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Abstract

We analyse times between consecutive transactions for a diverse group of stocks registered on the NYSE and NASDAQ
markets, and we relate the dynamical properties of the intertrade times with those of the corresponding price fluctuations.
We report that market structure strongly impacts the scale-invariant temporal organisation in the transaction timing of
stocks, which we have observed to have long-range power-law correlations. Specifically, we find that, compared to NYSE
stocks, stocks registered on the NASDAQ exhibit significantly stronger correlations in their transaction timing on scales
within a trading day. Further, we find that companies that transfer from the NASDAQ to the NYSE show a reduction in the
correlation strength of transaction timing on scales within a trading day, indicating influences of market structure. We also
report a persistent decrease in correlation strength of intertrade times with increasing average intertrade time and with
corresponding decrease in companies’ market capitalization–a trend which is less pronounced for NASDAQ stocks.
Surprisingly, we observe that stronger power-law correlations in intertrade times are coupled with stronger power-law
correlations in absolute price returns and higher price volatility, suggesting a strong link between the dynamical properties
of intertrade times and the corresponding price fluctuations over a broad range of time scales. Comparing the NYSE and
NASDAQ markets, we demonstrate that the stronger correlations we find in intertrade times for NASDAQ stocks are
associated with stronger correlations in absolute price returns and with higher volatility, suggesting that market structure
may affect price behavior through information contained in transaction timing. These findings do not support the
hypothesis of universal scaling behavior in stock dynamics that is independent of company characteristics and stock market
structure. Further, our results have implications for utilising transaction timing patterns in price prediction and risk
management optimization on different stock markets.
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Introduction

The impact of market structure and associated rules of

operation on market efficiency and stock price formation have

attracted considerable public attention [1]. Developments on the

New York Stock Exchange (NYSE) [1,2], have raised the profile of

the market operating mechanism, the ‘‘market structure’’,

employed by a stock market. This has also been of concern to

those involved in stock market regulation, on behalf of investors

[1,3], since optimizing market structure results in more effectively

functioning markets [4] and increases competitiveness for market

share in listed stocks [5]. The two major stock markets in the U.S.,

the NYSE and the National Association of Securities Dealers

Automated Quotation System (NASDAQ) National Market have

very different structures [6,7], and there is continuing controversy

over whether reported differences in stock price behavior are due

to differences in market structure or company characteristics [8].

Comparative studies of the NYSE and NASDAQ have primarily

focused on stock prices to provide evidence that market

organizational structure affects the price formation process

[4,9,10]. It has been shown that stocks registered on the NASDAQ

may be characterized by a larger bid-ask spread [11] and higher

price volatility [4,9,10]. However, this is often attributed to the

market capitalization, growth rate or the nature of the companies

listed on the NASDAQ [8]. Empirical studies have also

emphasized the dominant role and impact of trading volume on

prices [12,13]; since traded volume is determined by investors it is

difficult to isolate the effects of market structure on price

formation. As the influence of market structure on stock prices

may be obscured by exogenous factors such as demand and supply

[12,13], we hypothesize that modulation of the flow of transactions

due to market operations may carry a stronger imprint of the

internal market mechanism.

Here we analyse times between consecutive transactions for a

diverse group of stocks registered on the NYSE and NASDAQ

markets, and we relate the dynamical properties of the intertrade

times with those of the corresponding price fluctuations. To

understand how market structure may affect stock prices, we study
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the information contained in the times between consecutive stock

transactions. As market-specific operations may modulate the flow

of transactions, we hypothesize that dynamical features of

transaction timing reflect the underlying market mechanism.

Specifically, we ask if stocks of companies with diverse character-

istics registered on a given market exhibit common features in

their transaction timing, which may be associated with the

particular market structure. Further, we investigate how the

dynamical properties of transaction timing over a range of time

scales relate to stock price dynamics and whether market structure

affects the temporal organisation of price fluctuations.

To probe how market structure influences the trading of stocks,

we consider the two major U.S. stock markets, the NYSE and the

NASDAQ. All transactions on the NYSE of a given stock are

centralised and are controlled by a single human operator called a

‘‘specialist’’, whose primary role is to match together public buy

and sell orders on the basis of price, in an auction-like setting [6].

The NYSE specialist is under obligation to maintain both price

continuity and a ‘‘fair and orderly market’’ [6], as well as to

intervene, using his own firm’s inventory of available stock, to

provide liquidity in the event of an order imbalance, thus

preventing sharp changes in the stock price [6]. The NYSE

regulations allow for considerable flexibility within the specialist’s

operations [2].

In contrast, trading on the NASDAQ is decentralised, with

trading in a given stock managed by a number of dealers called

‘‘market makers’’. These market makers maintain a stock

inventory, posting their best prices at which they are prepared

to immediately buy and sell stock [7]. Market makers compete

with each other for orders, so in theory competition ensures that

investors get the best prices. Alternatively, an order can be placed

into an Alternative Trading System (ATS), operated by NASD

members or NASD-member affiliates and designed to allow two

subscribers to meet directly on the system under the regulation of a

third party. The most commonly used form of ATS is the

Electronic Communication Network (ECN), a facility that matches

customer buy and sell orders directly through a computer network.

A third alternative, in case the order placed is very small, is to

enter the order into the Small Order Execution System (SOES),

which is an electronic network designed to allow fast automatic

routing, execution and reporting of orders of 500 shares or less.

Orders are automatically routed to market makers whose quotes

are currently identical to the highest bid (buy) and the lowest offer

(sell) prices. Participation in the SOES system was made

mandatory [7] after the market crash of October 1987, as one

of the reported problems on the NASDAQ during the crash was

the inability to reach market makers by the phone during periods

of rapid price movement.

To summarize the differences between the two market

structures, each market maker on the NASDAQ maintains his

own inventory of stock in order to buy and sell [7]. In comparison,

the NYSE specialist rarely uses his own firm’s inventory: such

transactions involve less than 15% of trading volume [14].

Although several regional exchanges may trade NYSE listed

stocks, price formation has primarily been attributed to NYSE

trading [15]. In contrast, the NASDAQ market relies on

competition between multiple dealers for public orders to facilitate

the price formation process [11]. Moreover, a substantial fraction

of share volume on the NASDAQ is not handled by dealers, but is

traded electronically via networks for small public orders and for

institutional investors [7]. Such fragmentation of the NASDAQ

stock market has been associated with higher price volatility [4].

Here we ask to what extent such structural and operational

differences between the NYSE and NASDAQ markets affect the

flow of transactions. It is difficult to answer whether differences in

intertrade times are due to individual company characteristics or

external market influences (Fig. 1). Two empirical studies have

considered only a single company stock over a short period of a

few months [16,17]. Studies which considered a larger group of

stocks either did not find common features in the intertrade times

[18,19] or did not compare between markets [20–22]. The only

comparative study considered a single NYSE and a single Paris

stock, finding some differences in their intertrade times, but those

may well be due to a different culture of trading [23]. To probe for

evidence of the impact of market structure on the trading of stocks,

we employ concepts and methods from statistical physics to

investigate the correlation properties of transaction timing for

Figure 1. Relationship between stock price and trading activity. Representative example of time series derived from the Trades and Quotes
(TAQ) database for transactions of stock in Compaq Computer Corp. (CPQ) registered on the NYSE. (a) Price of CPQ stock over a three week period
from 20 Feb.- 8 Mar. 1996 (42606 trades). On 1 Mar. 1996 Compaq reported that it would cut product prices in order to meet sales targets, leading to
a drop in the stock price. (b) Intertrade times (ITT) of CPQ stock over the same period. Data exhibit complex fluctuations, a daily pattern of trading
activity (with short ITT at the open and close of a trading day and longer ITT in between), and highly heterogeneous structure, as seen in the flurry of
trades following the price drop. The relaxation time of the ITT response following the price drop extends over several days, suggesting that
information may be contained in the temporal structure of trading activity. Data include transactions occurring between 9.30am and 4pm EST,
excluding weekends and holidays.
doi:10.1371/journal.pone.0092885.g001

Impact of Stock Market on ITT and Price
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diverse companies, over time scales ranging from seconds up to a

year.

Data

We examine one hundred stocks listed on the NYSE, from

eleven industry sectors: Technology-Hardware(5), Semiconduc-

tors(2), Pharmaceutical & Medical Equipment(10), Financial(8),

Automotive(9), Defense/Aerospace(9), Mining, Metals & Steel

Works(8), Chemicals & Plastics(7), Retail & Food(17), Petroleum,

Gas & Heavy Machinery(10), Telephone Service Providers(7),

Electric & Power Services(8). We study the time intervals between

successive stock trades, over a period of four years–4 Jan. 1993 to

31 Dec. 1996–as recorded in the Trades and Quotes (TAQ)

database from the NYSE (Table 1).

We also analyse one hundred NASDAQ stocks from fourteen

industry sectors: Technology-Hardware(28), Technology-Soft-

ware(16), Semiconductors(7), Pharmaceutical, Biotechnology &

Medical Equipment(12), Financial(5), Automotive(1), Steel

Works(1), Chemicals(1), Retail & Food(16), Petroleum, Gas &

Heavy Machinery (2), Telephone & Cable Television Service

Providers(5), Services(2), Transportation(3), Electrical Appara-

tus(1). We study the time intervals between successive stock trades

as recorded in the TAQ database, for twenty-nine companies over

the period 4 Jan. 1993–31 Dec. 1996, and seventy one companies

over the period 3 Jan. 1994–30 Nov. 1995 (marked with (*) in

Table 2). For both markets, we select companies with average

market capitalisations ranging over three decades, and varying

levels of trading activity with average values of intertrade time

between 11 and 640 seconds for NYSE stocks, and between 5 and

680 seconds for NASDAQ stocks. In parallel with the intertrade

times, we analyse the prices for both sets of stocks over the same

periods.

Method

Like many financial time series the intertrade times (ITT) are

inhomogeneous and nonstationary, with statistical properties

changing with time, e.g. ITT data exhibit trends superposed on

a pattern of daily activity [24]. While ITT fluctuate in an irregular

and complex manner on a trade-by-trade basis, empirical

observations reveal that periods of inactive trading are often

followed by periods of more active trading (Fig. 1). Such patterns

can be seen at scales of observation ranging from minutes to

months, suggesting that there may be a self-similar, fractal

structure in the temporal organisation of intertrade times,

independent of the average level of trading activity of a given

stock [24].

To probe for scale-invariant features in the fluctuations of

intertrade times, we apply the detrended fluctuation analysis

(DFA) method, which has been shown to detect and accurately

quantify long-range power-law correlations embedded in noisy

non-stationary time series with polynomial trends [25]. We choose

this method because traditional techniques such as power spectral,

autocorrelation and Hurst analyses are not suited to nonstationary

data [26]. The DFA method (DFA-l) quantifies the root-mean-

square fluctuations F (n) of a signal at different time scales n, after

accounting for nonstationarity in the data by subtracting

underlying polynomial trends of order (l{1). A power-law

functional form F(n)~na indicates self-similarity and fractal scaling

in the ITT time series. The scaling exponent a quantifies the

strength of correlations in the ITT fluctuations: if a~0:5 there are

no correlations, and the signal is uncorrelated random noise; if

av0:5 the signal is anti-correlated, meaning that large values are

more likely to be followed by small values; if aw0:5 there are

positive correlations and the signal exhibits persistent behaviour,

where large values are more likely to be followed by large values

and small values by small values. The higher the value of a, the

stronger the correlations. The DFA method avoids the spurious

detection of apparent long-range correlations that are an artifact of

polynomial trends and other types of nonstationarities [27–30].

Results

We find that the ITT series for all stocks on both markets

exhibit long-range power-law correlations over a broad range of

time scales, from several trades to hundreds of thousands of trades,

characterised by a scaling exponent aw0:5 (Fig. 2 and Fig. 3). For

all stocks on both markets we observe a crossover in the scaling

curve F (n) from a scaling regime with a lower exponent a1 over

time scales less than a trading day, to a scaling regime with an

exponent a2wa1 (stronger positive correlations) over time scales

from days to almost a year.

Further, we find that this crossover is systematically more

pronounced for NYSE stocks compared to NASDAQ stocks (Fig. 2

and Fig. 3). Characterising ITT fluctuations over time scales less

than a day, we find that NASDAQ stocks exhibit statistically

stronger correlations than NYSE stocks as indicated by Student’s t-

test (t~25:28, pv10{63), with significantly higher average value

of the exponent a
ITTNASDAQ

1 ~0:75+0:04 (group mean + std. dev.)

Figure 2. Root-mean-square fluctuation function F (n) obtained
using DFA-2 analysis, for the intertrade times (ITT) of stock in
NASDAQ company Sun Microsystems (SUNW) and NYSE
company Compaq Computer Corp. (CPQ). Here n indicates the
time scale in number of trades. We normalize the time scale n by the
daily average number of trades for each stock, so that a unit normalized
scale indicates one trading day (marked by a dashed line). The scaling
curves are vertically offset for clarity. While both companies have similar
market capitalisations, industry sectors and average levels of trading
activity (average ITT) and exhibit long-range power-law correlations
over a broad range of scales, the scaling behaviour of the intertrade
times for the two stocks is quite different. For CPQ we find a
pronounced crossover from weaker correlations over time scales
smaller than a day, to stronger correlations over time scales larger

than a trading day (a
ITTCPQ

2 wa
ITTCPQ

1 ). In contrast, the scaling function
F (n) for SUNW does not exhibit such a crossover, and we find much
stronger correlations over time scales smaller than a trading day

compared with CPQ (aITTSUNW

1 w a
ITTCPQ

1 ).
doi:10.1371/journal.pone.0092885.g002
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as compared to aITTNYSE

1 ~0:62+0:03 (Fig. 3). In contrast, over

time horizons above a trading day, we find that the correlation

properties of ITT on both markets are statistically similar (t~2:27,

p~0:03), with average scaling exponent a
ITTNASDAQ

2 ~0:85+0:08

comparable with aITTNYSE

2 ~0:87+0:09 (Fig. 3). Values for the

scaling exponents aITT
1 and aITT

2 for the companies on the NYSE

and NASDAQ markets are shown in Table 1 and Table 2

respectively.

We next investigate how the correlation properties of ITT

depend on the average level of trading activity, and if this

dependence differs with market structure. Since both sets of a

hundred stocks that we study on the NYSE and NASDAQ

markets encompass a range of average trading activity spanning

over two decades, we split both sets into six subsets with matching

average ITT (ITT ) and approximately equal numbers of stocks in

each subset (Fig. 3a,b). Within each market we find that over time

scales less than a day, the correlation exponent aITT
1 characterising

the trading dynamics is larger for stocks with higher trading

activity (lower ITT ) and correspondingly higher market capitalisa-

tion (Fig. 3a,b and Fig. 4a). Surprisingly, this dependence persists

also for aITT
2 , characterizing the dynamics over much longer time

scales, ranging from days to months (Fig. 4b). For NYSE stocks we

find a logarithmic dependence of aITT
1 and aITT

2 on ITT

(subsequent to posting this manuscript on the Los Alamos archive

[31], this logarithmic dependence was later confirmed in [32] on a

different set of NYSE stocks). This dependence does not appear to

hold for NASDAQ stocks (Fig. 4).

We then compare the scaling behaviour of ITT for each subset

of NASDAQ stocks with the corresponding subset of NYSE stocks

with matching ITT . We find that for each subset the average

correlation exponent aITT
1 for the NASDAQ stocks is significantly

higher compared to the NYSE stocks (all p values v10{13;

Figure 3. Different correlation properties in intertrade times for stocks registered on the NYSE and NASDAQ markets. Correlation
exponents a1 and a2 characterising the temporal structure in ITT for (a) one hundred NYSE stocks and (b) one hundred NASDAQ stocks, of companies

with a broad range of market capitalisations and industry sectors. Stocks are ranked in order of decreasing average value of ITT (ITT ) (as in Tables 1

and 2), and are split into subsets (marked by vertical dashed lines) of companies with matching ITT , and with approximately equal number of stocks
in each subset. We estimate aITT

1 over scales from 8 trades to half of the daily average number of trades (for stocks with fewer than 1:5|105 trades/

year), and to a third of the daily average number of trades (for stocks with more than 1:5|105 trades/year). We estimate aITT
2 over scales from 3 to

100 times the daily average number of trades. Group averages and standard deviations of aITT
1 and aITT

2 are shown to the right of the panel for each

market. Systematically higher values of aITT
1 for the NASDAQ stocks as compared to the NYSE stocks (statistically significant difference with p-value

pv10{63 by Student’s t-test), suggest an underlying influence of market structure on the temporal organisation of intertrade times over scales within
a trading day. In contrast, no systematic differences between the two markets are observed in the values of aITT

2 , characterising correlation properties
of intertrade times over scales above a trading day (p~0:03 by Student’s t-test). We find similar results when we analyse trading activity at high
resolution in terms of the number of trades per minute: a crossover at one trading day and stronger correlations for NASDAQ stocks compared to
NYSE stocks over time scales less than a day (features which were not observed in previous studies [52,50]). We further observe an increasing trend in

the values of aITT
1 and aITT

2 with decreasing ITT and increasing company capitalisation for the companies on both markets.
doi:10.1371/journal.pone.0092885.g003
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Fig. 4a). We also find that there is no significant correlation

between the differences a
ITTNASDAQ

1 {aITTNYSE

1 in each subset and

the ITT , as indicated by Pearson’s test (r~{0:62, p~0:19).

These observations show that within a trading day the difference

in the correlation properties of intertrade times of NYSE and

NASDAQ stocks is independent of the average level of trading

activity. In contrast to aITT
1 , there is no systematic difference in the

values of the average aITT
2 for NASDAQ and NYSE stocks for

subsets with matching ITT (all p values w0:08; Fig. 4b) except for

the subset of companies with the highest frequency of trading

(pv0:01; Fig. 4b).

Since for both NYSE and NASDAQ stocks we have chosen

companies representing eleven industry sectors with a broad range

of market capitalisations and average levels of trading activity

spanning over more than two decades, our findings of (i) a

crossover in the scaling behaviour of ITT that is more pronounced

for NYSE stocks, and (ii) stronger correlations over intraday time

scales of NASDAQ stocks with higher values for aITT
1 compared to

NYSE stocks, support our hypothesis that market structure affects

the dynamics of transaction timing. However, more established

companies listed on the NYSE may be subject to different trading

patterns when compared with the younger and more rapidly

growing companies on the NASDAQ. To verify that the stronger

correlations in ITT over time scales less than a day for NASDAQ

stocks are indeed due to market structure, we ask if the scaling

properties of ITT systematically change for companies that

transfer from the NASDAQ to the NYSE. In particular, we

investigate the trading dynamics of ten companies that moved

from the NASDAQ to the NYSE around the end of 1994 and the

beginning of 1995 (Table 3). For each company, we analyse the

ITT time series while the company was registered on the

NASDAQ, and then repeat the analysis when the company was

on the NYSE.

For all ten companies we find a significant change in the scaling

properties of intertrade times: a marked decrease in the strength of

the power-law correlations within a trading day (lower aITT
1 )

associated with the transfer from the NASDAQ to the NYSE

(average difference aITT
1 ~0:13+0:03; Fig. 5b). There is

however, no corresponding systematic change in the correlations

over time scales above a trading day (average difference

aITT
2 ~0:03+0:08; Fig. 5c), consistent with our findings of

statistically similar values of scaling exponent aITT
2 for the two

groups of one hundred stocks registered on the NYSE and

NASDAQ (Fig. 2 and Fig. 3). Thus, our results indicate that

market structure impacts not only trading dynamics on a trade-by-

trade basis [19], but also the fractal temporal organisation of

trades over time scales from a few seconds up to a day. The

presence of stronger intraday correlations in transaction timing for

NASDAQ stocks may be attributed to the multiplicity of dealers

(ranging from 2 to 50 per stock during 1994 [11]) and electronic

methods of trading (Electronic Communication Networks and the

Small Order Execution System [7]), allowing the NASDAQ to

efficiently absorb fluctuations in trading activity in almost real time

[5]. In contrast, for each stock on the NYSE, while there is the

electronic SuperDOT routing system, each order has to be

exposed to and compared with outstanding orders, as the single

NYSE specialist finds the best bid to match an offer with [6]. This

may lead to interruptions in the execution of a rapid succession of

trades on the NYSE, resulting in weaker correlations in intertrade

times within a trading day.

On the other hand, our finding of stronger power-law

correlations for both markets over time horizons from a trading

day to several months (aITT
2 waITT

1 ) suggests that investors’

behaviour is more coherent over longer time scales, as information

driving trading activity takes time to disseminate. Moreover, this

can account for the similar values of aITT
2 for subsets of NYSE and

NASDAQ stocks with matched ITT (Fig. 4b), since news and

information driving trading activity are exogenous to market

structure.

Finally, we investigate if the market-mediated differences in

long-range power-law correlations in ITT translate into differenc-

es in the scaling behaviour of price fluctuations of stocks registered

on the NASDAQ and NYSE markets. To this end, in parallel with

ITT we analyse the absolute price returns for each company in our

Figure 4. Comparing long-range correlations in ITT for groups
of stocks with varying average levels of trading activity on the
NYSE and the NASDAQ. (a) Dependence of exponent aITT

1 ,
characterizing the strength of correlations in ITT over scales from
seconds up to a trading day, on the average level of trading activity.
Each datapoint represents the group average over a subset of stocks,

with a matching range of average intertrade times ITT for the two
markets. Stocks are grouped into subsets as indicated by vertical
dashed lines in Fig. 3a,b. The consistent difference in the scaling
exponent aITT

1 between NYSE and NASDAQ stocks suggests that
independent of company characteristics such as market capitalization
and industry sector, the temporal organization of ITT within a trading
day carries an imprint of market structure. (b) Dependence of exponent
aITT

2 characterizing correlations in ITT over time scales from a trading
day to several months, on the average level of trading activity. On both
markets we observe similar behavior with no systematic difference in
the values of aITT

2 between NYSE and NASDAQ subsets of stocks with

matching ranges of ITT . These results suggest that over time horizons
longer than a trading day, the impact of market structure on trading
dynamics is less pronounced as more information is available to
investors over longer time scales, driving their trading activity. The
resulting more coherent behavior of investors is reflected in stronger
correlations (aITT

2 waITT
1 ) over longer time scales.

doi:10.1371/journal.pone.0092885.g004
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database for both markets. For all stocks we observe a crossover at

a trading day in the scaling function F (n) of price fluctuations

[33,24], from weaker to stronger correlations, corresponding to

the crossover we observe for intertrade times. In addition we find

that over time scales less than a day, stocks with stronger

correlations in ITT exhibit stronger correlations in absolute price

returns (Fig. 6a), as indicated by Pearson’s test (r~0:9, pv10{68).

In particular, we find that the stronger correlations in ITT

associated with the NASDAQ market structure

(a
ITTNASDAQ

1 waITTNYSE

1 ), are accompanied by stronger correlations

in price fluctuations (a
jRET jNASDAQ

1 wa
jRET jNYSE

1 ) over time scales

within a trading day (Fig. 6a).

We also find evidence of a positive relationship between

correlations in ITT and correlations in price fluctuations over

time scales larger than a trading day for NASDAQ stocks

(Pearson’s test shows statistically significant correlation between

a
ITTNASDAQ

2 with a
jRET jNASDAQ

2 with r~0:64, pv10{12; Fig. 6b). In

contrast, there is no corresponding positive relationship between

aITT
2 with a

jRET j
2 for NYSE stocks (Pearson’s test: r~0:17, p~0:1),

suggesting a weaker coupling between trading dynamics and price

formation under the NYSE market structure, over time horizons

above a trading day. While previous work has suggested that bursts

of trading activity have an instantaneous impact on stock prices

[19,34], our results show that the interaction between trading

times and price formation is more complex, where scale invariant

temporal patterns in ITT are linked with scaling features of price

fluctuations over a broad range of time scales.

We then test whether long-range correlations in ITT are also

linked with stock price volatility. Previous studies have reported

higher price volatility for NASDAQ stocks compared to NYSE

stocks [4,9,10]. We find a positive relationship, with stronger

correlations in ITT over time scales less than a day related to

higher daily volatility sRET (Pearson’s test: r~0:73, pv10{33;

Fig. 6c). Further, we find that the NASDAQ stocks have higher

aITT
1 and correspondingly higher sRET compared to NYSE stocks

(Fig. 6c). This relationship may appear to follow from our

observation that aITT
1 depends on ITT (Fig. 4a), and previous

studies which connect price volatility with periods of high

transaction rates [16,35]. However, for the stocks in our database

(Tables 1 and 2), we find no correlation between sRET and

average level of trading activity as measured by ITT (Pearson’s

test: r~0:01, p~0:36; Fig. 6d). Thus the relationship between

aITT
1 and sRET suggests that information contained in the

microscopic temporal structure of ITT is carried over a range of

scales to impact daily price volatility.

Discussion

Understanding the statistical properties of intertrade times and

the related underlying mechanism is crucial for the development of

more realistic models not only of the flow of transactions [36–38],

but more importantly to elucidate (i) the relation between

intertrade time dynamics and stock price formation [16,18,39–

41], and (ii) how the process of stock price formation is influenced

by market structure. In that context, several prior studies have

focused not only on the correlation properties, but also on

nonlinear features of intertrade times, and on the functional form

of their probability distribution. Early studies reported stretched

exponential distributions for intertrade times based on data from a

single actively-traded stock over a short period of a few months

[16,17], or power-law tailed distributions for rarely-traded 19th

century stocks [42] and eurobonds traded in 1997 [43]. While
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some of these studies have also considered autocorrelations in

intertrade times, they have not identified the functional form of

these correlations and whether they are persistent or anti-

persistent. A first systematic empirical study based on 30

frequently-traded US stocks over a long period of several years

[24] has (i) reported long-range power-law correlations of

persistent type with a characteristic crossover to a superdiffusive

behavior at time scales above a trading day, and (ii) identified a

Weibull functional form for the distribution of intertrade times. In

a follow up study based on a different group of US stocks [38], the

Weibull functional form was also considered a good fit for the

intertrade time distribution, with the Tsallis q-exponential form as

an alternative. Further investigations considering the intertrade

dynamics of a group of frequently-traded Chinese stocks have

shown that the Weibull distribution outperforms the Tsallis q-

exponential for more than 98.5% of the data [20]. The long-range

power law correlations in intertrade times initially reported for US

stocks [24] were also observed for liquid stocks on the Shanghai

Stock Exchange [22]. Our results based on 100 NASDAQ and

100 NYSE stocks confirm the presence the long-range power law

correlations. The results of these studies, which focus on different

markets and different time periods, confirm that the Weibull

distribution and long-range power law correlations are stable

characteristics of intertrade time dynamics across markets and

temporal time scales. Interestingly, similar characteristics were

recently reported for commodity dynamics of ancient Babylon

(463–72 B.C), and medieval and early modern England (1209–

1914 A.D.) markets [44].

It has been recently hypothesized [36] that the dynamics of

intertrade times maybe governed by a priority decision-based

queuing mechanism [45,46]. This hypothesis, however, does not

appear plausible. First, the priority queuing process proposed in

[45] leads to power law distributions for the timing between

events, which has been rejected for intertrade times [20,38].

Second, this queuing process does not generate long-term

correlations, contrary to empirical findings for intertrade times

of stocks reported in [20,22,24], and in the current study

comparing stocks on different markets. Moreover, the activity

pattern of a single stock broker is not adequately described by a

power law, but rather by a power law with a stretched exponential

tail [46], which is actually the functional form of the Weibull

distribution [24]. Further, it is unlikely that the priority decision-

based queuing process underlies stock market operations, since

market agents treat all orders for stock transactions with the same

priority no matter how big or small the order, because the

objective of market agents is to execute all orders as soon as

possible. For this reason, each stock transaction is a minimal time

event realization resulting from the competition of a number of

market agents with different reaction times–the statistics of

minimal events derived from multiple realizations are described

by Weibull distributions. Thus, the process of stock market

operations is markedly different from the processes governing the

dynamics of other human activities, such as web browsing or email

exchange that are based on priority queuing [45,46]. Furthermore,

in contrast to priority decision-based processes, intertrade dynam-

ics exhibit nonlinear (multifractral) properties, as first empirically

identified in [24] and later confirmed in the framework of

multifractal random walks [36].

To summarize, this is the first large empirical study to

investigate intertrade times comparing 200 stocks registered on

the NYSE and NASDAQ markets representing diverse sectors of

the economy, where all stock transactions over a period of four

years are included (Table 1 and 2, Figure 2 and Figure 3). This is

also the first study to examine changes in the trading dynamics of

stocks of companies that moved from one market to the other

(Table 2 and Figure 5).

Figure 5. Correlation properties of intertrade times of compa-
nies that moved from the NASDAQ to the NYSE. (a) Fluctuation
function F (n), obtained using DFA-2 analysis on ITT of stock in the
company Mid-Atlantic Medical Services Inc. while it was on the NASDAQ
(3 Jan. 1994–29 Sep. 1994) and then after it moved to the NYSE (30 Sep.
1994–30 Nov. 1995). Here n indicates the scale in number of trades and
the vertical dashed lines indicate the average daily number of trades
while on the NYSE or the NASDAQ. The two scaling curves are vertically
offset for clarity. After the move to the NYSE there is a decrease in the
correlation exponent a1 at time scales within a trading day and a
pronounced crossover to stronger correlations with a higher exponent
a2 at larger time scales. (b) aITT

1 characterising fluctuations over time
scales less than a trading day in ITT of stock in ten companies that
moved from the NASDAQ to the NYSE. Companies are ranked in order

of decreasing ITT while on the NYSE (as in Table 3) and the scaling
range for aITT

1 is the same as for the hundred NYSE and NASDAQ stocks

(Fig. 3a,b). For all companies there is a decrease in aITT
1 after the move

to the NYSE, indicating that the transition to weaker correlations in ITT
over time scales less than a day is due to the NYSE market structure and
not to company-specific characteristics. (c) aITT

2 over time scales
extending from a trading day to almost a year. In this case we do not
observe any systematic change when companies move to the NYSE,
which is consistent with the finding of statistically similar values of
scaling exponent aITT

2 for the two groups of the one hundred stocks
registered on the NYSE and on the NASDAQ (Fig. 3a,b).
doi:10.1371/journal.pone.0092885.g005

Impact of Stock Market on ITT and Price

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e92885



We report that trading dynamics of company stocks are

characterized by a scale-invariant temporal organisation of

intertrade times which is significantly different for stocks registered

on the NYSE and the NASDAQ, indicating that market structure

influences the correlation properties of transaction timing.

Specifically, we find that intertrade times are more strongly

correlated for NASDAQ stocks, when data are analysed over time

scales within a trading day, and that this difference is independent

of the average level of trading activity of the companies (Figures 2,

3 and 4). In contrast, on time scales above a trading day there is no

significant difference in the long-range correlations of companies

on the two markets.

Investigating a group of companies that transferred from the

NASDAQ to the NYSE, we find that intertrade times exhibit

significantly stronger power-law correlations over scales from

seconds to a trading day while the companies are on the

NASDAQ (Figure 5). These findings suggest that market structure

impacts trading dynamics, not only on a trade-by-trade basis, but

over a broad range of time scales. In addition, our results imply

that within a trading day the NASDAQ market structure may be

more efficient than the NYSE market structure in absorbing rapid

variations in trading activity in response to investors’ demand [47].

In contrast, on scales above a trading day our results suggest a

more coherent behavior of market agents in response to events on

Figure 6. Relation between correlations in intertrade times and stock price dynamics. (a) Dependence of exponent a
jRET j
1 characterising

power-law correlations in absolute logarithmic price return fluctuations, on correlation exponent aITT
1 characterising intertrade times within a trading

day. Data represent one hundred NYSE (Table 1) and one hundred NASDAQ (Table 2) stocks. We calculate price returns over 1-minute intervals and

a
jRET j
1 over time scales from 8 to 180 minutes (& half a trading day, which is 390 minutes). The positive relationship between aITT

1 and a
jRET j
1

indicates that stronger correlations in ITT are coupled with stronger correlations in price fluctuations. This finding suggests that price fluctuations are
not merely a response to short-term bursts of trading activity [34,16]: rather the fractal organisation of price fluctuations over a broad range of time
scales is linked to the observed underlying scaling features in the series of intertrade times. (b) Strong relationship between correlations in ITT and
correlations in price fluctuations over time scales larger than a trading day for NASDAQ stocks. In contrast, there is no corresponding positive
relationship for NYSE stocks. This suggests a weaker coupling between trading dynamics and price formation under the NYSE market structure, over
time horizons above a trading day. Dependence of stock price volatility sRET on (c) the correlation exponent aITT

1 and (d) the average value of ITT for

the same stocks as in (a). We calculate sRET as the standard deviation of daily logarithmic price returns over six-month periods, averaging over all six-
month periods throughout the entire record of each stock. Our results show no strong dependence between stock price volatility sRET and average
level of trading activity, rather the volatility appears sensitive to the strength of the temporal correlations in ITT. These findings suggest that scale-
invariant features in transaction times may play an important role in price formation. Furthermore, both dynamic and static properties of stock prices
appear to be influenced by market-specific features in transaction timing: stronger power-law correlations in ITT (higher values of aITT

1 ) for NASDAQ

stocks are matched by stronger power-law correlations in price fluctuations (higher values of a
jRET j
1 ) and higher volatility (sRET ), compared with NYSE

stocks.
doi:10.1371/journal.pone.0092885.g006
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larger time scales, thus leading to stronger correlations in

intertrade times for the companies on both markets.

Importantly, we also uncover a strong dependence between the

scale-invariant features of intertrade times and stock price

fluctuations: stocks with stronger correlations in their intertrade

times also exhibit stronger correlations in their absolute price

returns (Figure 6), indicating an influence of trading activity

patterns on the dynamics of price formation. Furthermore, we

show that within a trading day absolute price returns, like

intertrade times, are more strongly correlated for stocks registered

on the NASDAQ market (Figure 6a), and that higher price

volatility on the NASDAQ is coupled with stronger correlations in

intertrade times (Figure 6c). These findings suggest that market-

mediated differences in transaction timing translate into differ-

ences in the scaling behavior of stock prices over a broad range of

time scales.

Finally, our results do not support the hypothesis of a universal

behavior in stock dynamics that is independent of individual

company characteristics. In contrast to earlier studies reporting

identical scaling exponents for stock price returns, volume and

number of trades per unit of time [48–52], our findings show a

strong dependance of the scaling behavior of intertrade times on

the market capitalization and the average frequency of trading of

individual companies (Figure 2 and Figure 3), as well as on the

market structure where the companies are traded. Recent studies

[32,53] have also demonstrated that stock price returns and

volume do not exhibit universal behavior, but rather depend on

market capitalization. Our results show that this universality does

not hold also because trading dynamics are strongly influenced by

market-specific trading operations and market structure. Our

results may have implications for the use of transaction timing

patterns in the prediction of prices and risk management on

different stock markets. These observations are of interest in the

context of the continuing process of optimizing market structure to

maintain the efficiency and competitiveness of U.S. stock markets

[1].
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