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Abstract

Bayesian optimization has recently been proposed as a framework for automati-
cally tuning the hyperparameters of machine learning models and has been shown
to yield state-of-the-art performance with impressive ease and efficiency. In this
paper, we explore whether it is possible to transfer the knowledge gained from
previous optimizations to new tasks in order to find optimal hyperparameter set-
tings more efficiently. Our approach is based on extending multi-task Gaussian
processes to the framework of Bayesian optimization. We show that this method
significantly speeds up the optimization process when compared to the standard
single-task approach. We further propose a straightforward extension of our al-
gorithm in order to jointly minimize the average error across multiple tasks and
demonstrate how this can be used to greatly speed up k-fold cross-validation.
Lastly, we propose an adaptation of a recently developed acquisition function, en-
tropy search, to the cost-sensitive, multi-task setting. We demonstrate the utility
of this new acquisition function by leveraging a small dataset to explore hyper-
parameter settings for a large dataset. Our algorithm dynamically chooses which
dataset to query in order to yield the most information per unit cost.

1 Introduction
The proper setting of high-level hyperparameters in machine learning algorithms – regularization
weights, learning rates, etc. – is crucial for successful generalization. The difference between poor
settings and good settings of hyperparameters can be the difference between a useless model and
state-of-the-art performance. Surprisingly, hyperparameters are often treated as secondary consid-
erations and are not set in a documented and repeatable way. As the field matures, machine learning
models are becoming more complex, leading to an increase in the number of hyperparameters, which
often interact with each other in non-trivial ways. As the space of hyperparameters grows, the task of
tuning them can become daunting, as well-established techniques such as grid search either become
too slow, or too coarse, leading to poor results in both performance and training time.

Recent work in machine learning has revisited the idea of Bayesian optimization [1, 2, 3, 4, 5, 6, 7],
a framework for global optimization that provides an appealing approach to the difficult exploration-
exploitation tradeoff. These techniques have been shown to obtain excellent performance on a va-
riety of models, while remaining efficient in terms of the number of required function evaluations,
corresponding to the number of times a model needs to be trained.

One issue with Bayesian optimization is the so-called “cold start” problem. The optimization must
be carried out from scratch each time a model is applied to new data. If a model will be applied to
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many different datasets, or even just a few extremely large datasets, then there may be a significant
overhead to re-exploring the same hyperparameter space. Machine learning researchers are often
faced with this problem, and one appealing solution is to transfer knowledge from one domain to the
next. This could manifest itself in many ways, including establishing the values for a grid search, or
simply taking certain hyperparameters as fixed with some commonly accepted value. Indeed, it is
this knowledge that often separates an expert machine learning practitioner from a novice.

The question that this paper explores is whether we can incorporate the same kind of transfer of
knowledge within the Bayesian optimization framework. Such a tool would allow researchers and
practitioners to leverage previously trained models in order to quickly tune new ones. Furthermore,
for large datasets one could imagine exploring a wide range of hyperparameters on a small subset of
data, and then using this knowledge to quickly find an effective setting on the full dataset with just a
few function evaluations.

In this paper, we propose multi-task Bayesian optimization to solve this problem. The basis for
the idea is to apply well-studied multi-task Gaussian process models to the Bayesian optimization
framework. By treating new domains as new tasks, we can adaptively learn the degree of correlation
between domains and use this information to hone the search algorithm. We demonstrate the utility
of this approach in a number of different settings: using prior optimization runs to bootstrap new
runs; optimizing multiple tasks simultaneously when the goal is maximizing average performance;
and utilizing a small version of a dataset to explore hyperparameter settings for the full dataset. Our
approach is fully automatic, requires minimal human intervention and yields substantial improve-
ments in terms of the speed of optimization.

2 Background
2.1 Gaussian Processes

Gaussian processes (GPs) [8] are a flexible class of models for specifying prior distribu-
tions over functions f : X → R. They are defined by the property that any finite set of N
points X = {xn ∈ X}Nn=1 induces a Gaussian distribution on RN . The convenient properties of the
Gaussian distribution allow us to compute marginal and conditional means and variances in closed
form. GPs are specified by a mean function m : X → R and a positive definite covariance, or ker-
nel function K : X × X → R. The predictive mean and covariance under a GP can be respectively
expressed as:

µ(x ; {xn, yn}, θ) = K(X,x)>K(X,X)−1(y −m(X)), (1)

Σ(x,x′ ; {xn, yn}, θ) = K(x,x′)−K(X,x)>K(X,X)−1K(X,x′). (2)

Here K(X,x) is the N -dimensional column vector of cross-covariances between x and the set X.
The N ×N matrix K(X,X) is the Gram matrix for the set X. As in [6] we use the Matérn 5/2
kernel and we marginalize over kernel parameters θ using slice sampling [9].

2.2 Multi-Task Gaussian Processes

In the field of geostatistics [10, 11], and more recently in the field of machine learning [12, 13, 14],
Gaussian processes have been extended to the case of vector-valued functions, i.e., f : X → RT .
We can interpret the T outputs of such functions as belonging to different regression tasks. The
key to modeling such functions with Gaussian processes is to define a useful covariance function
K((x, t), (x′, t′)) between input-task pairs. One simple approach is called the intrinsic model of
coregionalization [12, 11, 13], which transforms a latent function to produce each output. Formally,

Kmulti((x, t), (x
′, t′)) = Kt(t, t

′)⊗Kx(x,x′), (3)

where ⊗ denotes the Kronecker product, Kx measures the relationship between inputs, and Kt

measures the relationship between tasks. Given Kmulti, this is simply a standard GP. Therefore, the
complexity still grows cubically in the total number of observations.

Along with the other kernel parameters, we infer the parameters of Kt using slice sampling. Specif-
ically, we represent Kt by its Cholesky factor and sample in that space. For our purposes, it is
reasonable to assume a positive correlation between tasks. We found that sampling each element of
the Cholesky in log space and then exponentiating adequately satisfied this constraint.
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2.3 Bayesian Optimization for a Single Task

Bayesian optimization is a general framework for the global optimization of noisy, expensive, black-
box functions [15]. The strategy is based on the notion that one can use a relatively cheap proba-
bilistic model to query as a surrogate for the financially, computationally or physically expensive
function that is subject to the optimization. Bayes’ rule is used to derive the posterior estimate of the
true function given observations, and the surrogate is then used to determine the next most promising
point to query. A common approach is to use a GP to define a distribution over objective functions
from the input space to a loss that one wishes to minimize. That is, given observation pairs of the
form {xn, yn}Nn=1, where xn ∈ X and yn ∈ R, we assume that the function f(x) is drawn from a
Gaussian process prior where yn ∼ N (f(xn), ν) and ν is the function observation noise variance.

A standard approach is to select the next point to query by finding the maximum of an acquisition
function a(x ; {xn, yn}, θ) over a bounded domain in X . This is an heuristic function that uses the
posterior mean and uncertainty, conditioned on the GP hyperparameters θ, in order to balance explo-
ration and exploitation. There have been many proposals for acquisition functions, or combinations
thereof [16, 2]. We will use the expected improvement criterion (EI) [15, 17],

aEI(x ; {xn, yn}, θ) =
√

Σ(x,x ; {xn, yn}, θ) (γ(x) Φ(γ(x)) +N (γ(x) ; 0, 1)) , (4)

γ(x) =
ybest − µ(x ; {xn, yn}, θ)√

Σ(x,x ; {xn, yn}, θ)
. (5)

Where Φ(·) is the cumulative distribution function of the standard normal, and γ(x) is a Z-score.
Due to its simple form, EI can be locally optimized using standard black-box optimization algo-
rithms [6].

An alternative to heuristic acquisition functions such as EI is to consider a distribution over the
minimum of the function and iteratively evaluating points that will most decrease the entropy of
this distribution. This entropy search strategy [18] has the appealing interpretation of decreasing
the uncertainty over the location of the minimum at each optimization step. Here, we formulate the
entropy search problem as that of selecting the next point from a pre-specified candidate set. Given a
set of C points X̃ ⊂ X , we can write the probability of a point x ∈ X̃ having the minimum function
value among the points in X̃ via:

Pr(min at x | θ, X̃, {xn, yn}Nn=1) =

∫
RC

p(f |x, θ, {xn, yn}Nn=1)
∏

x̃∈X̃\x

h (f(x̃)− f(x)) df , (6)

where f is the vector of function values at the points X̃ and h is the Heaviside step function.
The entropy search procedure relies on an estimate of the reduction in uncertainty over this
distribution if the value y at x is revealed. Writing Pr(min at x | θ, X̃, {xn, yn}Nn=1) as Pmin,
p(f |x, θ, {xn, yn}Nn=1) as p(f |x) and the GP likelihood function as p(y | f) for brevity, and us-
ing H(P) to denote the entropy of P, the objective is to find the point x from a set of candidates
which maximizes the information gain over the distribution of the location of the minimum,

aKL(x) =

∫ ∫
[H(Pmin)−H(Py

min)] p(y | f) p(f |x) dy df, (7)

where Py
min indicates that the fantasized observation {x, y} has been added to the observation set.

Although (7) does not have a simple form, we can use Monte Carlo to approximate it by sampling f .
An alternative to this formulation is to consider the reduction in entropy relative to a uniform base
distribution, however we found that the formulation given by Equation (7) works better in practice.

3 Multi-Task Bayesian Optimization
3.1 Transferring Bayesian Optimization to a New Task

Under the framework of multi-task GPs, performing optimization on a related task is fairly straight-
forward. We simply restrict our future observations to the task of interest and proceed as normal.
Once we have enough observations on the task of interest to properly estimate Kt, then the other
tasks will act as additional observations without requiring any additional function evaluations. An
illustration of a multi-task GP versus a single-task GP and its effect on EI is given in Figure 1.

3



(1)

(2)

(3)

(a) Multi-task GP sample functions (b) Independent GP predictions (c) Multi-task GP predictions

Figure 1: (a) A sample function with three tasks from a multi-task GP. Tasks 2 and 3 are correlated, 1 and 3 are
anti-correlated, and 1 and 2 are uncorrelated. (b) independent and (c) multi-task predictions on the third task.
The dots represent observations, while the dashed line represents the predictive mean. Here we show a function
over three tasks and corresponding observations, where the goal is to minimize the function over the third task.
The curve shown on the bottom represents the expected improvement for each input location on this task. The
independent GP fails to adequately represent the function and optimizing EI leads to a spurious evaluation. The
multi-task GP utilizes the other tasks and the maximal EI point corresponds to the true minimum.

3.2 Optimizing an Average Function over Multiple Tasks

Here we will consider optimizing the average function over multiple tasks. This has elements of
both single and multi-task settings since we have a single objective representing a joint function
over multiple tasks. We motivate this approach by considering a finer-grained version of Bayesian
optimization over k-fold cross validation. We wish to optimize the average performance over all k
folds, but it may not be necessary to actually evaluate all of them in order to identify the quality of
the hyperparameters under consideration. The predictive mean and variance of the average objective
are given by:

µ̄(x) =
1

k

k∑
t=1

µ(x, t ; {xn, yn}, θ), σ̄(x)2 =
1

k2

k∑
t=1

k∑
t′=1

Σ(x,x, t, t′ ; {xn, yn}, θ). (8)

If we are willing to spend one function evaluation on each task for every point x that we query,
then the optimization of this objective can proceed using standard approaches. In many situations
though, this can be expensive and perhaps even wasteful. As an extreme case, if we have two
perfectly correlated tasks then spending two function evaluations per query provides no additional
information, at twice the cost of a single-task optimization. The more interesting case then is to try
to jointly choose both x as well as the task t and spend only one function evaluation per query.

We choose a (x, t) pair using a two-step heuristic. First we impute missing observations using the
predictive means. We then use the estimated average function to pick a promising candidate x by
optimizing EI. Conditioned on x, we then choose the task that yields the highest single-task expected
improvement.

The problem of minimizing the average error over multiple tasks has been considered in [19], where
they applied Bayesian optimization in order to tune a single model on multiple datasets. Their
approach is to project each function to a joint latent space and then iteratively visit each dataset
in turn. Another approach can be found in [3], where additional task-specific features are used in
conjunction with the inputs x to make predictions about each task.

3.3 A Principled Multi-Task Acquisition Function

Rather than transferring knowledge from an already completed search on a related task to bootstrap
a new one, a more desirable strategy would have the optimization routine dynamically query the
related, possibly significantly cheaper task. Intuitively, if two tasks are closely related, then evaluat-
ing a cheaper one can reveal information and reduce uncertainty about the location of the minimum
on the more expensive task. A clever strategy may, for example, perform low cost exploration of a
promising location on the cheaper task before risking an evaluation of the expensive task. In this
section we develop an acquisition function for such a dynamic multi-task strategy which specifically
takes noisy estimates of cost into account based on the entropy search strategy.

Although the EI criterion is intuitive and effective in the single task case, it does not directly gen-
eralize to the multi-task case. However, entropy search does translate naturally to the multi-task
problem. In this setting we have observation pairs from multiple tasks, {xt

n, y
t
n}Nn=1 and we wish
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(a) Uncorrelated functions (b) Correlated functions (c) Correlated functions scaled by cost

Figure 2: A visualization of the multi-task information gain per unit cost acquisition function. In each figure,
the objective is to find the minimum of the solid blue function. The green function is an auxiliary objective
function. In the bottom of each figure are lines indicating the expected information gain with regard to the
primary objective function. The green dashed line shows the information gain about the primary objective that
results from evaluating the auxiliary objective function. Figure 2a shows two sampled functions from a GP that
are uncorrelated. Evaluating the primary objective gains information, but evaluating the auxiliary does not. In
Figure 2b we see that with two strongly correlated functions, not only do observations on either task reduce
uncertainty about the other, but observations from the auxiliary task acquire information about the primary task.
Finally, in 2c we assume that the primary objective is three times more expensive than the auxiliary task and
thus evaluating the related task gives more information gain per unit cost.

to pick the candidate xt that maximally reduces the entropy of Pmin for the primary task, which we
take to be t = 1. Naturally, Pmin evaluates to zero for xt>1. However, we can evaluate Py

min for
yt>1 and if the auxiliary task is related to the primary task, Py

min will change from the base distribu-
tion and H(Pmin)−H(Py

min) will be positive. Through reducing uncertainty about f , evaluating an
observation on a related auxiliary task can reduce the entropy of Pmin on the primary task of interest.

However, observe that evaluating a point on a related task can never reveal more information than
evaluating the same point on the task of interest. Thus, the above strategy would never choose to
evaluate a related task. Nevertheless, when cost is taken into account, the auxiliary task may convey
more information per unit cost. Thus we translate the objective from Equation (7) to instead reflect
the information gain per unit cost of evaluating a candidate point,

aIG(xt) =

∫ ∫ (
H[Pmin]−H[Py

min]

ct(x)

)
p(y | f) p(f |xt) dy df, (9)

where ct(x), ct : X → R+, is the real valued cost of evaluating task t at x. Although, we don’t
know this cost function in advance, we can estimate it similarly to the task functions, f(xt), using
the same multi-task GP machinery to model log ct(x).

Figure 2 provides a visualization of this acquisition function, using a two task example. It shows
how selecting a point on a related auxiliary task can reduce uncertainty about the location of the
minimum on the primary task of interest (blue solid line). In this paper, we assume that all the
candidate points for which we compute aIG come from a fixed subset. Following [18], we pick these
candidates by taking the top C points according to the EI criterion on the primary task of interest.

4 Empirical Analyses
4.1 Addressing the Cold Start Problem

Here we compare Bayesian optimization with no initial information to the case where we can lever-
age results from an already completed optimization on a related task. In each classification experi-
ment the target of Bayesian optimization is the error on a held out validation set. Further details on
these experiments can be found in the supplementary material.

Branin-Hoo The Branin-Hoo function is a common benchmark for optimization techniques [17]
that is defined over a bounded set on R2. As a related task we consider a shifted Branin-Hoo where
the function is translated by 10% along either axis. We used Bayesian optimization to find the
minimum of the original function and then added the shifted function as an additional task.

Logistic regression We optimize four hyperparameters of logistic regression (LR) on the MNIST
dataset using 10000 validation examples. We assume that we have already completed 50 iterations
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Figure 3: (a)-(d)Validation error per function evaluation. (e),(f) ACE over function evaluations.

of an optimization of the same model on the related USPS digits task. The USPS data is only 1/6
the size of MNIST and each image contains 16×16 pixels, so it is considerably cheaper to evaluate.

Convolutional neural networks on pixels We applied convolutional neural networks1 (CNNs)
to the Street View House Numbers (SVHN) [20] dataset and bootstrapped from a previous run of
Bayesian optimization using the same model trained on CIFAR-10 [21, 6]. At the time, this model
represented the state-of-the-art. The SVHN dataset has the same input dimension as CIFAR-10,
but is 10 times larger. We used 6000 held-out examples for validation. Additionally, we consider
training on 1/10th of the SVHN dataset to warm-start the full optimization. The best settings yielded
4.77± 0.22% error, which is comparable to domain experts using non-dropout CNNs [22].

Convolutional networks on k-means features As an extension to the previous CNN experiment,
we incorporate a more sophisticated pipeline in order to learn a model for the STL-10 dataset [23].
This dataset consists of images with 96 × 96 pixels, and each training set has only 1000 images.
Overfitting is a significant challenge for this dataset, so we utilize a CNN2 on top of k-means features
in a similar approach to [24], as well as dropout [25]. We bootstrapped Bayesian optimization using
the same model trained on CIFAR-10, which had achieved 14.2% test error on that dataset. During
the optimization, we used the first fold for training, and the remaining 4000 points from the other
folds for validation. We then trained separate networks on each fold using the best hyperparameter
settings found by Bayesian optimization. Following reporting conventions for this dataset, the model
achieved 70.1± 0.6% test-set accuracy, exceeding the previous state-of-the-art of 64.5± 1% [26].

The results of these experiments are shown in Figure 3(a)-(d). In each case, the multi-task optimiza-
tion finds a better function value much more quickly than single-task optimization. Clearly there is
information in the related tasks that can be exploited. To better understand the behaviour of the dif-
ferent methods, we plot the average cumulative error (ACE), i.e., the average of all function values
seen up to a given time, in Figure 3(e),(f). The single-task method wastes many more evaluations
exploring poor hyperparameter settings. In the multi-task case, this exploration has already been
performed and more evaluations are spent on exploitation.

As a baseline (the dashed black line), we took the best model from the first task and applied it
directly to the task of interest. For example, in the CNN experiments this involved taking the best
settings from CIFAR-10. This “direct transfer” performed well in some cases and poorly in others.
In general, we have found that the best settings for one task are usually not optimal for the other.

4.2 Fast Cross-Validation

k-fold cross-validation is a widely used technique for estimating the generalization error of machine
learning models, but requires retraining a model k times. This can be prohibitively expensive with
complex models and large datasets. It is reasonable to expect, however, that if the data are randomly

1Using the Cuda Convnet package: https://code.google.com/p/cuda-convnet
2Using the Deepnet package: https://github.com/nitishsrivastava/deepnet
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Figure 4: (a) PMF cross-
validation error per function
evaluation on Movielens-100k.
(b) Lowest error observed for
each fold per function evaluation
for a single run.

partitioned among folds that the errors for each fold will be highly correlated. For a given set of
hyperparameters, we can therefore expect diminishing returns in estimating the average error for
each subsequently evaluated fold. With a good GP model, we can very likely obtain a high quality
estimate by evaluating just one fold per setting. In this experiment, we apply the algorithm described
in Section 3.2 in order to dynamically determine which points/folds to query.

We demonstrate this procedure on the task of training probabilistic matrix factorization (PMF) mod-
els for recommender systems [27]. The hyperparameters of the PMF model are the learning rate,
an `2 regularizer, the matrix rank, and the number of epochs. We use 5-fold cross validation on the
Movielens-100k dataset [28]. In Figure 4(a) we show the best error obtained after a given number
of function evaluations as measured by the number of folds queried, averaged over 50 optimization
runs. For the multi-task version, we show both the true average cross-validation error, as well as
the estimated error according to the GP. In the beginning, the GP fit is highly uncertain, so the op-
timization exhibits some noise. As the GP model becomes more certain however, the true error and
the GP estimate converge and the search proceeds rapidly compared to the single-task counterpart.
In Figure 4(b), we show the best observed error after a given number of function evaluations on a
randomly selected run. For a particular fold, the error cannot improve unless that fold is directly
queried. The algorithm makes nontrivial decisions in terms of which fold to query, steadily reducing
the average error.

4.3 Using Small Datasets to Quickly Optimize for Large Datasets

As a final empirical analysis, we evaluate the dynamic multi-task entropy search strategy developed
in Section 3.3 on two hyperparameter tuning problems. We treat the cost, ct(x), of a function
evaluation as being the real running time of training and evaluating the machine learning algorithm
with hyperparameter settings x on task t. We assume no prior knowledge about either task, their
correlation, or their respective cost, but instead estimate these as the optimization progresses. In
both tasks we compare using our multi-task entropy search strategy (MTBO) to optimizing the task
of interest independently (STBO).

First, we revisit the logistic regression problem from Section 4.1 (Figure 3(d)) using the same ex-
perimental protocol, but rather than assuming that there is a completed optimization of the USPS
data, the Bayesian optimization routine can instead dynamically query USPS as needed. Figure 5(a),
shows the average time taken by either strategy to reach the values along the blue line. We see that
MTBO reaches the minimum value on the validation set within 40 minutes, while STBO reaches it
in 100 minutes. Figures 5(b) and 5(c) show that MTBO reaches better values significantly faster by
spending more function evaluations on the related, but relatively cheaper task.

Finally we evaluate the very expensive problem of optimizing the hyperparameters of online Latent
Dirichlet Allocation [29] on a large corpus of 200,000 documents. Snoek et al. [6] demonstrated
that on this problem, Bayesian optimization could find better hyperparameters in significantly less
time than the grid search conducted by the authors. We repeat this experiment here using the exact
same grid as [6] and [29] but provide an auxiliary task involving a subset of 50,000 documents
and 25 topics on the same grid. Each function evaluation on the large corpus took an average
of 5.8 hours to evaluate while the smaller corpus took 2.5 hours. We performed our multi-task
Bayesian optimization restricted to the same grid and compare to the results of the standard Bayesian
optimization of [6] (the GP EI MCMC algorithm). In Figure 5d, we see that our MTBO strategy
finds the minimum in approximately 6 days of computation while the STBO strategy takes 10 days.
Our algorithm saves almost 4 days of computation by being able to dynamically explore the cheaper
alternative task. We see in 5(f) that particularly early in the optimization, the algorithm explores the
cheaper task to gather information about the expensive one.
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Figure 5: (a),(d) Time taken to reach a given validation error. (b),(e) Validation error as a function of time spent
training the models. (c),(f) Validation error over the number of function evaluations.

5 Conclusion
As datasets grow larger, and models become more expensive, it has become necessary to de-
velop new search strategies in order to find optimal hyperparameter settings as quickly as possible.
Bayesian optimization has emerged a powerful framework for guiding this search. What the frame-
work currently lacks, however, is a principled way to leverage prior knowledge gained from searches
over similar domains. There is a plethora of information that can be carried over from related tasks,
and taking advantage of this can result in substantial cost-savings by allowing the search to focus on
regions of the hyperparameter space that are already known to be promising.

In this paper we introduced multi-task Bayesian optimization as a method to address this issue.
We showed how multi-task GPs can be utilized within the existing framework in order to capture
correlation between related tasks. Using this technique, we demonstrated that one can bootstrap
previous searches, resulting in significantly faster optimization.

We further showed how this idea can be extended to solving multiple problems simultaneously. The
first application we considered was the problem of optimizing an average score over several related
tasks, motivated by the problem of k-fold cross-validation. Our fast cross-validation procedure
obviates the need to evaluate each fold per hyperparameter query and therefore eliminates redundant
and costly function evaluations.

The next application we considered employed a cost-sensitive version of the entropy search acqui-
sition function in order to utilize a cheap auxiliary task in the minimization of an expensive primary
task. Our algorithm dynamically chooses which task to evaluate, and we showed that it can sub-
stantially reduce the amount of time required to find good hyperparameter settings. This technique
should prove to be useful in tuning sophisticated models on extremely large datasets.

As future work, we would like to extend this framework to multiple architectures. For example,
we might want to train a one-layer neural network on one task, and a two-layer neural network on
another task. This provides another avenue for utilizing one task to bootstrap another.
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