a short-hand for
this parameter here.
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that respects (B.1).

In fact, it is rather subtle to write down such a solution. The authors of Ref. [29] showed

that the correct method is to write down the following solution:

�(x, z) = ✏d��

2

4�
1

(|k1|z) d

2 K
�� d

2
(|k1|z)

(|k1|✏) d

2 K
�� d

2
(|k1|✏)

eik1·x + �
2

(|k2|z) d

2 K
�� d

2
(|k2|z)

(|k2|✏) d

2 K
�� d

2
(|k2|✏)

eik2·x

3

5 , (B.7)

where K is the modified Bessel function. Here we have defined |k
m

| to be taken in the

Lorentzian metric, with a mostly positive signature i.e the boundary metric is defined to be

diag(�1, 1, 1 . . . 1). For timelike k, we should take its norm to have a negative imaginary part;

this continues the modified Bessel function K to a Hankel function H(1).

We can superpose solutions of di↵erent momenta, so that the sum has delta function

support at a given point; such a solution is called a “bulk to boundary” propagator. If we

Fourier transform the bulk to boundary propagator, we will get a solution of the sort above.

It is very tempting to expand (B.7) in powers of ✏ so that we have:

�(x, z) =
2

1
2 (d�2�)+1

�
��d

2

+�
�

h

�
1

|k1|�� d

2 z
d

2 K
�� d

2
(|k1|z)eik1·x + �

2

|k2|�� d

2 z
d

2 K
�� d

2
(|k2|z)

i

+O
⇣

✏2��d
⌘

+O(✏) .

(B.8)

However, as was shown in Ref. [29], we cannot discard the subleading terms in ✏ at this

stage because there is a second divergence when we evaluate the on-shell action and these

subleading terms then contribute at O
�

✏0
�

in the final answer.

Now, let us compute the two point function using the prescription above. The on-shell

action is divergent if we take ✏ ! 0, so we should do the calculation with ✏ kept finite and

extract the ✏0 term at the end.

On the solution (B.7), the on-shell action is simply:

S
on-shell

=
�1

2

Z p�gz2�
@�

@z
ddx

�

�

�

�

z=✏

. (B.9)

A short calculation shows that the ✏0 term on the right hand side of (B.9) that is bilinear in

�
1

and �
2

is:

@2S
on-shell

@�
1

@�
2

= �(2�� d)
�(d

2

+ 1��)

�(�� d
2

+ 1)

✓ |k1|
2

◆

2��d

�(k1 + k2) + . . . , (B.10)

where the . . . are higher and lower order terms in ✏. The terms that are divergent as ✏ ! 0,

are analytic in the momentum, and so they can be removed by local counterterms.
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From the prescription, (B.2), we can see that this is also the two point function of the

operator O in the conformal field theory:

hO(k1)O(k2)i = C
�

|k1|2��d�(k1 + k2), (B.11)

where C
�

is the numerical constant in (B.10). In fact, this is precisely what one expects from

conformal invariance, for a primary operator of dimension �.

B.3 An Alternate Prescription

For the stress-tensor, and even for scalar fields, at leading order in 1

N (i.e at tree level

in the bulk), it is often convenient to replace the prescription (B.2) with an equivalent

prescription[31]. This prescription simply states that if we write the metric as:

gµ⌫ = gAdS

µ⌫ + hµ⌫ , (B.12)

where gAdS

µ⌫ is the metric (4.1), and consider field configurations that satisfy the asymptotic

conditions (B.1) then:

hTi1j1(x1) . . . Ti
n

j
n

(x
n

)i
boundary

= Zn lim
z
i

!0

z2�d
1

. . . z2�d
n hhi1j1(x1, z1) . . . hi

n

j
n

(x
n

, zn)i
bulk

.

(B.13)

This is the statement that: boundary correlators are just boundary values of bulk Green’s

functions. Here Z is a wave-function renormalization factor. At tree-level in the bulk, this

factor is just a constant as we will see below, and so we have written Zn rather than writing

separate factors for each insertion. Z just fixes the overall normalization of operators and so,

at tree-level, it is not physically relevant but we will retain it for later convenience. For scalar

operators, the analogous prescription is:

hO(x1) . . . O(x
n

)i
boundary

= Zn lim
z!0

z��

1

. . . z��

n h�(x1, z1) . . .�(x
n

, zn)i
bulk

. (B.14)

This is the prescription that we will use to evaluate two point functions.

B.4 Scalar Two Point Function Rederived

To get a feel for this prescription, let us re-derive the result above for the two point function

of scalar operators. The scalar two-point Green’s function in the bulk is given by Ref. [32]:

G(x, z,x0, z0) =

Z

ddk

(2⇡)d
G

k

(z, z0)e�ik·(x�x

0
)

= �
Z

ddk

(2⇡)d
dp2

2

eik·(x�x

0
)z

d

2 J
�� d

2
(pz)J

�� d

2
(pz0)(z0)

d

2

�

k

2 + p2 � i✏
� .

(B.15)
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We can check that this Green’s function obeys:4

(⇤� m2)G(x, z,x0, z0) =
1p�g

�(x� x

0)�(z � z0). (B.16)

In Fourier space, the relation (B.16) is simply:

zd+1

@

@z
z1�d@Gk(z, z0)

@z
� m2Gk(z, z0)� z2k2Gk(z, z0) = �(z � z0)zd+1. (B.17)

We can verify that this is satisfied by virtue of the identity:

Z

pJ⌫(pz)J⌫(pz0)dp = z�1�(z � z0). (B.18)

After doing the p integral and transforming to momentum space, we find that the two

point Green function can be written:

G(k, z
1

, z
2

) = �(z
1

z
2

)
d

2 I
�� d

2
(|k|z<)K

�� d

2
(|k|z>), (B.19)

where z< = min(z
1

, z
2

) and z> = max(z
1

, z
2

).5

With this choice, when we now take the limit where one point goes to the boundary, and

also take Z = �(2�� d), we find:

Z lim
z1!0

z��

1

G(k, z
1

, z
2

) =
2

1
2 (d�2�)+1

�
��d

2

+�
� |k|�� d

2 z
d

2
2

K
�� d

2
(|k|z

2

). (B.20)

Note that this matches the “naive” bulk to boundary propagator of (B.8). We could also

use a di↵erent value of Z provided that, in calculating higher point functions, we consistently

use the bulk to boundary propagator that comes from taking the limit above. When we take

both points to the boundary, we recover the two point function of the boundary operator.

hO(k)O(�k)i = Z2 lim
z2!0

z��

2

lim
z1!0

z��

1

G(k, z
1

, z
2

)

= �(2�� d)
�(d

2

+ 1��)

�(�� d
2

+ 1)

✓ |k1|
2

◆

2��d

�(k1 + k2) + . . . .
(B.21)

Here, once again, as we take z
2

! 0, we find a divergent term that is analytic in the momenta

and so a delta function in position space. This is indicated by the . . ., which are unimportant.

Note that this prescription is somewhat more straightforward than evaluating the on-shell

4Note that Ref. [32] defines the Green’s function with an additional minus sign on the right hand side.
5We have written this as a function of one momentum, rather than two, because the two momenta are

forced to be equal by momentum conservation.
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action, since we don’t have to worry about the subleading terms in ✏ in imposing (B.1) and

so we will use it for the stress tensor and conserved currents.

B.5 Two Point Function of the Stress Tensor and Currents

To evaluate the two point function of the stress-tensor using AdS/CFT, we simply need

to evaluate the two point function of the metric fluctuation in AdS. We will consider the

Hilbert-Einstein action:

S
grav

=
�1

16⇡GN

Z p�g (R � 2⇤) , (B.22)

where ⇤ is the cosmological constant. We now expand the metric out as:

gµ⌫ = gadsµ⌫ + hµ⌫ . (B.23)

The propagator, in the gauge where we set hzi = hzz = 0 is easily evaluated and found

to be [33]:

Ggrav

ij,kl(k, z
1

, z
2

)

= 8⇡GN

Z

2

6

4

z
d

2�2

1

J
d

2
(pz

1

)J
d

2
(pz

2

)(z
2

)
d

2�2

�

k

2 + p2 � i✏
�

1

2

✓

TikTjl + TilTjk � 2TijTkl
d � 1

◆� �dp2

2
,

(B.24)

where Tij = ⌘ij + kikj/p2.

First let us take the limit z
1

! 0, and take Z in (B.13) to be Z = � d
8⇡G

N

. With this, we

see that when we take z
1

! 0:

Z lim
z1!0

z2�d
1

Ggrav

ij,kl(k, z
1

, z
2

) =
1

2

 

eTik eTjl + eTil eTjk � 2eTij eTkl
d � 1

!"

2
�d

2 +1

�
�

d
2

� |k| d2 z
d

2�2

2

K
d

2
(|k|z

2

)

#

,

(B.25)

where eTij = ⌘ij � kikj/|k|2.
For d = 3, which is the case that we are interested in, this takes on a very simple form:

Z lim
z1!0

z2�d
1

Ggrav

ij,kl(k, z
1

, z
2

) =
1

2z2
2

⇣

eTik eTjl + eTil eTjk � eTij eTkl
⌘

e�|k|z2(1 + |k|z
2

). (B.26)

This is the bulk to boundary propagator that we will use below.

Taking the limit as z
2

! 0, we now find that:

hTij(k)Tkl(�k)i = � 1

8⇡GN
|k|d�(1�

d
2

)

�(d
2

+ 1)

d

2

 

eTik eTjl + eTil eTjk � 2eTij eTkl
d � 1

!

. (B.27)
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Let us now specialize to the case where d = 3. We now have:

hTij(k)Tkl(�k)i = 4

8⇡GN
|k|3

⇣

eTik eTjl + eTil eTjk � eTij eTkl
⌘

, for d = 3. (B.28)

This matches with the answer obtained from the CFT in (1.6).

Similarly, we can obtain the two point function of currents in the Maxwellian theory in

the bulk. (For this, we set � = 0, for the moment.) We start with the Maxwell action:

S
gauge

=
�1

4g2
4

Z p�gFµ⌫F
µ⌫ . (B.29)

The bulk to bulk propagator of currents in “axial gauge” (where we set the z component of

the gauge field to 0) is given by:

Gaxial,ab
ij (k, z

1

, z
2

) = g2
4

Z �dp2

2(2⇡)d

h(z
1

z
2

)⌫1J⌫1(pz
1

)J⌫1(pz
2

)Tij�ab
�

k

2 + p2 � i✏
�

i

, (B.30)

with ⌫
1

= d
2

� 1. Repeating the process above and now taking Z = 2�d
g24

, we find that when

z
1

! 0, we get:

Z lim
z1!0

z1�d
1

Gaxial

ij (k, z
1

, z
2

) =
2

1
2 (2�d)+1

�
�

d
2

� 1
� |k| d2�1z

d

2�1

2

K
d

2�1

(|k|z
2

)eTij . (B.31)

For d = 3, we simply have

Z lim
z1!0

z1�d
1

Gaxial

ij (k, z
1

, z
2

) = eTije�|k|z2 , for d = 3. (B.32)

The two point function of currents is given by:

hji(k)jj(�k)i = 1

g2
4

(2� d)
�(2� d

2

)

�(d
2

)

✓ |k1|
2

◆d�2

eTij . (B.33)

For d = 3, we have the remarkably simple expression

hji(k)jj(�k)i = � 1

g2
4

|k1|eTij , (B.34)

which agrees with (1.5), and fixes CJ = 1/g2
4

.
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C Spinor Helicity Formalism

In this appendix, we review the spinor helicity formalism for correlation functions in 3 di-

mensional conformal field theories that was described briefly in section 2. The spinor helicity

formalism adapted to 3-dimensional Lorentzian CFTs is also described in section 2 of Ref. [22].

In our conventions, the boundary metric is Lorentzian and mostly positive. This means

that for two boundary vectors:

k · k = (k
1

)2 + (k
2

)2 � (k
0

)2. (C.1)

We use bold-face for vectors but not their components. We use i, j etc. for boundary

spacetime indices and µ, ⌫ etc. for bulk spacetime indices. We use m, n etc. to index particle-

number. Finally, the components of a momentum vector come with a naturally lowered

index.

Our � matrix conventions are the following

�0↵↵̇ =

 

1 0

0 1

!

, �1↵↵̇ =

 

0 1

1 0

!

,

�2↵↵̇ =

 

0 �i

i 0

!

, �3↵↵̇ =

 

1 0

0 �1

!

.

(C.2)

Given a three momentum k = (k
0

, k
1

, k
2

), as we described in section 2, we convert it into

spinors using

k↵↵̇ = k
0

�0↵↵̇ + k
1

�1↵↵̇ + k
2

�2↵↵̇ + i|k|�3↵↵̇ = �↵�̄↵̇, (C.3)

where

|k| ⌘
p
k · k =

q

k2

1

+ k2

2

� k2

0

. (C.4)

If k is spacelike to start with, then the �3 component will be imaginary.

In components, we have the following expressions for the spinors

� =
�

p

k
0

+ i|k|, k
1

+ ik
2

p

k
0

+ i|k|
�

,

�̄ =
�

p

k
0

+ i|k|, k
1

� ik
2

p

k
0

+ i|k|
�

.
(C.5)

We have the freedom to rescale the spinors by any complex number: � ! ↵�, �̄ ! 1

↵ �̄

without changing the momentum. If we do this for spinors corresponding to an external

particle, then this rescales the polarization vectors and amplitudes pick up a simple phase.

We can raise and lower spinor indices using the ✏ tensor. We choose the ✏ tensor to be
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i�
2

for both the dotted and the undotted indices. This means that

✏01 = 1 = �✏10, (C.6)

and spinor dot products are defined via

h�
1

, �
2

i = ✏↵��
1↵�

2� = �
1↵�

↵
2

,
⌦

�̄
1

, �̄
2

↵

= ✏↵̇
˙��̄

1↵̇�̄
2

˙� = �̄
1↵̇�̄

↵̇
2

. (C.7)

In the case of four-dimensional flat-space scattering amplitudes, all expressions can be

written in terms of the two kinds of dot products above. However, in our case, we should

expect our expressions for CFT
3

correlators to only have a manifest SO(2, 1) invariance.

This means that we might have mixed products between dotted and undotted indices. Such

a mixed product extracts the z-component of vector and is performed by contracting with �3

2i|k| = (�3)↵↵̇k↵↵̇ ⌘ ⇥�, �̄
⇤

. (C.8)

The reader should note that we use square brackets only for this mixed product; products of

both left and right handed spinors are denoted by angular brackets. Second, we note that

this mixed dot product is symmetric:

⇥

�, �̄
⇤

=
⇥

�̄, �
⇤

. (C.9)

When we take the dot products of two 3-momenta, we have

k · q ⌘ �k
1

q
1

+ k
2

q
2

� k
0

q
0

�

= �1

2

⇣

h�k, �qi
⌦

�̄k, �̄q
↵

+
1

2

⇥

�k, �̄k
⇤ ⇥

�q, �̄q
⇤

⌘

.
(C.10)

Another fact to keep in mind is that

k1 + k2 = k3

) �
1

�̄
1

+ �
2

�̄
2

= �
3

�̄
3

+
1

2

�⇥

�
1

, �̄
1

⇤

+
⇥

�
2

, �̄
2

⇤� ⇥�
3

, �̄
3

⇤�

�3.
(C.11)

We also need a way to convert dotted to undotted indices. We write

�†↵̇ = �3↵↵̇�
↵, �̄†↵ = �3↵↵̇�̄

↵̇. (C.12)

This has the property that
D

µ, �†
E

= [ µ, �] , (C.13)

where the quantity on the right hand side is defined in (C.8).
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With all this, we can write down polarization vectors for conserved currents. The polar-

ization vectors for a momentum vector k associated with spinors �, �̄ are given by

✏+↵↵̇ = 2
�̄†↵�̄↵̇
⇥

�, �̄
⇤ =

�̄†↵�̄↵̇
i|k| ,

✏�↵↵̇ = 2
�↵�

†
↵̇

⇥

�, �̄
⇤ =

�↵�
†
↵̇

i|k| .

(C.14)

These vectors are normalized so that

✏

+ · ✏+ = ✏

� · ✏� = 0, ✏

+ · ✏� = 2. (C.15)

Polarization tensors for the stress tensor are just outer-products of these vectors with them-

selves:

e±ij = ✏±i ✏
±
j . (C.16)
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