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Spectral discrimination of breast pathologies
in situ using spatial frequency domain imaging
Ashley M Laughney1,5, Venkataramanan Krishnaswamy1, Elizabeth J Rizzo2, Mary C Schwab2, Richard J Barth Jr3,
David J Cuccia4, Bruce J Tromberg4, Keith D Paulsen1, Brian W Pogue1 and Wendy A Wells2*
Abstract

Introduction: Nationally, 25% to 50% of patients undergoing lumpectomy for local management of breast cancer
require a secondary excision because of the persistence of residual tumor. Intraoperative assessment of specimen
margins by frozen-section analysis is not widely adopted in breast-conserving surgery. Here, a new approach to
wide-field optical imaging of breast pathology in situ was tested to determine whether the system could accurately
discriminate cancer from benign tissues before routine pathological processing.

Methods: Spatial frequency domain imaging (SFDI) was used to quantify near-infrared (NIR) optical parameters at
the surface of 47 lumpectomy tissue specimens. Spatial frequency and wavelength-dependent reflectance spectra
were parameterized with matched simulations of light transport. Spectral images were co-registered to
histopathology in adjacent, stained sections of the tissue, cut in the geometry imaged in situ. A supervised classifier
and feature-selection algorithm were implemented to automate discrimination of breast pathologies and to rank
the contribution of each parameter to a diagnosis.

Results: Spectral parameters distinguished all pathology subtypes with 82% accuracy and benign (fibrocystic
disease, fibroadenoma) from malignant (DCIS, invasive cancer, and partially treated invasive cancer after
neoadjuvant chemotherapy) pathologies with 88% accuracy, high specificity (93%), and reasonable sensitivity (79%).
Although spectral absorption and scattering features were essential components of the discriminant classifier,
scattering exhibited lower variance and contributed most to tissue-type separation. The scattering slope was
sensitive to stromal and epithelial distributions measured with quantitative immunohistochemistry.

Conclusions: SFDI is a new quantitative imaging technique that renders a specific tissue-type diagnosis. Its
combination of planar sampling and frequency-dependent depth sensing is clinically pragmatic and appropriate for
breast surgical-margin assessment. This study is the first to apply SFDI to pathology discrimination in surgical breast
tissues. It represents an important step toward imaging surgical specimens immediately ex vivo to reduce the high
rate of secondary excisions associated with breast lumpectomy procedures.

Keywords: BCS/BCT, Breast-conserving surgery/therapy, Near-infrared spectroscopy, Spatial frequency domain imaging,
Diagnostic pathology
Introduction
Optimal local management of breast cancer has been
hindered by an inability to assess tumor-margin status
intraoperatively, predominantly because frozen sections
are limited by freezing artifacts in adipose tissue [1,2],
and sensitivities reported for touch-preparation cytology
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have been inconsistent [3]. Breast-conserving therapy
(BCT), which includes local tumor excision followed by
moderate-dose radiation therapy, is the standard of care
for patients with early invasive breast cancer (stage I and
II) and for patients with advanced disease whose tumor
burden has been successfully reduced with neoadjuvant
chemotherapy [4,5]. It was the treatment of choice for
nearly 75% of the approximately 300,000 new breast cancer
patients diagnosed in 2011 [6]. Prospective, randomized
trials have demonstrated that BCT survival rates are
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equivalent to those of mastectomy when surgical margins
are negative for residual disease [4,5], but positive margins
have been associated with an increased risk of local recur-
rence [7-9] and mortality [10]. Consequently, reexcision of
a margin is the standard of care if invasive tumor is
detected at the surface of the resected specimen, and
also occurs at Dartmouth-Hitchcock Medical Center
(DHMC) when ductal carcinoma in situ (DCIS) is found
within 2 mm of the inked tissue surface. Wider margins
are examined for DCIS because it can be multifocal and
interspersed within normal tissues [11]. At DHMC in 2010,
invasive cancer was detected at the margin, and in situ
cancer was discovered at or within 2 mm of the margin in
20% and 23% (respectively) of patients treated with
BCT for invasive carcinomas (n = 129), yielding a 43%
reexcision rate (36% actually reexcised). If residual tumor
could be detected at one or more margins during the
initial surgery, the surgeon could take directed, additional
tissue before closing.
Neoplastic processes, from early dysplasia to advanced-

stage infiltrating tumors, perturb tissue ultrastructure and
thereby alter its optical-scattering spectrum [12,13]. The
scattering spectrum can distinguish tissue pathologies when
the optical signal is sampled locally [14-18] or filtered
by using polarization techniques [19-21] to minimize the
collection of multiply scattered light. Localized methods,
such as optical coherence tomography (OCT) [22], Raman
spectroscopy [23], and confocal sampling [24,25], have
been applied to surgical-margin assessment, but they are
fundamentally limited in depth sampling by scattering
attenuation in tissue. In most realizations, the microscopic
field of view (FOV) is too small to evaluate surgical
specimens wholly, so they have the same margin-sampling
limitations as does conventional histopathology. Resected
tissues may include lesions up to 5 cm in diameter,
surrounded by a targeted layer of grossly normal breast that
can be as thick as 1 cm. Wide-field imaging with localized
sampling has recently been realized through multiplexed
arrays of probes [17,18,26,27]; these approaches still rely on
discrete sampling to form images and thereby incompletely
assess disease extent, multifocality, and tumor heterogen-
eity. Raster-scanning techniques [16-18,28] support high-
resolution sampling to assess tumor heterogeneity, but
have limited field-of-view and speed to allow scanning the
complete surgical specimen in surgical settings. Ideally,
the complete surgical specimen would be evaluated (in
a noncontact manner) without sacrificing sensitivity to
tumor-specific features in the scattering spectrum. Planar
spectral imaging techniques have only recently been
tailored to surgical resection guidance [29-31] and sentinel
lymph node (SLN) mapping [30,32,33], largely because of
the explosive development of molecularly specific NIR
probes [34]. However, most methods rely on diffuse light
transport, which can be insufficient to resolve important
morphologic transformations that have dimensions com-
parable to the optical wavelength [35], because its spatial
resolution is limited by light scattering in tissues [36].
SFDI, a planar-imaging modality pioneered by investi-

gators at the University of California at Irvine and commer-
cialized by Modulated Imaging Inc. for biologic imaging
at spatial resolutions between coherent and diffuse optical-
imaging techniques, was applied here for wide-field, tissue-
type discrimination in nearly 50 surgical breast lesions.
SFDI quantitatively resolves subsurface tissue absorption
and scattering by analyzing the spatial-modulation transfer
function (s-MTF) at multiple NIR wavelengths [37]. Planar,
structured light patterns improve signal localization and
enable selective depth sampling [38]. Recovered optical
parameters are surface-weighted, which may have added
value for surgical-margin assessment, where the goal is to
detect malignant transformations in the outer millimeters
of resected tissue. In this contribution, supervised learning
and feature-selection algorithms were implemented to
automate spectral discrimination of pathologies in intact,
surgical tissues examined with SFDI and to optimize
future development of spectroscopic tools for margin
assessment.

Methods
Spatial frequency domain imaging (SFDI)
A compact SFDI system (purchased from Modulated
Imaging Inc., Irvine, CA) illuminated breast surgical-
resection specimens with a harmonically modulated, planar
source at four NIR wavelengths (658, 730, 850, and 970
nm) [37]. Structured light patterns were projected onto
each tissue surface at 30 spatial frequencies uniformly
distributed between 0 mm-1 and 0.33 mm-1 by using high-
power light-emitting diodes (LEDs), a projection system,
and a digital micro-mirror device. The projector and cam-
era subsystems were described in previous publications
[37,39] and were fully integrated in a portable platform
mounted on a z-axis post. In total, 360 images were ac-
quired per tissue (30 spatial frequencies × 3 phase off-
sets × 4 wavelengths) in approximately 10 minutes. Data
were simultaneously acquired over the full field in a
noncontact geometry, in which the acquisition field of
view (FOV) was determined by magnification of the illu-
mination and collection optics, here optimized to image
a 5.5-inch × 7.5-inch area. A 12-bit CCD-based camera,
co-registered with the projector, collected diffusely
reflected light at a 696 × 520 pixel resolution with 2 × 2
pixel binning (full pixel resolution of the camera is 1,392
× 1,040). Fundamentally, however, the detected spatial
resolution is limited by the physics of light transport in tis-
sue, and contrast-detail analysis was previously performed
to evaluate the minimized size of detectable scattering
contrast in tissue-simulating phantoms [40]. A three-
phase demodulation scheme was then used to extract the
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frequency-dependent modulation amplitude and to re-
move noise and ambient light from the imaged field [41].
The spatial frequency of the illumination pattern inte-
grates optical parameterization with effective sampling
depth, in which higher spatial frequencies attenuate more
rapidly and thereby sample superficial tissue volumes. The
effective sampling depth is also determined by the tissue
optical properties. Theoretically, probing depths of 1 to 8
mm are expected in tissues; experimentally, we demon-
strated detection of scattering inclusions up to depths of
1.5 mm in tissue-simulating phantoms by using the higher
spatial frequencies used in this study [40]. At each imaging
session, the modulation amplitude of a Siloxane titanium
dioxide (TiO2) reflectance standard with known optical
properties was imaged to calibrate spatial nonuniformity
in the illumination and imaging systems. A 1-mm uni-
form height offset was erroneously, but systematically,
introduced between measures of the tissue and refer-
ence standard. The offset did not affect tissue discrimin-
ation and resulted in negligible scaling of the
modulation amplitude because reflectance decays with
distance, h, according to an inverse square law (the
distance between the CCD lens and tissue was ~120
mm h22=h

2
1 ¼ 119mm2=120mm2≅1 [42].

Optical parameters were estimated by minimizing the
residual sum of squares between the measured modula-
tion amplitude and its forward simulation, according to
a scaled Monte Carlo model of light transport [37].
Monte Carlo solutions were stored in a look-up table
(LUT) to reduce the computational burden associated
with iterative estimation of spectral parameters [39].
Subsequently, spectral parameters were fit according to
absorption by the endogenous tissue chromophores
oxygenated-hemoglobin, deoxygenated-hemoglobin, and
water, and the wavelength-dependence of light scattering,
and produced estimates of scattering amplitude (A),
scattering slope (b), total hemoglobin concentration
(HbT), percentage hemoglobin oxygenation (%O2), and
percentage water (%H2O). Data-acquisition and analysis
methods are discussed more comprehensively in a
companion article [39].
Imaging protocol for the surgical specimens
The ability of SFDI to distinguish histopathology, here
used as the diagnostic gold standard, was evaluated at
the cut surfaces of 47 surgical breast tissues. In this
HIPAA-compliant, prospective study, approved by the
Institutional Review Board for the protection of human
subjects at Dartmouth, written informed consent was
not required for participants, although an Information
Sheet detailing the study was provided with an opt-out
provision. All of the study patients were female. A
breakdown of the pathologic characteristics of the
imaged cancers is provided in Table 1. In addition to these
27 biopsy-proven cancers, 11 fibroadenomas and nine
normal (including fibrocystic disease) breast cases were
imaged. At Dartmouth, the breast-resection specimens are
inked with six pre-assigned colors to preserve orientation
within the breast, so that, if it is found by pathologic
evaluation that the margins are involved by tumor, the
patient is called back to undergo a second resection of
those specific margins rather than the entire surgical cavity.
The fresh, inked specimens, from patients who did not

decline this research use of their tissues, were transported
immediately to the Department of Pathology. By standard
protocol, all of the specimens were “bread loafed” in their
entirety into consecutive slices up to 0.5 cm in thickness,
and, for this study, one face of one slice representing the
lesion and its relation to the nearest margin was imaged.
No surgical margin was imaged en face, given the required
orientation inking by the surgeon. The exact area of tissue
imaged in one slice was outlined with four inked pins
pushed through the tissue block. The tissue was returned
to Pathology after imaging, within 30 minutes of resection,
for standard histologic processing. The imaged slices were
formalin-fixed with the pins in situ before being removed
for usual processing. The tiny inked pinholes survive
processing and are evident in the histologic sections of
that imaged tissue, facilitating optimal registration with
the histologic findings. The effects of tissue shrinkage after
processing and sectioning distortion were minimized by
ensuring optimal formalin concentration and fixation
time in accordance with College of American Pathologist
(CAP) best practices. Specimen imaging did not affect
procedure time in the operating room, processing time in
the Department of Pathology, or the content and time to
verification of the final pathology report.
The findings in histologic sections representing the

imaged areas were included in the final pathology report.
Figure 1 illustrates co-registration between photographs
of the cut face of one slice in the specimen, with the
lesions outlined in diagnosis-defined colors (row 1),
corresponding histopathology (row 2), and spectral images
(rows 3 to 7). An experienced breast pathologist (WAW)
outlined tissue areas containing target breast lesions
on digital photographs of each specimen, guided by co-
registered hematoxylin and eosin (H&E)-stained tissue
sections from the imaged surface. Affine transformations
were manually performed in Photoshop to convert the
outlined tissue areas into masks for region-based image ana-
lysis inMATLAB (TheMathWorks Inc., Natick,MA, USA).
In total, 48 specimens from 47 patients were consecu-

tively imaged in this study; one was excluded from analysis
because surgical inks bled into the primary tissue field.
Surgical inks, sometimes observed at the tissue edge, were
avoided during region of interest (ROI) selection and
masked according to the R2 coefficient of determination



Table 1 Summary of clinical and pathology data for study participants with a cancer diagnosis

Patient
number

Age
(years)

Tumor
size (cm)

Tumor
type

Tumor
grade

ER
(IHC score)

PR
(IHC score)

HER2neu
ratio (FISH)

Specimen
size (cm)

1 51-55 0.3 DCIS Low Pos Pos N/A 12.8 × 9.5 × 1.7

2 56-60 7.0 IDCa High Neg Neg 1.1 10.5 × 8.5 × 3.0

3 51-55 2.2 IDCa Low Pos Pos 1.2 7.0 × 6.0 × 1.7

4 61-65 2.2 IDCa Int Pos Pos 1.3 7.0 × 6.8 × 1.3

5 56-60 1.8 IDCa Int Pos Pos 1.0 6.0 × 5.6 × 2.0

6 56-60 2.8 IDCa High Neg Pos 1.1 7.0 × 5.0 × 1.6

7 56-60 1.8 IDCa Int Pos Pos 1.1 9.0 × 7.5 × 2.2

8 56-60 10.0 IDCa** High Neg Neg 6.0 23 × 15 × 6.0

9 56-60 2.0 IDCa** Int Neg Neg 1.0 15 × 15 × 4.0

10 66-70 1.6 IDCa High Pos Neg 1.2 8.5 × 7.0 × 2.0

11 76-80 5.0 DCIS High Pos Pos N/A 30 × 20 × 5.0

12 56-60 1.6 IDCa Int Pos Pos 1.1 24 × 13 × 3.0

13 56-60 0.8 IDCa** Int Pos Neg 9.0 13.5 × 9.0 × 2.0

14 56-60 6.5 IDCa** High Pos Pos 1.0 22 × 15 × 4.5

15 61-65 5.0 ILCa** Int Pos Pos 1.1 22 × 20 × 5.0

16 71-75 2.5 IDCa High Pos Pos 1.1 7.3 × 7.0 × 3.0

17 61-65 0.4 1.5 IDCa DCIS Int Pos Pos 1.0 9.0 × 8.5 × 2.3

18 56-60 0.5 IDCa Int Pos Pos 1.1 5.0 × 5.0 × 1.3

19 61-65 1.6 IDCa High Pos Pos 1.2 22.5 × 19 × 3.5

20 51-55 2.1 IDCa Low Pos Pos 1.0 7.0 × 5.6 × 1.7

21 61-65 2.4 IDCa Int Pos Pos 1.2 6.7 × 5.6 × 2.0

22 36-40 3.0 IDCa Int Pos Pos 1.2 23 × 23 × 4.0

23 41-45 12.0 IDCa Int Pos Pos 1.1 21 × 18 × 5.0

24 71-75 1.5 IDCa High Pos Pos 1.2 6.0 × 5.0 × 1.6

25 51-55 2.5 IDCa High Pos Pos 1.0 7.0 × 6.5 × 1.4

26 61-65 3.5 IDCa High Pos Neg 1.1 7.5 × 5.0 × 2.7

27 46-50 8.0 IDCa Int Pos Pos 1.2 30 × 29 × 6.0

Tumor size before Rx, maximum dimension for tumor size from pretreatment MRI scan; tumor type: IDCa, infiltrating ductal carcinoma; IDCa**, after chemoRx;
ILCa, infiltrating lobular carcinoma. Tumor grade: low, low grade; int, intermediate grade; high, high grade. ER, estrogen-receptor protein; PR, progesterone-
receptor protein; IHC score, immunohistochemical semiquantitative score: Pos, (positive) ≥15% IHC staining; Neg (negative), 0 IHC staining. HER2neu ratio,
HER2neu gene analysis by fluorescence in situ hybridization (FISH) compared with a normal control, ratio < 2.0 is normal expression, ratio 2 to 4 is equivocal
expression, and ratio >4.0 is gene overexpression.
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(pixels excluded if R2 < 0.95). Spatial frequency- and
wavelength-dependent reflectance measurements were
evaluated on a pixel-by-pixel basis in 59 regions of
interest (>265,000 spectral pixels). Discrimination was
assessed between benign and malignant pathologies
and between the benign pathology subtypes (normal and
fibroadenoma), and the malignant pathology subtypes
(DCIS, invasive cancer, and partially treated invasive
cancer after neoadjuvant chemotherapy), as listed in Table 2.
In this analysis, fibrocystic disease was grouped with
normal breast pathologies. Tumors treated with neoadjuvant
chemotherapy before surgical resection (n = 5) were im-
aged to observe how chemotherapy alters tissue optical
properties, the better to inform diffuse tomographic
monitoring of treatment response to therapy [43].
Histopathology and immunohistochemical correlates
Spectral maps were associated with morphologic and
immunohistochemical markers identified in adjacent,
stained sections of the tissue, cut in the exact geometry
imaged in situ. Possible correlates between immunohisto-
chemical measures and spectral parameters were evaluated
according to the Pearson correlation coefficient. CD31
(platelet endothelial cell adhesion molecule) was used to
stain immunohistochemically the preexisting endothelial
cells as a general indicator of normal vasculature, even
though malignant vessels have been reported to retain
this antigen [44]. CD105 (Endoglin), thought to antagonize
the inhibitory effects of transforming growth factor-beta
(TGF-β) on cell proliferation and capillary formation [44],
was used to stain immunohistochemically a transmembrane



Figure 1 Representative spectral parameter maps for tissue subtypes. Spectral parameter maps corresponding to the pathology subtypes:
normal (including fibrocystic disease) (red outline), fibroadenoma (blue outline), DCIS, invasive cancer and partially treated invasive cancer after
neoadjuvant chemotherapy (all black outline), and fat (yellow outline or label). Row 1 is a tissue photograph of the cut face of one slice of the
specimen with the lesion; row 2 is the corresponding histology; row 3 is the scattering-amplitude maps; row 4 is the scattering slope maps; row
5 is the hemoglobin concentration maps; row 6 is the percentage oxygenated hemoglobin maps; and row 7 is the percentage water maps.
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glycoprotein expressed predominantly on the surface of
highly proliferating endothelial cells, as an indicator of
tumor angiogenesis. Cytokeratin CK5D3 was used as a
marker for breast epithelium (benign and malignant). All
tissue was fixed in 10% buffered formalin (Biochemical
Science Inc, Swedesboro, NJ, USA), dehydrated through
graded alcohols, and paraffin embedded. Tissue sections
(4 μm) were coated with adhesive (Sta-on; Surgipath Medical
Industries, Richmond, IL, USA), mounted on glass slides,
and stained with H&E for initial review. Tissue sections
were air-dried for at least 30 minutes and then loaded
onto a Leica Bond Max automated immunostainer. Here,
the sections were baked (30 minutes at 60°C), dewaxed for
30 minutes at 72°C, rinsed with alcohol, and washed in



Table 2 Summary of tissue subtypes imaged

Spatial frequency domain imaging (47 patients)

Diagnosis ROIs Rd(fx, λ)

Normal/Fibrocystic (NOR)a 22 109,841 Benign 170,158

Fibroadenoma (FA)a 11 60,317

Ductal carcinoma in situ (DCIS) 4 8,487 Malignant 94,916

Invasive cancer (INV) 17 63,552

Invasive cancer, treated (INV, Rx) 5 22,877

Totals 59 265,074

Total numbers of ROI and modulated reflectance spectra, Rd(fx, λ), assessed per
diagnostic class. Benign pathologies analyzed include normal or fibrocystic
tissues and fibroadenomas (a). Malignant pathologies analyzed include ductal
carcinoma in situ, invasive cancer, and treated invasive cancers.
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Bond wash buffer. Antigen retrieval was accomplished
with Bond epitope Retrieval 2, Ar9640 (pH 8.9 to 9.1) for
20 minutes at 100°C; followed by cooling for 12 minutes
and a rinse in Bond wash buffer. All dewaxed, antigen-
retrieval, and detection reagents were supplied by Leica
Microsystems (Bannockburn, IL, USA). The primary anti-
bodies were incubated for 15 minutes: CK5D3 at 1:100
(Biogenix, Fremont, CA, USA), CD31 at 1:50 (Dako,
Carpinteria, CA, USA), and CD105 at 1:60 (Vector,
Burlingame, CA, USA). Diaminobenzidine was applied for
visualization with a hematoxylin counterstain.

Quantitation of immunomarkers
Using Media Cybernetics™ Image Pro (Media Cybernetics,
Bethesda, MD, USA) and automated stage control bundled
software (Surveyor© Automated Specimen Scanning
stage control bundled software (Objective Imaging Ltd.,
Cambridge, UK), whole H&E-stained slides and CD105
and CD31-immunostained slides, representing the imaged
areas of lesional breast tissue, were digitally scanned at
high resolution and montaged. Mean vessel density (MVD)
was quantified according to the areas of CD31-positive
(preexisting vasculature) or CD105-positive (tumor-in-
duced) vessels, and segmented in pseudo-color, as a
percentage of the total slide area. Mean vessel area (MVA)
was determined from the combined areas of CD31-positive
or CD105-positive blood vessels, segmented in pseudo-
color, and measured in square micrometers. The epithelial
component of each imaged area was defined as the per-
centage of the total slide area showing positive immuno-
staining for CK5D3 and segmented in pseudo-color. On
the same slide, the morphologically distinctive white spaces
representing lipocytes (emptied of lipid as a result of
fixation and tissue processing) were also segmented in
pseudo-color as a percentage of the total slide. The
remaining percentage of the slide represented connective
tissue stroma. The diagnostic ROIs were selected by WAW,
a board-certified surgical pathologist with 15 years of
expertise in breast pathology and image analysis. The
image thresholding and processing were performed by
MCS, a technologist with 6 years of expertise in the
Image Pro software.

Automated discrimination of breast pathologies
A nearest-neighbor learning algorithm was implemented to
automate spectral discrimination of benign and malignant
pathologies, and all pathology subtypes listed in Table 1;
performance was evaluated by using a threefold cross-
validation [45]. All data were randomly divided into three
nonoverlapping sets, with an equal number of reflectance
spectra per diagnostic class per set. Two of these sets were
used for training, and the third set was used for validation.
Training pixels were associated with a known diagnosis,
according to the pathologist’s demarcation of lesions; the
diagnosis of each validation point was also identified by
the pathologist, but remained blind to the classifier to
evaluate its performance. Classification error was taken to
be the percentage of misclassified pixels in the validation
set, where a misclassification means that the diagnosis
assigned by the classifier did not match the diagnosis
provided by the pathologist. Performance metrics were
quantified 3 times for all possible permutations of the
training and validation sets, and reported values were the
average of these three executions. The nearest-neighbor
algorithm assigned each unclassified parameter set to the
majority diagnosis of its k nearest neighbors found in the
training space by an efficient k-dimensional tree-search
algorithm [46]. A whitening transformation was applied to
all spectral parameters before diagnostic discrimination
to prevent amplitude weighting. Additionally, outliers
were removed from the training set according to their
interquartile fractions (comprising 5% of the total data set).
Query points were never marked as outliers, because this
information was not known a priori.
Receiver operating characteristic (ROC) analysis was used

to optimize classifier sensitivity and bias as a function of
nearest-neighbor number, k. Confidence intervals (α = 0.05)
for the sensitivity and specificity were computed according
to the Yates χ2 interval [47].

Optical parameter ranking
An iterative search algorithm, sequential floating forward
selection (SFFS), was implemented to rank the contribution
of each spectral parameter to tissue-type discrimination.
The Bhattacharyya statistical distance, Jij, was used to
measure the separation between two diagnostic classes
(i,j) [48,49] and was generalized to all spectral parameters
(n = 5) by:

J ¼
X5

i¼1

X5

j¼1

PiPjJ ij

Here, Pi represents the prior probability of class i de-
termined by its fraction of pixels in the training set. The
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search algorithm ranked all parameters in order of the
contribution to diagnostic-class separability.

Results
Optical biomarkers of breast pathologies
Examples of optical maps co-registered with digital
photographs of the surgically resected tissues are
shown in Figure 1 for each lesion type evaluated. Boxplots
in Figure 2 quantify the extensive distribution of optical
and immunohistochemistry markers for all reflectance
measures evaluated on a pixel-by-pixel basis (>265,000
measurements); mean values per patient are plotted as
green dots that overlie the boxplots. Median values were
compared to identify optical signatures specific to each
diagnostic class, and interquartile fractions reflect the
inherent heterogeneity observed within and between
tissues. Median values were significantly different
within 95% confidence limits for nonoverlapping notches.
Distributions of the scattering amplitude and scattering
slope showed less variance than functional absorption
Figure 2 Diagnostic distributions of spectral parameters and immunohi
for all tissues per pathology subtype, indicated by color: normal (including fibr
(pink), invasive cancer (red), and partially treated invasive cancer after neoadju
immunohistochemical measures of percentage of stroma, epithelium, and fat,
(MVA). Box plot red bars indicate the population median; green dots indicate
parameters, like hemoglobin concentration and oxygen-
ation status, because the morphologic transformations
that determine light scattering occur on submicron and
even subnanometer length scales [50,51]. Absorption
parameters typically signal broader functions, and their
distributions were characterized by greater variance
because of surgery-induced artifacts like vascular dis-
ruption, eradication of the tissue’s oxygen supply, and
eventual tissue dehydration. Efforts were made to image
all tissues within the same time window and to avoid
sampling of cauterization and hemorrhage, but limited
artifacts are plausible. Surgical inks at the edge of the
resected specimens may have also contributed to out-
liers with artificially high hemoglobin concentrations.
This variability was also detected immunohistochemically
in the subsequently fixed tissues, as shown in Figure 2f.
However, SFDI assess the full tissue surface, account-
ing for inherent biologic heterogeneity, so that on aver-
age, functional biomarkers may strengthen tissue-type
discrimination.
stochemistry correlates. (a-e) Boxplots of recovered spectral parameters
ocystic disease) (green), fibroadenoma (blue), ductal carcinoma in situ
vant chemotherapy (orange). (f) Corresponding boxplots of
and CD31-positive, CD105-positive mean vascular density (MVD) and area
the mean value per patient ROI; and red crosses indicate outliers.
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The distributions in Figure 2 show that observed
hallmarks of normal or fibrocystic pathologies included a
heightened scattering amplitude and slope, as compared
with malignant pathologies. Lower scattering amplitude
was observed in fibroadenomas, which contain clearly
encapsulated and abundant stromal cellularity, confirming
diagnostic trends established in previous studies of local-
ized spectroscopic scattering from breast tissues [16].
Higher hemoglobin and reduced oxygenation values were
observed in invasive cancers, as compared with the benign
pathologies. DCIS was spectrally distinguished from other
pathologies by decreased oxygenation and increased water
levels, suggesting heightened metabolism and a proportional
propensity for more surrounding fibrous stroma. How-
ever, a small DCIS patient population (n = 4) and spectral
parameterization limited interpretation of this signature
(fits were based on the extinction of pure, unbound water
and did not include absorption by adipose tissue). Neo-
adjuvant chemotherapy increased the scattering slope when
comparing its untreated, invasive counterparts, regardless
of response to therapy. An increase in scattering slope
suggests cell shrinkage, given its increased propensity for
Rayleigh-type scattering.
Increased oxygenation levels were also induced in tumors

partially responsive to chemotherapy and could be valuable
indicators for therapy monitoring. Many aggressive tumors
thrive in hypoxic environments [52], so increased oxygen-
ation levels suggest a return to the normal phenotype.
Pairwise correlations between spectral parameters and

quantitative immunohistochemistry are summarized in
Table 3. Collagen in the extracellular stroma demonstrated
a strong, positive correlation with scattering slope because
the small fibrils that form collagen fibers further enhance
Rayleigh-type scattering [53]. In contrast, a strong negative
correlation was observed between tissue epithelial content
and the scattering slope. Malignant tissues expressed
greater levels of angiogenic vessels and preexisting vascular
endothelium. This net growth in vascularity was detected
spectroscopically by increased total hemoglobin, but no
optical distinction was made between CD105-specific
and CD31-specific vasculature. Immunohistochemical
measures were sampled in discrete locations about the
tissue surface, limiting its complete representation of
ROIs.
Table 3 Spectral-immunohistochemical correlates

Scattering amplitude Scattering slope H

% Epithelium −0.06 −0.37

% Stroma 0.06 0.33

% Fat −0.02 −0.01

Total mean vessel density 0.18 −0.42

Total mean vessel area 0.01 −0.34

The Pearson correlation coefficient is tabulated for spectral-immunohistochemical p
Pathology discrimination in resected breast tissues
Spatial frequency- and wavelength-dependent reflectance
measures were applied to the discriminant classifier on a
pixel-by-pixel basis, and separation of all tissue subtypes
was achieved with 82% accuracy. Figure 3a shows that
diagnostic sensitivity increased with nearest neighbor
number at the cost of specificity or bias. ROC curves
revealed that 11 and nine nearest neighbors optimized
separation of benign and malignant pathologies and all
pathology subtypes listed in Table 1, respectively. The
confusion matrix in Figure 3b explicitly reflects the true
and predicted diagnosis as a percentage of total number
of diagnosed pixels. True positives per tissue type are
along the diagonal, and misclassifications are off-axis;
showing that, for example, 16% of treated invasive tumors
were misclassified as normal. Figure 3c through e
shows a false-color map of the multiparametric diagnosis
co-registered with pathology for a malignant and benign
tissue to illustrate application of the classifier to a patient
diagnosis. Diagnostic performance is summarized in Table 4,
which reports the sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and accuracy
observed per tissue type. Discrimination of benign from
malignant pathologies was highly specific (93%) and
reasonably sensitive (79%), although sensitivity was limited
in underrepresented pathologies like DCIS and residual
invasive cancers after neoadjuvant chemotherapy (61%
to 66%). Discrimination between benign and malignant
pathologies was more accurate (88%) because these distri-
bution sizes were more equally represented in the classifier
training set. Ultimately, the surgeon can moderately
regulate diagnostic sensitivity and specificity by varying
the number of nearest neighbors used by the classifier to
generate a diagnosis, as shown in Figure 3a. The NPV
(89%) between benign and malignant pathologies was
higher than the PPV (86%). In practical terms, surgeons
are more interested in a high NPV when high confidence
exists that no residual cancer has been left behind. A
lower PPV, correlating with a false-positive call on any
margin, would mean that the surgeon would take a
little more tissue at the appropriate margin at the time
of the first surgery. Even if that margin does not subse-
quently turn out to be positive, this can be justified
clinically by the improved cosmetic outcome, the
emoglobin concentration % Hemoglobin oxygenation % Water

0.27 −0.11 −0.21

−0.28 0.09 0.25

0.21 0.02 −0.28

0.37 −0.19 0.00

0.12 −0.28 0.02

airs. Negative and positive correlations >20% are highlighted in italics.



Figure 3 Optimization and performance of the nearest-neighbor classifier for diagnostic discrimination. (a) Nearest-neighbor number
optimization by using the receiver operating characteristic curve for discrimination between all pathology subtypes. (b) A confusion matrix
showing the true and predicted diagnosis for all spectroscopic measures according to the nearest-neighbor classifier, presented as a percentage
of the total number of diagnosed pixels (N). A multiparametric diagnostic map for a malignant (row 1) and benign (row 2) tissue is illustrated
(c through e); the patient histology is shown in column (c), a photograph of the tissue imaged by SFDI is shown in column (d), and the
patient-specific diagnostic map generated by the classifier is shown in column (e).
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accuracy of immediate margin reexcision, the reduced
costs of a single surgical procedure, and patient well-being
by avoiding a second, separate reexcision procedure. High
NPVs were also reported for underrepresented tissue
types, but these values appear inflated when the number
of true negatives significantly outweighed the number of
true positives.
Table 4 Summary of diagnostic performance

NOR FA DCIS

Sensitivity 0.90 0.87 0.61-0.65

Specificity 0.89 0.95 0.99

PPV 0.85 0.84 0.76

NPV 0.93 0.96 0.99

Accuracy 0.82

Summary of diagnostic performance, sensitivity, specificity, positive predictive value
between all tissue subtypes, normal (NOR), fibroadenoma (FA), ductal carcinoma in
discrimination between benign and malignant pathologies; the 95% confidence int
interval range is >1%.
Diagnostic value of optical parameters
The SFFS algorithm ranked the region-averaged (1) scatter-
ing amplitude, (2) percentage water, (3) total hemoglobin
concentration, (4) the scattering slope, and (5) percentage
oxygen, as most significant to tissue discrimination in that
order. The scattering amplitude was most valuable to
pathology discrimination, even through qualitatively, the
INV INV (Rx) Benign versus malignant

0.71-0.73 0.64-0.66 0.79

0.94 0.97 0.93

0.80 0.70 0.86

0.91 0.97 0.89

0.88

(PPV), negative predictive value (NPV), per tissue-type for discrimination
situ (DCIS), invasive cancer (INV), and treated invasive cancer (INV(Rx)), and for
erval is reported for sensitivity and specificity values when the confidence



Laughney et al. Breast Cancer Research 2013, 15:R61 Page 10 of 13
http://breast-cancer-research.com/content/15/4/R61
scattering slope appeared to localize better with suggestive
fibroglandular lesions. The scattering slope was potentially
undervalued by the limitations of pathology co-registration.
Percentage oxygenated hemoglobin was least valuable
to a diagnosis, mainly because of ex vivo fluctuations in
hemoglobin oxygenation status. Bydlon [54] showed that
percentage of oxygenated hemoglobin varies nonlinearly
within 30 minutes of resection, but other spectral parame-
ters, like the scattering coefficients and total hemoglobin
concentration, remained relatively stable after excision.

Discussion
To achieve the best survival outcomes for patients with
breast cancer, the goal for BCT is to completely resect the
tumor with negative margins and simultaneously take a
minimum of tissue to preserve the shape of the breast [4,5].
At Dartmouth and elsewhere, inking the specimen with
multiple colors to document better its orientation within
the breast ensures that if a margin were found to be
involved by tumor pathologic examination, a more directed
approach to additional tissue removal at a second resection
procedure is associated with lower recurrence rates and
better cosmesis [55]. This reexcision would be better
performed at the time of the first surgery rather than
waiting at least 48 hours, as is currently the case. Although
a preliminary pathological analysis can be performed while
the surgeon waits in the surgical suite, these current
methods are far less accurate [1-3] and not amenable to
surgical workflow or operating room efficiency. As a result,
the initial surgery is concluded, and patients recover before
the final pathological margin assessment. Effective and
efficient patient care demands an intraoperative technique
that minimizes the need for reexcisions and maximizes the
cosmetic outcomes by assisting the surgeon in removing
the minimum normal tissue around the tumor necessary to
ensure a negative margin within a single procedure.
NIR optical parameters imaged by a new planar imaging

modality, SFDI, were combined with a discriminant classi-
fier to detect and differentiate breast pathologies in situ.
Spectroscopic scattering was emphasized because ab-
sorption biomarkers varied markedly with the surgical
procedure itself, and a feature-ranking algorithm identified
the scattering amplitude as most significant to tissue-type
discrimination. All images were interpreted according
to histopathology for direct clinical relevance. Spectral
parameters applied to a discriminant classifier distinguished
benign from malignant pathologies with 88% accuracy
and the pathology subtypes: normal (includes fibrocystic
disease), fibroadenoma, DCIS, invasive cancer, and partially
treated invasive cancer after neoadjuvant chemotherapy),
were identified with 82% accuracy. Discrimination of
benign from malignant pathologies was highly specific
(93%) and reasonably sensitive (79%). The precision of
spectral-image co-registration with pathology may have
also limited the accuracy of discrimination; ROIs were
chosen conservatively here because this study was the first
to explore SFDI optical-parameter contrast in resected
breast tissues. Microscopic co-registration may not be
necessary for surgical-margin assessment, in which the
ultimate clinical goal is to determine if residual cancer is
present at the surface of a resected tissue. The primary
advantage of SFDI is near-real-time assessment of intact,
surgical specimens, so that decisions about additional
margin sampling can be made at the time of primary
surgery without damaging the sample. Clinical workflow
and the sample remain intact, so that margin status may be
confirmed postoperatively by conventional histopathology.
Although its modest PPV (0.86 when discriminating
between benign and malignant pathologies) could result
in a wider primary excision margin, information is gained
only at the time of surgery, and a secondary excision
would still be avoided. More important, SFDI identifies
breast pathologies with a high NPV (0.89 when discriminat-
ing between benign and malignant pathologies and 0.91 to
0.99 when discriminating between all pathology subtypes),
ensuring that tissues left unresected are truly negative for
residual disease. Ultimately, the surgeon has control over
the tradeoff between sensitivity and specificity according to
the number of nearest neighbors used by the classifier, as
shown in the ROC curve in Figure 3. Therefore, decisions
about the width of excisional margin could be made in a
patient-specific manner.
Application of SFDI to breast surgical margin assessment

may be realized soon, given its development as a commer-
cial package and the discriminatory power demonstrated
here. Its planar illumination scheme rapidly imaged 48
surgical tissues, and only one was rejected from analysis
because ink (applied postoperatively) contaminated the
primary imaged field. Image interpretation was highly
efficient when using an LUT for parameter optimization
and the k-dimensional search tree in the discriminant
classifier. Further reductions in data-acquisition time are
possible by limiting the number of spatial frequencies
sampled; Cuccia et al. [37] demonstrated optical parameter
recovery in tissue simulating phantoms with just two spatial
frequencies. Recent hardware modifications by Modulated
Imaging, Inc., enabled acquisition of 15 spatial frequencies
at four wavelengths in less than 2 minutes; this has been
tested in four fully intact lumpectomy specimens before
gross sectioning by pathology [39].
Inking strategies coordinated with the surgeon will be

necessary to translate SFDI further to the intraoperative
setting. Although inking is necessary for conventional
histopathology and to validate new diagnostic techniques,
it is not required for intraoperative margin assessment.
Ideally, the surgeon would apply the colored inks subse-
quent to imaging, but before removal of tissue from the
imaging platform. The surgeon would be responsible for
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moving the specimen to and from the imaging platform
and additionally could use sutures to safeguard knowledge
of its orientation until inks are applied. In that way, feed-
back on margin status is provided at the time of primary
surgery, and the specimen remains intact for conventional
histopathology, maintaining the clinical gold standard. In
this study, bread-loafed sections of the resected tissue were
imaged to enable accurate co-registration with pathology
for quantitative assessment of SFDI diagnostic performance,
as compared with the clinical gold standard. SFDI images
a surface area much larger than the microscopic FOV
sampled by a pathologist, so it does not have the sampling
limitations encountered in conventional histopathology.
An initial demonstration of imaging fully intact surgical
margins en face, before inking, is reported in our compan-
ion systems-analysis article [40]. Edge artifacts caused by
surface profile changes were sometimes observed in intact
specimens, but a three-phase amplitude demodulation
scheme has been implemented to correct for surface
profile changes [42]. Future development of SFDI for
surgical-margin assessment should focus on enhancing
tumor-specific scattering contrast, improving methods
for spectral image co-registration with pathology, and
automating image processing for near-real-time diagnostic
feedback at the time of surgery. Increasing the density of
visible-NIR sampling may also improve depth resolution
and the quantification of significant absorption signatures
like water.

Conclusions
SFDI combines quantitative spectroscopy with depth
sampling appropriate for margin assessment and optimally
balances the tradeoffs between wide-field acquisition and
signal localization. Most important, it performs diagnostic
assessment rapidly and on intact surgical specimens,
providing intraoperative feedback to the surgeon. Submil-
limeter probing volumes limit microscopic resolution, but
are here demonstrated to be diagnostically powerful
and clinically pragmatic. Planar imaging of NIR optical
parameters, in contrast to probing discrete tissue regions
by using fiberoptics, comprehensively images known
biologic heterogeneity within pathology subtypes. In com-
bination with a discriminant classifier, this wealthy data
set readily provides a tissue-type diagnosis. SFDI dis-
tinguished benign from malignant pathologies within
47 surgically resected breast tissues with 88% accuracy
and discriminated between all pathology subtypes with
82% accuracy. Discrimination of benign from malignant
pathologies was highly specific (93%) and reasonably
sensitive (79%). Although spectral absorption and scatter-
ing features were essential components of the classifier,
scattering exhibited lower variance, and the scattering
amplitude contributed most to tissue-type separation. The
scattering slope was also exquisitely sensitive to stromal
and epithelial distributions measured with quantitative
immunohistochemistry. Certain clinical challenges, mainly
orienting spectroscopic images with pathology and the
patient, and integrating data acquisition with immediate
processing at the time of surgery, remain to be effected,
but here we demonstrated that SFDI can rapidly discrim-
inate between microscopic pathologies at the surface of
lumpectomy tissues. This work validates the continued
translation of SFDI toward evaluation of surgical specimens
immediately ex vivo and at the time of primary surgery to
reduce significantly the secondary excision rate currently
associated with breast lumpectomy procedures.
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