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Abstract

Laboratory testing is the single highest-volume medical activity, making it useful to ask how well one can anticipate
whether a given test result will be high, low, or within the reference interval (‘‘normal’’). We analyzed 10 years of electronic
health records—a total of 69.4 million blood tests—to see how well standard rule-mining techniques can anticipate test
results based on patient age and gender, recent diagnoses, and recent laboratory test results. We evaluated rules according
to their positive and negative predictive value (PPV and NPV) and area under the receiver-operator characteristic curve (ROC
AUCs). Using a stringent cutoff of PPV and/or NPV$0.95, standard techniques yield few rules for sendout tests but several
for in-house tests, mostly for repeat laboratory tests that are part of the complete blood count and basic metabolic panel.
Most rules were clinically and pathophysiologically plausible, and several seemed clinically useful for informing pre-test
probability of a given result. But overall, rules were unlikely to be able to function as a general substitute for actually
ordering a test. Improving laboratory utilization will likely require different input data and/or alternative methods.
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Introduction

Laboratory testing is the single highest-volume medical activity

[1]. Its main role is to help adjust the level of clinical suspicion of a

diagnosis to help rule it in or out; it is also used for disease

monitoring. In practice, the level of clinical suspicion and the

probability of a given test result can be correlated: the higher the

suspicion, the more likely it is that the result will confirm the

diagnosis. Information that feeds into the clinical suspicion—

including the age and gender of the patient, prior diagnoses, and

prior laboratory results—thus may also influence the test result.

In principle, this relationship can be used to improve laboratory

testing by making it possible to estimate the pre-test probability of

getting a given test result before ordering the test, and, in the limit,

to reduce test utilization without adversely affecting patient

outcomes. Indeed, ordering fewer tests, where warranted, might

benefit outcomes by saving the patient the burden of following up

false positives (or negatives) [2–4].

Conceptually, the relationship between clinical suspicion and

pre-test probability is used routinely to help set guidelines

regarding when and when not to order a given test. For example,

the pre-test probability of Lyme serology being positive given a

targetoid rash is high enough that, given the test’s sensitivity and

specificity, ordering the test is contraindicated [5]. Because of the

large number of tests and clinical scenarios that exist, and in light

of evidence from across medicine that utilization of laboratory

testing can be improved [1,6], it is of interest to understand

whether analyzing large clinical databases using the robust

application of standard statistical techniques can turn this

relationship into actionable decision-support rules—or whether

progress toward better laboratory utilization might instead lie

elsewhere.

We sought to test the limits of rule-mining for this purpose. To

what extent can laboratory results be anticipated computationally

based on data available to the clinician, or a clinical decision

support system, at the time of the order? We addressed this

question using generalized linear modeling (GLM), a generalized

form of linear regression [7], and, for comparison, classification

trees (CT) [8,9].

Methods

We used four types of input—age, gender, diagnoses (three-digit

ICD-9 codes), and results of laboratory tests on blood samples

added to the record in the seven days before a given test was

ordered—to build simple, robust models for whether the result of a

test would be within the reference interval (‘‘normal’’) or outside of

it in a given direction (‘‘abnormal’’), treating high and low results

separately.

We based our study on 10 years of records from the Beth Israel

Deaconess Medical Center (BIDMC), a 585-bed tertiary care

center in Boston, MA. We first anonymized records and

reconciled test names (work approved by BIDMC Committee

on Clinical Investigation’s Institutional Review Board for
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Research Involving Human Subjects, protocol 2012-P-000229/

01). Informed consent was not obtained because patient records/

information was anonymized prior to analysis. Each blood test (the

test of interest), over 69.4 million in all, was marked as an in-house

test (performed at the hospital) or a sendout (performed off-site).

For each test, we compiled a list of all instances in which the test

was ordered and performed. For each instance, we recorded the

patient’s age, gender, and any diagnoses or other blood-test test

results from the seven days prior to the result of interest. When a

test was ordered multiple times within a seven-day period, we

considered only the most recent one (i.e., the one closest in time to

the sendout order) as input data. For relevance, we considered

only those tests that were ordered at least 1,000 times over the

entire 10-year period, for an average of at least twice a week. We

randomly divided the resulting instances into a training set and a

test set (see below for details).

All tests had either two (reference vs. abnormal) or three (low,

normal, or high) possible response values. For tests with three

values, we performed two separate rule searches: one for high vs.

not high—i.e., grouping normal and low—and one for low vs. not

low.

Generalized linear modeling (GLM)
We sought to identify simple, robust subsets of our input data to

evaluate as linear predictors (‘‘rules’’) for whether a test result

would be normal or abnormal. To do this, we used GLM twice:

first to find rules based on a particular training set and a second

time to find rules based on just those items that were common to

rules found from a number of different training sets (to avoid

overfitting any one training set). We did this as follows, for each

test of interest (the response variable or ‘‘response’’).

We first excluded those input variables (‘‘features’’) that

appeared with fewer than 5 percent of the response. We then

temporarily set aside the most common features (those of the

complete blood count and basic metabolic panel) as well as age

and gender, and searched the remaining items for frequent

featuresets (using the Apriori algorithm [10,11]). We then added

back to each resulting featureset the common features, age, and

gender (which are frequent items by definition, since they appear

in all instances) with a support threshold of 0.60 (i.e., itemsets for

which all items were present with at least 60 percent of instances of

the response variable). This set-aside/add-back approach sped the

search for featuresets without loss of comprehensiveness.

We used each featureset to create a model for the test of interest

using R’s glm function (with the family argument set to

‘‘Binomial’’). We used backward feature elimination to remove

non-significant features one at a time from the featureset (using a

significance threshold p-value of 161025; see below) until the only

features that remained were all significantly correlated with the

response. We also removed features that are used to calculate the

result for the test of interest—e.g., CD4 and CD8 count for T-cell

count, which is the sum of CD4 and CD8—for all but proof-of-

principle runs.

The significance threshold was corrected for multiple compar-

isons by dividing the traditional threshold of p = 0.05 by the

product of the total number of tests considered and the average

number of rules generated for each test. The combined total

number of features (in-house tests plus sendout tests plus diagnoses)

was 170+81+434 = 685. The average number of rules after

application of GLM for the first time for each test is 6. Thus

our threshold p-value was 0.05/(6*685) = 1.261025, which we

rounded to 161025.

We constructed a model for the result by running glm a second

time on a training set (see below) based on this reduced featureset.

Of note, there was no guarantee that any feature would be

significantly correlated (p#161025) or that there would be enough

instances (glm’s threshold was 200) of the test appearing with all

features of even the reduced featureset for glm to produce a model.

When feature elimination resulted in no significant features or too

few instances, no model was constructed. We scored models using

PPV, NPV, and ROC AUC.

We were interested only in models that were robust to the size

and choice of training set. Therefore we repeated the above

process for a range of training set-test set splits (80-20, 70-30, 60-

40, 50-50, 40-60, 30-70, and 20-80 percent). For each split, we ran

the above process 10 times and found the number of rules with

AUC$0.75. We decided on using a 60-40 split for downstream

analyses as this split generated a total number of rules comparable

to 70-30 and 80-20 splits but with less training data (Fig. 1).

Finally, for each test of interest, we selected features that

appeared in a strict majority of rules for that test and reran glm

using only those features. This made rules both simpler and more

robust by removing features whose presence was contingent on a

particular choice of training or test set.

Classification and Regression Trees (CART)
For each of the inhouse and sendout tests we used CART,

implemented as RPART in R (rpart v3.1-50; CRAN.R-project.org/

package = rpart), to predict the response from all input features,

using 60:40 training:test-set splits. We fixed some of the metrics

(see below) that were used in building the final tree. The CART

grows classification tree in two stages. In stage one, a tree is grown

by finding a feature which best splits the data into two groups.

Splitting is done only if the overall ‘‘impurity,’’ the number of

outcomes different from the majority (e.g., a ‘‘low’’ response

alongside many ‘‘normal’’ responses), decreases, above some

threshold (the ‘‘complexity parameter;’’ 0.01). Then, in top-down

fashion, these two subgroups are further divided in a recursive

manner until the subgroups reach a minimum size (minsplit = 20

records) or until no further improvement can be made. The

resulting tree may overfit the training data. To avoid this, cross-

validation (xval = 10; 10-fold cross-validation) was used in the

second stage by pruning the tree. We fixed the maximum depth

(maxdepth) of the tree, i.e., the maximum number of branchings

from stem to leaf, to be 20. The final models were tested on the test

data and performance statistics are found. We repeated model-

building 10 times for each test and summarized the statistics.

Data-processing was performed in Python (Enthought Canopy

Python version 2.7.3. R (version 2.15.3) was used for statistical

analysis and reports generation.

Results

To determine how well sendout and in-house test results can be

anticipated based on basic information available in the medical

record, we used two independent methods—generalized linear

modeling (GLM) and classification and regression trees (CART)—

to build simple, robust test-result predictors and then evaluated the

performance of these predictors according to the standard clinical

metrics of positive predictive value (PPV) and negative predictive

value (NPV), as well as sensitivity and specificity via the receiver-

operator curve (ROC) area under the curve (AUC).

As proof of principle for GLM, we first tested it on the anion

gap, a result calculated by subtracting the serum concentrations of

the anions chloride and bicarbonate from those of the cations

sodium and potassium, and confirmed that our methods found a

rule for elevated anion gap based on these four items.

Anticipating Lab Test Results by Machine Learning
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We next applied GLM to 81 sendout tests ordered regularly at

our hospital. GLM generated rules for just 11 of these tests. For

the remaining tests, either no recent diagnosis or in-house test

result (or age or gender) was sufficiently correlated with the

sendout test result, or there were not enough instances in which

correlated items appeared with the result, to generate a rule. Only

two tests—for high corticotropin (ACTH) and for low ceruloplas-

min—had NPV$0.95. Of these, ceruloplasmin had a PPV$0.94.

The mean AUC for all rules was 0.69, with models for only three

tests having an average AUC$0.75 over 10 repeat runs. Removal

of features that did not appear in a majority of rules had essentially

no effect on these AUCs (difference in mean AUC#0.02).

CART generated rules for 60 tests. However, the AUC for most

of these rules was low, with only five tests having AUC$0.75: free

T3, alpha-macroglobulin, CA27-29, hyaluronic acid, and alpha

fetoprotein (AUC 0.75–0.79).

We next applied GLM to in-house tests. A total of 170 in-house

tests were analyzed. A number of rules exhibited a high PPV (the

probability of seeing an abnormal value given a prediction of an

abnormal value by the rule) or NPV (the probability of seeing a

normal value given prediction of a normal value). These were

mostly components of the complete blood count (CBC) and

metabolic panels. Interestingly, the predictive power of these rules

was almost exclusively based on a previous measurement of the

test in question: in other words, the best rules were for repeat tests,

and the best predictor of a result being normal or abnormal was

whether it had been normal or abnormal within the previous seven

days. For example, the NPV for a low red blood cell count was

0.95 (with PPV = 0.75), with a rule that depended most on the

previous red blood cell count also having been low, and the PPV

for high total calcium was 0.98 (NPV = 0.76) and based exclusively

on the previous total calcium having been high.

For comparison, we applied CART to in-house tests, again

including in the input data the most recent result for that test if

performed within a week of the order. Again, a number of rules

exhibited a high PPV ($0.95), and again these were often tests of

the CBC and metabolic panels, with rules based almost exclusively

on a previous abnormal value. Examples included low white blood

cell count (WBC; PPV = 0.97, NPV = 0.79), platelet count (0.95,

0.88), and serum sodium (0.96, 0.65), and high total calcium (0.99,

0.67), mean corpuscular volume (0.98, 0.84), and iron (0.97, 0.56)

all of which were determined almost exclusively from the previous

value being low or high (Table 1). Overall, there was good

agreement in PPV between GLM and CART for tests for which

both methods found rules, but CART outperformed GLM

noticeably in NPV (Fig. 2).

Discussion

The growing availability of large clinical databases has raised

interest in the possibility of using systematic rule-mining for

clinical decision support [12–15]. One popular and well charac-

terized approach has been logistic regression [16–18], a special

case of generalized linear modeling (GLM). Researchers have

applied these approaches for diverse health-related purposes

including prediction of cardiovascular risk [19], mortality in head

trauma [18], texture analysis of magnetic resonance images [16],

and many other applications [17,20,21]. However, we note that

GLM does not easily incorporate missing values, as it removes

records with missing features; a feature will be ‘‘missing’’ for any

record in which that test (the feature) was not performed.

Other methods, such as classification and regression trees

(CART) and artificial neural networks [18], have also been

applied. Most of these studies were limited in scope to predicting

risk of a particular diagnosis. Harper [22] compared four

classification techniques (regression, CART, artificial neural

networks, and discriminant analysis) on four different datasets

and concluded that there was no obvious best choice for their data;

while CART performed best, regression was fastest and nearly as

good. Similar comparative studies on coronary artery disease [20]

and Alzheimer disease [23] indicated that newer algorithms such

as ANN and random forests [24] have little advantage over

simpler, more traditional approaches. Also, the utility and

limitations of these approaches for predicting laboratory results

(as opposed to diagnoses) are unclear. However, while CART is

both a top performer and overcomes GLM’s problem with missing

values, it is also more computationally intensive and potentially

less sensitive to simple algebraic relationships among features (e.g.,

among sodium, chloride and bicarbonate and the anion gap).

Therefore we chose GLM as a well-understood approach with

strong performance and excellent speed, and CART as the best-

performing complementary approach for purposes of comparison.

Given the importance of laboratory testing, we asked how much

information regression- or classification tree-based rules could

provide in assessing the pre-test probability of a test result being

abnormal for 251 commonly ordered in-house and sendout tests at

our hospital.

Data-mining can sometimes find spurious correlations, artifacts

of the particular partitioning of the data into training and test set.

To avoid such artifacts, we repeated our regression on multiple

Figure 1. Performance as a function of training set-test set split. A 60-40 split generated a total number of rules comparable to 70-30 and 80-
20 splits but with less training data.
doi:10.1371/journal.pone.0092199.g001
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independent partitions of the data and kept only items that

appeared in a majority of the resulting rules. This safeguard also

had the effect of simplifying rules by making each rule dependent

on a smaller number of items. As expected, the effect on

performance was negligible and dependence on the resulting

items was more often clinically and pathophysiologically plausible

than rules derived from each run.

When data-mining it is also important to consider the setting.

The rules we found do not exist in a vacuum but are ‘‘contingent’’

in the sense that they depend on current clinical practice. Certain

tests and panels are ordered in patterns. In a sense, contingency is

a form of selection bias: there may well be other diagnoses or test

result results that correlate with the result for the test of interest

that are not routinely measured according to current best

practices. However, as long as the setting in which such rules

would be applied is the substantially similar to that in which they

were found, selection bias would have little if any effect on finding

rules. As long as one is clear that one is looking for relationships in

a current practice process, and not among all things that could

possibly be measured, any rules that are discovered will by

construction be setting-appropriate.

But while our rules appear to be plausible and setting-

appropriate, the motivating question behind this study is whether

the rules we found could be useful clinically. One way to approach

Table 1. PPV, NPV, and key predictors for selected tests.

GLM

Test PPV NPV Key predictors

high anion gap 0.98 0.58 anion gap

high Bicarbonate 0.95 0.76 bicarbonate, creatinine, heart failure

high total calcium 0.99 0.73 total calcium

high MCV 0.98 0.90 MCV

high potassium 0.97 0.32 potassium

low alkaline phosphatase 0.99 0.79 alkaline phosphatase

low MCV 0.99 0.84 MCV

low potassium 0.96 0.32 potassium

low BUN 0.98 0.74 gender, BUN

low WBC 0.96 0.84 WBC

CART

Test PPV NPV Key predictors

high anion gap 0.98 0.64 anion gap

high bicarbonate 0.95 0.79 bicarbonate

high total calcium 0.99 0.67 total calcium

high RDW 0.95 0.95 RDW

high sodium 0.98 0.65 sodium

high free T4 0.95 0.80 free T4

high transferrin 0.98 0.39 transferrin

high anti-cardiolipin IgG 0.95 0.50 thrombin, PTT, WBC

high free T3 0.96 0.85 free T4

high prealbumin 0.99 1.00 albumin, PLT

high SSM antibody 0.96 0.50 C3, age

high SSA antibody 0.98 0.50 rheumatoid factor, diffuse diseases of connective tissue

low chloride 0.96 0.68 chloride

low cortisol 0.96 0.50 cortisol, age, PTT

low MCV 0.99 0.85 MCV

low PTH 0.96 0.57 PTH, total calcium, age

low sodium 0.95 0.72 sodium

low WBC 0.96 0.83 WBC

low alpha-1 antitrypsin 0.99 0.00 iron, AST

low ceruloplasmin 0.96 0.62 transferrin, INR, WBC

low erythropoietin 0.97 0.64 RBC, PLT, lymphocytes, HCT

low 1,25 vitamin D 0.98 0.14 creatinine, PTH, RBC

The most important key predictors are shown; specifically, those that accounted for at least two-thirds of the predictive power of the rule. Abbreviations: BUN, blood
urea nitrogen; HCT, hematocrit; INR, international normalized ratio; MCV, mean corpuscular volume; PTT, partial thromboplastin time; PLT, platelet count; PTH,
parathyroid hormone; RBC, red blood cell count; WBC, white blood cell count.
doi:10.1371/journal.pone.0092199.t001

Anticipating Lab Test Results by Machine Learning

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e92199



this question is by considering the positive and negative predictive

value of each rule (PPV and NPV). These metrics are in contrast to

sensitivity and specificity, by which rules are often measured but

which do not incorporate disease prevalence in spite of its

importance to clinical decision-making. A PPV of 0.95 means that

when a rule suggests that the test result will be abnormal, the result

actually will be abnormal 95 percent of the time. A NPV of 0.95

means that when a rule suggests that the test result will be normal,

the result actually will be normal 95 percent of the time.

We found rules with PPV and/or NPV$0.95 (by GLM) for

only two tests that are sendouts at our hospital—one of which is

ceruloplasmin, which we have previously suggested is overordered

via chart review [25]. In contrast, for in-house tests we found over

a dozen such rules. Interestingly, the main determinant for rules

for in-house tests was a normal or abnormal result for the same test

within the previous seven days. Although in this study we did not

set out explicitly to make a statement about repeat laboratory

testing, the appropriateness of which has been investigated

elsewhere [4], these results suggest that repeat laboratory testing

within one week does not always add information that could not

have been anticipated from the previous result. Refining this

observation using the same unbiased approach we have followed

here is potentially an area for future investigation.

Our results should not be taken as a categorical criticism of

repeat testing. First, while the PPV was $0.95 in several cases, the

NPV was more typically 0.70–0.85. Thus, while prediction that a

result will be abnormal may be correct 95 percent of the time,

which may be good enough to discourage repeat ordering,

prediction that a result will be normal may not be so dependable.

Therefore use of a rule depends on the subtle distinction of

whether the clinical question is ‘‘will the result be abnormal’’ vs.

‘‘will the result be normal.’’ Second, we note that no rules with

such strong performance were found for the majority of our

sendout or in-house tests by either of our two complementary

approaches. Thus while the rules we found can inform clinical

decision-makers, the information they provide rarely replaces the

information obtained from actually performing these tests.

It is interesting to note that on average, our simple rules yielded

a PPV of 0.84 and an NPV of 0.75. This means that on average,

rules will correctly predict an abnormal laboratory result 5 times

out of 6 (5/6<0.84) and correctly predict a normal result 3 times

out of 4. While not good enough to replace testing (especially for

rules that depend on previous test results), these observations raise

the question of how much better prediction can get. Integration of

information not considered in the present study, including vital

signs, chief complaints, and physical findings, may improve

prediction by these methods.
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Figure 2. PPV and NPV for the same test, GLM vs. CART. Both linear modeling (GLM) and classification trees (CART) were better at finding rules
with high positive predictive value (PPV; panels a and b), with good agreement between the methods, than negative predictive value (PPV; panels c
and d).
doi:10.1371/journal.pone.0092199.g002
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